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ABSTRACT

In this thesis, we aim to solve regulation and tracking problems for mechanical

systems with Actor-Critic methods in Reinforcement Learning. These algorithms are

nested in Interconnection and Damping Assignment Passivity Based Control for solving

regulation problems and in feedforward proportional derivative control for regulation

problems without having to solve the complex partial differential equations generated

by the above techniques. The algorithm parametrizes these control techniques to learn

the control laws using update policies. The simulations results for the regulation prob-

lem with ball on a beam and 2D spidercrane, and tracking problem with double gimbal

are presented.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Most energy shaping control methodologies require solving Partial Differential

Equations(PDEs) to arrive at a stabilizing control policy (Ortega et al., 2001). These

PDEs usually require deep subject knowledge for solving them. The control policy gen-

erated don’t account for non-linearities like control saturation. Reinforcement Learn-

ing(RL) is capable of overcoming these issues. Here we will discuss how Actor-Critic

methods can be used for solving regulation and tracking problems. We use the exam-

ple of ball on a beam system and 2D spidercrane system to illustrate how regulation

problems, and double gimbal to illustrate how tracking problems can be solved using

Actor-Critic Methods.

In the regulation problems, Interconnection and Damping Assignment Pas-

sivity Based Control(IDA-PBC) is used to achieve stability by rendering the system

passive with respect to a desired energy function (Ortega et al., 2001). It is a Passivity

Based Control(PBC) (Van der Schaft, 2012) technique used to stabilize under-actuated

systems in Port-Hamiltonian(PH) form by shaping closed loop potential and kinetic

energy. This formulation reduces to solving complex PDEs because of the structural

properties of the PH systems.

The trajectory tracking problem is solved using feedforward proportional deriva-

tive controller (Lewis and Bullo, 2005). To achieve the control objective, we need to find

two functions called tracking error function and transport map that are used to measure

error in position and velocity respectively. For stability analysis these functions have to

satisfy a set of PDEs called compatibility condition.

While both controls achieve stability by solving PDEs, which have the informa-

tion of the system, many control techniques achieve near optimal performance (with

respect to the reward function) with little or no knowledge of the system. RL is one



such technique. It can solve optimal control problems without the need of an explicit

model. It is a stochastic, semi-supervised, model free learning technique which is used

to solve control problems by maximizing the reward function, which is a function of

states of the system and possibly the control action (Sutton and Barto, 1998). In large

state spaces the learning is slow and monotonous. However, providing the agent with

some knowledge of the system can increase the learning rate significantly. As the spaces

are continuous in the real-time problems for regulation and tracking, we focus on Actor-

Critic Methods.

1.2 Literature Survey

1.2.1 Regulation

In this project, we solve regulation problems using IDA-PBC for underactuated

systems in Port-Hamiltonian form. Due to the structural properties of PH systems, IDA-

PBC fomulation results in PDEs, one for kinetic energy and the other for potential en-

ergy. To solve PDEs, we try to rewrite them in a form that can be solved using standard

PDE or ODE techniques, such as the method of the characteristics (Arnol’d, 2012). All

the results in simplification of PDEs are restricted to mechanical systems. The mechan-

ical systems with the degree of underactuation as one have received special attention.

In such systems the kinetic energy PDE can be written as an ODE under certain as-

sumptions (Gómez-Estern et al., 2001). It has also been shown in Acosta et al. (2005)

that the resulting ODE can be solved explicitly under additional assumptions. The ex-

plicit solutions can be found by parameterising the interconnection structure. This was

extended in Gómez-Estern and Van der Schaft (2004) to include natural damping in the

open-loop system. We also look at the possibility of change of coordinates to simplify

the matching conditions. In Fujimoto and Sugie (2001), it is shown that the class of PH

systems is invariant under change of coordinates of the state space. This allows us to

consider a coordinate-free description of port-Hamiltonian systems. Simplification of

the matching equation via a change of coordinates for mechanical systems with degree

one of underactuation has been studied in Viola et al. (2007) and Viola (2008). The

study shows that the forcing term in the kinetic energy PDE can be eliminated by an ap-

propriate choice of coordinates, which generates a homogeneous linear PDE. Hence, a
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change of coordinates could also be beneficial if we consider port-Hamiltonian systems

other than mechanical control systems.

1.2.2 Tracking

In this project, we focus on trajectory tracking for fully actuated systems like

the Double Gimbal system. The geometry in mechanical systems can be used to an

advantage to give stronger control algorithms when compared to the generic non-linear

control algorithms. The control objective of this project is to successfully track a tra-

jectory without having to solve the PDEs which arise in the formulation.

Tracking of robot manipulators have received a lot of attention in the literature.

Examples are Takegaki and Arimoto (1981), Wen and Bayard (1988) and Slotine and

Li (1989), where non linear analysis is used for asymptotic and exponential tracking.

These results have now become standard and are found in books on control like (Nijmei-

jer and Van der Schaft, 2013) and robotics (Murray et al., 1994). Since then, similar

techniques have been applied to the attitude control problem for satellites (Wen and

Kreutz-Delgado, 1991), and likewise to the attitude and position control for underwater

vehicles [Fossen (1994), Section 4.5.4].

1.3 Organisation of the Thesis

The rest of the discussion is organised as follows. Chapter 2 discusses RL and

the standard Actor-Critic algorithm which is used to solve regulation and tracking prob-

lems. In Chapter 3, IDA-PBC is introduced as one of the ways to regulate underactu-

ated systems. We use Actor-Critic methods to learn to solve the regulation problem by

parametrizing IDA-PBC. In Chapter 4 and 5, the algorithm was simulated and the re-

sults are shown for ball on a beam system and 2D SpiderCrane respectively. In Section

6, a feedforward proportional-derivative controller is learned to solve the tracking prob-

lem using Actor-Critic Algorithm. Simulation results are shown for this methodology

using double gimbal mechanism as an example in Chapter 7. Chapter 8 concludes the

paper.
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CHAPTER 2

REINFORCEMENT LEARNING

Reinforcement Learning is an area of machine learning with numerous applica-

tions in various fields, such as game theory, operations research, control theory etc.

The full reinforcement learning (RL) problem is a way of modeling sequential

decision making problems. These problems consist of two entities: an environment

and an agent. At various time-steps during what is called an episode, the environment

is found to be at different states as the agent performs one action after the other in

each time-step. The execution of an action results in two kinds of feedback from the

environment. First, the agent receives a reward. Second, the environment makes a

transition to another state. Both the above effects are dependent only on the state the

agent was in when it took the action, and the action itself - but not any event that

happened further back in time. The above system of the agent, the environment, states,

actions, transitions and rewards is encapsulated as a Markov Decision Process. As an

example, a robot navigating through a maze is a sequential decision making problem: at

various instances, the robot makes a move in a specific direction (the action), finds itself

in various positions in the maze (the state), and receives a reward ( or a punishment)

from the maze if it reaches its goal (or hits the wall). The ’problem’ here is that the agent

is required to maximize some form of cumulative reward called the return. When an

agent is thus introduced to an unknown environment it has to learn through experience

what is the ’best’ action to be taken at every state. The quality of the action can be

understood to correspond to the amount of return that is expected by taking that action.

We will call this state-action mapping that is to be learned as the optimal policy. This

process of learning will involve exploration - that enables to the agent to understand

the environment better - and also exploitation that ensures that the agent makes best

use of what it has learned. Thus, when an agent explores and receives a high reward,

the reward is a means of reinforcement which encourages the agent to believe that the

steps it took recently are good and can be exploited later. Algorithms that solve this

problem are broadly of two kinds. One class of algorithms maintain a model of the

world by approximately estimating the noisy feedback of the environment - these are



called model-based algorithms. The other class of algorithms are model-free in that

they do not maintain any such model but only work with some sort of estimate of the

’value’ or the goodness of the actions that can be taken at every 2 state.

The main advantage of RL is that it doesn’t need any system information (Sutton

and Barto, 1998). However, system information can help speed up the learning process.

This is demonstrated through an example in the next section.

2.1 A Learning Control Problem: Pole Balancing

2.1.1 Cart-Pole System

Fig 2.1 shows the schematic of a Cart-Pole system. The cart can move only

in a one dimensional track and the pole moves in the vertical plane of the track. The

controller can apply an impulsive "left" or "right" force F of fixed magnitude to the cart

at discrete time intervals (Barto et al., 1983).

The cart pole model has four state variables:

• x position of the cart on the track

• θ angle of the pole with the vertical

• ẋ cart velocity, and

• θ̇ rate of change of the angle

5



Figure 2.1: Cart-pole system

The parameters specify the pole length and mass, cart mass, coefficients of fric-

tion between the cart and the track and at the hinge between the pole and the cart, the

impulsive control force magnitude, the force due to gravity, and the simulation time

step.

2.1.2 Reinforcement Learning- SARSA Algorithm

We assume that the equations of motion of the cart-pole system are not known

and that there is no pre-existing controller that can be imitated. At each step, the con-

troller receives a vector giving the cart-pole system’s state at that instant. If the pole

falls or the cart hits the track boundary, the controller receives a failure signal, the cart-

pole system (but not the controller’s memory) is reset to its initial state, and another

learning trial begins. The controller must attempt to generate controlling forces in order

to avoid the failure signal for as long as possible. No evaluative feedback other than the

failure signal is available. The SARSA Algorithm used for this problem is stated in Al-

6



gorithm 1 (Sutton and Barto, 1998). The SARSA algorithm is an On-Policy algorithm

for Temporal difference(TD)-Learning.

Algorithm 1 SARSA Algorithm For Cart-Pole System
1: procedure SARSA ALGORITHM

2: Initialise Q(s, a) arbitrarily
3: Repeat (for each episode)
4: Initialise s
5: Choose a from s using policy derived from Q(e.g., ε - greedy)
6: Repeat (for each step of episode):
7: Take action a, observe r, s′

8: Choose a′ from s′ using policy derived from Q(e.g., ε- greedy)
9: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]

10: s← s′; a← a′

11: until s is terminal
12: end procedure

where s is the current state, a is the action chosen which leads the system to state

s′ and returns a reward r which criticises the state-action pair. a′ is the action taken in

state s′, α ∈ (0, 1) is the learning rate and γ ∈ (0, 1) is the discount factor.

2.1.3 Simulation Results

Figure 2.2: Simulation Results for Cart-Pole System

As seen in Figure 2.2, the system learns to balance the pole for 1000 steps after

approximately 150 episodes of learning. The learning is fast as the system has discrete

states. However, as all real systems have continuous spaces, SARSA algorithm cannot

be implemented.

7



2.1.4 Reinforcement Learning in continuous spaces

Reinforcement Learning algorithms such as Q-Learning and SARSA operate

only in discrete spaces as they are based on Bellman back-ups and discrete-space ver-

sion of Bellman’s equation (Sutton and Barto, 1998). However, most applications of

reinforcement learning are in continuous spaces defined by continuous variables such

as position, velocity etc. Usually the problem is tackled by discretizing the state space.

However, this quickly leads to combinatorial explosion, also famously called the "curse

of dimensionality".

Handling big spaces have been identified as the one of the most important re-

search directions for reinforcement learning. The greatest impact of the "curse of di-

mensionality" is in robotic applications of reinforcement learning to high-dimensional

perceptual spaces. Actor critic reinforcement learning methods are online approxima-

tions to policy iteration in which the value function parameters are estimated using

temporal difference learning and the policy parameters are updated by stochastic gra-

dient descent. Methods based on policy gradients in this way are of special interest

because of their compatibility with function approximation methods, which are needed

to handle large or infinite state spaces (Sutton and Barto, 1998). Hence we utilise Actor-

Critic method for real-time problems such as regulation and tracking. We explain the

Actor-Critic method in the next section.

2.2 Actor-Critic Method

In RL, the system is modelled as a Markov Decision Process (MDP) (Sutton and

Barto, 1998) represented by the tuple MDP (X,U, f, ρ, γ), where X is the state space,

U is the control space, f : X × U → X is the control policy and ρ : X × U → R is

the reward function and the discount factor γ ∈ (0, 1]. The control policy f acts on the

state (x ∈ X) at time instant t to lead to a state (x′ ∈ X) at t′ > t.

The reward function ρ acts on a state and possibly the control action u ∈ U to

give a reward r which criticizes the action.

The goal of Actor-Critic method is to optimize the control policy with respect to

a cost function, which is a sum of the discounted instantaneous rewards from current

8



Figure 2.3: Actro Critic flow chart

time k to infinite time horizon, also called the Value function (Lewis and Vrabie, 2009)

Vk.

V π
k (x(k)) =

∞∑
i=0

γirπk+i+1(x(k), u(k))

is the value function V π : X → R under optimal control policy π : X → U . In

continuous spaces it becomes necessary to approximate the optimal policy π̂ and the

value function V̂ . The functions are approximated as,

V̂k(x(k)) =
m∑
i=1

θiφi(xk)

π̂k(x(k)) =
n∑
j=1

ξjΦi(xk) n,m ∈ Z+

by finite differentiable basis functionals (φi,Φj) so that gradient descent methods can

be used to update the parameters θi, ξj . The Actor-Critic method updates both policy

π̂ and value function V̂ iteratively to arrive at the best approximation V̂ π̂ (Sutton and

Barto, 1998).

The actor generates the actions by the control policy and the critic is the estimated

value function, which criticizes the policy through temporal difference error δ (as shown

in Figure 2.3),

δk+1 = rk+1 + γV̂k+1 − V̂k

9



until the optimal policy and value function are learned. The critic parameters θi are

updated by,

ek+1 = γλek +∇θV̂ (xk, θk)

θk+1 = θk + αcδk+1ek+1

where αc > 0 is the learning rate for the critic parameter, ek are the eligibility traces

and λ ∈ [0, 1) is the trace decay rate. The eligibility traces ek store the knowledge of

visited states and can be used to speed up the learning process (Sutton and Barto, 1998).

The updated critic parameter is then used to update the policy. The algorithm learns

from exploration by searching for states which might improve the reward function. The

exploration ∆uk is drawn form a desired distribution (such as a Normal distribution)

and added to the control policy (Sprangers et al., 2015),

uk = π̂(xk, ξk) + ∆uk.

The policy parameters ξi are updated towards (away) ∆uk if δ is positive (nega-

tive), with the update rule,

ξk+1 = ξk + αaδk+1∆uk∇ξπ̂(xk, ξk)

where αa > 0 is the learning rate of the policy parameter. The control saturation is in-

corporated by a generic control saturation function ζ . The above method is summarized

in Algorithm 2.

Using actor critic methods without system knowledge can make the learning ex-

tremely slow and monotonous. Hence, providing information about the system speeds

up the learning process significantly.

2.3 Summary

The Actor-Critic methods are used for RL in continuous spaces. Algorithm 2

takes into account non-linearities such as control saturation. We add a noise to control

input for the purpose of exploration and to perturb the system in case it is stuck in a

local minima.

10



Algorithm 2 Actor-critic Algorithm
1: procedure ACTOR CRITIC

2: Input γ λ αc αa, for each actor
3: Initialise e0(x)=0 ∀ x
4: Initialise x0, θ0 ξ0

5: k ← 1
6: loop
7: Execute:
8: control action uk=ζ(π̂(xk, ξk) + ∆uk)
9: where ∆uk ∼ N(0, σ2)

10: ∆ūk = uk − π̂(xk, ξk)
11: Critic:
12: Temporal difference: δk+1 = rk+1+
13: γV̂ (xk+1, θk)− V̂ (xk, θk)
14: Eligibility Trace: ek+1 = γλek+
15: ∇θV̂ (xk, θk)
16: Critic update: θk+1 = θk + αcδk+1ek+1

17: Actor:
18: ξk+1 = ξk + αaδk+1∆ûk∇ξπ̂(xk, ξk)
19: end procedure

The next section discusses regulation problems and the classical methods in con-

trol theory used to solve them.
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CHAPTER 3

REGULATION

3.1 Under-actuated Mechanical Systems

Under-actuated systems are those with fewer control inputs than the degrees of

freedom. They arise in various fields, such as automobiles, airplanes, robotics and even

animals. The Lagrangian dynamics of these systems may contain feedforward non-

linearities, non-minimum phase zero dynamics, nonholonomic constraints, and other

properties that place this class of systems at the forefront of research in nonlinear control

(Spong, 1998).

3.1.1 Port Hamiltonian Representation

Under-actuated (Mechanical) systems assuming no natural damping can be writ-

ten in Port Hamiltonian (PH) form,q̇
ṗ

 =

 0 In

−In 0

∇qH

∇pH

+

 0

G(q)

u (3.1)

where,

H(p, q) =
1

2
pTM−1(q)p+ V (q) (3.2)

represents the total energy of the system. q ∈ Rn and p ∈ Rn are the generalised

positions and momenta respectively. M(q) = M(q)> represents the inertia matrix and

V (q) the potential energy. The matrix G ∈ Rn×m is determined by how the control

input enters the systems and is invertible in the case of a fully actuated system, i.e.,

m = n. The main characteristic of PH system is that it models the system using its total

energy, which can be used as a Lyapunov function in stability analysis.



3.2 Stabilisation using IDA-PBC

IDA-PBC is one of many PBC techniques and is used to regulate the position of

under actuated systems. IDA-PBC achieves stability by making the system passive to

a desired energy function. As shown in (Ortega et al., 2002), IDA-PBC achieves this

for an under-actuated system by shaping both the kinetic and potential energy of the

system.

3.2.1 Target Dynamics

Motivated by (3.2) we propose the following form for the desired closed loop

energy function,

Hd(p, q) =
1

2
pTM−1

d (q)p+ Vd(q) (3.3)

where Md = M>
d > 0 and Vd represent the (to be defined) closed-loop inertia matrix

and potential energy function, respectively. We will require that Vd have an isolated

minimum at q∗, that is

q∗ = argminVd(q) (3.4)

In PBC, the control input is naturally decomposed into two terms

u = ues(q, p) + udi(q, p) (3.5)

where the first term is designed to achieve the energy shaping and the second one injects

the damping. The desired port-controlled Hamiltonian dynamics are taken of the form

(Aeyels et al. (2008),Ortega et al. (2002), Van der Schaft (2012))q̇
ṗ

 =
[
Jd(q, p)−Rd(q, p)

]∇qHd

∇pHd

 (3.6)
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where the terms

Jd = −J>d =

 0 M−1Md

−MdM
−1 J2(q, p)


Rd = R>d =

0 0

0 GKvG
>

 ≥ 0

represent the desired interconnection and damping structures.

The following observations are made:

From (3.1) and (3.2), we have that q̇ = M−1p. Since this is a nonactuated

coordinate, this relationship should hold also in closed loop. Fixing (3.3) and (3.6)

determines the (1,2)-block of Jd.

The matrix Rd is included to add damping into the system. This is achieved via

negative feedback of the (new) passive output (also called LgV control), which in the

case is G>∇pHd. That is, we will select the second term of (3.5) as

udi = −KvG
>∇pHd (3.7)

where we take Kv = K>v > 0. This explains the (2,2)-block of Rd.

We will show below that the skew-symmetric matrix J2 (and some of the el-

ements of Md) can be used as free parameters in order to achieve the kinetic energy

shaping. Providing these degrees of freedom is the essence of IDA-PBC.

3.2.2 Energy Shaping

To obtain the energy shaping term, ues, of the controller we replace (3.5) and

(3.7) in (3.1) and equate it with (3.6) 0 In

−In 0

∇qH

∇pH

+

0

G

ues =

 0 M−1Md

−MdM
−1 J2(q, p)

∇qHd

∇pHd



14



While the first row of the aforementioned equations is clearly satisfied, the second

set of equations can be expressed as

Gues = ∇qH −MdM
−1∇qHd + J2M

−1
d p.

Now, it is clear that if G is invertible, i.e., if the system is fully actuated, then we

may uniquely solve for the control input ues given any Hd and J2. In the underactuated

case, G is not invertible but only full column rank, and ues can only influence the terms

in the range space of G . This leads to the following set of constraint equations, which

must be satisfied for any choice of ues:

G>
{
∇qH −MdM

−1∇qHd + J2M
−1
d p
}

= 0 (3.8)

where G> is a full rank left annihilator of G, i.e., G>G = 0. Equation (3.8), with Hd

given by (3.3), is a set of nonlinear PDEs with unknowns Md and Vd, with J2 a free

parameter, and p an independent coordinate. If a solution for this PDE is obtained, the

resulting control law ues is given as

ues =
(
G>G

)−1
G>
(
∇qH −MdM

−1∇qHd + J2M
−1
d p
)

(3.9)

The PDEs (3.8) can be naturally separated into the terms that depend on p and

terms which are independent of p, i.e., those corresponding to the kinetic and the po-

tential energies, respectively. Thus, (3.8) can be equivalently written as

G>
{
∇q

(
pTM−1p

)
−MdM

−1∇q

(
pTM−1

d p
)

+ 2J2M
−1
d p
}

= 0 (3.10)

G>
{
∇qV −MdM

−1∇qVd
}

= 0 (3.11)

The first equation is a nonlinear PDE that has to be solved for the unknown

elements of the closed-loop inertia matrix Md. Given Md, (3.11) is a simple linear

PDE, hence the main difficulty is in the solution of (3.10).

The following remarks are in order:

The derivations above characterize a class of under-actuated mechanical systems

for which the newly developed IDA-PBC design methodology yields smooth stabiliza-

tion. The class is given in terms of solvability of the nonlinear PDE (3.10), and the
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linear PDE (3.11). Although it is well known that solving PDEs os generally hard, it

is our contention that the added degree of freedom- the closed loop interconnection J2

-simplifies this task.

There are two "extreme" particular cases of our procedure. first, if we do not

modify the interconnection matrix then we recover the well-known potential energy

shaping procedure of PBC. Indeed, ifMd = M and J2 = 0, then the controller equation

(3.9) reduces to

ues = (G>G)−1G>(∇qV −∇qVd)

which is th familiar potential energy shaping control.

3.3 Summary

We have seen that because of the structural properties of the PH form, the IDA-

PBC formulation reduces to solving two PDEs, one for kinetic energy and the other for

potential.

G>
{
∇q

(
pTM−1p

)
−MdM

−1∇q

(
pTM−1

d p
)

+ 2J2M
−1
d p
}

= 0

G>
{
∇qV −MdM

−1∇qVd
}

= 0

where J2 is any skew symmetric matrix. Even with this added degree of freedom, it

is still non-trivial to solve these PDEs and in some cases it takes significant effort to

reduce them to Ordinary differential equations (ODEs), under some assumptions. We

can use RL techniques to solve the complex PDEs for Ball on a beam system and 2D

spidercrane as shown below.

In the next section, we use Actor-Critic methods nested in IDA-PBC formulation

and present simulation results for ball on a beam system.
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CHAPTER 4

BALL ON A BEAM SYSTEM

The Ball on a beam system is a system widely used by control engineers to

validate new control strategies. It is a two degree-of-freedom system with a single

actuator, which makes it an underactuated system with degree of under actuation equal

to one. The traditional challenge offered by the ball and beam system is to stabilize

the ball at the center of the centrally actuated beam which is an equilibrium point or to

stabilize the ball at the center of the end actuated beam which is an operating point.

4.1 Problem Formulation

4.1.1 Model of Ball on a Beam

A schematic of a ball on an end actuated beam is shown in Figure 4.1 (Muralid-

haran et al., 2010) . The ball is mounted on a beam of length L. The beam is end

actuated and is attached to a gear of Radius R. The beam makes an angle α with the

horizontal and the beam of the gear makes an angle θ with the horizontal.

Figure 4.1: A schematic of Ball on a Beam system



As shown in Muralidharan et al. (2010), The state variables are q1 and q2 where,

q1 = x

q2 = α ≈ Rθ

L
(4.1)

and q1 represents the position of the ball and q2 the inclination of the beam. The approx-

imation, (4.1) is valid only for small α and small θ. The system’s configuration space is

Q = R× S1.

The mass matrix and the potential energy can be written as,

D(q1) = diag

(
a1, a2 + a3

(
q1 +

L

2

)2
)

(4.2)

V (q) = b1 sin(q2) + b2(q1 + L/2) sin(q2), (4.3)

where the inertial parameters, defined in Table 4.1, are collected in constants

Table 4.1: System Parameters for Ball on Beam System

Parameter Symbol
Length of the beam L
Radius of the ball rb
Mass of the ball Mb

Moment of Inertia of the ball Jb
Mass of the beam Mr

Radius of gear R
Moment of inertia of the beam about its pivot Jr

Moment of inertia of the gear Jfw
Acceleration due to gravity g

a1 =
Jb
r2
b

Mb; a2 = Jr
R2

L2
+ Jfw

a3 =
MbR

2

L2
; b1 =

MrgL

2
; b2 = Mbg.

and the control input matrix is G = [0, 1]>. Unlike the ball on a centrally actuated

beam system, the length of the beam L appears in the equations of motion. The control

objective is to stabilize the system at q∗ =
[
0 0 0 0

]>
∈ Q× TQ.
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4.1.2 IDA-PBC Formulation

As shown in Muralidharan et al. (2010), Md = M>
d > 0 is parametrised such

that it solves the potential PDE

G>{∇qV −MdD
−1∇qVd} = 0

where G> = e>1 . In this direction, we retain the dependence of Md on q1, that is Md =

Md(q1). With J2 parametrised as J2 = p>M−1
d A(q1)W , where A(q1) = [A1A2] ∈ C1

is free and W ∈ so(2) ∈ R2 × R2, the space of skew-symmetric matrices, then the

kinetic energy PDE reduced to an ODE in Md with respect to q1 and is given by,

−MdD
−1D′D−1Md + (G⊥MdD

−1e1)M ′
d +

 0 A1(q1)

A1(q1) 2A2(q1)

 = 0

Let us introduce the change of variables (Auckly and Kapitanski, 2002) given by

λ ,MdD
−1

The corresponding kinetic ODE’s and the potential PDE in the new variable

is termed the λ−equations. This change of variabes greatly aids in solving for the

Md = MT
d > 0 and Vd. Let λ =

λ1 λ2

λ3 λ4

, then the KE ODE can be written as,

−λD′λ+ λ1M
′
d +

 0 A1(q1)

A1(q1) 2A2(q1)

 = 0

Where,

Md ,

m11 m12

m21 m22

 =

a1λ1 λ2

(
a2 + a3

(
L
2

+ q1

)2
)

a1λ3 λ4

(
a2 + a3

(
L
2

+ q1

)2
)


The ODE’s for m′ijs in terms of λ′is are given by,

−2a3(q1 + L/2)λ2
2 + a1λ1

dλ1

dq1

= 0 (4.4)

−2a3(q1 + L/2)λ2λ4 + λ1
d

dq1

λ2(a2 + a3(L/2 + q1)2) + A1 = 0

−2a3(q1 + L/2)λ2
4 + λ1

d

dq1

λ4(a2 + a3(L/2 + q1)2) + 2A2 = 0
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Form the non-trivial ODE (4.4), we get

λ1(q1) = k1(q1 + L/2) > 0, ∀q1 ∈ (−L/2, L/2), where k1 > 0 (4.5)

λ2 = k2 = k1

√
a1

2a3

> 0 (4.6)

From the closed loop mass matrix Md ≥ 0 ∀q ∈ (−L/2, L/2) we get,

λ3 =
k2

q1

(a2 + a3(L/2 + q1)2) (4.7)

k4 > arg max
q1∈(−L

2
+ε,L

2
−ε)

k1(a2 + a3(L/2 + q1)2)2

2a3(L/2 + q1)

=
k1(a2 + a3(ε)2)2

2a3ε
(4.8)

where k4 is Md(2, 2) and ε is very small. The free functions in the gyroscopic term are

extracted as,

A1 = 2a3λ2(q1 + L/2)(λ4 − λ1) (4.9)

A2 = a3(q1 + L/2)λ2
4 (4.10)

The closed loop potential energy Vd is approximated by

V̂d = ψ1(1− cos q2) + ψ2q
2
1 + ψ3q

2
2 + ψ4q1q2

where ψ1, ψ2, ψ3 and ψ4 are learned using RL. The function Vd needs to have a minima

at q∗, From∇Vd = 0 we get,

ψ2 < 0 (4.11)

ψ1 =
b2

k2

(4.12)

ψ3=
−k1(q1 + L/2)ψ2

2k2

(4.13)

From∇2Vd ≥ 0 we get,

ψ4=
−k2ψ2q

2
1

2k1(q1 + L/2)
(4.14)
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Finally from equations (4.5)-(4.14), the free parameters to be learned using Actor-Critic

Algorithm 2 are k1, k4, ψ2, kv.

4.2 Implementation

4.2.1 Reinforcement Learning nested in IDA-PBC

The free parameters are learned using the update policy as given in Algorithm 3.

Algorithm 3 Actor update for Ball on a Beam system
1: procedure ACTOR UPDATE

2: Actor:
3: ξk = (k1k , k4k , kvk , ψ2k)

4: k1k+1
= k1k + αk1δk+1∆ūk∇k1ζ(π̂(xk, ξk))

5: k4k+1
= k4k + αk4δk+1∆ūk∇k4ζ(π̂(xk, ξk))

6: kvk+1
= kvk + αkvδk+1∆ūk∇kvζ(π̂(xk, ξk))

7: ψ2k+1
= ψ2k + αψ2δk+1∆ūk∇ψ2ζ(π̂(xk, ξk))

8: end procedure

The value of system parameters used are a1 = 0.0896,a2 = 0.002, a3 = 0.000228,

b1 = 0.3130, b2 = 0.6278 and L = 0.425. The critic function (ith basis for the kth state)

and the reward function for the kth state used are,

φc(q(k)) = i(cos(2iq2(k))− 1)− iq1(k)2

r(q(k)) = rq2(cos(2iq2(k))− 1)− rq1q1(k)2

−rp1p1(k)2 − rp2p2(k)2

The parameter values used in the algorithm are mentioned in Table 4.2.
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Table 4.2: Parameter values for Ball on a Beam System

Parameter Symbols Values

Maximum input to the system umax 6

Learning rate of k1 αk1 10−7

Learning rate of k4 αk4 10−6

Learning rate of kv αkv 10−2

Learning rate of ψ2 αψ2 10−6

Learning rate of the critic αc 0.05

Discount factor γ 0.99

Trace decay rate λ 0.65

Reward function coefficient for q1 rq1 20000

Reward function coefficient for q2 rq2 20

Reward function coefficient for p1 rp1 1000

Reward function coefficient for p2 rp2 1

4.3 Simulation Results

The simulation was repeated 3000 times and the estimate of the average, minimum,

maximum and confidence regions are plotted in figure 4.2.

time
0 1 2 3 4 5 6

re
w

ar
d

-600

-500

-400

-300

-200

-100

0
reward

95% Confidence Interval

Mean reward
Min and Max bounds

Figure 4.2: Reward Function
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The system moves toward the minima of the Potential Energy as seen in the Figure 4.4.

Figure 4.3: The learned Potential Energy

x
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α

-0.06

-0.04
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0

0.02

0.04

0.06

Potential Energy
Trajectory followed to settle at q*

Figure 4.4: Trajectory Tracked on the potential energy contour

The system will not settle in any local minimas because of the exploration in the control

policy. It has also been visualised in the configuration space R× S1 in figure 4.5.
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Figure 4.5: Trajectory Tracked on the cylinder

4.4 Summary

We have presented a method to parametrise IDA-PBC control laws which are

robust to non-linearities such as control saturation. The free parameter values were

calculated using Actor-Critic method. This gives us a way to numerically access the

stability using passivity theory. By providing system knowledge, the convergence of the

algorithm can be significantly improved, as the algorithm is computationally expensive.

In the next section, we use Actor-Critic methods nested in IDA-PBC formulation

and present simulation results for 2D Spidercrane system.
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CHAPTER 5

2D SPIDERCRANE

5.1 Problem Formulation

5.1.1 2D SpiderCrane Model

Consider the 2D SpiderCrane mechanism shown in 5.1 (Kazi et al., 2008).

Figure 5.1: 2D SpiderCrane Mechanism

The load of mass m is at (x, y). The position of the load is varied by varying the

lengths l1 and l2. The position of the two motors is (xa, ya) and (xb, yb) with rotatory

inertia Ia and Ib respectively. The ring of mass M with position (xR, yR) is attached to

the load using a cable of fixed length L3. The following assumptions are made about

the model,

• the cable is massless and inelastic

• Both pylons are assumed to be on the same height

• Dissipative forces on the cart and the winch are negligible



The model is an underactuated system with 2 holonomic constraints. It essentially

captures all the control-theoretical perspectives of SpiderCrane discussed in Buccieri

et al. (2005)

5.1.2 Dynamics of 2D Spider Crane

As shown in Kazi et al. (2008), the configuration variables are,

q =
[
xR yR θ l1 l2

]

where θ ∈ (0, 2π) represents the payload angle about the vertical axis. the ring position

is specified with xR ∈ R1 in the X axis and yR ∈ R1 in the Y axis. l1 and l2 represent the

cable lengths. The control force u = [F1, F2]>, where F1 and F2 are the control inputs

acting on each cable. The control objective is to move the payload from any position

qi =
[
xRi yRi θi l1i l2i

]
to a desired position qd =

[
xRd yRd θd l1d l2d

]
and the payload angle has to be at zero when at rest.

The holonomic constraints are,

C1(q) = (xR)2 + (yR − ya)2 − (l1)2 = 0 (5.1)

C2(q) = (xR − xb)2 + (yR − yb)2 − (l2)2 = 0 (5.2)

The Lagrangian is,

L =
1

2
q̇TM(q)q̇ − V (q) (5.3)

where,

M(q) =



M +m 0 mL3 cos θ 0 0

0 M +m mL3 sin θ 0 0

mL3 cos θ mL3 sin θ mL2
3 0 0

0 0 0 Ia 0

0 0 0 0 Ib


(5.4)
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is the inertia matrix and

V (q) = (M +m)gyR −mgL3 cos θ (5.5)

is the potential energy function.

As the admissible system motions lie in th range of,

S(q) =



0 0 1

0 1 0

1 0 0

0 yR−ya
l1

xR
l1

0 yR−yb
l2

xR−xb
l2


(5.6)

We exclude the points where

• the ring mass is at the first pulley with l1 = 0

• the ring mass is at the second pulley with l2 = 0

from our discussions.

5.1.3 Decoupled SpiderCrane Model

Figure 5.2: 2D SpiderCrane Gantry cart
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We consider the 2D SpiderCrane as a decoupled system as shown in Fig. 5.2 (Kazi et al.,

2008). The configuration variables for the gantry mechanism are q = (xR, yR, θ)
T and

the Lagrangian is

L(q, q̇) =
1

2
q̇TM(q)q̇ − V (q) (5.7)

where,

M(q) =


M +m 0 mL3 cos θ

0 M +m mL3 sin θ

mL3 cos θ mL3 sin θ mL2
3

 (5.8)

and

V (q) = (M +m)gyR −mgL3 cos θ (5.9)

The resulting Euler Lagrangian equations are:

Fx = (M +m)ẍR + (mL3 cos θ)θ̈ − (mL3 sin θ)θ̇2

Fy = (M +m)ÿR + (mL3 sin θ)θ̈ + (mL3 cos θ)θ̇2 + (M +m)g

0 = (mL3 cos θ)ẍR + (mL3 sin θ)ÿR + (mL2
3)θ̈ +mgL3 sin θ

The Hamiltonian of the system is

H(q, p) =
1

2
pTM−1(q)p+ V (q) (5.10)

where q ∈ Rn and p ∈ Rn are the generalised position and momenta,M(q) = MT (q) >

0 is the inertia matrix, and V (q) is the potential energy.

Assuming that the system has no natural damping it can be represented as,q̇
ṗ

 =

 0 In

−In 0

∇qH

∇pH

+

 0

G(q)

u (5.11)
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where for 2D spidercrane,

G(q) =


1 0

0 1

0 0

 (5.12)

This gave us G⊥ =
[
0 0 1

]
.

5.1.4 Pulley Dynamics

A schematic of Pulley Dynamics is shown in Figure 5.3 (Kazi et al., 2008).

Figure 5.3: Pulley cable Schematic

where ti is cable tension, τi and βi are the motor torque and the pulley angle respectively,

for the ith pulley. Here r1 = r2 = r is the pulley radius. Also, the no-slip constraint for

the ith pulley gives rβ̇i = l̇i. The relation between the motor torques and Fx and Fy is

as follows:τ1

τ2

 = r

 cosα1 − cosα2

− sinα1 − sinα2

−1  Fx

Fy −Mg

+ r

Ia 0

0 Ib

l̈1
l̈2

 (5.13)

αi > 0, i = 1, 2. The above equation is not valid for when the cables lie in a straight

line.
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5.1.5 IDA-PBC Formulation

Since the desired equilibrium of the system is the natural equilibrium , we only

shape the potential energy of the system, keeping the kinetic energy unchanged. So

Md = M . To influence the underactuated coordinate θ we make the interconnection

matrix J2 skew symmetric and linear in p,

J2 = k


0 0 ẏR

0 0 −ẋR
−ẏR ẋR 0

 (5.14)

This clearly satisfies the kinetic energy PDE,

G>
{
∇q

(
pTM−1p

)
−MdM

−1∇q

(
pTM−1

d p
)

+ 2J2M
−1
d p
}

= 0

We influence the swing by the tuning parameter k which influences the interconnection

structure. The potential energy PDE,

G>
{
∇qV −MdM

−1∇qVd
}

= 0

with G⊥ =
[
0 0 1

]
, takes the form ∇q3V −∇q3Vd = 0. Hence, we assume Vd(q) to

be of the form,

Vd = −mgL3 cos θ + kpx(exp(xR − xRd)− xR) + kpy(exp(yR − yRd)− yR) (5.15)

where kpx, kpy > 0, qRd = (xRd, yRd, 0) and θ ∈ (−π/2, π/2) so as to satisfy the gradi-

ent and Hessian conditions for qRd= argminVd(q). If we chose Vd(q) to be a quadratic

function we would recover a PD like control law as in Fang et al. (2003). Exponential

function is chosen as they are steeper than quadratic function, implying that for a large

deviation from the desired position the rate at which the system moves to the equilib-

rium is faster as compared to quadratic functions. From equation (5.14) and (5.15), we

get the control law as,

ues =

 −kpx(exp(xR − xRd)− 1)

(M +m)g − kpy(exp(yR − yRd)− 1)

+

kẏRθ̇
kẋRθ̇

 (5.16)
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And the damping injection term is designed as,

udi = −KvG
T q̇ = −

kaẋR + kbẏR

kbẋR + kcẏR

 (5.17)

where Kv is a symmetric and positive definite matrix of the form Kv =

ka kb

kb kc

. The

gains kpx and kpy are like proportional gains acting on the error in the configuration

variables giving us a proportion like term in the control-law. Kv acts on the derivative

of the configurational variables and introduces damping into the system. The system

has 5 free parameters, k, kpx, kpy, ka, kb and kc which are learnt using reinforcement

learning

5.2 Implementation

5.2.1 Reinforcement Learning nested in IDA-PBC

The free parameters are learned using the update policy as given in Algorithm 4.

Algorithm 4 Actor update for 2D SpiderCrane
1: procedure ACTOR UPDATE

2: Actor:
3: ξk = (k, kpx, kpy, ka, kb, kc)

4: kk+1 = kk + αkδk+1∆ūk∇kζ(π̂(xk, ξk))

5: kpxk+1
= kpxk + αkpxδk+1∆ūk∇kpxζ(π̂(xk, ξk))

6: kpyk+1
= kpyk + αkpyδk+1∆ūk∇kpyζ(π̂(xk, ξk))

7: kak+1
= kak + αkaδk+1∆ūk∇kaζ(π̂(xk, ξk))

8: kbk+1
= kbk + αkbδk+1∆ūk∇kbζ(π̂(xk, ξk))

9: kck+1
= kck + αkcδk+1∆ūk∇kcζ(π̂(xk, ξk))

10: end procedure

The value of system parameters used are M = 0.5,m = 1 and l3 = 0.5. The

desired position qRd = (0.5, 1, 0) The critic function (ith basis for the kth state) and the
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reward function for the kth state used are,

φc(q(k)) = i(cos(2iq3(k))− 1)− iq1(k)2 − iq2(k)2

r(q(k)) = rq3(cos(2iq3(k))− 1)− rq1(q1(k)− q1Rd
)2 − rq2(q2(k)− q2Rd

)2

−rq4q4(k)2 − rq5q5(k)2 − rq6q6(k)2

The parameter values used in the algorithm are mentioned in Table 5.1.

Table 5.1: Parameter values used for 2D spidercrane system

Parameter Symbols Values

Learning rate of ka αka 10−7

Learning rate of kb αkb 10−7

Learning rate of kc αkc 10−7

Learning rate of k αk 10−3

Learning rate of kpx αkpx 10−7

Learning rate of kpy αkpy 10−7

Learning rate of the critic αc 0.05

Discount factor γ 0.99

Trace decay rate λ 0.65

Reward function coefficient for q1 rq1 8

Reward function coefficient for q2 rq2 8

Reward function coefficient for q3 rq3 1000

Reward function coefficient for q4 rq4 6

Reward function coefficient for q5 rq5 6

Reward function coefficient for q6 rq6 100

5.3 Simulation results

The reward function when the algorithm was run for 5 seconds is shown in Figure

5.4. The reward function reaches the maximum value of 0 after learning for approxi-

mately 3 seconds.
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Figure 5.4: Reward Function Figure 5.5: X position of the ring

Figure 5.6: Y position of the ring Figure 5.7: Payload Angle

The X position of the ring converges to the desired position xRd = 0.5. The Y position

of the ring converges to the desired position yRd = 1. The payload angle reach θ = 0

when the SpiderCrane is at rest.

5.4 Summary

The controller learnt by the actor-critic method stabilises the 2D spidercrane sys-

tem at qRd. We have utilised the freedom in the interconnection matrix J2 to influence

the cable swing, the unactuated coordinate. The learnt control law, as observed per-

formed well for point to point control with swing minimisation.

In the next section we formally introduce the concepts of feedforward proportional-

derivative controller.
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CHAPTER 6

TRACKING

Let us first define a simple mechanical system,

Definition 1 Simple mechanical system (Lewis and Bullo, 2005):

A simple mechanical system is a 4 − tuple (Q,G,
G
∇, F ), where Q is configurational

manifold, G is the Riemannian metric defined on Q,
G
∇ denotes the Levi-Civita con-

nection defined using Q,G and F ∈ T ∗Q represents the control action. The Euler

Lagrangian equations of the mechanical system are

G
G
∇γ̇(t) γ̇(t) = F (6.1)

where γ : [0,∞) 7→ Q represents a curve on Q.

In this section we consider tracking problem of a fully actuated simple mechani-

cal system. A system is fully actuated means its degree-of-freedom is equal to number

of actuators. Therefore can calculate the approximate amount of control input to drive

it from one state to another state, any error in position or velocity can be feedback to

the system. This type of controller is called as feed forward proportional-derivative

controller (Murray et al., 1994).

In this controller the proportional term is generated by a linear error potential

function say

ψl(x(t), r(t)) = (x(t)− r(t))Tkp(x(t)− r(t)) (6.2)

where x(t) is the current position and r(t) is the reference position on the configura-

tional manifold, generally an Euclidian space Rn and kp ∈ Rn×n. The gradient of the

error potential function gives us the proportional control force

Fp =
∂ψl
∂x

= kp(x(t)− r(t)) (6.3)



required to correct the position error, which is indeed the position error in proportional

derivative controller. This linear potential functions are suitable for system with config-

urational manifold Rn, that is, translational joints. But when we have a rotational joints

in the system, the configurational manifold will not be Euclidian and in these systems

linear error potential functions generally fail in capturing the true error.

For example, consider a ball moving in a unit circle, in this case the configura-

tional manifold is Q = S1. Consider two initial conditions 0 and 2π, which represents

the same position, and let the desired position be π
2
. The error generated by the error

function kp(x(t)−r(t)) corresponding to the same position 0 and 2π results in different

values −π
2

and 3π
2

.

Now consider a nonlinear potential function

ψnl(x(t), r(t)) = kp(1− cos(x(t)− r(t))), (6.4)

the position error due to this scalar function ψnl is given by

∂ψnl
∂x

= kp sin(x(t)− r(t)) (6.5)

and when calculated at both the initial points 0, 2π the error is the same. This error po-

tential function is defined using the properties of the manifold. But due to this nonlinear

potential shaping, additional equilibrium points are introduced

∂ψnl
∂x

= 0. (6.6)

In the running example, in addition to the equilibrium point x(t) = r(t), an

additional equilibrium x(t) = r(t)+π manifests and which can be shown to be unstable.

So the control defined with this potential function is restricted to a domain defined by

D = S1 − π. The formal definition of ψ is as follows.

Definition 2 Configurational error function

A smooth function ψ : Q → R is configurational error function about r ∈ Q if it is

properly bounded below, and satisfies

(i) ψ(r) = 0

(ii) dψ(r) = 0
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(iii) Hess ψ(r) > 0.

Definition 3 Tracking error function:

A smooth and symmetric function ψ : Q × Q 7→ R is a tracking error function if, for

r ∈ Q, the function ψr : Q 7→ R is a configurational error function about r and satisfies

(i) ψ(r, r) = 0,

(ii) d1ψ(r, r) = 0,

(iii) Hess1ψ(r, r) > 0.

For (q, r) ∈ (Q × Q) we write the differential with respect to first argument as

d1ψ = ∂ψ
∂q
∈ T ∗qQ and the differential with respect to second argument as d2ψ = ∂ψ

∂r
∈

T ∗rQ.

6.1 Transport map

In general for a proportional-derivative control, the velocity error is calculated

by q̇(t) − ṙ(t) where q(t), r(t) are the current and reference trajectories respectively.

For calculating this error we are actually comparing the vectors in two different tan-

gent spaces (q(t), r(t)). Since there exists natural isomorphisms(in this case identity

transformation) between any two tangent spaces, the notion of the error defined above

is valid. But we can also find some other isomorphisms which can aid our control. This

isomorphism we call it as transport map, formally defined below.

Definition 4 Transport map:

A transport map is a smooth vector bundle map

T : Q× TQ→ TQ×Q (6.7)

over idQ×Q with the property that T (q,Xq) = Xq for all q ∈ Q and Xq ∈ TqQ

It maps vector field at reference position to vector field at current position. Let

(q, r) ∈ (Q × Q) and (r, Yr) is the vector field along the reference trajectory (r(t)),
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then (q, T (q, r).Yr) is the transported vector field defined on controlled trajectory q(t).

Therefore we now formally define notion of velocity error.

ė(t) = q̇(t)− T (q(t), r(t)).ṙ(t) (6.8)

6.2 Compatibility of transport map and tracking error

function

Let ψ and T be a tracking error function and transport map on the manifold Q,

respectively. The pair (ψ, T ) is compatible if, for all (q, r) ∈ Q×Q,

d2ψ(q, r) = −T (q, r)∗d1ψ(q, r) (6.9)

where T (q, r)∗ : T ∗qQ→ T ∗qQ is the dual of T (q, r).

6.3 Control law design

Given a compatible pair (ψ, T ), we define the function V : TQ × TQ → R by

means of

V (q(t), r(t)) = ψ(q(t), r(t)) +
1

2
||ė(t)||2G (6.10)

Consider the C∞ simple mechanical system (6.1). Let q : R+ → Q, and

r : R+ → Q be the controlled and reference trajectories respectively, let (ψ, T ) be

a compatible pair satisfying (6.9), then we define the control force F = FFF + FFB as

follows (Lewis and Bullo, 2005):

FFF (t, q̇(t)) = −d1ψ(q(t), r(t))− kvė(t)

FFB(t, q̇(t)) = G(
G
∇q̇ (T (q, r).ṙ)) (6.11)

where
G
∇q̇ (T (q, r).ṙ) denotes covariant derivative of T (q, r).ṙ along the vector field

q̇. then the control law (6.11) asymptotically stabilizes the system (6.1) with (6.10) as
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Lyapunov function.

In general for a given mechanical system, finding the tracking error function ψ

and transport map T satisfying (6.9) will give a set of PDEs to solve that are not always

trivial. In the next section we will show how reinforcement learning can be used to

learn the control action F (6.11) by learning the error function ψ and transport map T .

6.4 Tracking using RL

We first parameterize tracking error function ψ(q, r) and transport map T (q, r)

with finite number of basis functionals using Weierstrass higher order approximation

Theorem

ψ̂(q, r) = Σn
1ψiφi(q, r) (6.12)

τ̂(q, r) = Σm
1 τiΦi(q, r) (6.13)

n,m ∈ Z+. Let Ψ = [ψ1 · · ·ψn]> and T = [τi · · · τm]>. The approximated control law

π̂(q, r, q̇, ṙ,Ψ, T ) = F̂FF + F̂FB now evaluates to

F̂FF = −Σn
1ψi

∂φi
∂q
− kv (q̇ − Σm

1 τiΦi · ṙ)

F̂FB = GΣm
1

(
τiΦi

G
∇q̇ ṙ + Φ̇iṙ

)
(6.14)

with ψ̂, τ̂ satisfying Definition 3, Definition 4 respectively along with the compatibility

condition (6.9).

Using this the update laws for Actor

u = π̂(q, r, q̇, ṙ,Ψ, T ) + ∆u. (6.15)

in Actor-Critic Algorithm 2 can be can be rewritten as shown in Algorithm 5.
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Algorithm 5 Actor critic for tracking
1: procedure ACTOR

2: Actor

3: Ψk+1= Ψk+αaδk+1∆ūk∇Ψζ(π̂(qk, Tk,Ψk))

4: Tk+1= Tk+αaδk+1∆ūk∇T ζ(π̂(qk, Tk,Ψk))

5: Constraints:

6:
∑
τik+1

= 1 (ė = 0 for x(t) = r(t))

7: dψ
dr

+ τ dψ
dq

= 0 Compatibility condition (6.9).

8: end procedure

6.5 Summary

In this section we formulated the tracking problem generically and nested Actor-

Critic algorithm in feedforward proportional-derivative controller. The generic algo-

rithm 5 is implemented for a Double Gimbal system in the next section and the results

of the same are presented.
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CHAPTER 7

DOUBLE GIMBAL

7.1 Problem Formulation

7.1.1 Double Gimbal Mechanism (DGM)

A gimbal is a pivoted support that allows the rotation of an object about a single

axis (Hilkert (2008),Osborne et al. (2008)). DGM is used as an inertially stabilized

platform to provide line-of-sight between platform payload sensor and target (Wang

and Williams, 2008).

Consider the double gimbal (see Figure 7.1 (Kosaraju, 2013)) whose center of mass

coincident with the geometric center. Let XY Z be defined as the earth inertial frame

(E-frame) with the origin at O and x1y1z1 be the body frame (B-frame) attached to

the inner frame with the origin O1 located at the intersection of the axes of rotation of

the two gimbals. Both the coordinate frames follow the right-hand coordinate system.

Denoting the rotation of the outer-frame about fixed Z-axis with angle θ (azimuth) and

the rotation of the inner-frame about the body y-axis with an angle α (elevation).

Let J1 denote the moment-of-inertia of the outer-gimbal about its axis of rotation

and I = diag(Ix, Iy, Iz) ∈ R3×3 is the inertia tensor of the inner-frame with respect to

the B-frame.

7.2 Tracking with RL

The control objective is to track a given reference trajectory r = (θr(t), αr(t)) us-

ing RL. The tracking error function ψ(q, r) and transport map T (q, r) are parameterized

with finite number of basis functionals using Weierstrass higher order approximation



X

Y

Z

Xb

yb

Zb

h

θ

α

Figure 7.1: Two-axes double gimbal
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Theorem

ψ̂(q, r) = Σn
1ψiφi(q, r) (7.1)

τ̂(q, r) = Σm
1 τiΦi(q, r) (7.2)

n,m ∈ Z+. Let Ψ = [ψ1 · · ·ψn]> and T = [τi · · · τm]>. The approximated control law

π̂(q, r, q̇, ṙ,Ψ, T ) = F̂FF + F̂FB now evaluates to

F̂FF = −Σn
1ψi

∂φi
∂q
− kv (q̇ − Σm

1 τiΦi · ṙ)

F̂FB = GΣm
1

(
τiΦi

G
∇q̇ ṙ + Φ̇iṙ

)
(7.3)

with ψ̂, τ̂ satisfying the compatibility condition (6.9).

Using this the update laws for Actor

u = π̂(q, r, q̇, ṙ,Ψ, T ) + ∆u. (7.4)

in Actor-Critic Algorithm 2 can be can be rewritten as shown in Algorithm 6.

Algorithm 6 Actor critic for tracking
1: procedure ACTOR

2: Actor
3: Ψk+1= Ψk+αaδk+1∆ūk∇Ψζ(π̂(qk, Tk,Ψk))
4: Tk+1= Tk+αaδk+1∆ūk∇T ζ(π̂(qk, Tk,Ψk))
5: Constraints:
6:

∑
τik+1

= 1 (ė = 0 for x(t) = r(t))
7: dψ

dr
+ τ dψ

dq
= 0 Compatibility condition (6.9).

8: end procedure

To approximate critic V̂ and the two actor functionals ψ and τ in Actor Critic

Algorithm 6, we use fourier basis for function approximators

τ̂ = τ0 +
2∑
j=1

3∑
i=1

τq(j)i cos[i(q(j)− r(j))]

ψ̂ = ψ0 +
2∑
j=1

3∑
i=1

ψq(j)i cos[i(q(j)− r(j))]

where q(1) = θ, q(2) = α, r(1) = θr and r(2) = αr. The approximated critic function
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Table 7.1: Parameter values used for Double Gimbal System

Parameter Values
Learning rate of τ0,ψ0 10−1

Learning rate of ψθ1 10−3

Learning rate of ψα1 10−2

Learning rate of τθ1 , τθ2 , τθ3 ,
τα1 · · · τα3 , ψθ2 , ψθ3 , ψα2 , ψα3 10−7

Learning rate of kv 1
Learning rate of kp 1
Learning rate of ψ2 10−6

Learning rate of the critic 0.005
Discount factor 0.8
Trace decay rate 0.6

is chosen as

V̂ = θ0 +
20∑
i=1

θi cos[i(θ − θr)]

note that (θ0, .., θ20) are critic parameters and θ is the system’s state variable (DGM’s

outer rotor angle).

The reward function is chosen as:

R(q, r) = cos(θ − θr) + cos(α− αr)− 2

7.3 Simulation results

The reward function has four critical points. The system settles only at the

maxima of the reward function (i.e. q = r) because of the exploration term in the

control policy. The system parameters for simulation are taken as J1 = 10 and I =

diag(2, 1, 7). In Actor critic Algorithm 6 the update parameters are given in Table 7.1.

The control trajectory and desired trajectory are plotted on torus in Figure 7.2.
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Figure 7.2: Controlled trajectory q(t) (Red) and Desired Trajectory r(t) (Blue) plotted
on Torus T2 (configurational manifold)

The desired tracking error function (approximated) ψ̂ learned is plotted in Figure

7.3 and its contours are plotted in Figure 7.4. Finally the reward function is plotted on

Figure 7.5.

Figure 7.3: Approximated tracking error function ψ̂(q − r)
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Figure 7.4: Plot of q(t)− r(t) on the contour’s of ψ̂(q − r)

time
0 5 10 15 20 25

re
w

ar
d

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
reward

reward
maximum reward

Figure 7.5: Reward function

45



7.4 Summary

We have presented a method to parametrise feedforward proportional-derivative

control laws. The free parameter values were calculated using Actor-Critic method.

By providing system knowledge, the convergence of the algorithm can be significantly

improved, as the algorithm is computationally expensive.
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CHAPTER 8

CONCLUSIONS

In this project, we have used Actor-Critic method to solve PDEs which arise

in various control techniques. Actor -critic methods are used as the problems are in

continuous spaces. This is shown through the example of Ball on a Beam system and

2D SpiderCrane for regulation problems, and through the example of Double Gimbal

system for Tracking problems.

We have seen that for regulation problems, because of the structural properties

of the PH form, the IDA-PBC formulation reduces to solving two PDEs, one for ki-

netic energy and the other for potential, and for tracking problems the PDEs arise form

the compatibility condition. In most cases is non-trivial to solve these PDEs and in

some cases it takes significant effort to reduce them to Ordinary differential equations

(ODEs), under some assumptions. We have used Actor-Critic method to parametrise

control techniques which are robust to non-linearities such as control saturation. For

the purpose of exploration, noise is added. This also helps in pertubing the system in-

case it is stuck in a local minima. By providing system knowledge, the convergence of

the algorithm can be significantly improved, as the algorithm is computationally expen-

sive.
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