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ABSTRACT

KEYWORDS: Nissl; Segmentation; Ilastik; Annotation .

Modern neuroanatomical research relies on whole brain imaging using light micro-

scopic techniques. Applications of current interest include mesoscale mapping[18] of

connectivity at a whole-brain scale and other structural/functional whole-brain studies

(in mouse, marmoset, and other species). An important step of a neuroanatomical study

is "mapping", i.e. identifying the brain compartment in which a labelled cell or process

is located. Classically, this mapping was done by visual examination of one or more

histochemical stains, of which the Nissl stain is the most widely utilized variety. In

the modern era of neuroanatomical research, it is desirable to perform this step using

techniques from machine vision, given the large data volumes (∼ 1012 pixels/brain for

mouse).

As a first step, we have developed algorithms to segment Nissl-stained sections into

the component objects, which can be further grouped to obtain information about the

brain region involved. Several past studies ([16, 13]) addressed similar problems by

fitting preconceived shape models to a set of image pixels. Given the large variation

in the shapes and pixel intensities of the objects of interest, conceptually it is more

reasonable to learn their appearances and boundaries instead. We adopt such an ap-

proach proposed in [27] for electron microscopy data segmentation. Each pixel of a

Nissl image is classified into 3 classes: cell interior, cell boundary and background. On

the real valued outputs of a pixel detector, we apply a region growing algorithm (wa-

tershed) that typically oversegments the cells into fragments or superpixels. We have

used interactive interfaces for training the pixel classifier (ilastik) as well as the super-

pixel boundary classifier (implementation of technique described in [28]) with limited

groundtruth data to generate our baseline segmentation results. On a small set of test

images with sparsely located cells, we achieved an F-score of 81% of precision-recall

values (at 95% recall) in determining the cell centers computed from the segmentation

output.
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CHAPTER 1

Introduction

1.1 Motivation

The Mouse Brain Architecture Project[30] aims to generate brain-wide maps of neural

connectivity in the mouse, at a mesoscopic level, an intermediate between single-neuron

connectivity, at sub-micrometer scale and brain-wide connectivity, at centimeter scale,

which will specify the inputs and outputs of major brain regions.

This will provide far more detail than, for instance, MRI-based methods, and yet consid-

erably less detail than is achievable via electron microscopy (EM). The latter approach,

while useful for mapping synaptic connections between individual neurons, is feasible

on a whole-brain basis only for very small brains (e.g. that of the fruitfly) or very small

portions of the mouse brain.

Information about connectivity[18] will lead to major advances in understanding of

what makes one unique and will set the stage for future studies of abnormal brain cir-

cuits in many neurological and psychiatric disorders.

The mouse brain is represented in about 500 images, each image showing an optical

section through a 20 micron-thick slice of brain tissue, with alternate sections being

tracer and nissl stained. The tracer injected slices, show the neuron connectivity by

tracing the axonal projections, while the nissl stained slices, provide the anatomical

knowledge. The information from both nissls and tracers is used to find what region of

the brain is connected to what, contributing to formation of connectivity matrix.

Different regions in brain can be distinguished from each other on the basis of cell

count, density and the type of cells discovered. This arises the need for segmentation of

Nissl stained images.
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1.2 Problem Statement

The project has been divided majorly in two stages, namely experimental and data anal-

ysis pipeline.

The experimental pipeline involves getting quality images of brain slices, and the data

analysis pipeline involves the extraction of relevant information from the same. Data

Analysis Pipeline includes 2D Image Analysis (involving Autofocus, Dynamic Rang-

ing, Measuring Tracer Strength, Image Alignment problems), 3D Registration, Detec-

tion of Labelled Cells, Reconstruction of Neuronal Projections.

The goal is to develop a software for segmentation of the nissl images. The application

developed should have the following features:

• Multiple image handing

• An automated process that segments the cells of interest

1.3 System Overview

The overall system consists of input image, whose groundtruth is already available

through annotation.

The segmentation is carried out on it, after required pre-preprocessing steps.

The centers of the segmented regions are compared against those provided through

groundtruth.

The performance is analysed through precision and recall values.

2



Figure 1.1: System Overview for a sample image segmentation
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CHAPTER 2

IMAGE ACQUISITION

2.1 Introduction

Six alternating 20 microns brain slices have been produced by placing on two slides.

Each slide that completes a series of slides are named by the following convention

PMDXX&XX - with the higher number value representing to the top brain in the col-

umn. A consecutive slide number is given to each alternating set; PMDXX&XX - F/N

1,2,3 thus two sets of slides are produced, with alternating section order. Here F stands

for fluorescent, N stands for Nissl.

Figure 2.1: Brain slices placed on slides

5



2.2 Process Description

2.2.1 Slide Loading

Nanozoomer HT 2.0 Virtual Microscopy system (Hamamatsu /Olympus), a digital slide

scanner is used to scan the slides in order to produce high quality digital images. Scan-

ning can be done in both bright field (8 bits per color channel) or fluorescence mode

(12 bits per color channel). Brightfield scanning is used for Nissl, IHC, and HC stained

slides. Fluorescence scanning at 12-bit depth per pixel, per color channel, is used for

all other samples (Rabies and AAV injections). A Lumen Dynamics X-Cite exacte

light source is used to produce the excitation fluorescence.The slides are loaded into the

Nanozoomer for scanning.

Figure 2.2: Nanozoomer HT 2.0

The slides are scanned so that one brain slice is focussed at once. For the proper

focussing of the brain slices Regions of Interest (ROIs)/ cropping boxes are marked

around each section and 9 - 12 focus points are generated per section. For the fluo-

6



rescence mode focus points are generated automatically whereas for the bright field

scanning it has to be manually done.

2.2.2 Conversion

The .NGR format slide images are cropped into images of individual brain slices. These

cropped sections are then converted into JPEG2000 format. Both lossless JP2 and lossy

JP2 conversion is done. In cases where the loss in the quality of the images is tolerated

lossy JP2 images can be used as they consume less storage space compared to loss-

less JP2 images. Along with the JPEG2000 format, PNG, TIF and metadata files are

generated and are stored in a folder corresponding to that brain slice.

2.2.3 Quality Control

The JPEG2000s generated in the previous step are subjected to quality control. The

possible errors in the process include wrong order of the cropped sections, missing

sections, errors in cropping, focus issues, duplicates generation and damages in conver-

sion. These errors are identified in the quality control and the corresponding damaged

sections are rescanned, refocused and converted manually. If the cropped sections are

damaged, the required sections are cropped again.

2.2.4 Analysis

Once the quality check is enforced, the images should be subjected to the following

analysis.

• Dynamic range: The range of the pixels is obtained and the contrast is adjusted
accordingly for the improvement of the quality of the images.

• Tracer strength: The strength of the tracers is determined.

• Pre-registration: Alignment of images is done to get them ready for registration.

7



Figure 2.3: Image Acquistion Process Description
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CHAPTER 3

BACKGROUND KNOWLEDGE

3.1 Neuron theory

The nerve tissue is composed of individual cells which are fully functional units.

Although the morphology of various types of neurons differs in some respects, they all

contain four distinct regions with differing functions: the cell body, the dendrites, the

axon, and the axon terminals.

The structure of a standard neuron can be seen below.

Figure 3.1: Neuron Structure

3.2 Tracers

The anterograde and retrograde tracers are used for visualization of the biological pro-

cess of axonal transport as described here[35].

Anterograde tracing is a research method which is used to trace axonal projections from

their source (the cell body or soma) to their point of termination (the synapse). While

retrograde tracing traces neural connections from their termination to their source (i.e.

synapse to cell body).

9



Tracer Type Color

biotinylated dextran amine (BDA) classical anterograde Blue
adeno-associated virus viral anterograde Red

cholera toxin subunit B (CTB) classical retrorograde Black
modified rabies virus RV-4GFP (RV) viral retrorograde Green

Table 3.1: Tracers used in the process

3.3 Nissl Staining

Staining is basically the process of making a compound of interest (DNA, proteins)

more easily identifiable by enhancing its visibility through certain chemical means. The

online medical dictionary defines staining as ’the use of a dye, reagent, or other material

for producing coloration in tissues or microorganisms for microscopic examination’.

Nissl cell body is a dense granular mass often found in nerve cells. These granules are

of rough endoplasmic reticulum (RER) with rosettes of free ribosomes, and are the site

of protein synthesis.

Nissl staining stains the Nissl bodies in cells, technically called the endoplasmic retic-

ulum. The staining procedure, discussed here[20] consists of sequentially dipping the

mounted brain slices in about a dozen different solutions for specified amounts of time.

Figure 3.2: Nissl Stained Image

10



3.4 Dataset

Alternate slices are nissl stained and tracer stained, such that the they can be registered

together. Nissl images provide information about neuroanatomy, whereas tracer images

help with the neuronal connectivity[18].

Figure 3.3: Process flow

240 to 260 slices are generated from each mouse brain, with size 18000 x 24000 pixels.

Each slice has been cropped into smaller region of interests of size 512 x 512 pixels, for

easier implementation.

The main issue with Nissl images are that most of the cells are clumped together and

there are sometimes with some background halo.

Figure 3.4: Alternate Nissl and Fluroscent sections
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Figure 3.5: Image Slice full(18000 x 24000 px)

3.5 Project description

The Mouse Brain Architecture project[30] has been divided majorly in two stages,

namely experimental and data analysis pipeline.

The experimental pipeline involves getting quality images of brain slices, and the data

analysis pipeline involves the extraction of relevant information from the same. While,

data Analysis Pipeline includes 2D Image Analysis (involving Autofocus, Dynamic

Ranging, Measuring Tracer Strength, Image Alignment problems), 3D Registration,

Detection of Labelled Cells, Reconstruction of Neuronal Projections.

3.6 Softwares/Tools/Libraries

There are numerous softwares, tools and libraries available for digital image processing

in the medical domain. These perform vast functions like segmentation, 3D model

building, registration, image correction, tissue classification, object recognition and

tracking, visualization for different image modalities.

Vigra[37], itk-SNAP[40], Advanced Normalization Tools (ANTS)[4], Ilastik[33], ImageJ[31]

can be used support most of the image processing functions for various image modal-

ities. There are toolkits available which especially deal with optical imaging such as

12



Figure 3.6: ROI extracted from slice(512 x 512 px)

Farsight[8], CMTK (Computational Morphometry Toolkit)[1] is widely used for MR

images. For EM images; Gala[25], CytoSeg can be used.

A study was conducted on these, comparing the programming languages, image modal-

ities supported by each, quality of online help available, along with the ease of use.

Ilastik[33] has been used as a training software in this thesis. It is a simple, user-

friendly tool for interactive image classification, segmentation and analysis. It is built

as a modular software framework, which currently has workflows for automated (su-

pervised) pixel- and object-level classification, automated and semi-automated object

tracking, semi-automated segmentation and object counting without detection. It also

allows easy batch processing.

13





CHAPTER 4

LITERATURE SURVEY

The main goal of segmentation is to partition the image into regions sharing similar

features. Few common segmentation methods, compared here[10] can be classified as:

• Region Based

• Edge Based

• Intensity Based

4.1 Region Based Segmentation

In this type of segmentation, discussed here[12], seeds are chosen, based on user crite-

rion, and based on region membership criterion, growing[19] or splitting or merging[36,

7] happens. This depends highly on seed[3] picked, and can fail if seed lies on an edge.

We have discussed one such method, based on concept of watersheds[23] in the thesis.

This category also includes clustering based approaches[38], where pixels are clustered

in a feature space using any discriminating feature associated and then connecting re-

gions are found. A graph based segmentation[11] method has been implemented for

our purpose.

In such methods, post processing is often necessary.

4.2 Edge Based Segmentation

These methods[5] rely on the discontinuities in the image data to locate boundaries,

and hence segment. It includes gradient operator based edge detection[9], laplacian of

gaussian zero crossing edge detection[15], short response hilbert transform[29] . Edge

detection based methods have been used as a intermediate steps in both second and third

approaches, for the same.

These type of methods, often lead to false edge detections, missed edge detections,

15



and difficulty in selecting an appropriate threshold for separating significant and non-

significant edge information.

4.3 Intensity Based Segmentation

The image histogram is analysed, and the peaks and valleys are used to get information

of number of clusters in the image, as described here[21, 24, 32]. The result obtained by

this method is not perfect, for complex uses. This also is a vital step in pre-processing.

16



CHAPTER 5

ANNOTATION

Image annotation is required for both training and testing purposes. This has been

achieved by manually labeling the cell and non-cell regions, and by crowdsourcing the

images for annotation.

5.1 Data Preparation

Since the data consisted of small sized ROI images(512 x 512 px), there were several

images with no cell regions. This posed a need to automate classification of images into

tissue and non-tissue images. This was achieved on the basis of entropy and background

pixel calculation after preprocessing, with an error rate or 0.36%.

Figure 5.1: Separation surface for tissue and non tissue images
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5.2 Manual Annotation

Interactive training software, ilastik is used to train the pixel classifier, for cellular, non-

cellular and boundary regions as three labels .The training workflow, has been used for

predicting regions in a new image. A separate workflow has been trained to be used as

groundtruth for performance of the algorithms.

Figure 5.2: Manually labelling

5.3 Crowdsourcing

Amazon Mturk and Crowdflower were used for image annotation to get an exhaustively

labelled dataset. Study about the dependence of task performance in crowdsourcing

on various parameters was considered, as described in [17] and image size, task size,

reward for task was set as per this. However the results achieved from these exhibited

high inaccuracy, due to lack of prior knowledge.

Figure 5.3: Labelling from crowdflower

18



CHAPTER 6

GRAPH-BASED SEGMENTATION

This algorithm[11] represents the problem of image segmentation as a graph based

problem, graph G = (V,E) , where each pixel in the image becomes a node vi ∈ V ,

and the edges E connect certain pairs of neighbouring pixels. With every edge a weight

is associated based on some property of the pixels that it connects, such as their image

intensities.

There are different ways to measure the quality of a segmentation but in general we

want the elements in a component to be similar, and elements in different components

to be dissimilar. This means that edges between two vertices in the same component

should have relatively low weights, and edges between vertices in different components

should have higher weights.

6.1 Pairwise Region Comparison

A minimum spanning tree(MST) is a spanning tree of a connected, undirected graph. It

connects all the vertices together with the minimal total weighting for its edges.

The internal difference of a component C ⊆ V to be the largest weight in the minimum

spanning tree of the component, MST (C,E).That is,

Int(C) = maxe∈MST (C,E)w(e)

The difference between two components C1,C2 ⊆ V is the minimum weight edge con-

necting the two components. That is,

Dif(C1, C2) = minvi∈C1,vj∈C2,(vi,vj)∈Ew(vi, vj)

19



If there is no edge connecting C1 and C2 we let Dif(C1, C2) = ∞.

The pairwise comparison predicate, is defined as:

D(C1, C2) =











true if Dif(C1, C2) > min(Int(C1) + τ(C1), Int(C2) + τ(C2))

false otherwise

where,τ is a threshold function and τ(C) = k/|C|, with k being a constant param-

eter.

6.2 Algorithm

Weights on each edge measure the dissimilarity between pixels(intensities).

For two points, p and q on the image, edgeweight(p1, p2) = ((rp−rq)2+(gp−gq)2+(bp−bq)2)1/2

((xp−xq)2+(yp−yq)2)1/2

• Sort edgeweights, E into (o1, ..., om), by non-decreasing edge weight.

• Initial segmentation, S0: Each vertex is in its own component.

• Internal difference of a component C to be the largest weight in the minimum
spanning tree of the component.

• Construct Sq from Sq−1 : Let vi and vj denote the vertices connected by the qth

edge in the ordering, i.e., oq = (vi, vj ). If vi and vj are in disjoint components of
Sq−1 and w(oq) is small compared to the internal difference of both those compo-
nents, then merge the two components otherwise do nothing.

• Return S = Sm after m iterations.
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6.3 Results

Results of the graph based segmentation are below, with different region has been la-

belled with a unique color.

Figure 6.1: Graph Based Segmentation Results(1)

Figure 6.2: Graph Based Segmentation Results(2)
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6.4 Performance Analysis

The performance has been measured using precision and recall values, comparing to

the groundtruth values.

Figure 6.3: Graph Based Segmentation Results

Measurement Value

Precision 0.6723
Recall 0.7506
F-score 0.7093

Table 6.1: Performance analysis for graph based segmentation
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CHAPTER 7

WATERSHED SEGMENTATION

7.1 Introduction

The term watershed refers to a ridge that divides areas drained by different river sys-

tems. A catchment basin is the geographical area draining into a river or reservoir.

A watershed is introduced as the set of points where a drop of water, falling there, may

flow down towards several catchment basins of the relief.

Figure 7.1: Watershed lines and basins

Every grayscale image can be considered as a topographic surface. The gray level

of a pixel becomes the elevation of a point. The basins and valleys of the relief corre-

spond to the dark areas, whereas the mountains and crest lines correspond to the light

areas[23].

7.2 Algorithm

The following steps are involved in the watershed based segmentation:

1. Training predictions The workflow trained on a separate set of images, is used
to predict the labels for test image.
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Figure 7.2: Watersheds on a grayscaled image

Figure 7.3: Cell region labels prediction

2. Otsu Thresholding

The method[2] assumes that the image contains two classes of pixels following
bi-modal histogram (foreground pixels and background pixels), it then calculates
the optimum threshold separating the two classes so that their intra-class variance
is minimal, and their inter-class variance is maximal.
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Figure 7.4: Otsu Thresholding result

3. Closing

This morphological operation involves dilation followed by erosion. It is used to
fill background regions of the image.

Figure 7.5: Closing result
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4. Opening

This morphological operation involves erosion followed by dilation. It is used to
remove noise from the image.

Figure 7.6: Opening result

5. Distance Transform

This morphological operator[26, 22] gives a graylevel image that looks similar to
the input image, except that the graylevel intensities of points inside foreground
regions are changed to show the distance to the closest boundary from each point.
This provides us with a topographic surface.

Figure 7.7: Distance transform result
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6. Watershed

Watershed transform is applied to the result of distance transform to separate
touching objects.

Figure 7.8: Watershed result
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7.3 Results

Each segmented area has been labelled with a unique color id.

Figure 7.9: Results
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7.4 Performance analysis

Figure 7.10: Performance evaluation process flow
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Figure 7.11: Precision recall curve

Measurement Value

Precision 0.7066
Recall 0.9557
F-score 0.8125

Table 7.1: Performance analysis for watershed segmentation
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CHAPTER 8

CONCAVE POINT BASED SPLITTING

8.1 Introduction

Splitting touching cells is important for medical image processing and analysis system.

The watershed based result showed undersegmented regions, at places where touching

cells have been encountered. A concave point extraction has been used to split touching

cells as in [34, 39], which are not handled by watershed. There are other methods

which perform graph cut aimed at segmenting touching cells[14], but these have not

been implemented considering the image size.

8.2 Algorithm

This algorithm uses convex hull and the nearby points to detect concave points, as

discussed here [34].

Figure 8.1: Input image
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8.2.1 Pre-processing

• The image is smoothed to remove any noise, using gaussian filter.

• This is followed by image enhancement to fix any contrast based issues.

• The image is binarized using Otsu’s technique.

• The regions with very small area have been removed as noise.

Figure 8.2: Image post preprocessing

8.2.2 Concave Point Detection

The binary image is subtracted from its convex hull, giving us image with concave re-

gions. This is done for each connected component discovered in the image.

Figure 8.3: Binary image Figure 8.4: Convex Hull Figure 8.5: Difference

The image with the concave regions is binarized and its centroid O is computed.

For every concave region, two regions in the image here, the point closest to the cen-

troid O are acquired, J and J
′

in the image below, which are at distances d1 and d1
′

respectively from O.

Two neighbor points of the point J(x, y) on the contour are firstly founded, that is, the
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previous point J1 and the following point J2. The horizontal coordinate of J1 is x-δ,

and the horizontal coordinate of J2 is x+δ, where δ = 7px.

Then the midpoint J0 of the point J1 and the point J2 are computed, and the distance

d2 between the point O and the point J0 can be acquired.

If d1 < d2, then the point of interest, J in this case is a concave point.

Figure 8.6: Detection of concave points

From the sample image, point J is a concave point, whereas point J
′

is not a concave

point.

8.2.3 Cell Type Decision

Touching cells have been categorized into three types, namely, series, parallel and com-

plex. Let the number of concave points be A and the number of touching cells, be M .

Figure 8.7: (a) Series, (b) Parallel, (c) Complex
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If A = M , parallel cell arrangement. 2M − 2 = A, implies a series cell arrangement.

Every other, cell arrangement is taken as complex.

The number of touching cells has been found by eroding the initial binarized image

repeatedly, and counting every single region which disappears.

8.2.4 Splitting series cells

In case of series touching cells, as seen in fig 7.7(a), the split is made along the axes

perpendicular to cell direction.

For this the skeleton and the joints of each skeleton are found. The concave points are

Figure 8.8: Skeleton
Figure 8.9: Skeleton Joints

paired in groups of two as per closest to centroid of a region in joints, and farthest from

other regions.

The pairs obtained thus are used to split the cell.

8.2.5 Splitting parallel cells

In case of parallel touching cells, as seen in fig 7.7(b), the centroid of the component is

found, and the split is made by joining the centroid to each of the concave points.

This results in M cells.
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8.2.6 Splitting complex cells

For complex cells, watershed has been implemented with preprocessing as discussed in

the previous chapter.

The splitting has been done by find the two points to be split through and using

bresenham’s line algorithm[6] for the splitting, in all cases.

Figure 8.10: Input subimage Figure 8.11: Output after splitting

8.3 Results

This algorithm was tested on the same set of images, as the previous algorithm. The

input was the predictions from the training workflow.
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Figure 8.12: Splitting results(bottom row) for images(top row)

8.4 Performance Analysis

The precision recall plot shows two outliers as the algorithm fails in the case of highly

dense tissue regions.

Removing those, the results seem to improve the performance from the last algorithm.

Measurement Value

Precision 0.7122
Recall 0.9695
F-score 0.8211

Table 8.1: Performance analysis for concave point based splitting
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Figure 8.13: Precision recall plot
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CHAPTER 9

CONCLUSION AND FUTURE WORK

This thesis discusses three approaches towards Nissl stained cell segmentation, namely

Graph Based Segmentation, Watershed Transformation based segmentation and Con-

cave Point Based Splitting.

Both the approaches perform better as compared to the graph based segmentation.

We compare the other two approaches, to find that Concave Point Based Splitting per-

forms better in general, but fails in the presence of dense cells. While watershed algo-

rithm works well in both cases.

Figure 9.1: Precision recall comparison
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Below are the failure cases for second approach.

Figure 9.2: Failure images for concave point based splitting

The watershed algorithm can be used in more high density tissue regions, while con-

cave point based splitting can be used otherwise to produce high quality segmentation

results.

A region merging algorithm can be used in addition to these since most of these algo-

rithms, lead to over-segmented results.

Cells segmented hence, need to be analysed to study morphological parameters like

shape, size, color, density at various areas. These help us differentiating one area in the

brain from the other.

Once there is anatomic information through the Nissl stained images, it can be used to

derive the connectivity matrix with the help of neuronal connectivity knowlodge.
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