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ABSTRACT 

 

KEYWORDS: p-n junction, semiconductor junction, current spreading, analytical model, 

ac equivalent circuit, current boundary conditions, forward bias, admittance, capacitance, 

conductance, two-dimensional flow, three-dimensional flow 

 

Vijaya et al.[2] presented an analytical model of the frequency dependent spreading of 

the small-signal minority carrier flow in forward biased shallow p-n junctions, having 

stripe and circular geometries. The present work extends this approach to model a general 

rectangular junction encountered in practice. The junction could be eccentric and may 

have rounded corners or can have an ohmic or HI-LO back contact. The current 

spreading is expressed in terms of the junction length and width, lateral and vertical 

extent beyond the junction, diffusion length, lifetime, transit time, frequency and the 

surface recombination velocity at HI-LO contact. It is shown that the spreading in a 

circular junction approximates that in a square junction of the same area, and that in the 

direction of a side which is more than four times the diffusion length can be neglected. 

The model is validated using TCAD simulation. 
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  INTRODUCTION Chap 1.

Importance of P-N junctions cannot be overemphasized. They have undergone an 

extensive analysis in books as well as research papers. Most of the research in p-n 

junction has been undertaken by approximating the current flow to be one-dimensional 

due to the ease of solution. However a practical forward biased p-n junction consists of 

non-parallel current flow between the p and n contacts, smaller of which is located 

arbitrarily over the larger as shown in Fig. 1.1. This flow consists of both majority and 

minority carrier current. The minority carrier current occurs due to the concentration 

gradient (i.e. diffusion) whereas the majority carrier current occurs due to the potential 

gradient (i.e. drift).  

     The drift component has been analytically modelled extensively as spreading 

resistance; an extensive review of this work and a compact model is present in [1]. 

However analytical modelling of diffusion component is difficult because of the mixed 

boundary condition, i.e. Dirichlet and Neumann boundary conditions, present over the 

different regions containing the junction (top surface in Fig. 1.1). This limitation was 

recently overcome in [2], for p-n junction, by replacing the Dirichlet-Neumann mixed-

boundary conditions on the top surface by a homogeneous Neumann boundary condition 

over the entire surface. This approach was used to successfully model stripe and circular 

geometries. It showed that, as frequency increases, the minority carrier current spreading 

reduces since this current occurs due to a combination of diffusion and recombination 

process.  

     Stripe or circular geometries do not represent a practical junction accurately. Hence, in 

the present work, we extend the approach of [2] to model 3-D minority carrier current 

spreading in a rectangular geometry. An analytical solution of the minority carrier 

continuity equation is used to develop a model for the DC and frequency dependent 

minority carrier current spreading in forward biased shallow rectangular p-n junctions 

with finite extent of semiconductor region beyond the junction. This model is then used to 

find current spreading in practical junctions which can be eccentric and can have rounded 

corners. Future scope is to find a compact expression for the infinite series solution 

presented in this report to improve computational speed.  
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Fig. 1.1 Current spreading in practical forward biased p-n-n
+
 junction 

 

The thesis is organized as follows. Chapter 2 reviews the equations and approximations 

used for modelling the current in forward biased p-n junctions, briefly summarizes the 

prior work ([3] – [7]) on minority carrier spreading in practical forward biased junctions, 

and details the approach adopted by [2] which is the basis of the work presented in this 

thesis. Chapter Chap 3 presents our solutions for minority carrier and current distributions 

as well as the small-signal equivalent circuit for p
+
-n junction with ohmic back contact. 

This chapter also validates our model against simulations and compares it with existing 

models. Chapter 4 gives a general model which can be used both for p
+
-n and p

+
nn

+
 

junction and verifies it against TCAD simulations. Chapter 5 gives conclusions and scope 

for future work. 
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 REVIEW Chap 2.

     In this chapter, we first review the basic semiconductor equations and their 

approximations for modelling forward current in diodes. Next, we briefly summarize the 

results and limitations of prior work that has addressed the issue of minority carrier 

spreading. Then we give a detailed review of a recent paper [2] on minority carrier 

spreading. Finally, we outline the objectives of our work in the light of the above review. 

2.1 BASIC SEMICONDUCTOR EQUATIONS  

     In order to model the current-voltage characteristics of most semiconductor devices, 

following equations are used as the starting point:  

the electron and hole continuity equations,   

 
  

  
  

    
 

                  
  

  
  

    

 
      (2.1) 

the drift-diffusion current density equations,   

                                             (2.2) 

and the electrostatic equations,  

             (2.3) 

where                 and all symbols have their usual meaning. 

2.2 APPROXIMATIONS AND EQUATIONS FOR MODELING      

FORWARD CURRENT OF DIODES  

Listed below are the approximations used to achieve the ideal diode model. 

Structure:  

Junction is abrupt with uniform doping on both sides. Dopants are ionized completely. 

Space-Charge Region 

 Space charge region is fully depleted of mobile carriers. 

 Recombination and generation in space charge region is neglected. 

 Quasi-equilibrium conditions prevail, so that the Boltzmann approximation is 

valid throughout the space charge layer. 
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Quasi-Neutral Region 

 Most of the applied voltage drops in the space charge region. Hence this region is 

field free and minority carrier current is only due to diffusion. This eliminates the 

poisson’s equation and drift term from the current density equations. 

 The applied bias is small enough to consider low injection level.  

 No excess generation other than thermal means. This eliminates the excess 

generation term from the continuity equation. 

High Frequency 

 In small signal analysis, the AC voltage applied over DC bias is much smaller 

compared to Vt 

Above approximations reduce the problem to a solution of just the hole distribution in the 

quasi-neutral n-region using the following equations  

 
  

  
  

    

 
  

  

  
                               (2.4) 

where            ,      being the equilibrium concentration of holes in the n-region. 

Equation (2.4) can be combined into a single equation 

 
   

  
         

  

  
 (2.5) 

Under steady state DC conditions, (2.5) reduces to 

    ̅   ̅   
 ⁄                    √        (2.6) 

and for small signal the above equation can be modified as 

    ̅   ̅   
  ⁄                 

   
  

√      

    (2.7) 

2.3 MODELS FOR DC/FREQUENCY DEPENDENT FORWARD 

CURRENT INCLUDING 2-D/3-D EFFECTS 

2.3.1 Models of the last century [3]-[7] 

   Grimbergen[3] was the first one to consider spreading effects on minority carrier 

current in a p-n junction. He considered an epitaxial p
+
nn

+ 
diode with circular junction 

and infinite lateral extent as shown in the Fig. 2.1(a). The 2-D problem is simplified by  
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Fig. 2.1 (a) Device cross-section modelled by Grimbergen [3]. (b) Normalized current 

and its components as a function of normalized  junction radius. 

assuming that excess hole density,    in region I is independent of radial co-ordinate r 

and gives rise to current component II and in region II is independent of z and gives 

current component III. The recombination velocity, S, of the HI-LO junction (i.e. nn
+
 

junction) and that of the oxide-silicon interface are taken zero. 

Component I1 and III are obtained by solving (2.6) assuming rectangular and cylindrical 

coordinates respectively 

          ̅ (  
 )

 

  
                             

     (2.8) 

           ̅    
  

  
 
     

 
  
  (   ⁄ )

  (   ⁄ )
 (2.9) 

       is the junction area and  ̅     is approximated by a mean value =  ̅    
   for 

     . Finally, the total current   is expressed as  

where 

   ((   ⁄ )
 
    (   ⁄ )

 
  ) 

      
 ̅ (  

 )

  
        

         
 

    
      (

 

  
)

  

 
  (   ⁄ )

  (   ⁄ )
 

(2.10) 

and       signifies the relative importance of the current component     as compared to  
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Fig. 2.2 (a) Device cross-section modeled by Roulston et. al [5]. (b) Lateral and corner 

current normalized to vertical current as a function of the distance between the isolation 

walls and junction edge. 

 the current component   . Fig. 2.1(b) shows the current I and its components     and      as 

a function of junction radius in a normalized form. 

    Roulston et. al. extended this model by considering rectangular p
+
-n-n

+
 structures in [5] 

and further accounted for the effect of finite n
+
 isolation walls in [4]. The top-view and 

the cross-section of the geometry considered is shown in Fig. 2.2(a). The hole surface 

recombination velocity is taken zero at the n-n
+
 interface which is assumed to be 

equidistant from the p
+
-n junction at all points along the periphery. The total current is 

divided into three independent components namely -    (vertical),    (lateral),    (corner). 

The vertical and lateral currents are obtained using a 1-D analysis and given by 

 

               
(       )

  
                             

     [            ]     
(     )

  
                            

(2.11) 

where,      is the minority carrier concentration on the boundary of depletion region in 

n-region. Corner currents are evaluated by solving (2.6) in cylindrical coordinate system 

assuming a perfectly blocking (i.e. zero surface recombination velocity) n-n
+
 interface. 

The solution was obtained by numerical integration by choosing an initial guess for the 

(a) (b) 
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hole current at      and iterating on this value till the boundary condition at      is 

satisfied. However, for a special case where the n
+
 isolation wall is within one diffusion 

length of p
+
n junction,    is solved analytically by letting       in the continuity 

equation (2.5) to get 

      (  
    

 )            (2.12) 

Fig. 2.2(b) shows the importance of the lateral and corner currents relative to the vertical 

current as a function of the spacing between the junction and the n
+
 isolation wall. It is 

seen that for a spacing > 10µm lateral current exceeds vertical current whereas corner 

current exceeds it for         and becomes a considerable fraction for       . 

    Model by Heasell [6] took the same structure as Roulston and partitioned the junction 

into a plane, a quarter of cylinder (with axis as R1R2) and an octant of a sphere centered 

about R2 shown in Fig. 2.3(a). Model replaced the iterative forward numerical integration 

scheme with analytical general solutions for carrier concentration and current for the 

plane or one-dimensional junction, as a reference device, as well as for the cylindrical and 

spherical junctions. The DC hole continuity equation (2.6) is solved in the n-region using 

the boundary conditions 

 

 

 

 

 

 

 

 

Fig. 2.3 (a) Device cross-section modelled by Heasell [6] (b) Current density in a 

Spherical/Cylindrical junction as compared to a planar junction. 
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                                                       (2.13) 

where W0 is the edge of depletion region in n-region and    is recombination velocity   at 

the outer boundary W normalized as      ⁄  . All lengths are normalised with respect to 

hole diffusion length Lp. The general solutions for the current densities               

arising from the plane, cylindrical and spherical junctions respectively, normalized to the 

1-D current density     of a long diode, are given by  

 
     

  
  

                        {      }

                         {       }
 (2.14) 

 
     

  
 

                    ]                      ] 

                     ]                       ]
 (2.15) 

where             are modified Bessel functions of the second kind, and  

 

     

  

 
  {               ]                         ]          }

  {           ]                     ]           }
 

(2.16) 

 Fig. 2.3(b) shows the relative values of current density in cylindrical and spherical 

junction to a planar junction for a junction depth of W0 = 0.2µm. It also shows the 

difference in current values for two extreme recombination velocities. 

    Every model discussed so far obtained a solution by splitting the device into 

independent components and thus they have failed to give a correct estimate of the 

current spreading. Chen et. al. [7] in their work obtained an analytical solution for the two 

dimensional boundary value problem by reducing it to a pair of dual integral equations by 

applying Hankel transformation to the boundary condition. The diode structure 

considered is circular junction with infinite lateral extent and a shallow p-region of radius 

 

 

 

 

Fig. 2.4 Device cross-section modelled by Chen et.al [7]. 

z 

z=W 
n-type 

S 

z=0 

2a 



9 

 

 

 

 

 

 

 

 

Fig. 2.5 Current spreading as a function of normalized junction radius for different W/Lp 

and S 

a, as shown in Fig. 2.4. Equation (2.6) is solved using a cylindrical co-ordinate system, 

assuming no variation of the excess carrier concentration    along the azimuthal 

direction, and using the following boundary conditions,    

 

 ̅           ̅ (  )              

  ̅      

  
                      

   

  ̅      

  
        ̅         

(2.17) 

Here, r is the radial co-ordinate   normalized with respect to the junction radius a, i.e. 

    ,  ̅ (  )  is the excess carrier concentration at the depletion edge and   is the 

recombination velocity at the bottom surface of the n-region. Final solution for the 2-D 

hole diffusion current   ­  is given as 

where 

  ­  √           

    ∑       √
 

 

 

   

  ̅ (  )            ∑         

 

   

              

(2.18) 

    is a function of      ,    and   and is calculated numerically. Fig. 2.5(a) shows the 

current spreading factor   ­    ­  as a function of the junction radius a, assuming a 

perfectly absorbing back surface i.e.    . Fig. 2.5(b) compares the spreading factor for  
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different values of S and we can see that current spreading increases with decreasing S. 

Here,   ­  is obtained from the known formula for a 1­D p-n junction. The two-

dimensional current spreading is found to be significantly high for         and large 

    . Even though this model solved the whole device as a single unit it considered 

infinite lateral extent which is an impractical case. 

2.3.2 Recent Model by Vijaya et. al. [2] 

 

    This model forms the basis for our model. It discusses DC and small signal current 

spreading in 2-D/3-D finite-sized(both vertically and laterally) shallow stripe and circular 

p-n junctions. Current flow in shallow p-region is assumed 1-D and calculated using 

available formulas. The structure is idealized by assuming a disk shaped p-region as 

shown in Fig. 2.6. Bottom contact is assumed ohmic i.e. surface recombination velocity is 

infinite. 

Solution methodology used by this model is to replace the mixed 

(Neumann+Dirichlet) boundary condition on top surface by a homogeneous(Neumann) 

boundary condition. Current in stripe and circular shaped junctions is calculated by 

solving (2.6), in rectangular and cylindrical polar coordinates respectively, with following 

boundary conditions on top surface 

 
   

  
|
   

 {

   

   
            

              

 (2.19) 

It assumes that the current density at the top contact is uniform. Solving for current 

with given assumption we get  

 

 

 

 

 

 

Fig. 2.6 Top-view and side-view of stripe and circular geometry 
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(2.20) 

where c = 0.8a is the point on the junction where junction law is applied.  

    The model also gives the small signal spreading factor,    which is   ­  or   ­ with Lp 

replaced by   
  and predicts that the spreading gets restricted as the frequency is 

increased. Further it models small signal behaviour of stripe and circular junctions. The 

equivalent circuit is given in Fig. 2.7 and remains same for the case of 1-D, 2-D and 3-D 

geometry. Here,      and    are the diffusion and series conductance, and            and 

   are the diffusion, depletion, and series capacitances, all per unit area of the 1-D 

junction; the ratio     ⁄  = dielectric relaxation time,  . Here            

      a                    where       a         are in shallow p-region and are 

given by 1-D formulas.       a         are found using the fact that       is ratio of 

small signal current   ̃  to small signal voltage  ̃.   ̃  is written as  ̃   ⁄  times   ̅  given by 

(2.20) with    ⁄  replaced by     
 ⁄ . Expression for    includes majority carrier 

spreading by assuming DC conditions up to the frequency for which skin 

depth       ⁄      in n-region remains much larger than its lateral dimension (   ). 

Spreading resistance formula for stripe and circular geometries are taken from 

 

 

 

Fig. 2.7 Small signal equivalent of a p-n junction diode 

𝐶𝑑𝑖𝑓  𝐶𝑑𝑒𝑝 𝐶𝑠  

𝐺𝑠  𝐺𝑑𝑖𝑓  
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  [1](Table II) and        . It is seen that at high frequencies majority carrier spreading 

plays a dominant role. For      formula given in [8](29) has been used to include the 

effect of inversion layers formed in highly assymmetrical junctions. 

    Model predicts DC results within 7 % error as shown in Fig. 2.8 and small signal 

results within 16% error. Model also gives a method to predict current in a practical 

junction by taking 2-D effects along the edges and 3-D effects at the corners. 

    Major limitation of the model is that the geometries considered are not practical. The 

equivalent model provided for a practical junction distributes the current into two 

i   p     t pa ts   i    a  giv   is  to majo  limitatio s. T   pap    o s ’t giv  a y 

comparison of the equivalent method with numerical simulations or experimental results. 

Another shortcoming is that the results are given only for the case of perfectly absorbing 

bottom contact, whereas models discussed previously gave general solutions as function 

of surface recombination velocity at bottom surface of n-region. 

2.4 OBJECTIVES OF THE PRESENT WORK 

     We aim to propose an analytical model for DC and frequency dependent minority 

carrier current spreading in a rectangular p-n junction. To be able to predict current values 

in a rectangular eccentric junction with rounded corners using rectangular junction. And 

to give a general model which uses the surface recombination velocity at bottom of n-

region as a parameter to give spreading values. 

 

 

 

 

 

 

 

 

 

Fig. 2.8 DC current spreading factor in (a) Stripe-shaped (b) Circular junction 
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 MODEL FOR A JUNCTION WITH OHMIC BACK Chap 3.

CONTACT 

   Vijaya et. al.[2] considered stripe and circular shapes for their amenability to a simple 

analytical solution. We consider a rectangular shaped junction for the practicality of the 

solution. We work with a junction where the p-region is shallow and n-region is long and 

focus on the 3-D current spreading in the n-region. The shallowness of the p-region 

allows three simplifications. First, the current flow from the vertical side walls of this 

region can be neglected. Second, the horizontal junction depletion edge in the n-region 

can be assumed to be in the same plane as the top of the n-region outside the junction area 

(see Fig. 3.1(a)). Third, the current flow in the p-region becomes 1-D for which models 

are available already. 

     We consider concentric and eccentric junctions with both sharp and rounded corners. 

In the case of the concentric structure, the geometric parameters of the model are: lateral 

extents of the p-region 2ax, 2ay and those of the n-region beyond the junction edge x, y, 

vertical extent W of the n-region beyond the junction depth; the process parameters of the 

. 

 

 

 

 

 

 

 

 

 

Fig. 3.1 (a) Top view of an idealized concentric rectangular p-n junction geometry 

considered in modeling, together with the cross- section and side view of a quarter of the 

structure. (b) Top view of an eccentric junction. (c) Top view of a concentric junction 

with rounded corners. 
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model are: uniform doping levels Na on p-side and Nd on n-side, diffusion coefficient, 

lifetime of minority carriers - Dn, n on p-side and Dp, p on n-side; the constants 

employed in the model are electronic charge q, thermal voltage Vt and substrate dielectric 

constant, εs. The bottom contact is assumed to be ohmic, and the remaining boundary of 

the n-region to be well passivated so that the surface recombination velocity is zero. 

    Symmetry of the concentric structure about the vertical planes x = 0 and y = 0 allows us 

to work with just any one of the four quarters of the structure. We model the junction with 

rounded corners in terms of a junction having the same area but sharp corners, and an 

eccentric junction as a parallel combination of quarters of four different concentric 

structures.  

3.1 EQUATIONS, BOUNDARY CONDITIONS AND APPROXIMATIONS  

  

    Consider a junction forward biased by DC voltage V on which a small-signal voltage of 

 ̃     ̂     is superposed. Write the excess hole concentration for this situation as 

      ̅   ̃  where  ̅   is the DC part and  ̃     ̂  
    is the small-signal part. In 

keeping with the ideal diode model, we assume low level injection and minority carrier 

flow due to diffusion. The latter assumption is valid even for frequencies where the 

majority carrier current distribution is influenced by skin effects. This is because the 

secondary drift current created by induced time-varying electric field accompanying the 

time-varying magnetic field is large in the case of majority carriers but rather small in the 

case of minority carriers. Under these conditions, the hole continuity equation can be 

separated into DC and small-signal parts as follows [(e.g. see [9]) 

   ̅  
 ̅ 

  
 
            ̃  

 ̃ 

  
  

          
   

  

√      

                    

where                          and   
  is called the complex diffusion length. 

Clearly, the solution for small-signal  ̃  is obtained from that of DC  ̅  by simply 

replacing Lp by   
 . Hence, we shall present the solution for the DC case and extend it to 

derive the small-signal conductance and capacitance. 

     Consider a quarter of the concentric structure described by the equations x  0, y  0 

and z  0.We have the boundary conditions  ̅    over the ohmic bottom contact, and 

  ̅       on the two vertical planes at            and   ̅       on the 
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two vertical planes at     and        . On the top plane z = 0, we have a mixed-

boundary condition as follows. Over the n-surface beyond the junction area, i.e. for 

          and          , the surface recombination velocity is zero, so 

that the normal component of the current density is zero. This translates to the Neumann 

condition   ̅       since the current is due to diffusion. On the other hand, over the 

junction area        and        , we have the Dirichlet condition  ̅  

   ( 
      ) as per the law of the junction. Since this mixed-boundary condition 

creates difficulties in analytical solution, we replace the Dirichlet condition over the 

junction area by a condition on   ̅     so as to have a homogeneous Neumann condition 

over the entire z = 0 plane. This is achieved by assuming that the normal hole current 

density   ̅  over the junction area is uniform, which amounts to a uniform   ̅     

   ̅       since the hole current is due to diffusion. This approximation is illustrated in 

Fig. 3.2. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2(a) Spatial distribution of the normal hole current density   ̅  and hole density   ̅̅ ̅ 

over the junction area of an idealized square p-n junction.(b) Cross-section of (a) showing 

results of mixed boundary conditions (solid lines) and homogeneous Neumann boundary 

condition (dash-dotted lines). 
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    This condition is valid up to the frequency for which the skin depths in the semi-

conductor region above the junction and in the top metal contact remain much larger than 

the lateral dimensions ax and ay of these regions (see [2] for more details). 

3.2 SOLUTION FOR THE DC FORWARD CURRENT          

3.2.1 Concentric junction with sharp corners 

     We may rewrite (3.5) assuming a rectangular co-ordinate system as,  

 
   ̅ 

   
 

   ̅ 

   
 

   ̅ 

   
   

 ̅ 

  
 

 (3.1) 

We solve the above equation by method of separation of variables (Fourier method), the 

solution to (3.1) can be expressed as, 

  ̅           ̅      ̅      ̅     (3.2) 

For sake of simplicity we replace the terms in R.H.S as 

                                          ̅               (3.3) 

Thus (3.1) can be rewritten in the form  

  ′′

 
 

 ′′

 
 

 ′′

 
 

 

  
 
 (3.4) 

To obtain a solution to the above equation we replace L.H.S with sum of three constants 

whose sum is equal to 1/Lp
2
, 

  ′′

 
    

  (3.5) 

  ′′

 
    

  (3.6) 

  ′′

 
   

    
  

 

  
 

 (3.7) 

where   
    

  are positive constants.  
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General solution of (3.5) can be written as  

                       (3.8) 

However the sine term in above equation will not satisfy the boundary conditions in x, so 

we are left with 

                            
   

     
                    ∞ (3.9) 

Similarly in y direction we can write the solution as 

                            
   

     
                    ∞ (3.10) 

The general solution of (3.7) will have hyperbolic sine and cosine terms. But the cosine 

term will not satisfy the boundary condition on the bottom contact/boundary, so we omit 

it to get 

        (√  
    

  
 

  
 

     ) (3.11) 

Thus the general solution for pe can be written as the linear sum of all the combinations of 

X.Y.Z and is given as  

 

         

 ∑  

 

    

∑  

 

    

     
                

    (√  
    

  
 

  
      )

    (√  
    

  
 

  
    )

 
(3.12) 

where        is the constant of summation. Here, the “cosh” term has been introduced for 

mathematical convenience as will be seen shortly. This general solution satisfies 

boundary conditions of section 3.3, on all boundaries except the top surface. We need to 

obtain       such that, 

 
          

  
      ∑  

 

    

∑  

 

    

     
                (√  

    
  

 

  
 
) (3.13) 

For sake of simplicity we replace R.H.S of above equation with a general function 

      . We use this equation to extract the coefficients      
, which as a result of 
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i t o u i g t   “ os ” t  m  o s ’t  o tai  a y  yp  bolic functions. We multiply (3.13) 

with    (
    

   
) on both sides and integrate over the range, 0      .    

 

∫  
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)  

  ∑  

 

    

∑  

 

    

     
   

    

     
(√  

    
  

 

  
 )∫  

     

 

   
    

     
   

    

     
   

(3.14) 

The integral on the RHS of this equation reduces to 0 for all         and for all 

        it reduces to 
     

 
 and we get 

 

∫  
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(3.15) 

Repeating the same procedure for y we get 

 

∫  
     

 

∫  
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(3.16) 

Setting  

        {

   

   
                   

              

 (3.17) 

and solving for      
we get  

      
 

    

      
            (    )

      (√(    )
 
 (    )

 
  )

             
(3.18) 

To solve for            we put         in (3.14) and keep rest of the solution 

same we get 

    
 

  

       

    

      
        

   (√(    )
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(3.19) 

Similarly for           we get 
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(3.20) 

Finally by solving for         we get 

   
   

      

  

       

  

       
 (3.21) 

 

Substituting      
    

and      
 in the general solution (3.12), we obtain the hole 

distribution in the n-region as,  

 

           
    (       ⁄ )

    (   ⁄ )
 ∑  

 

    

   
        

    (√  
  

 

  
      )

    (√  
  

 

  
    )

 ∑  

 

    

   
        

    (√  
  

 

  
      )

    (√  
  

 

  
    )

 ∑  

 

    

∑  

 

    

     
                

    (√  
    

  
 

  
      )

    (√  
    

  
 

  
    )

 (3.22) 

Where 

 

  
   

     ⁄

  

       

  

(     )
 

   
 

  

(     )

    

     ⁄
         

   (√(    )
 
  )

 

   
 

  

       

    

      
   (    )

   (√(    )
 
  )

 

 



20 

 

      
 

    

      
            (    )

      (√(    )
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  )

 
 

To solve for   ̅  using the above equation, we need to relate  ̅  to the applied voltage V 

using the junction law. However,  ̅  varies over the junction area because of the uniform 

  ̅     condition imposed over this region to obtain solution for  ̅ (see Fig. 3.2). 

Therefore, a question arises regarding the location over the junction where the junction 

law should be applied. Following [2], we use a location                 which 

matches the analytically determined value of the current        ̅  to the accurate value 

determined numerically based on the mixed boundary condition on the top surface. Thus, 

we solve for   ̅  by setting   ̅ (         )      ( 
 

    ) in (3.22). Our mixed 

boundary condition simulations for a wide range of device dimensions establish that 

      which is same as the value used for a stripe shaped junction in [2]. We express 

  ̅  as the product of a current spreading factor F3-D and the current density under 1-D 

conditions, i.e, 

   ̅     ­ [ 
   

  
    ( 

 

    )]     (
 

  
) (3.23) 

From (3.22), (3.23) and   ̅ (         )      ( 
 

    ), we get (3.24) where   

                 ⁄                  

 

 

 

 

 

 

 

 

 

To give a feel for the effect of       on the spreading factor F3-D, Fig. 3.3 gives a 3-D 

plot of it as a function of       . It can be easily shown that F3-D (3.24)→F2-D [2] for a  

(3.24) 
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Fig. 3.3 DC or low frequency 3-D spreading factor in a 3-D plain with       as x and y 

coordinates and F3-D as z coordinate.   

limiting case of Δx or Δy approaching zero. The forward DC current   ̅can be obtained by 

integrating the current density   ̅  over junction area. Since the current density is constant 

over the junction area, integration becomes simple multiplication and the current   ̅  is 

given as, 

  ̅             ̅   (3.25) 

3.2.2 Concentric junction with rounded corners 

     The 3-D mathematical analysis of a p-n junction with rectangular shaped p-region 

helped us gain a good understanding of the 3-D current spreading. We now use these 

results to understand the current spreading in a practical junction as given in Fig. 3.1(b).  

The actual junction is replaced with a rectangular junction with sharp corners but having 

same area. The lateral extents        of the latter are a fraction   of the former and extent 

of n-region beyond the junction edge        are changed accordingly as 

 

        ⁄             (   ⁄   ) 

              ⁄     

          (      ) 

(3.26) 

where 

 

F3-D 

0,0 

0.5 
1 

1.5 

1 

2 

3 

4 

6 

5 

0.5 

1 
1.5 

 
0,0 

0.5 
1 

1.5 

1 

2 

3 

4 

5 

0.5 

1 
1.5 



22 

 

   √   
        

       (     )
 (3.27) 

to match the areas of two junctions. 

3.2.3 Eccentric Junction 

     Refer to Fig. 3.1(c). This geometry is separated into four quarters having currents I11, 

I21, I22, I12 using two orthogonal vertical planes whose line of intersection passes through 

the center of the junction. The current in each quarter is approximated to be a quarter of 

the current through the corresponding symmetric structure, and the total current in the 

eccentric structure is derived as the sum of these four currents. This approach works for 

both sharp and rounded corners. Strictly speaking, the line of intersection of the planes of 

separation moves away from the centre of the junction as the junction is moved off-

centre, as was found in the context of an eccentric spreading resistance [1]. However, we 

have found that for the case of forward biased diode studied here, this effect can be 

neglected without much loss of accuracy.  

3.3  SOLUTION FOR THE SMALL-SIGNAL FORWARD CURRENT 

 

     This section discusses the analytical solution for small-signal excess hole distribution 

 ̃  in the n-region, and small-signal hole current density   ̃  and current  ̃ through the p-n 

junction. As stated in section (3.1), small-signal solutions are obtained by simply 

replacing    by   
  in the respective DC solutions 

     To get the small signal excess hole distribution,  ̃  we replace    by   
  in (3.22). Next 

we relate  ̃   to the small-signal voltage  ̃ by the junction law, for obtaining a solution for 

  ̃  in terms of  ̃ . By law of the junction, the total hole density pe at a location (       ) 

on the junction can be written as 

                   ( 
   ̃

    ) (3.28) 

Since  ̃ is small,   ̃   ⁄     (  
 ̃

  
 ), so that 

  ̃                  ( 
 

  )
 ̃

  
 (3.29) 

Which can be substituted in expression for  ̃  to obtain 
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 (3.30) 

where 
  

 

 

 

 

  

 

and  

  ̃     ̃  (     )  (3.32) 

Same expression can be used for concentric and eccentric junction with rounded corners 

by doing similar modifications as in DC case. 

3.4 SMALL-SIGNAL ADMITTANCE MODEL  

 

     In this section, we describe the models of the elements of the diode small-signal 

equivalent circuit reviewed in subsection 2.3.2.  

3.4.1  Diffusion conductance and diffusion capacitance 

 

     Same as [2] we can write      as ratio of small signal current,  ̃ to small signal voltage 

 ̃ and             as follows 

        
 ̃

 ̃ 
              (     )             

         

 
 (3.33) 

where ⍵ is the frequency in rad/s. Each of       and       can be separated into two 

parallel parts: a hole part                related to the n-region and an electron part 

                related to the p-region.        and        are expressed using the 1-D 

formulae available already (e.g. see [9]). We focus on         and        which are 

(3.31) 
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influenced by current spreading effect.  

We know that                          . We can write   ̃  as   ̃     times    ̅   (e.g. 

see [9]) given by   

   ̅    [ 
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) (3.34) 

with F/Lp  replaced by      
   where    is    ­ 

  given by (3.31), so that 
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3.4.2 Transition capacitance 

Conventional formula for depletion capacitance is based on the assumption that space-

charge region is completely depleted of mobile carriers. But for a highly asymmetric 

junction like ours this condition fails as the lightly doped side gets inverted resulting in  

 

 

 

 

 

 

 

 

Fig. 3.4 Space-charge and potential distributions in an asymmetric junction 

Vbi-V 

distance wn wi 0 

Ѱ(0) 

Ѱ(x) 

distance wn wi 

Nd 

ρ/q 

(log) 

Na 



25 

 

high concentration of minority carriers in space charge region next to the junction as 

shown in Fig. 3.4. This reduces the space charge layer width and thus changing the 

capacitance values. A closed form expression to account for this change has been given in 

[8] as  
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(3.38) 

where the first term on the RHS is the classical expression for the depletion capacitance 

and the second term is the correction due to the presence of minority carriers in the space 

charge region. Further,    and    are constants, wi is the width of the inversion layer,    is 

the extrinsic Debye length in the n-region,      is the potential at the metallurgical 

junction. Same expression was used in [2] to find the depletion capacitance. 
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(3.39) 

3.4.3 Bulk conductance and capacitance 

   Majority carrier drift current has been modelled extensively in literature in form of 

spreading resistance. As mentioned in [2] this DC model can be employed up to the 

frequency for which the skin depth 1 f 
 
in the n-region remains much larger than its 

lateral dimension (a +). Using the same assumption we find    using the spreading 

resistance formulae for rectangular and square geometries given in the last row of Table I 

and Table II of [1]. Then we obtained Cs = Gs d, where  d = resistivity times the dielectric 

permittivity. For ease of reference, we reproduce below the spreading resistance formulae 
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of [1] used in our work.  

For the rectangular geometry, the spreading resistance normalized to             

      is given as  
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(3.40) 

for a long n-region, e.g. for   5  , and for a short n-region, e.g. for          

power law decay        ⁄ ] (      )⁄  and [      ⁄ ]
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 are replaced by the 

exponential decay    [
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)]respectively, with      5 and 

          . 

     Similarly, for the square geometry, the spreading resistance normalized to   ­  

       is given by the following relations. 
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for a long n-region, e.g. for   5  , and for small n-region, e.g. for         the 

power law term [  
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 is replaced by the exponential term    [
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3.5 MODEL VALIDATION AND DISCUSSION 

3.5.1  Numerical Simulation set-up 

     Our model is validated by comparison with numerical calculations based on Sentaurus 

TCAD simulator [10] which employs mixed-boundary condition over the top surface, the 

drift-diffusion transport model with doping dependent lifetime and mobility, and 

electrostatic equations. 3-D simulations for the rectangular geometry were done for 

various lengths and breadths of devices and were compared with 1-D simulation for same 

lengths and breaths. Exploiting the symmetry of the device, only quarter of the device 

structure has been simulated. Meshing was designed in such a way that irrespective of 

device dimensions, number of mesh points was ~75000. The TCAD tool was calibrated 

by comparing the currents with analytical formulae available for 1-D and 2-D device [2].  

   As the equations are derived for holes in n-region by assuming p-region and depletion 

region as a 2-D disk, we need to match the results with hole current at depletion edge in 

n-region. To extract the same, the fact that p-region is shallow is exploited. Fig. 3.5 shows 

the variation of current in the device simulated and it is clear that due to the shallow 

junction and zero recombination in depletion region approximation, hole current at p-

 o ta t  o s ’t   a g  till t     pl tio    g  a    a     used to match the results.  

The model results are illustrated using a typical p
+
-n silicon junction with junction depth 

of 0.2 m, T = 300 K and other parameter values listed in Table I. The device has     

lateral dimensions of  0.2Lp         5Lp and       in range of 0.2Lp to 1.5Lp and 

vertical dimensions of 0.2Lp  W  5Lp, where Lp = 24 m. Small signal results are shown 

TABLE I  

PARAMETERS OF THE P-N JUNCTION EMPLOYED IN CALCULATIONS 
 

Parameter p-side n-side 

Doping 
Na  = 1 x 10

18 
cm

-3
 

Nd  = 1 x 10
16 

cm
-3

 

Lifetime n  = 10 ns p  = 0.5 s 

Mobility n = 272.4 cm
2
/ V-s n = 1122 cm

2
/ V-s 

 p = 162.7 cm
2
/ V-s p =  433.5 cm

2
/ V-s 

 Ln = 2.65 m Lp = 24 m 
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Fig. 3.5 Minority carrier concentration and hole and electron current density in shallow p-

n junction.       

 

 

 

 

 

 

 

Fig. 3.6 Comparison of the simulated I-V data (dots) and the ideal diode model (line) 

upto a frequency of 100 GHz which is close to the dielectric relaxation frequency of 

1/2  d  ( d = 0.6 ps). As discussed in section 3.4.3 given results work up to the frequency 

for which skin depth is much larger than the lateral dimensions of device. It was observed 

that at this 100 GHz, the skin depth in the p-region above the junction is about 3.5-7 times 

its lateral dimensions ax,ay. Hence, even after some reduction due to the much smaller 

skin depth in the metal above the p-region, the effective skin depth in the p-region [11] 

remains a few times ax=ay. Thus, our uniform current density boundary condition over 

ax=ay, and hence, our models for minority carrier current spreading, Gdif and Cdif remain 

valid upto this frequency. Similarly, the skin depth in the n-region is about 5-7 times its 
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lateral dimension (ax + x) = (ay + y). Hence, our models for majority carrier current 

spreading, Gs and Cs too are valid. 

    Ideal diode model is assumed to be valid in an applied bias range of 0.35- 0.6 V which 

can also be seen in Fig. 3.6. Thus we have performed our simulations at an applied bias of 

0.5 V at which, the depletion layer recombination current is negligible compared to the 

diffusion current, yet low level injection prevails. 

3.5.2 Results 

    First step to verify any results is to check the limiting cases. Limiting case for a 

rectangle as mentioned in section 3.2.1 will be when it becomes a stripe that is one of Δx 

or Δy goes to zero. Fig. 3.7 shows F3-D for such cases along with the F2-D from [2]. 

3.5.2.1 Concentric Junction with Sharp Corners 

   Fig. 3.8 shows the low frequency DC spreading factor F3-D(3.24) as a function of W, Δx, 

Δy, ax and ya for a concentric structure. Similar to [2] the current spreading increases with 

W as well as Δx, Δy.  For a given W, F3-D saturate for Δ > W  in diodes with W < Lp and for 

Δ > 1.2Lp in diodes with W > 3Lp. Our analytical calculations show that using   = 0.8, F3-

D matches with the numerical calculations within 7%. The simulations were done for an 

applied voltage of 0.5 V.  

 

 

 

 

 

 

 

Fig. 3.7 DC or low frequency 2-D and 3-D spreading factors as a function of device 

geometry. Continuous lines show our model, points show model given by [2]. 
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Fig. 3.8 DC or low frequency 3-D spreading factor as a function of device geometry. 

Continuous lines show model and points show simulations . 

    Our extensive calculations show that, for a given W, the values of Δx or Δy at which the 

DC spreading saturates fit into the empirical relation 

             (    ) (3.42) 

which also applies to stripe and circular geometries in [2]. The current spreading factor 

decreases as ax or ay increases i.e. as the junction area increases, the current can be safely 

assumed to be almost 1-D since the contribution of the lateral current component 

becomes negligible as compared to the vertical current component.  

     The magnitude of small-signal minority carrier current spreading factor   ­ 
  (3.31) of 

a concentric square junction with ax = ay = 0.2Lp and  Δx = Δy = 0.5Lp is shown in Fig. 3.9. 
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It can be seen that minority carrier current spreading gets restricted with increasing 

frequency. It falls-off for f  > 1/2  p in long diodes (W 3Lp) and for f > 1/2  t  in short 

diodes (W  0.2Lp), and finally saturates to 1; here, t = W
2
/2-Dp  is the transit time (10 ns 

for W = 0.2Lp). This means that at high frequencies, minority carrier flow picture is such 

that we have 1-D small signal flow superimposed over 3-D DC flow.  

     Next we discuss the small signal model of the concentric junction. Unlike DC case the 

simulato   o s ’t giv  t  mi al  u    t fo  t   AC  as . It giv s o ly  apa ita    a    

conductance of the junction and hence we have validated our model as per the equivalent 

circuit shown in Fig. 2.7, where Gdif, Gs are the diffusion, series conductance and Cdif, 

Cdep, Cs = Gs d  are the diffusion, depletion, dielectric relaxation capacitance, all per unit 

area of the 1-D junction. 

   Fig. 3.10 compares our analytical calculations for the small-signal conductance and 

capacitance with numerical calculations over a wide frequency range of 100 Hz – 100 

GHz for long and short diodes. A forward bias of 0.35 and 0.6 V is employed so that the 

whole range voltage where ideal diode model is applicable is considered. The analytical 

results are within 20 % of the numerical results. The conductance = Gdif and capacitance 

= Cdif + Cdep are independent of frequency for f <1/2  p for long diodes and f < 1/2  t for 

short diodes. As frequency is raised, the conductance rises while the capacitance falls, 

ultimately saturating at Gs and Cs respectively.  

 

 

 

 

 

 

 

 

Fig. 3.9 Small signal 3-D spreading factors for minority carrier current as a function of 

frequency. 
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Fig. 3.10 Conductance and capacitance of rectangular junction as a function of frequency, 

for long (W/Lp = 5) and short (W/Lp = 0.2) diodes. Continuous lines show model and 

symbols show simulations. Here the applied voltage is 0.35 and 0.6 V. 

3.5.2.2 Concentric Junction with rounded corners 

    Table II compares the model calculations using (3.24)-(3.27) with TCAD calculations 

for a variety of geometries. The difference between the two calculations is < 5%. The 

worst case occurs when the junction is circular and the semiconductor area is square, i.e. 

in Fig. 3.1(b), lx = ly = 0 and      .  

3.5.2.3 Eccentric Junction 

    Fig. 3.11 shows the variation of F3-D in an eccentric junction as the junction is moved 

around over the n-region. Results of our analytical model discussed in section 3.2.3 match  
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TABLE II 

COMPARISON OF PRESENT MODEL WITH TCAD; W/LP = 1 

  
  

 
  

  
 

 

  
 
 

  
 
 

  
 

F3-D % 

Error TCAD Model 

0 0 

0.2 0.5 0.5 5.64 5.59 -0.75 

0.2 1.0 1.0 6.29 6.13 -2.60 

0.4 0.5 0.5 3.11 3.23 3.97 

0.4 1.0 1.0 3.39 3.54 4.19 

0.1 0.1 
0.1 0.5 0.5 5.17 5.11 -1.20 

0.3 0.5 0.5 2.96 3.07 3.88 

0.2 0.2 0.2 0.5 0.5 2.90 2.97 2.38 

0.3 0.3 0.1 0.5 0.5 2.87 2.92 1.76 

0.2 0.0 0.2 0.2 0.4 3.40 3.39 -0.43 

0.3 0.1 0.1 0.2 0.4 3.24 3.22 -0.58 

with the TCAD simulations within 7% error. 

3.6 COMPARISON 

    In this section we compare our model with 2-D approximation and also discuss some 

approximations which expand the scope of our model for geometries other than 

rectangular. 

3.6.1 Practical Junction 

    In section 3.2.2 we provided a method to find the current spreading in a concentric 

junction with rounded corners. Another method to calculate same was outlined in [2] 

using the formulas for stripe and circular geometries. It considered spreading as a 

combination of 2-D effect along the edges and 3-D effects at the corners. The method is 

briefly described here for ease of reference. Consider the junction given in LHS of Fig. 

3.12 and separate the junction area into stripes ABCD and EFGH, and four quarter 

circles1, 2, 3, and 4, which can be combined to form a circular junction. The stripe ABCD 

has length = l, width 2ax = (w+2r), and lateral extension ∆x = [AB-(w+2r)]/2; stripe 

EFGH has length = w, 2ay = (l+2r), and ∆y = [EF-(l+2r)]/2; the circular junction has a 

radius a = r, and its lateral extension has an upper limit = U and lower limit = L , which is 

the smaller of the lateral extensions of the two stripes. The current I through the junction 
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Fig. 3.11 DC or low frequency 3-D spreading factor for eccentric rectangular                 

junction obtained by moving the junction along the path OABO.   

is the sum of the 1-D current through the junction area, 2-D spreading from the two 

stripes, and 3-D spreading from the circle. 

    Let FABCD and FEFGH denote the 2-D spreading factors associated with the stripes and 

F1234 denotes the 3-D spreading factor associated with the circle; estimated using (6) and 

(7) in [2] then 

 

                                                

        ]  ­  (3.43) 

 

 

 

 

 

 

Fig. 3.12 Method to simplify a practical junction as suggested in [2] 
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TABLE III 

Comparison of 1-D, 2-D and 3-D model with TCAD; ∆x/Lp = ∆y/Lp = 1.5 

ax ay W 

3-D 

Simulated 

Current 

(nA) 

1-D Model 2-D Model 3-D Model 

Current 

(nA) 
Error 

Current 

(nA) 
Error 

Current 

(nA) 
Error 

0.2 

0.2 6.42 2.95 54% 5.61 13% 5.92 8% 

1 4.34 1.07 75% 3.39 22% 4.09 6% 

5 4.24 0.91 78% 3.19 25% 3.98 6% 

0.4 

0.2 18.7 11.8 37% 17.6 6% 17.9 4% 

1 10.3 4.22 59% 9.21 11% 10.2 1% 

5 9.89 3.59 64% 8.53 14% 9.74 2% 

1 

0.2 93 73.2 21% 84.7 9% 84.6 9% 

1 40.9 26.1 36% 40.3 1% 41.8 -2% 

5 37.6 22.2 41% 36.1 4% 38.0 -1% 

    Table III shows the comparison between two approaches along with the 1-D model. In 

these calculations the radius of the junction corner was assumed to be equal to the 

junction depth of 0.2 m, x = y = 1.5Lp, W/Lp = 1 and other parameters were as in Table 

I. We found that, the results of [2] deviate from TCAD results by as much as 25% for ax = 

ay = 0.2Lp, i.e. when the junction approaches a square shape and its size is less than 

diffusion length; under these conditions, the current spreading from the corners is 

significant, which is not captured by the approach of [2] i.e. it only considers the 

spreading in the devices given in the R.H.S of Fig. 3.12. The circular region considered 

has a very small radius and has negligible effect on total current. However, for the same 

 o  itio s,   sults of t   app oa     viat   y ≤ 9%,   mo st ati g t   a ility of t   

present approach to accurately model the spreading from corners. An important 

observation is that beyond ax, ay = Lp results are almost same for 2-D and 3-D models 

which means that beyond ax,ay ≥ Lp, 3-D spreading in corners becomes insignificant as 

compared to the spreading in the edges.  

3.6.2 Non-Rectangular Geometries 

    Fig. 3.13(a) compares the F3-D predictions of a square junction with those of a circular 

junction with same area, based on TCAD, and (3.24) for a rectangular junction and (7) of 

[2] for a circular junction. The TCAD simulations of the square and circular junctions are 

within 2% of each other and hence represented by a single set of points.  The maximum  
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Fig. 3.13 (a) Comparison between models for circular (dashed lines) and square (solid 

lines) junctions of same area. TCAD simulations of both junctions are identical and 

shown by points. (b) Comparison between model for square (solid lines) and TCAD 

simulations (points) for a square p-region on a circular n-region. Here ∆ represents 

difference between radius of circle and half the side of square.  

difference between the two models is 14%, which occurs for large junction areas; for 

small junctions, the difference is much less. It should be noted that present model matches 

the simulations for all scenarios. We already showed in section 3.2.2 how the results for 

circle in a square could be predicted using F3-D and here we show that a circle in circle 

can also be approximated as a square in square of equal area. The possibility of whether a 

square in a circle can be predicted using the same approach was also verified as shown in 

Fig. 3.13(b). These results along with results in [1] show that for device modelling 

purpose circular/elliptical and square/rectangular geometries are transposable. 

    As far as calculation time is concerned, it takes ~ 200 ms to calculate the zeroes of the 

B ss l’s fu  tio  i  (7) of [2]. However, the zeroes can be calculated once for all, stored 

and reused for estimating F3-D of any circular junction; thereafter, the calculation time is ~ 

2 ms. Time taken to calculate the F3-D of a square junction is about 6 ms. The utility of 

the analytical model for device design and circuit simulation is seen from the fact that the 

model calculations can be done using MATLAB and take on the order of milliseconds. In 

contrast, TCAD simulations can be carried out only with a high level of specialized 

training in the choice of mesh, physical models and solvers to obtain a convergent 

solution for the specific device structure and bias conditions at hand. Also, they take on  

(a) (b) 
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Fig. 3.14 Comparison between rectangular and stripe shaped junctions 

the order of hundreds of seconds, which is four orders of magnitude higher than the time 

taken by the model. The above times correspond to an Intel i7 Octacore processor with 32 

GB RAM. 

    Finally, we anticipate that, the current spreading in the direction of a side of the 

rectangle can be neglected if the dimension of this side exceeds a few diffusion lengths. 

This is brought out in Fig. 3.14, where we plot the spreading factor  F3-D of a rectangular 

junction as a function of x = y, for a given ax and W, and increasing ay. The figure also 

includes the F2-D of a stripe shaped junction calculated using (6) of [1] for the same ax and 

W. It is seen that the F3-D curve approaches the F2-D curve for ay/Lp > 4. 
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  MODEL FOR A JUNCTION WITH HI-LO BACK Chap 4.

CONTACT 

   In previous chapter we discussed the current spreading in forward biased shallow p-n 

junction having a perfectly absorbing boundary at the bottom surface of n-region. This 

condition amounts to an ideal ohmic contact to the n-region. But practically one may 

encounter a case where n-region is followed by an n
+
-film to improve the quality of 

contact, as shown in Fig. 4.1(a). Fig. 4.1(b) shows the difference in minority current value 

that arises due to this modification as compared to a p
+
n junction. It is because for HI-LO 

junction the excess minority carrier concentration at the bottom boundary is not zero as in 

the case for an ohmic contact. This reduces the minority carrier gradient in the n-region 

which leads to a reduction in diffusion current. As the length of n-region is reduced the 

concentration at boundary further increases and thus reducing the current even more. This 

scenario is modelled in [12] by replacing the nn
+
 junction with a boundary having an 

effective surface recombination velocity, S. The value of the effective recombination 

velocity is process dependent. We have assumed a variable S to derive our model. 

4.1 DEVICE STRUCTURE, EQUATIONS, BOUNDARY CONDITIONS 

AND APPROXIMATIONS. 

    We use the device structure same as previous chapter with all the symbols meaning  

 

 

 

 

 

 

 

 

Fig. 4.1 (a) p
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same. We make same assumptions regarding device structure and device physics as made 

in previous chapter. Again we consider a quarter of the structure and minority carrier 

continuity equation (2.6) is solved with same boundary conditions as previous chapter 

except the boundary condition at the back contact which is given as 

    

   

  
|
   

           
   

  
|
   

 
      

  
                

   

  
 (4.1) 

If we keep S→  in above equation it will translate to pe(W) = 0 as used in previous 

chapter.  

4.2 SOLUTION FOR DC FORWARD CURRENT 

    We solve (2.6) in rectangular coordinate system using the method of separation of 

variables to write the solution as 

                                          (4.2) 

Solutions for X and Y remain the same and are reproduced here for convenience 

                       
   

     
  a                 ∞ (4.3) 

                       
   

     
  a                 ∞ (4.4) 

With new boundary conditions at z=W the solution for Z becomes 
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Thus we can write the general solution for    as the linear sum of all combinations of 

X.Y.Z to obtain 
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    Next we apply the boundary condition at z=0 and repeat the procedure used in section 

3.2.1 to consider all the cases of n1 and n2 and get the final solution for excess hole 

concentration in n-region as 
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(4.7) 
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To solve for   ̅  we relate  ̅  to applied voltage, V using junction law same as done in 

previous chapter and by using the same value of  . We express   ̅  as a product of a 

current spreading factor F3-D and the current density under 1-D conditions i.e 
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4.3 SMALL SIGNAL MODEL 

    To find small signal minority carrier current same methodology can be used as section 

3.3 and (4.9) can be modified accordingly to obtain small signal frequency dependent 

spreading factor. For majority carriers as the current is due to drift and excess carrier 

concentration is negligible, change in boundary condition at bottom surface of n-region is 

expected to have no effect. This fact was also verified by TCAD simulations. Thus we 

can use the same model for majority carrier spreading as used in section 3.4. 

4.4 MODEL VALIDATION AND DISCUSSION 

4.4.1 Numerical Simulation Set-up 

    Our model is validated by comparison with numerical calculations based on Sentaurus 

TCAD simulator. 3-D simulations were done for rectangular geometries of various 

lengths and breadths of devices. The simulator allows us to specify carrier recombination 

velocity at contacts. This was used to specify hole recombination velocity at n-contact. It 

was also verified that changing boundary condition for electrons had no effect on current 

at all. 

    The TCAD tool was calibrated by simulating a 1-D p-n junction and comparing with 

the values calculated using analytical formulae as shown in Fig. 4.2.  
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Fig. 4.2 Comparison of simulated I-V data (points) and ideal diode model (lines) 

    For the case of       junction at applied bias of 0.5 V hole current for certain 

geometries drops to values comparable to recombination current in space-charge layer. 

This fails our method of extracting the hole current on depletion edge. Thus the 

simulations are performed at applied bias of 0.55 V, which ensures that recombination 

current is negligible and low level conditions prevail. 

The model results are illustrated using a typical p
+
-n silicon junction with junction depth 

of 0.2 m, T = 300 K, hole recombination velocity, S = 700 cm/s on n-contact and other 

parameter values listed in Table I. The device has lateral dimensions of  0.2Lp         

5Lp and       in range of 0.2Lp to 1.5Lp and vertical dimensions of 0.2Lp  W  5Lp, 

where Lp = 24 m. 

4.4.2 Results and discussions 

   Fig.4.3 shows the low frequency or DC spreading factor F3-D as a function of W, ∆x, ∆y, 

ax, ay  for a p
+
n junction with hi lo back contact. Value of   is used same as the case of a  

p
+
n junction with ohmic contacts. Our analytical calculations show that using   = 0.8, 

F3­D matches with the numerical calculations within 7%. 

    It can be observed that for a p
+
n junction with hi lo back contact spreading increases 

with decrease in Wn which is opposite of what we observed in case of p
+
n junction with 

ohmic back contact. It is because for this boundary condition the current decreases with        

decrease in Wn and the carriers contributing to 1-D current travel distance less than the  
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(a) 

 

 

 

 

 

 

 

 

Fig. 4.3 (a) DC spreading factor as a function of device geometry (b) Conductance and 

capacitance of rectangular junction as a function of frequency for short (W/Lp = 0.2) 

diodes. Continuous lines show model and symbols show simulations. 

carriers contributing in 2-D/3-D current. Thus the current contribution by laterally spread 

carriers is more than carriers travelling straight and this difference increases with 

decreasing width of n-region. 

    Fig. 4.4 compares the capacitance and conductance obtained from our analytical 

calculations with the TCAD simulations. Model for conductance shows a maximum error 

of about 14% and for conductance maximum error is about 24%. The results have been 

shown only for small diode as that is where the effect of boundary condition is evident. 
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 CONCLUSIONS Chap 5.

 

   We derived an analytical model for minority carrier current spreading, in forward 

biased shallow rectangular p-n junctions which could be eccentric and may have rounded 

corners. We showed that, under small-signal conditions, the spread of the minority carrier 

flow gets restricted for f > 1/2 p in long diodes with W > 3Lp and f > 1/2 t for short 

diodes with W < 0.2Lp. The flow becomes almost 1-D at large frequencies. Under DC 

conditions, the minority carrier flow saturates for Δ > W in diodes with W < Lp and for 

Δ > 1.2Lp in diodes with W > 3Lp; the flow is almost 1-D in short diodes with W < 0.2Lp 

but spreads with increase in W, and saturates in long diodes with W > 3Lp. The spreading 

in a circular junction approximates that in a square junction of the same area, and that in 

the direction of a side > 4Lp can be neglected. Next we modelled a general p
+
nn

+
 junction 

with arbitrary surface recombination velocity at the lower boundary of n-region. It was 

found that spreading increased with a decrease in length of n-region for a p
+
nn

+
 junction 

which is opposite to the case of p
+
n junction. The model was validated by comparison 

with numerical simulation. 

   Future work can incorporate the current emanating from the vertical side walls of the 

junction that was neglected in our work. It can also attempt to achieve a semi-empirical 

formula for current spreading to replace the infine summation expressions derived in this 

report. One can also take a device with n
+
 isolation walls i.e the vertical side-walls are 

also nn
+
 and find spreading current for that case. 
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APPENDIX 

A1. Sentaurus Device editor Command file  

;Reinitializing SDE 

(sde:clear) 

 

;Defining Variables 

(define Lp @Lp@) 

(define Ln @Ln@) 

(define an @an@) 

(define Deltan @deltan@) 

(define Jd @Jd@) 

(define Wn @Wn@) 

(define pdope @p_doping@) 

(define ndope @n_doping@) 

(define p_contact @<an*Lp-Jd>@) 

 

(sdegeo:set-default-boolean "BAB") 

 

;Defining p-region 

(sdegeo:create-cuboid  

(position 0 0 0)  (position (* an Lp) Jd (* an Lp)) "Silicon" "p-region") 

 

;Defining p-contact dummy box 

(sdegeo:create-cuboid 

(position 0.0 0.0 0.0) (position p_contact -0.1 p_contact) "Aluminum" "dummy") 

 

;Defining Contact sets 

(sdegeo:define-contact-set "p-side" 4.0  (color:rgb 1.0 0.0 0.0 ) "##" ) 

(sdegeo:define-contact-set "n-side" 4.0  (color:rgb 1.0 1.0 0.0 ) "||" ) 

 

;Definining n-region 

(sdegeo:create-cuboid  

(position 0 0 0)  (position (+  (* an Lp) (* Deltan Lp)) (* Wn Lp) (+  (* an Lp) (* Deltan 

Lp))) "Silicon" "n-region") 

 

;Setting Contacts 

(sdegeo:set-current-contact-set "n-side") 

(sdegeo:define-3-D-contact (find-face-id  

(position (/ (+  (* an Lp) (* Deltan Lp)) 2.0) (* Wn Lp) (/ (+  (* an Lp) (* Deltan Lp)) 

2.0))) "n-side") 

(sdegeo:set-current-contact-set "p-side") 

(sdegeo:set-contact (find-body-id  

(position (/ p_contact 2.0) -0.05 (/ p_contact 2.0))) "p-side") 

(sdegeo:delete-region (find-body-id (position (/ (* an Lp) 2) -0.05 (/ (* an Lp) 2)))) 

 

(render:rebuild) 

(sdeio:save-tdr-bnd (get-body-list) "@tdrboundary/o@") 
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A2. Sentaurus Mesh File 

 

Definitions { 

 

 Constant "Constant.nreg" { 

  

 Species = "PhosphorusActiveConcentration" 

 

 Value = @n_doping@ 

 

 } 

 

 Constant "Constant.preg" { 

 

 Species = "BoronActiveConcentration" 

 

 Value = @p_doping@ 

 

 } 

 

} 

 

Placements { 

 

 Constant "PlaceCD.nreg" { 

 

 Reference = "Constant.nreg" 

 

 EvaluateWindow { 

 

 Element = region ["n-region"] 

 

   } 

 

 } 

 

 Constant "PlaceCD.preg" { 

 

 Reference = "Constant.preg" 

 

 EvaluateWindow { 

 

 Element = region ["p-region"] 

 

   } 

 

 } 

 

} 



49 

 

Definitions { 

 

 Refinement "global.all" { 

 

 MaxElementSize = ( !(puts [expr (@an@+@deltan@)*@Lp@/10.0])!  !(puts 

[expr (@Wn@)*@Lp@/10.0])! !(puts [expr (@an@+@deltan@)*@Lp@/10.0])!) 

 

 MinElementSize = ( !(puts [expr (@an@+@deltan@)*@Lp@/10.0])!  !(puts 

[expr (@Wn@)*@Lp@/10.0])! !(puts [expr (@an@+@deltan@)*@Lp@/10.0])!) 

 

 RefineFunction = MaxLengthInterface(Interface("n-region","p-region"), 

 Value = 0.001, Factor = 1.5, UseRegionNames) 

  

 RefineFunction = MaxLengthInterface(Interface("n-region","nside"), 

 Value = 0.001, Factor = 1.5, UseRegionNames) 

 

 } 

 

 Refinement "Ref.pregion" { 

 

 MaxElementSize = (!(puts [expr (@an@)*@Lp@/10.0])!  !(puts [expr 

@Jd@/10.0])! !(puts [expr (@an@)*@Lp@/10.0])!) 

 

 MinElementSize = (!(puts [expr (@an@)*@Lp@/10.0])!  !(puts [expr 

@Jd@/10.0])! !(puts [expr (@an@)*@Lp@/10.0])!) 

 

 } 

 

 Multibox "MB.pregiony" { 

 

 MaxElementSize = ( !(puts [expr (@an@)*@Lp@/10.0])! !(puts [expr 

@Jd@/10.0])! !(puts [expr (@an@)*@Lp@/10.0])!) 

 

 MinElementSize = ( !(puts [expr (@an@)*@Lp@/10.0])! 1e-4 !(puts [expr 

(@an@)*@Lp@/10.0])! ) 

 

 Ratio = ( 1.0 -1.35 1.0) 

 

 } 

 

 Multibox "MB.pregionx" { 

 

 MaxElementSize = ( !(puts [expr (@an@)*@Lp@/10.0])! !(puts [expr 

@Jd@/10.0])! !(puts [expr (@an@)*@Lp@/10.0])!) 

 

 MinElementSize = ( 1e-4 !(puts [expr @Jd@/10.0])! !(puts [expr 

(@an@)*@Lp@/10.0])! ) 

 

 Ratio = ( -1.35 1.0 1.0) 

 } 
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 Multibox "MB.pregionz" { 

 

 MaxElementSize = ( !(puts [expr (@an@)*@Lp@/10.0])! !(puts [expr 

@Jd@/10.0])! !(puts [expr (@an@)*@Lp@/10.0])!) 

 

 MinElementSize = ( !(puts [expr (@an@)*@Lp@/10.0])! !(puts [expr 

@Jd@/10.0])! 1e-4 ) 

 

 Ratio = ( 1.0 1.0 -1.35) 

 

 } 

} 

 

Placements { 

 

 Refinement "Place.all" { 

 

 Reference = "global.all" 

 

 RefineWindow = Material ["Silicon"] 

 

 } 

 

 Refinement "Place.pregion" { 

 

 Reference = "Ref.pregion" 

 

 RefineWindow = Region ["p-region"] 

 

 } 

 

 Multibox "PlaceMB.pregiony" { 

  Reference = "MB.pregiony" 

  RefineWindow = Cuboid [(0 !(puts [expr @Jd@-0.002])! 0) (!(puts [expr 

@an@*@Lp@])! @Jd@ !(puts [expr @an@*@Lp@])!)] 

 } 

 

 Multibox "PlaceMB.pregionx" { 

  Reference = "MB.pregionx" 

  RefineWindow = Cuboid [(!(puts [expr @an@*@Lp@-0.002])! 0 0) (!(puts [expr 

@an@*@Lp@])! @Jd@ !(puts [expr @an@*@Lp@])!)] 

 } 

 

 Multibox "PlaceMB.pregionz" { 

  Reference = "MB.pregionz" 

  RefineWindow = Cuboid [(0 0 !(puts [expr @an@*@Lp@-0.002])!) (!(puts [expr 

@an@*@Lp@])! @Jd@ !(puts [expr @an@*@Lp@])!)] 

 } 

}  
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A3. Sentaurus Device Command file  

a) DC simulation 

File{ 

 Grid = "@tdr@" 

 Parameter = "@parameter@" 

 Current = "n@node@" 

   Plot    = "n@node@" 

   Output  = "n@node@" 

} 

 

Electrode{ 

 {Name="p-side"      Voltage=0.55} *Bias voltage 

 {Name="n-side"      Voltage=0.0 hRecVelocity = @hRec@} *boundary condition 

} 

 

Physics{    

   Mobility( 

   DopingDependence  

   ) 

   Recombination( 

   SRH(DopingDependence) 

   )             

} 

 

Plot { 

  eDensity hDensity eCurrent hCurrent Current 

  Potential SpaceCharge ElectricField 

  eMobility hMobility eVelocity hVelocity 

  Doping DonorConcentration AcceptorConcentration 

  ConductionBandEnergy ValenceBandEnergy hquasifermienergy equasifermienergy 

} 

 

Math { 

      

  Extrapolate 

  Iterations=10 

  NotDamped=10    

  DirectCurrent        

  RelErrControl 

  ErRef(Electron)=1.e10 

  ErRef(Hole)=1.e10 

  Digits=10              * relative error control value. Iterations stop if dx/x < 10^(-Digits) 

  Method=ILS          * use the iterative linear solver with default parameter  

  Transient=BE          * switches on BE transient method 

  Number_Of_Threads=maximum 

  Number_Of_Solver_Threads=maximum 

  Number_Of_Assembly_Threads=maximum 
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} 

 

Solve { 

   *- Build-up of initial solution: 

   NewCurrentPrefix="init" 

   Coupled(Iterations=100){ Poisson } 

   Coupled(Iterations=100){ Poisson Hole } 

   Coupled(Iterations=100){ Poisson Electron Hole } 

    

   

   *-  gate voltage sweep 

   NewCurrentPrefix="IV_" 

   Quasistationary( 

    InitialStep=1e-6 Increment=1.5  

       MinStep=1e-5 MaxStep=1e-3 

       Goal{ Name="p-side" Voltage= 0.55 } *bias voltage 

      ){ Coupled{ Poisson Electron Hole } 

      CurrentPlot(Time=(Range=(0 1) Intervals=100)) 

   } 

}  

b) Small-signal Simulation 

Device DIODE{ 

 File{ 

  Grid = "@tdr@" 

  Parameter = "@parameter@" 

  Current = "n@node@" 

 Plot    = "n@node@" 

 } 

*initial voltage and boundary condition 

 Electrode{ 

  {Name="pside"           Voltage=0.55} 

  {Name="nside"           Voltage=0.0 hRecVelocity = @hRec@} 

 } 

 

 Physics{    

    Mobility( 

    DopingDependence  

    ) 

    Recombination( 

    SRH(DopingDependence) 

    )             

 } 

 

 Plot { 

   eDensity hDensity eCurrent hCurrent Current 

   Potential SpaceCharge ElectricField 

   eMobility hMobility eVelocity hVelocity 

   Doping DonorConcentration AcceptorConcentration 

   ConductionBandEnergy ValenceBandEnergy hquasifermienergy 
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equasifermienergy 

 } 

} 

Math { 

      

  Extrapolate 

  Iterations=10 

  NotDamped=10    

  DirectCurrent        

  RelErrControl 

  ErRef(Electron)=1.e10 

  ErRef(Hole)=1.e10 

  Digits=10              * relative error control value. Iterations stop if dx/x < 10^(-Digits) 

  Method=ILS           * use the iterative linear solver with default parameter  

  Transient=BE          * switches on BE transient method 

  Number_Of_Threads=maximum 

  Number_Of_Solver_Threads=maximum 

  Number_Of_Assembly_Threads=maximum 

} 

File { 

   Output  = "@log@" 

   ACExtract = "@acplot@" 

} 

 

System { 

  DIODE diode1 (pside=g nside=s) 

  Vsource_pset vp ( g 0 ){ dc = 0.55 } 

  Vsource_pset vn ( s 0 ){ dc = 0 } 

} 

 

Solve { 

   *- Build-up of initial solution: 

   NewCurrentPrefix="init" 

   Coupled(Iterations=100){ Poisson } 

   Coupled(Iterations=100){ Poisson Hole } 

   Coupled(Iterations=100){ Poisson Electron Hole } 

   

   *-  gate voltage sweep 

   NewCurrentPrefix="IV_" 

   Quasistationary( 

    InitialStep=0.005 Increment=1.3  

       MinStep=1e-04 MaxStep=0.05 

       Goal{ parameter=vp.dc Voltage= 0.55 } 

      ){ ACCoupled ( 

       StartFrequency=1e2 EndFrequency=1e11 NumberOfPoints=35 Decade 

       Node(g s) Exclude(vp vn)  

       ACCompute (Time = (Range = (0 1)  Intervals = 1)) 

     ){ Poisson Electron Hole } 

  } 

} 
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A4. Matlab code to evaluate F3D for given geometry and boundary conditions.  

function op = F3d(ax,ay,deltax,deltay,Wn,cf,f,S) 

    tau_p = 0.5e-6;     % Minority carrier lifetime 

    Dp = 11.27;         % Diffusion Coefficient 

    Lp = 24e-4;         % Diffusion length 

    alpha = S*Lp/Dp;    % Normalized hole recombination velocity 

    omega = 2*pi*f;     % Angular Frequency 

    L = sqrt(1+1i*omega*tau_p); % L= √       

Double summation term in (4.8) 

    F3d4 = 0;    % To perform infinite summation, iterations are done 

till increment ≤ 1e-9 

    % Every iteration of loop takes two terms to account for the fact 

that alternate terms are negative 

    inc1 = ones(30,1);                      % Increment value for 

summation on n1 

    n1 = 1;                                 % Initialization 

    while max(abs(inc1))>= 1e-9             % Loop on n1 

        l11 = n1*pi/(ax+deltax);            % Lambda1 for n1 

        l12 = (n1+1)*pi/(ax+deltax);        % Lambda1 for n1+1 

        F3d4_old1 = F3d4;                   % Preserve previous term to 

calculate error on n1 

 

        % Summation on n2 for n1 

        inc2 = ones(30,1);                  % Increment for summation 

on n2 

        n2 = 1;                             % Initialization 

        while abs(max(inc2)) >= 1e-9        % Loop on n2 

            l21 = n2*pi./(ay+deltay);       % Lambda2 for n2 

            l22 = (n2+1)*pi./(ay+deltay);   % Lambda2 for n2+1 

            k121 = sqrt((l11/L).^2+(l21/L).^2+1);   % K12 for n2 

            k122 = sqrt((l11/L).^2+(l22/L).^2+1);   % K12 for n2+1 

            F3d4_old2 = F3d4;               % Preserve previous term to 

calculate error on n2 

            % This statement adds next two terms to the previous term 

            F3d4 = F3d4 + 

sin(l11*ax).*sin(l21*ay).*cos(l11*ax*cf).*cos(l21*ay*cf).*((alpha/k121+

coth(k121*Wn*L))/(1+alpha*coth(k121*Wn*L)/k121))./(n1*n2*pi^2*sqrt((l11

/L)^2+(l21/L).^2+1))... 

+sin(l11*ax).*sin(l22*ay).*cos(l11*ax*cf).*cos(l22*ay*cf).*((alpha/k122

+coth(k122*Wn*L))/(1+alpha*coth(k122*Wn*L)/k122))./((n2+1)*n1*pi^2*sqrt 
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((l11/L)^2+(l22/L).^2+1)); 

            inc2 = abs(F3d4 - F3d4_old2); % Error term for summation on 

n2 

            n2 = n2+2;                      % Increase n2 by 2 

        end 

 

        % Summation on n2 for n1+1 

        n2 = 1;                             % Initialization 

        inc2 = ones(1,30); 

        while max(abs(inc2)) >= 1e-9        % Loop on n2 

            l21 = n2*pi./(ay+deltay);       % Lambda2 for n2 

            l22 = (n2+1)*pi./(ay+deltay);   % Lambda2 for n2+1 

            k121 = sqrt((l12/L).^2+(l21/L).^2+1);   % K12 for n2 

            k122 = sqrt((l12/L).^2+(l22/L).^2+1);   % K12 for n2+1 

            F3d4_old2 = F3d4;               % Preserve previous term to 

calculate error on n2 

            % This statement adds next two terms to the previous term 

            F3d4 = 

F3d4+sin(l12*ax).*sin(l21*ay).*cos(l12*ax*cf).*cos(l21*ay*cf).*((alpha/

k121+coth(k121*Wn*L))/(1+alpha*coth(k121*Wn*L)/k121))./(n2*(n1+1)*pi^2*

sqrt((l12/L)^2+(l21/L).^2+1))... 

                    

+sin(l12*ax).*sin(l22*ay).*cos(l12*ax*cf).*cos(l22*ay*cf).*((alpha/k122

+coth(k122*Wn*L))/(1+alpha*coth(k122*Wn*L)/k122))./((n2+1)*(n1+1)*pi^2*

sqrt((l12/L)^2+(l22/L).^2+1)); 

                inc2 = abs(F3d4 - F3d4_old2); 

            n2 = n2+2;                      % Increase n2 by 2 

        end 

        inc1 = abs(F3d4 - F3d4_old1);       % Increment for summation 

on n1 

        n1 = n1+2;                          % Increment n1 by 2 

    end 

Summation on n2 in (4.8) 

    F3d3 = 0;                               % Summation term 

    inc1 = 1;                               % Increment 

    n2 = 1;                                 % Initialization 

    while abs(max(inc1)) >= 1e-9            % Loop on n2 

        l1 = n2*pi./(ay+deltay);            % Lambda2 for n2 

        l2 = (n2+1)*pi./(ay+deltay);        % Lambda2 for n2+1 

        k11 = sqrt(1+(l1/L).^2);            % k2 for n2 

        k12 = sqrt(1+(l2/L).^2);            % k2 for n2+1 
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        m = ax/(ax+deltax);                 % Constant term 

        F3d3_old = F3d3;                    % Preserve previous term to 

calculate error 

        % This statement adds two new terms to previous term 

        F3d3 = F3d3 

+m*((sin(l1*ay).*cos(l1*cf*ay)).*((alpha/k11+coth(k11*Wn*L))/(1+alpha*c

oth(k11*Wn*L)/k11)))./(n2*pi*sqrt(1+(l1/L).^2))... 

               + 

m*((sin(l2*ay).*cos(l2*cf*ay)).*((alpha/k12+coth(k12*Wn*L))/(1+alpha*co

th(k12*Wn*L)/k12)))./((n2+1)*pi*sqrt(1+(l2/L).^2)); 

        inc1 = abs(F3d3 - F3d3_old);        % Error term 

        n2 = n2+2;                          % Increase n2 by 2 

    end 

Summation on n1 in (4.8) 

    F3d2 = 0;                               % Summation term 

    inc1 = 1;                               % Increment 

    n1 = 1;                                 % Initialization 

    while abs(max(inc1)) >= 1e-9            % Loop on n1 

        l1 = n1*pi/(ax+deltax);             % Lambda2 for n1 

        l2 = (n1+1)*pi/(ax+deltax);         % Lambda2 for n1+1 

        k11 = sqrt(1+(l1/L).^2);            % k1 for n1 

        k12 = sqrt(1+(l2/L).^2);            % k1 for n1+1 

        m = ay./(ay+deltay);                % Constant term 

        F3d2_old = F3d2;                    % Preserve previous term to 

calculate error 

        % This statement adds two new terms to previous term 

        F3d2 = F3d2 

+m.*((sin(l1*ax)*cos(l1*cf*ax))*((alpha/k11+coth(k11*Wn*L))/(1+alpha*co

th(k11*Wn*L)/k11)))/(n1*pi*sqrt(1+(l1/L)^2))... 

               + 

m.*((sin(l2*ax)*cos(l2*cf*ax))*((alpha/k12+coth(k12*Wn*L))/(1+alpha*cot

h(k12*Wn*L)/k12)))/((n1+1)*pi*sqrt(1+(l2/L)^2)); 

        inc1 = abs(F3d2 - F3d2_old);        % Increment 

        n1 = n1+2;                          % Increase n1 by 2 

    end 

     

    F3d1 = ax*ay./((ax+deltax)*(ay+deltay));    %Constant term 

    op = 

(F3d1+(2*F3d2+2*F3d3+2*2*F3d4)*((1+alpha*coth(Wn*L))/(alpha+coth(Wn*L))

)).^-1; % Final value of F3D 

end 
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