
Implementing Cache Coherence through

Manager-Client Pairing

A Project Report

submitted by

REENA E

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2016

THESIS CERTIFICATE

This is to certify that the thesis titled Implementing Cache Coherence through Manager-

Client Pairing, submitted by Reena E, to the Indian Institute of Technology, Madras,

for the award of the degree of MASTER OF TECHNOLOGY, is a bona fide record of

the research work done by her under my supervision. The contents of this thesis, in full

or in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

Dr. V Kamakoti

Project Guide

Professor

Dept. of Computer Science and Engineering

IIT-Madras, 600 036

Place: Chennai

Date: 21st June 2016

ACKNOWLEDGEMENTS

I would like to express my earnest gratitude to my adviser Prof.V.Kamakoti whose en-

ergy, passion and support has been a tremendous source of inspiration throughout my

project. I would like to extend my sincere thanks to my co-adviser G.S.Madhusudhan

for guiding me throughout the project. I would like to express my special thanks and

deepest gratitude to Rahul Bodduna for his valuable suggestions and guidance through-

out the project. Finally, I would like to extend my thanks to all my friends because of

whom my graduate experience has been one that I would cherish forever.

i

ABSTRACT

Multi-core processors dominate the microprocessor industry as the scaling of single

core processor performance is rapidly reaching saturation. Designing multi-core pro-

cessors presents various new challenges. Especially, the design of memory subsystem is

a huge challenge because of the complications involved in coherence management. As

the cores become more numerous and more diverse, heterogeneous hierarchical coher-

ence protocols are required. Hence, the design, verification and evaluation of advanced

memory subsystems become very difficult.

This dissertation uses the Manager-Client pairing method as an attempt to overcome

these challenges and enable rapid construction of coherence hierarchy for multi-core

processors. Manager-Client pairing provides a standardized coherence communication

interface that provides protocol encapsulation. This reduces the complexity in the de-

signing and verification of hierarchical coherence protocols. Each tier can be verified

and evaluated in isolation. As a result, bug-free design with protocol heterogeneity can

be created without much difficulty. This enables the architects to focus on performance

enhancement rather than on debugging and verifying correctness of coherence imple-

mentation. The implementation of flat MOESI protocol using Manager-Client pairing

and Tilelink protocol is presented in this dissertation. This can be replicated to construct

the coherence hierarchy tiers. The memory hierarchy constructed is integrated with the

I-class processor of Shakti processor series and the functional correctness of the design

is verified.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

1 Introduction 1

1.1 Cache Coherence . 2

1.1.1 MOESI Protocol . 3

1.2 Manager Client Pairing . 4

1.3 Organization . 5

2 Manager-Client Pairing 6

2.1 Problem . 6

2.2 Manager-Client Pairing . 7

2.3 Basic Functions of MCP . 8

2.4 MCP Interface for Coherence Hierarchy Construction 10

2.5 Working of MCP . 12

3 Bluespec System Verilog 16

3.1 Limitations of Verilog . 16

3.2 Bluespec . 16

3.3 Features of Bluespec . 17

3.3.1 Modules and Interfaces . 17

3.3.2 Data Types . 18

3.3.3 Rules . 19

3.3.4 Methods . 19

iii

3.4 TLM Library . 20

3.5 Tile Link . 22

4 Implementation of MCP 23

4.1 Tile Link Architecture . 24

4.2 Working of MCP . 25

4.2.1 Processor . 25

4.2.2 Client . 26

4.2.3 Manager . 29

4.2.4 Working of Hierarchy . 30

5 Conclusion and Future Work 34

LIST OF TABLES

2.1 Comprehensive list of the base functions required for communication
between processors, clients, managers and memory in MOESI protocol 9

3.1 Components of RequestDescriptor 21

3.2 Components of RequestData . 21

3.3 Components of TLMResponse . 22

4.1 Channels of Tilelink . 24

4.2 Description of fields of Tilelink Protocol 25

v

LIST OF FIGURES

1.1 State transition beginning with data in E state 3

1.2 State transition beginning with data in S state 4

1.3 Construction of coherence hierarchy using MCP 4

2.1 Coherence Hierarchy . 7

2.2 Inclusion of Protocol layer in the memory hierarchy 11

2.3 Interface between Manager and Client 12

2.4 MCP State Machine for Data Acquisition 13

2.5 Propagation of data acquisition within a coherence realm 14

2.6 Propagation of data acquisition through different coherence realms . 15

3.1 Representation of methods, interfaces and rules in a module hierarchy 18

3.2 Representation of TLMSendIFC and TLMRecvIFC 21

4.1 MCP hierarchy . 23

4.2 Acquire-Grant-Finish in Client . 26

4.3 Voluntary Release by Client . 27

4.4 Probe-Release in Client . 28

4.5 Acquire-Grant-Finish in Manager 29

4.6 Handling Voluntary Release in Manager 30

4.7 Handling Read-Miss . 32

4.8 Handling Write-Miss . 33

4.9 Handling Write-Back . 33

vi

ABBREVIATIONS

MCP Manager-Client Pairing

BSV Bluespec System Verilog

HDL Hardware Description Language

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

SOC System on Chip

RTL Register Transfer Level

IP Internet Protocol

CPU Central Processing Unit

vii

CHAPTER 1

Introduction

In the recent years, there has been a shift in focus towards multi-core processors due

to the limitations of performance-scaling in single-core design. Parallelism in terms

of multi-threading in multi-core processors improve performance by faster execution,

better system utilization and lower power consumption. Cache hierarchy is often used

with multi-core processor design in several applications for optimal performance. The

use of shared memory presents numerous challenges. With multiple caches sharing sin-

gle memory, data traffic becomes huge and it may present a performance bottleneck.

Hierarchical clustered cache design is one possible solution to this problem. Group-

ing cores and their caches in clusters reduces network congestion by localizing traffic

among several hierarchy levels, potentially enabling much higher scalability.

In a shared memory system, cache coherence is required for consistent view of memory

across all the cores. As the cores become more diverse, there is a need for sophisticated

coherence management. In hierarchical clustered cache design, each cluster may op-

erate with a different coherence protocol depending on its application. With multiple

levels of cache, this leads to a hierarchy of coherence protocols. New states have to be

introduced to manage multiple coherence protocols in single design. The complexity

of the design increases exponentially with increase in number of coherence protocol

states, which makes the testing and verification of the design very difficult. This limits

the scalability of the shared memory design.

The challenges in designing, testing and verifying advanced hierarchical cache coher-

ence protocols can be overcome by the use of standardized coherence communication

interface that provides protocol encapsulation. This dissertation presents the implemen-

tation of this standardized interface by adapting the Manager-Client pairing technique.

1.1 Cache Coherence

In a shared memory environment, the private processor caches may contain copies of

data which may be dirty with respect to main memory. Cache coherence handles the

management and distribution of data in such cases. Without coherence, the consistency

model of architecture could be violated. That is when a private processor cache com-

mits a store which is not being observed in the local cache of other processors, it breaks

the consistency among the copies of data stored in the private processor caches. This

affects the fundamental way in which the processors communicate with each other in

a shared memory environment. The loads and stores performed by every processor

should be observed by every other processor for functional correctness and cache co-

herence ensures that this behavior is maintained.

Cache coherence in hardware is accomplished through the addition of state bits to the

data in cache, which indicates the coherence state of the data. The coherence state as-

sociated with the data depends on the coherence protocol used. The basic coherence

states are invalid, shared and modified. Invalid state indicates whether the copy of data

in cache is valid or not. Shared state of data implies that one or more of other caches

also contain the copy of the same data. When a private processor cache commits a

store, that copy of data is stored in modified state. These provide the basic mechanisms

required to maintain coherency in the caches. A processor can read from its local cache

only if the data is valid. Also, when a local copy of data is written by the processor, all

other shared copies are invalidated. And the copy written is put in modified state. The

two major classes are coherence protocols are broadcast based protocols and directory

based protocols. In the directory based coherence management, the coherence state of

all the data in the local caches is maintained in a directory. Whenever a processor has

to perform read or write, the request is sent to the directory and the operation is per-

formed if the required permissions are granted by the directory. In a broadcast based

protocol, read or write miss is broadcasted through a shared bus and every local cache

is snooped to check if the requested data is present in them. Also, when a processor

performs a store on a shared copy of data in its local cache, invalidation request is sent

to other caches to invalidate the other copies of that data. The invalidation of the shared

copies in the event of a write operation by the processor is done in invalidation based

2

protocols. There is another variant of coherence protocol which handles write-hit in a

different manner. Instead of invalidating the shared copies, the written value is broad-

casted to all the caches that share this data and they are updated with the new value.

This protocol is referred to as the update-based protocol.

The choice of a coherence protocol primarily depends on the application. Different

protocols can be best suited for different hardware implementations. In this disserta-

tion, broadcast based MOESI coherence protocol is used.

1.1.1 MOESI Protocol

As already mentioned, we will be using broadcast based MOESI protocol, which will

handle write-hit by invalidation. Initially, when the data is fetched from the memory,

it is stored in Exclusive(E) state, as it will be the only copy of that data among the

caches. When this data is read by some other cache, it is no longer an exclusive copy.

So, the state is changed to Owner(O) and the cache which read this data will store it in

Shared(S) state. When the data in Shared(S) state is read by other caches, its state does

not change.

Figure 1.1: State transition beginning with data in E state

Reading of data in Owner(O) state, by other caches does not change the state of the

local copy. However, writing of data in Owner(O) state or Shared(S) state, by the

processor, changes its state to Modified(M) and the invalidate request is sent to other

shared copies. Writing of data in Modified(M) state, will cause it to remain in modified

state. When data in Exclusive(E) state is written, its state is updated as Modified(M),

but invalidate request is not sent out as there are no shared copies to invalidate. The

data in any coherence state, when invalidated, is put in Invalid(I) state. This transition

of coherence states is shown in Figures 1.1 and 1.2.

3

Figure 1.2: State transition beginning with data in S state

1.2 Manager Client Pairing

Manager-Client pairing(MCP) is a method used to resolve the issues of heterogeneous

integration of hierarchical coherence protocols. It provides a standardized interface

definition, to rapidly construct and integrate coherence hierarchies. This reduces the

complexity of the hierarchical coherence design by taking the native functioning of a

given component protocol and mapping these to corresponding MCP methods. There-

fore, the details of the component protocol’s implementation gets abstracted away from

the composition of the hierarchy, hidden behind an interface layer.

A coherence realm in the memory hierarchy consists of a single upper interface at

Figure 1.3: Construction of coherence hierarchy using MCP

the Manager and multiple lower interfaces at the Clients as shown in Figure 1.3. The

interfaces are designed such that the upper interface of one coherence realm can plug

into the lower interfaces of any other coherence realm without any additional modi-

fication, and creating Manager-Client pairs at the junction points. This allows us to

construct hierarchies with ease. The responsibility of coherence management is local-

ized in the hierarchical tiers. The verification and validation can be done in isolation in

all of these component parts of the coherence hierarchy. The processor and the main

4

memory can be mapped seamlessly to the dangling interfaces of the MCP, completing

the memory hierarchy.

1.3 Organization

The remainder of the dissertation is arranged as follows:

Chapter 2 presents the Manager-Client pairing framework.

Chapter 3 presents a brief overview of Bluespec and its features. Bluespec is the HDL

used to design the memory hierarchy.

Chapter 4 provides the implementation details of MCP.

Chapter 5 presents the conclusion and possible future work.

5

CHAPTER 2

Manager-Client Pairing

As we move towards multi-core processors, there is an increasing need for sophisticated

coherence management. When cache hierarchies are used in the design, we also need to

introduce coherence management hierarchies to achieve data consistency. The hierar-

chical coherence protocol based design increases the complexity in terms of the ease of

designing, testing and verification. Also, this complexity increases exponentially with

the addition of more coherence states in the protocol. This in turn, strains the interac-

tion between the hierarchy tiers.

Manager-Client Pairing (MCP) is a method to design hierarchical coherence protocols

by formally defining and limiting interactions between different levels of the hierarchy.

This enables composition in the coherence hierarchy design, which makes the design-

ing of several complex designs much faster by restricting the complexity of design to a

small set of protocol component parts.

2.1 Problem

During the recent years, there has been a shift in focus towards multi-core processors

because of the advantage it has over single-threaded designs in terms of power and

performance. The addition of cache hierarchies in multi-core processors makes the pro-

cess of fetching data from the memory faster compared to having single level of cache.

However, cache hierarchy presents a problem of scalability, mainly due to the burden

of coherent data management.

Data coherence management is a major challenge in hardware design with multiple

cores. It presents a performance bottleneck as there are limits in terms of scalabil-

ity presented by both directory based and broadcast based coherence protocols, thus

requiring hierarchical coherence protocol design to overcome this. To achieve this, a

flexible framework is required, which supports variable width and depth of hierarchy.

Figure 2.1 shows a model of coherence hierarchy.

The current approach to build such a framework is to design a glue layer to tie low-level

Figure 2.1: Coherence Hierarchy

coherence protocols together. This often results in changes to the low-level protocols. A

complex sub-state replication is required which encodes all hierarchy information into

protocol state. Therefore, more states need to be managed which leads to a complex

state machine. Also, making changes to the hierarchy is difficult as a new solution has

to be developed for each change. As a result, there is an abundance of large, complex,

inflexible and highly specialized coherence protocols.

2.2 Manager-Client Pairing

Manager-Client pairing(MCP) is a powerful new approach to design coherence hierar-

chies. MCP employs a client-manager model, which gives a simple coherence protocol

interface for clear communication between the entities that use data(clients) on one side

and the mechanisms that maintain the coherence of the users(managers) on the other

side of the interface. This encapsulates each tier of the coherence hierarchy so that each

component can be dealt with in isolation. Application of MCP solves the state-space

explosion problem and reduces the complexity in designing hierarchical coherence ar-

chitecture. As the interface is standardized with independent tiers, a multi-core pro-

7

cessor design can be partitioned in to arbitrarily deep hierarchies to apply MCP, which

ensures rapid design of coherence hierarchies.

It precisely defines the functions to be carried out by the Client and Manager to main-

tain coherence and reduces the fundamental requirements of a coherence protocol into

a modular and generic set of base functions. Based on these base functions, coherence

protocol communication is standardized by the generic Manager-Client interface. Thus,

by converting stand-alone coherence protocols into coherence-tier building blocks, MCP

aids in the rapid development of multi-tier coherence hierarchies.

Cache coherence protocols are responsible for maintaining a consistent view of mem-

ory across all the caches of a coherence domain, in a shared memory environment. The

responsibilities of the coherence protocol include upgradation or degradation of coher-

ence state of data and deciding how updates to data are propagated through the system.

These functions can be divided between two kinds of agents:managers that manage

propagation of updates to data and clients which hold the coherence state of data and

performs data acquisition when necessary.

These roles are first formally defined for non-hierarchical MOESI protocol and then

re-examined to derive interfaces that enable composition of complex coherence hierar-

chies.

2.3 Basic Functions of MCP

The coherence protocol used here is MOESI protocol. It has five states: Modified(M),

Owner(O), Exclusive(E), Shared(S) and Invalid(I). The client which has the data in the

Exclusive state or the Modified state has the only copy of that data. Although the client

with data in Owner state does not have a unique copy of the data, it is the only client

among the sharers, which can respond to a request. Also, at any point of time, only one

of these states(M,O,E) can be present among the clients of the same level. Therefore,

data propagation can be easily handled by the manager as it can directly grant data from

the only client in M/O/E state to the client which requested that data block.

8

Let us consider the handling of write operation in MOESI protocol. After write, the

copy of the data block which is written, becomes dirty with respect to the sharers. In

order to track this information, the Modified(M) state is used by the client. In the event

of a write hit in the processor, the client changes the state of that data to Modified(M)

and sends an invalidate request if the previous state of the data written was Owner(O)

or Shared(S) state. During write-back, if the data block is in M/E state, it is directly

written in the main memory. If in Owner(O) state, in addition to sending the data to

main memory, all the other shared copies are invalidated. If the data is in Shared(S)

or Invalid(I) state, the write-back operation is not performed. Table 2.1 summarizes

and enumerates a comprehensive list of the base functions required for communication

between processors, clients, managers and memory in MOESI protocol. These will be

used as an aid in the developing a generic protocol interface.

The basic requirements that have to be satisfied by the agents involved in coherence

Table 2.1: Comprehensive list of the base functions required for communication be-
tween processors, clients, managers and memory in MOESI protocol

9

management are as follows. Clients should be able to respond whether or not they have

the requested data block. If the cache associated with a client encounters a read or write

miss, the client should be able to place a request to the manager. Managers should

accept data requests from clients, and provide data from the appropriate location. The

client should also be able to send out invalidate request when necessary and the man-

ager should forward it to all the other clients in the same level. In case of write back,

the clients and managers should forward the data till the main memory.

As the management of coherency is completely handled by the client, the manager need

not be aware of any internal change of coherence states. The manager only has to keep

track of whether the data is obtained from the clients of the same level or from higher

level. This information is used by the clients to appropriately update the coherence

states.

2.4 MCP Interface for Coherence Hierarchy Construc-

tion

Now, we need to construct coherence hierarchy. From the basic functions performed

by the agents of coherence realm, as inferred from Table 2.1, considerable similarities

in the interactions between processor and client and the interactions between manager

and memory can be observed. In both cases, the data is provided by the data supplier

when requested. The mechanism of data transfer is same as that in main memory when

the data is requested from the lower levels of the memory hierarchy. This information

allows us to create interfaces that allow recursion, which can be used to develop hierar-

chies.

By examining the Figure 2.2, we observe that the replacement of the implementation

details of the coherence protocol with a black box yields a self-similar upper and lower

interface. Not only does this insight enable recursion through a simple interface defi-

nition, but also allows encapsulation of the coherence protocols used in the hierarchy,

reducing design complexity.

10

From this we can see that there are at least two necessary components to the MCP

Figure 2.2: Inclusion of Protocol layer in the memory hierarchy

interface: R/W request for data from lower to higher level(write during write-back from

processor), and Data supply from higher to lower as well as from lower to higher lev-

els. Manager is paired with a client in the next higher-up client(or to the memory in the

highest level). By requesting the paired client when necessary, the manager can perform

data transfer without having to worry about the coherence protocol in the higher level.

The mechanism of data transfer can be the same as that in main memory, irrespective

of the level of memory hierarchy being communicated with. Similarly, the clients of

the lower level handle the coherence management silently, and the manager need not be

aware of any change in the coherence state within the clients. This is much like how

a processor is unaware of the coherence in the caches implemented; it simply requests

for data from higher level and receives it.

The other important detail that must be addressed is the propagation of invalidation

signal. When a write-hit happens in a processor, the other shared copies of the data

have to be invalidated. As the client handles all the coherence management, the proces-

sor notifies the client whenever there is a write-hit. The client forwards that request to

the manager, if necessary after updating the current coherence state of the data block

being written. The manager then has to forward this request to every other client in that

11

level, so that all the shared copies could be invalidated. Similarly when a client receives

invalidate request from the manager, it should invalidate its local copy if it has that data.

This provides us the third and final component of the MCP interface: Invalidation. Fig-

ure 2.3 outlines a brief description of the working of MCP interface.

Figure 2.3: Interface between Manager and Client

2.5 Working of MCP

With a common interface defined, we can begin using coherence protocol agents as

building blocks in the construction of hierarchical coherence protocols. By expanding

the scope of client agents to also monitor coherence realms in addition to processor

caches, the coherence effort can be distributed over several protocols by layering the

protocols in a tiered fashion. When manager of one coherence realm cannot satisfy the

request of one of the clients of lower level, it recursively sends request to the manager

of the higher level, through its paired client. In this way, hierarchies of coherence pro-

tocols are established. Figure 2.4 explains the algorithm. To aid in understanding and

to highlight some important details of MCP, two examples are presented. In both ex-

amples we have a top-tier coherence realm A, that implements MEI protocol to manage

two lower coherence realms, B and C, both implementing MOESI. Manager A resides

12

Figure 2.4: MCP State Machine for Data Acquisition

at memory and therefore has no need for a gateway client, being the highest manager

agent in the system. Similarly, clients B0, B1 and C0 do not have a matching manager

agent because there are no lower tiers to be tracked. They are gateways for processors’

private caches, not further coherence realms.

In Figure 2.5, an example of a realm-hit from a read request is shown. The proces-

sor below client B0 initiates the sequence with a request to acquire data. The client

forwards the request to the manager. The manager checks with its paired client to find

out if the data requested is available in any of the other clients of the B level. As the

clientA0 represents all the agents of the lower level, it can provide the information that

the requested data is available in clientB1. Now the manager obtains data from clientB1,

after which the state of it changed to O and it is given to the clientB0 to satisfy the re-

quest. As the clientA0 follows MEI protocol, it stores the states of data in both the

clients in B level in M state.

From this example we see a clear demonstration of the encapsulation of the coher-

ence realm provided by MCP. The request in the example was serviced only within the

scope of coherence realm B because the gateway client A0 had sufficient information

to allow the request to proceed in a coherent manner. Furthermore, despite a change in

13

the state of the coherence realm’s manager B from M to O, the change does not need

to be reflected in client A0 since it is a silent downgrade. Because there is no need to

notify manager A of this activity, there is the benefit of reduced traffic while preserving

encapsulation. Additionally, if either client B0 or B1 were to modify the state of this

data to M later, it can happen without the knowledge of the agents in the higher level.

Requests can however cross coherence realm boundaries, referred to as a realm-miss,

Figure 2.5: Propagation of data acquisition within a coherence realm

when no client agent in that realm has the requested data block, as shown in Figure

2.6. Here the MCP algorithm propagates the request all the way to the top tier where it

encounters manager A and memory instead of a client agent. Since there is no higher

tier to consult, the top manager always services the request to make forward progress;

there is no gateway client at the top level.

In this example, the request is from the ClientC0. Upon requesting the ClientA1,

ManagerC gets the information that no client agent in realm C has the requested data

block. So, the request is now forwarded to the higher-level, to ManagerA. Now, Man-

agerA requests ClientA0, and waits for response as there is a hit in realm B. The re-

quest propagates to the client which contains the data, through the ManagerB. The data

reaches ManagerA through ClientA0 and from ManagerA, the data propagates through

ClientA1 and ManagerC to reach ClientC0, which requested the data. Client A1 stores

14

Figure 2.6: Propagation of data acquisition through different coherence realms

the data in the M state as it is not an exclusive copy. ClientC0 stores it in S state as it is

a shared copy. The state of data does not change in realm B as the request was serviced

by client in O state. Therefore, state of data in ClientA0 also does not change.

Although more complex, this second example further serves to demonstrate the de-

coupling of the protocol coherence realms from one another. When a gateway client

encounters a miss, the entire coherence realm effectively collapses into a single node

from the perspective of the manager in the next tier. The next-tier manager does not

need to be aware of any details of how the coherence realm guarded by the gateway

client operates just as long as it knows how to interact with the gateway client (which

obviously it will being the manager). Similarly, when coherence realm C was being

updated, this was done opaquely from the perspective of manager A. This coherence

realm encapsulation is what enables efficient composition of coherence protocol hier-

archies without the need for ad-hoc sub-state replication. Despite the MEI protocol of

manager A managing two realms using different protocols (with additional, indepen-

dent S and O states), the protocol of realm A was never aware of this since it had no

need to store information outside its own protocol scope. Furthermore, each component

protocol may be validated in isolation.

15

CHAPTER 3

Bluespec System Verilog

Bluespec System Verilog is a Hardware Description Language (HDL), which is used for

specification, synthesis, modeling and verification of ASIC and FPGA design. With a

radically different approach to high-level synthesis, bluespec offers significantly higher

productivity. It allows designers to express intended hardware through high-level con-

structs, where all behavior is described as a set of guarded atomic actions.

3.1 Limitations of Verilog

Verilog focusses more on simulation than logic synthesis. The source text of verilog

often explicitly contains aspects of circuit that could be readily determined by the com-

piler, such as size of registers, width of busses etc. This makes the design less portable.

Handling concurrency in hardware is relatively difficult in verilog as the designer should

manage all the aspects of handshaking between combinational circuits. Shared use of

register and other memory resources should also be elaborated. The behavioral spec-

ification of design in verilog often consumes multiple clock cycles. Attempts to re-

solve this problem results in a highly unreadable code with possible bugs. In practice,

this problem is solved by separating the combinational and sequential parts of the cir-

cuit. Due to these shortcomings, the synthesis and verification of hardware in verilog is

slowed down. This is a huge problem during the design of SOC.

3.2 Bluespec

Bluespec is based on atomic transactions, which increases the level of concurrency ab-

straction above SystemC and RTL without compromising the control over hardware

design. It enables automatic synthesis of complex control logic, which is the source

of many bugs. This results in highly adaptable, reusable and reconfigurable designs.

Control-adaptive parameterization in bluespec provides flexibility, where a significantly

different micro-architecture can be generated by changing the parameters in the design

with the associated control structures generated automatically. Bluespec allows user-

defined data types and static type checking. It provides several features of the modern

high level languages and all of them can be synthesized.

In recent times, several attempts have been made to move the hardware design language

towards a more software like specification of the circuit behavior. Languages like C,

C++ are used to express designs as sequential programs. However, the semantic gap

between the software model and the hardware results in suboptimal designs with un-

predictable speed and area. Bluespec System Verilog tackles this problem by building

upon the traditional hardware semantics. It exploits advanced concepts from software

only for static elaboration and static verification. It uses the standard hardware structure

model of verilog such as modules, module instances, hierarchy etc. For communication

between modules it uses the System verilog model of interfaces and interface instances.

These added with the advanced features of the high level languages, makes designing

and verification in bluespec much faster.

3.3 Features of Bluespec

3.3.1 Modules and Interfaces

Module is the basic element of the hardware design hierarchy in bluespec. A module

can be instantiated multiple times, and also different parameters can be passed during

every instantiation. Unlike verilog, bluespec does not have input, output and in-out pins

as interface to modules. Methods are used to drive signals and busses in and out of

modules. These methods are grouped together into interfaces. Modules contain rules,

which use methods in other modules. Figure 3.1 shows how these methods, interfaces

and rules fit into a hierarchy of modules.

In BSV, the interface declaration is done separately, outside the module definition.

This allows declaration of common interfaces which can be used in multiple modules,

without having to declare them repeatedly. All the modules which share the same inter-

17

Figure 3.1: Representation of methods, interfaces and rules in a module hierarchy

faces also share same methods and therefore share same number and type of inputs and

outputs.

3.3.2 Data Types

In verilog, all the representation is done in bits. Also, ultimately in hardware all com-

putation is done in bits. However, representation in terms of integers, floating point

numbers, fixed point numbers etc, makes the process of coding much easier. Different

representations may be more appropriate depending on the application environment.

By separating out the type abstraction from its bit representation, we can easily change

representations without modifying or breaking the rest of the program.

In BSV, every variable has a type and only the values of compatible types can be as-

signed to a variable. The BSV compiler provides a strong, static type-checking en-

vironment. Type checking is done before the program elaboration and it ensures that

the object types are compatible and the conversion functions are valid for the context.

Bluespec also allows the usage of user-defined types. BSV has a typeclass which can

be considered as a set of types. It implements overloading across related data types.

Overloading is the ability to use a common name for a collection of types, with the

specific type for the variable being chosen by the compiler based on the types on which

it is actually used. Functions and operators are shared by all the data types within a

18

typeclass.

Some common scalar types used in Bits typeclass are Bit#(n), Bool, UInt#(n) and

Int#(n). The values stored in registers, FIFOs and other memory elements and also

the values passed by wires, must be in the Bits typeclass. Other common data types

include Integer, which belongs to the Arith typeclass and String, which belongs to the

Literal typeclass etc.

3.3.3 Rules

Rules manage the movement of data from one state to another, within the module. It

consists of two parts: rule conditions and rule body. Rule conditions are boolean ex-

pressions which decide whether the rule can be fired. Rule body is a set of actions

for state transitions. Rules in BSV are atomic. The actions within the rule completely

describes the state transition. The process of determining the functional correctness of

a design is greatly simplified by one-rule-at-a-time semantics. That is, because of the

atomic property of rules, each rule can be looked at in isolation, without considering

the actions of the other rules to determine functional correctness. Multiple rules can be

executed concurrently in the hardware implementation.

The actions in a rule are executed simultaneously. This can be thought of as similar

to the execution of non-blocking statements in always blocks of verilog. Also, as the

rule has atomic property, the entire body of rule is executed and there is no partial exe-

cution of a rule. When there are several rules within a module, the execution of rules is

ordered by the compiler. No two rules can execute simultaneously. The ordering of the

rules by the compiler is called scheduling.

3.3.4 Methods

A method is a procedure which takes arguments and returns a value. It could also return

a value without taking any arguments. It becomes a bundle of wires when translated into

RTL. The method definition is written within the definition of the interface and it can

be different in different modules sharing a common interface. A method also contains

19

implicit conditions which are handshaking signals and logic automatically generated by

the compiler.

Methods are of three types: Value Methods, Action Methods and Action Value Meth-

ods. Value methods return a value. They do not alter any state within the module.

Action methods cause actions to occur. They create state changes within the module.

Action value methods are a combination of value methods and action methods. They

cause state changes and also return values.

3.4 TLM Library

The TLM package includes definitions of interfaces, data structures, and module con-

structors which allow users to create and modify bus-based designs in a manner that is

independent of any one specific bus protocol. Designs created using the TLM package

are thus more portable as it allows the core design to be easily applied to multiple bus

protocols.

The TLM interfaces define how TLM blocks interconnect and communicate. The TLM

package includes two basic interfaces: The TLMSendIFC interface and the TLMRecv-

IFC interface. These interfaces use basic Get and Put sub-interfaces as the requests

and responses. The TLMSendIFC interface generates (Get) requests and receives (Put)

responses. The TLMRecvIFC interface receives (Put) requests and generates (Get) re-

sponses. Additional TLM interfaces are built up from these basic blocks. The TLM-

SendIFC interface transmits the requests and receives the responses. The TLMRecvIFC

interface receives the requests and transmits the responses. This is represented in Figure

3.2.

The two basic data structures defined in the TLM package are TLMRequest and TLM-

Response. By using these types in a design, the underlying bus protocol can be changed

without having to modify the interactions with the TLM objects. A TLM request con-

tains either control information and data, or data alone. A TLMRequest is tagged as

either a RequestDescriptor or RequestData. A RequestDescriptor contains control in-

formation and data while a RequestData contains only data. Table 3.1 describes the

20

Figure 3.2: Representation of TLMSendIFC and TLMRecvIFC

components of RequestDescriptor and the valid values for each of its members. Table

3.2 presents the components of RequestData and the valid values for its members. Table

3.3 describes the components of a TLMResponse and the valid values for its members.

In the above BSV code definitions the compiler macros ’TLM_TYPES are used

Table 3.1: Components of RequestDescriptor

Table 3.2: Components of RequestData

in the typedef statements. A ’define statement is a preprocessor construct used to place

prepackaged text values into a file. In this case, the macros contain parameters to be

used in the data definitions. Placing the parameters in a separate file allows them to be

easily modified for different protocol requirements.

21

Table 3.3: Components of TLMResponse

3.5 Tile Link

Tilelink is a protocol designed to be a substrate for cache coherence transactions imple-

menting a particular cache coherence policy within an on-chip memory hierarchy. Its

purpose is to orthogonalize the design of the on-chip network and the implementation

of the cache controllers from the design of the coherence protocol itself. Any cache

coherence protocol that conforms to TileLink’s transaction structure can be used inter-

changeably with the physical networks and cache controllers we provide.

Tilelink is roughly analogous to the data link layer in the IP network protocol stack,

but exposes some details of the physical link necessary for efficient controller imple-

mentation. It also codifies some transaction types that are common to all protocols,

particularly the transactions servicing memory accesses made by agents. The usage of

Tile Link is explained in detail in the next chapter.

22

CHAPTER 4

Implementation of MCP

This dissertation presents the implementation details of a flat MOESI protocol using

MCP. The hierarchy consists of two clients in the lowest level which are connected to

two processors. The highest level consists of memory and its manager. These two levels

are connected by an intermediate level of a manager-client pair. The hierarchy is shown

in Figure 4.1.

The clients are connected to processors through TLM interface. The interface between

Figure 4.1: MCP hierarchy

memory and manager is also of type TLM. The propagation of data request till memory

takes place as follows. When a request is raised by the processor1, it is forwarded to

managerA through clientA1. The managerA then forwards this request to the other

client on the same level, clientA2. If a hit occurs in clientA2, the requested data is

sent to managerA, which is given to clientA1, and the transaction is completed. If

there is a miss in clientA2, the request is forwarded to the memory through clientB and

managerB. Now the managerA gets the data from memory, again through managerB

and clientB. This data is given to clientA1, to finish the transaction.

4.1 Tile Link Architecture

Tilelink is a protocol used for communication between manager and client in MCP.

Tilelink defines five independent transaction channels: Acquire, Probe, Grant, Release

and Finish. The description of these channels is represented in Table 4.1.

There are two types of transaction that can occur on a cache block managed by Tilelink.

Table 4.1: Channels of Tilelink

Channel Description

Acquire
Initiates a transaction to acquire access to a cache block. Also used to write data
without caching it. This channel is from client to manager.

Probe
Queries a client to determine whether it has a cache block. The query is raised by
the manager.

Release
Used by client to send status of hit/miss to manager. In the event of hit, data is
also sent by this channel. Also used to voluntarily write back data and to
send invalidate signals.

Grant
Manager provides data to the original requester. Also used to acknowledge voluntary
Releases.

Finish Final acknowledgement of transaction completion from requester to the manager.

The first type enables clients to acquire a cache block: A client sends an Acquire to a

manager. The manager sends any necessary Probes to clients. The manager waits to

receive a Release for every Probe that was sent. The manager communicates with back-

ing memory if required. Having obtained the required data, the manager responds to the

original requester with a Grant. Upon receiving a Grant, the original client responds to

the manager with a Finish to complete the transaction. The second type of transaction

supports clients voluntarily releasing a cache block: A client sends a Release to a man-

ager, specifying that it is voluntary. The manager communicates with backing memory

if required. The manager acknowledges completion of the transaction using a Grant.

This voluntary release is used for write-back by processor and also to send invalidate

signals.

The channels of tile-link has several fields to aid in the request transfer and response

propagation in coherence hierarchies. The table 4.2 contains the fields and their de-

scription for each channel.

24

Table 4.2: Description of fields of Tilelink Protocol

Channel Field Description

Acquire

a_type command: read/write
client_xact_id client id

addr_block address
data data

Probe
p_type command

addr_block address
data data

Release

voluntary Bool value to indicate vol release
r_type command
r_state coherence state
status status

client_xact_id client id
addr_block address

data data

Grant

status status
g_type command
g_state coherence state

client_xact_id client id
data data

Finish client_id client id

4.2 Working of MCP

4.2.1 Processor

Each processor has a local cache, in which read and write operations are done by the

processor, in response to the CPU requests. The data cache of processor has the follow-

ing fields: valid, tag and data. The valid bit is used by the processor to check whether

the data stored in that particular location of the cache is valid or not. The tag is used

to find out if the requested data block is present in it or not. When a read or write miss

happens in the local cache, the processor has to get the data from the higher level of

the memory hierarchy. In order to do this, it requests the paired client. The processor

then obtains the data from this client and stores in its cache. In case of a read request,

the data is sent to the CPU. In case of write request, the data block is updated with new

data and status is sent to the CPU. Whenever a miss happens, the processor has to make

space in cache for the incoming data from higher level. Therefore, before requesting for

data, the processor performs a write-back of the least used data block in its cache. After

every write(write-hit/ write-miss), the processor sends out an invalidate request to the

25

client in-order to invalidate all the other shared copies. The processor also responds to

requests from the client. When the client requests a data block, the processor provides

it. Also, when the processor receives an invalidate request from client, it invalidates the

requested block.

4.2.2 Client

As we have already established, one of the important requirements to implement MCP

is the ability of the client to respond whether or not it has the requested data block. Also,

the client is responsible for coherence management. In order to achieve this, additional

memory is allocated to the client. This is similar to the data-cache of the processor,

but instead of data field, it has coherence-state. The client performs three major func-

tions: Handling data request from processor, handling write-back and invalidate from

processor and handling request from manager.

Request from Processor

Figure 4.2: Acquire-Grant-Finish in Client

The client receives the request to obtain data from processor through TLM interface.

It then sends Acquire to the manager, using Tile-Link protocol. Now, the client has to

wait for the manager to respond. When the manager sends a grant, the client obtains the

26

data and sends it to the processor. The grant from the manager has a state field which

indicates whether the data was obtained from main memory or from the other caches of

the same level. If obtained from memory, the coherence state of that data is stored in the

client as Exclusive(E). If not, it is stored as Shared(S). Also, when the data is obtained

from main memory, the valid and tag fields of the memory in the client are updated.

While waiting for grant, if the client receives a probe from the manager, it needs to

address it first and then get back to the state of waiting for grant. The state-machine of

client when it handles request from processor is shown in Figure 4.2.

Write-back and Invalidate

During write-back, the client sends a voluntary release to the manager, if the coherence

state of that block is M/O/E. This is because, we need not write back an invalid data and

if the data is shared, it will be written back to memory when the processor containing

the Owner copy performs a write-back. Also, the coherence state of this data block

need not be updated in the client now, as it will be updated when new data is written in

its place.

When the processor completes a write operation, it sends out an invalidate request.

Figure 4.3: Voluntary Release by Client

This request is received by the client and then forwarded to the manager if the state

of that data block in the client in S/O. This is because, data in M/E state would mean

that they are exclusive copies. Also, at this point the state of the data block which was

written is changed to M in the client. The state-machine of the client, in this case is

27

shown in Figure 4.3.

Request from Manager

When the client receives a probe from the manager, it searches its tags to find out if

there is a match. When the request from the manager is invalidate, and there is a match

in the client which is not already in Invalid(I) state, the state of that block is updated to

I and the invalidate request is sent to the processor.

When a match is found in the client and the manager requests data, the request is

Figure 4.4: Probe-Release in Client

sent to the processor only if the state of the data requested is M/O/E. This is because,

only the Owner has to respond when a shared data is requested. The state of this data

is updated to Owner(O) in the client, before sending the request to the processor. After

receiving the data block from the processor, the client sends a release to the manager

with the data and status true. If no match is found, release is sent to manager with status

false. Figure4.4 shows the state-machine.

28

4.2.3 Manager

The two major responsibilities of manager is to handle data requests (Acquire) and to

handle write-back and invalidate (voluntary release) from clients.

Data request

On receiving Acquire from a client, the manager sends probe to all the other clients in

the same level. It has to wait till it gets release from all these clients. After receiving

all the releases, the manager examines if atleast one of these releases has status true(It

is to be noted that only one of these releases will have status true). If a release with

status true is found, the manager responds to the acquire with a grant. Then it waits

for finish from the client. The transaction ends when finish is received from the client

which raised the request.

If all the releases received have status false, the request is forwarded to the higher

Figure 4.5: Acquire-Grant-Finish in Manager

level of hierarchy through the paired client. This is done by sending a probe to the

paired client. On receiving release from the paired client, grant is sent to the client

29

which requested this data. The state field of the grant is updated to ’Memory’, to notify

the client that the requested data has been fetched from the memory(or higher level of

hierarchy). After sending grant, the manager waits for finish from the origin client. The

transaction ends when finish is received by the manager. The state machine of manager

handling data request is shown in Figure 4.5.

Voluntary Release

When the manager receives an invalidate request from client, it probes all the other

clients. No grant is required in this case.

If the voluntary release received by the manager is for write-back, the manager sends

Figure 4.6: Handling Voluntary Release in Manager

a grant to the origin client with status true. This request is forwarded to the higher level

of the memory hierarchy through the paired client. The manager sends a probe to the

paired client and it does not wait for release in this case. The state-machine for this case

is given in Figure 4.6.

4.2.4 Working of Hierarchy

Read miss

When a read miss occurs in a processor, the processor sends a request to the client

through TLM interface. The clients receives this request and sends an acquire to the

manager. All communication between manager and clients can only happen by Tile-

Link protocol. The manager then, sends probe to all the other clients in the same level

30

as the client which requested the data. Upon receiving the probe, the client checks if

the requested data block is present in its cache or not. If it is present, the coherence

state of that data is updated in the client and the request is forwarded to the processor.

The processor provides the data block requested, which is sent to the manager through

release by the client. The release in this case is sent with a status true. If the requested

data is not found, the release is sent with a status false. The manager waits till it receives

release from all the clients probed. If the status of one of these releases is true, the

manager obtains the data and sends a grant to the client which requested this data. If

none of the releases have status true, the data has to be fetched from the higher level

of the hierarchy. So, the manager probes the paired client. Upon receiving probe, the

paired client sends an acquire to the memory manager. Now, the memory manager

requests the main memory, obtains the data and responds to the client with a grant. On

receiving this grant, the paired client sends finish to the memory manager which ends

the transaction with it. Now the client sends this data to the paired manager by sending

a release. The manager can now respond to the origin client with a grant as it has

obtained the data. On receiving the data, the client forwards it to the processor, updates

the coherence state and sends finish to the manager, which completes the transaction.

The process is shown in Figure 4.7.

Write miss

During write miss, the processor requires the data block which has to be written. So,

fetching the data block happens exactly in the same manner as read miss. After ob-

taining the data block, the processor completes the write and then sends an invalidate

request to the client. The client now checks the coherence state of that data block. If the

state is O/S, the client sends a voluntary release to the manager. The state of this block

in the client is changed to M(this happens irrespective of the initial state of the block).

On receiving the voluntary release, the manager probes all the other clients. The clients

which receive the probe, update the coherence state of the data block to I, if it has that

data block. The invalidate is then forwarded to the processor and the data is invalidated

in the data cache of the processor. The process is shown in Figure 4.8.

31

Figure 4.7: Handling Read-Miss

Write hit

After the processor completes the write operation in the event of a write-hit, it sends

an invalidate request to the client. The propagation of the invalidate request happens

exactly as that during write miss.

Write-back

During write-back the processor sends request to the client. This clients sends a volun-

tary release to the manager and does not expect a response. After receiving the voluntary

release, the manager forwards the data to higher level of memory hierarchy by sending

a probe to its paired client. It does not wait for a release. The paired client, then sends

this request to the memory manager through a voluntary release. The memory manager

forwards the data to the main memory and completes the write-back. No response is

sent to the client from the memory manager as it is not required. The process is shown

in Figure 4.9

32

Figure 4.8: Handling Write-Miss

Figure 4.9: Handling Write-Back

33

CHAPTER 5

Conclusion and Future Work

The memory hierarchy constructed using Manager-Client pairing and Tilelink protocol

is integrated with the I-class processor of the Shakti series of processors. The design is

simulated and checked for functional correctness. The significant increase in the ease

of designing memory subsystem, when the responsibility of coherence management is

decoupled from the processor is successfully demonstrated. The use of Tilelink pro-

tocol greatly simplified the state machines of manager and client. In the worst-case

scenario, the manager-client pairing technique uses 13 clock cycles to fetch data from

main-memory. This number can be greatly reduced by using parallelism in manager and

client. However, at present, this is 9 clock cycles more than the conventional memory

hierarchy design with each cache connected to every other cache. Inspite of this, the de-

sign using MCP has much less complicated interfaces because of the tilelink protocol.

Also, the implementation of cache coherence is done with greater ease. The major ad-

vantage of MCP is that, this design can be replicated to construct hierarchy of coherence

protocols. The design of even heterogeneous hierarchies can be done rapidly, with ease.

The Tilelink protocol provides scope for parallelizing the functions of manager and

client. This should be exploited in future implementations of MCP as this would result

in significantly faster data transfer operations. This dissertation presents the design of

memory hierarchy using a flat coherence protocol. However, to fully appreciate the

advantages of using MCP, more coherence realms should be introduced. By extending

the implementation presented in this dissertation, hierarchy of heterogeneous coherence

protocols can to be constructed to demonstrate the ease of designing using MCP. Also,

the designs need to be verified and evaluated. The time taken for verification can be

compared against the time taken for verifying the designs using conventional methods,

to observe the increase in the speed of verification due to MCP.

REFERENCES

[1] Beu Jesse G., Rosier Michael C., Conte Thomas M., "Manager-Client Pairing: A

Framework for Implementing Coherence Hierarchies", 44th Annual IEEE/ACM

International Symposium on Microarchitecture, Pages 226 - 236, 2011.

[2] Ros Alberto, Davari Mahdad, Kaxiras Stefanos, "Hierarchical private/shared classi-

fication: The key to simple and efficient coherence for clustered cache hierarchies",

IEEE 21st International Symposium on High Performance Computer Architecture

(HPCA), Pages 186 -197, IEEE - 10.1109/HPCA.2015.7056032, Feb 2015.

[3] C. Anderson, "A multi-level hierarchical cache coherence protocol for multiproces-

sors", Parallel Processing Symposium, pp. 142-148, 1993

[4] Bluespec,Inc.Bluespec System Verilog Reference Guide, Revision 30 July 2014.

[5] Tilelink 0.3.3 specification, 2015. URL: https://github.com/ucb-bar/uncore

[6] Overview of the Rocket chip, 2015. URL: http://www.lowrisc.org/docs/untether-

v0.2/overview/

35

