
Implementation of Tilelink Protocol for Single Core
Processor

A Project Report

submitted by

ADAPA JANARDHANA SWAMY

in partial fulfilment of the requirements
for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

April 2016

THESIS CERTIFICATE

This is to certify that the thesis entitled Implementation of Tilelink Protocol for

Single Core Processor, submitted by Adapa Janardhana Swamy, to the Indian

Institute of Technology Madras, for the award of the degree of Master of Tech-

nology, is a bona fide record of the research work carried out by him under my

supervision. The contents of this thesis, in full or in parts, have not been submitted

to any other Institute or University for the award of any degree or diploma.

Dr. V Kamakoti
Research Guide
Professor
Dept. of Computer Science and Engineering
IIT Madras, 600 036

Place: Chennai

Date: 6th May, 2016

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude towards several people who enabled

me to reach this far with their timely guidance, support and motivation.

First and foremost, I offer my earnest gratitude to my guide, Dr. V. Kamakoti

whose knowledge and dedication has inspired me to work efficiently on the project

and I thank him for motivating me, and allowing me freedom and flexibility while

working on the project.

My special thanks to Mr. G.S. Madhusudan for his encouragement and motiva-

tion through out the project. His valuable suggestions and constructive feedback

were very helpful in moving ahead in my project work.

My special thanks and deepest gratitude to Rahul Bodduna and Abhinaya

Agrawal who have been very supportive. They have enriched the project experi-

ence with their active participation and invaluable suggestions.

i

ABSTRACT

With the increasing number of cores per processor, the complexity of designing

and implementing the caches and their coherence is also increasing. So, this project

is based on the “Tilelink” protocol which will abstract the cache coherence trans-

actions between various levels of caches in the memory hierarchy. This helps in

replicating the same implementation for different coherence domains in a large

memory hierarchy. Tilelink protocol is based on Manager-Client Pairing (MCP),

MCP defines a clear communication interface between users of data (clients) and

the mechanisms that monitor coherence of these users (managers). MCP provides

the encapsulation within each tier of the hierarchical protocol so each compo-

nent coherence protocol can be considered in isolation. MCP can be applied in

a divide-and-conquer manner to partition a manycore processor into arbitrarily

deep hierarchies.

This thesis describes the design and implementation of “Tilelink protocol for

single-core processor”. This work involves implementing this Tilelink protocol

between L1ICache, L1DCache and L2ICache, L2DCache respectively of the I-class

processor of Shakti processor series, which is based on RISC-V ISA. The code for

the entire project is written in a HDL namely Bluespec System Verilog (BSV). TLM

data structures and interfaces of BSV are used in implementing this protocol.

KEYWORDS: Tilelink, Cache, Cache Coherence, Single Core Processor,

Manager Client Pairing

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

1 Introduction 1

1.1 Overview . 1

1.2 Organisation of thesis . 1

2 Background 3

2.1 Bluespec System Verilog . 3

2.1.1 TLM . 4

2.2 Cache . 6

2.2.1 Cache coherence . 8

3 Manager-Client pairing 11

3.1 Defining Base functions . 12

3.2 Coherence Hierarchy Construction 13

3.3 Permission Hierarchy Algorithm 14

4 Tilelink 16

4.1 Channels . 16

4.2 Transaction Flow . 18

4.3 Metadata . 19

iii

5 Implementation 21

5.1 Architecture . 21

5.2 Tilelink Implementation . 22

5.2.1 Client . 23

5.2.2 Manager . 24

5.2.3 Logical Tilelink Network 24

6 Conclusion and Future work 26

LIST OF TABLES

2.1 Request Descriptor . 5

2.2 TLMResponse . 5

4.1 Acquire signals . 17

4.2 Probe signals . 17

4.3 Release signals . 17

4.4 Grant signals . 18

4.5 Finish signals . 18

v

LIST OF FIGURES

2.1 Connecting TLM Send And Receive Interfaces 6

2.2 multiples caches sharing the same memory source 9

3.1 Coherence hierarchy labeled with MCP terminology 11

3.2 Base functions for standardized communication between proces-

sors, clients and managers . 12

3.3 Manager-Client Pairing and associated interfaces to preserve encap-

sulation . 14

3.4 Coherence hierarchy permission checking algorithm 15

4.1 Tilelink Architecture . 19

4.2 Metadata Hierarchy . 20

5.1 SOC Architecture . 21

5.2 Tilelink Implementation . 22

5.3 Client Implementation . 23

5.4 Manager Implementation . 24

5.5 Logical Tilelink Network Implementation 25

vi

ABBREVIATIONS

BSV Bluespec System Verilog

MCP Manager-Client pairing

TLM Transaction Level Modelling

FIFO First In First Out

RISC Reduced Instruction Set Computer

BRAM Block Random Access Memory

HDL Hardware Description Language

CPU Central Processing Unit

vii

CHAPTER 1

Introduction

1.1 Overview

The Processor design team of Reconfigurable and Intelligent Systems Engineering

(RISE) Lab in the Computer Science Department of IIT Madras has been actively

involved in research of The SHAKTI Processor project. It aims to build 6 vari-

ants of processor (e.g.C-Class, I-Class, M-Class,etc.) based on the RISC-V ISA. My

project targets I-Class processor which is 64-bit, 1-4 core and 5-8 stage out of order

processor. This processor aims at 200-1Ghz industrial control / general purpose

applications.The processor strictly follows the RISC-V Instruction Set Architecture

(ISA). Entire design of the processor is done using a Hardware Description Lan-

guage (HDL) named Bluespec System Verilog (BSV). This project describes the

design and implementation of “Tilelink protocol of single-core processor”. This

work involves implementing this Tilelink protocol between L1ICache, L1DCache

and L2ICache, L2DCache respectively of the I-class processor which is based on

RISC-V ISA. Tilelink protocol is customised for Instruction caches and Data caches

in this project.

1.2 Organisation of thesis

Chapter 2 deals with architecture of Cache and Cache coherence which is the basis

for the rest of the thesis. It also gives some insight about the Bluespec System

Verilog, its key features, TLM module of BSV.

Chapter 3 describes the architecture of Manager-Client Pairing, this chapter

discusses a standardized coherence communication interface between managers

and clients and permissions checking algorithm of MCP.

Chapter 4 discusses the specifications of Tilelink protocol - their channels,

transaction flow of the signals and the metadata of the clients and managers.

Chapter 5 gives us implementation perspective of the project. It explains in

detail how each block of the interface is implemented in Bluespec System Ver-

ilog(BSV).

Chapter 6 contains a conclusion and description on the future work.

2

CHAPTER 2

Background

2.1 Bluespec System Verilog

The design of the blocks and their testing is written in Bluespec SystemVerilog

(BSV). BSV is a high level Hardware Description Language. It expresses syn-

thesizable behavior with rules, a rule can be viewed as a declarative assertion

expressing a potential atomic state transition. The BSV compiler produces efficient

RTL code that manages all the potential interactions between rules by inserting

appropriate arbitration and scheduling logic, logic that would otherwise have to

be designed and coded manually. BSV connects the modules by interfaces and

methods. It also provides predefined library elements like FIFOs, BRAMs etc.

which are modeled using BSV methods.

It has powerful static type checking which removes potential human errors

which can’t be detected at the stage of compilation normally but can be detected

now during the compilation. BSV also has more general type parameterization

(polymorphism) due to which modules and functions can be parameterised by

other modules and functions, this enables the designer to reuse designs and glue

them together in much more flexible ways. BSV’s static elaboration helps to arrive

at the design much faster than the other HDLs. The BSV compiler also can generate

the synthesizable verilog code of the written bluespec code which can be used later

for synthesis purposes.

BSV has an inbuilt package called TLM (Transaction Level Modeling) which is

used in this thesis and explained in the next part of this chapter.

2.1.1 TLM

The TLM package includes definitions of interfaces, data structures, and module

constructors which allow users to create and modify bus-based designs in a manner

that is independent of any one specific bus protocol. Designs created using the

TLM package are thus more portable. In addition, since the specific signaling

details of each bus protocol are encapsulated in pre-designed transactors, users

are not required to learn, re-implement, and re-verify existing standard protocols.

The two basic data structures defined in the TLM package are TLMRequest and

TLMResponse. By using these types in a design, the underlying bus protocol can

be changed without having to modify the interactions with the TLM objects. TLM

request contains either control information and data, or data alone. A TLMRequest

is tagged as either a RequestDescriptor or RequestData. A RequestDescriptor

contains control information and data while a RequestData contains only data.

Table 2.1 describes the components of a RequestDescriptor and the valid values

for each of its members.

Table 2.2 describes the components of a TLMResponse and the valid values for

its members.

The TLM interfaces define how TLM blocks interconnect and communicate.

The TLM package includes two basic interfaces: The TLMSendIFC interface and

the TLMRecvIFC interface. These interfaces use basic Get and Put subinterfaces as

the requests and responses. The TLMSendIFC interface generates (Get) requests

4

Table 2.1: Request Descriptor

Member Name Valid Values
command READ, WRITE, UNKNOWN

mode REGULAR, DEBUG, CONTROL, UNKNOWN
addr Bit#(addr_size)
data Bit#(data_size)

burst_length UInt#(uint_size)
byte_enable Bit#(TDiv#(data_size, 8))
burst_mode INCR, WRAP, CNST, UNKNOWN
burst_size Bit#(TLog#(TDiv#(data_size, 8)))

prty UInt#(uint_size)
lock True, False

thread_id Bit#(id_size)
transaction_id Bit#(id_size)

export_id Bit#(id_size)
custom cstm_type

Table 2.2: TLMResponse

Member Name Valid Values
command READ, WRITE, UNKNOWN

data Bit#(data_size)
status SUCCESS, ERROR, NO RESPONSE, UNKNOWN
prty UInt#(uint_size)

thread_id Bit#(id_size)
transaction_id Bit#(id_size)

export_id Bit#(id_size)
custom cstm_type

5

Figure 2.1: Connecting TLM Send And Receive Interfaces

and receives (Put) responses. The TLMRecvIFC interface receives (Put) requests

and generates (Get) responses. These TLMSendIFC and TLMRecvIFC can be

connected by mkConnection in the Connectable package of BSV.

The Data Structures Request Descriptor in TLMRequest, TLMResponse, and

the interfaces provided TLMSendIFC and TLMRecvIFC are used extensively in

this thesis.

2.2 Cache

Cache is a component used by central processing unit (CPU) of a computer to

reduce the average time to access data from the main memory. The cache is a

smaller, faster memory which stores copies of the data from frequently used main

memory locations. Data is transferred between memory and cache in blocks of

fixed size, called cache lines. When the processor needs to read or write a location

in main memory, it first checks for a corresponding entry in the cache. The cache

checks for the contents of the requested memory location in any cache lines that

might contain that address. If the processor finds that the memory location is in

the cache, a cache hit has occurred. However, if the processor does not find the

memory location in the cache, a cache miss has occurred. In the case of a cache hit,

6

the processor immediately reads or writes the data in the cache line. For a cache

miss, the cache allocates a new entry and copies in data from main memory, then

the request is fulfilled from the contents of the cache.

CPU may have two independent caches, instruction and data caches, an in-

struction cache to speed up executable instruction fetch, a data cache to speed up

data fetch and store. These caches can be organized as a hierarchy of more cache

levels (L1, L2, etc.).

A L1 cache is a memory cache that is directly built into the processor, which

is used for storing the processor’s recently accessed information, thus it is also

called the primary cache. L1 cache is the fastest cache memory, since it is already

built within the chip with a zero wait-state interface, making it the most expensive

cache among the CPU caches. However, it has limited size. It is used to store

data that was accessed by the processor recently, it is the first cache to be accessed

and processed when the processor itself performs a computer instruction. It is

implemented with the use of static random access memory (SRAM), it makes use

of two transistors per bit. The two transistors form a circuit known as a ’flip-flop’

since it has two states it can flip between; the second transistor manages the output

of the first transistor. For as long as power is supplied to the circuit, it can hold

data without external assistance. The L2 cache feeds the L1 cache, which feeds the

processor. It uses the same control logic as Level 1 cache and is also implemented

in SRAM. L2 cache is slower than L1 but much larger than it.

If the cache is fully associative, it means that any block of RAM data can be

stored in any block of cache. The advantage of such a system is that the hit rate is

very high, but the search time is extremely long — the CPU has to look through its

entire cache to find out if the data is present before searching main memory. At the

7

opposite end of the spectrum we have direct-mapped caches. A direct-mapped

cache is a cache where each cache block can contain one and only one block of main

memory. This type of cache can be searched extremely quickly, but since it maps

1:1 to memory locations, it has a low hit rate. In between these two extremes are n-

way associative caches. A 2-way associative cache means that each main memory

block can map to one of two cache blocks. An eight-way associative cache means

that each block of main memory could be in one of eight cache blocks.

Larger caches have better hit rates but longer latency. To address this trade

off, many computers use multiple levels of cache, with small fast caches backed

up by larger, slower caches. Multi-level caches generally operate by checking the

fastest, level 1 (L1) cache first; if it hits, the processor proceeds at high speed. If

that smaller cache misses, the next fastest cache (level 2, L2) is checked, and so on,

before accessing external memory.

2.2.1 Cache coherence

Cache coherence is the consistency of shared resource data that ends up stored

in multiple local caches. Coherence defines the behavior of reads and writes to

the same memory location. In a shared memory multiprocessor system with a

separate cache memory for each processor, it is possible to have many copies of

any one instruction operand: one copy in the main memory and one in each cache

memory. When one copy of an operand is changed, the other copies of the operand

must be changed also. Cache coherence is the discipline that ensures that changes

in the values of shared operands are propagated throughout the system in a timely

fashion.

The coherence of caches is obtained if the following conditions are met:

8

Figure 2.2: multiples caches sharing the same memory source

i) In a read made by a processor P to a location X that follows a write by the

same processor P to X, with no writes to X by another processor occurring between

the write and the read instructions made by P, X must always return the value

written by P. This condition is related with the program order preservation, and

this must be achieved even in single-core architectures.

ii) A read made by a processor P1 to location X that happens after a write by

another processor P2 to X must return the written value made by P2 if no other

writes to X made by any processor occur between the two accesses and the read

and write are sufficiently separated. This condition defines the concept of coherent

view of memory. If processors can read the same old value after the write made

by P2, we can say that the memory is incoherent.

iii) Writes to the same location must be sequenced. In other words, if location

X received two different values A and B, in this order, from any two processors,

the processors can never read location X as B and then read it as A. The location X

must be seen with values A and B in that order.

Cache Coherency protocol is the protocol that maintains memory coherence

according to a specific consistency model. Various coherency protocols are: MSI,

MESI, MOSI, MOESI. In the protocols every cache line is assigned to one of the

following states:

9

a) Modified: The cache line is present only in the current cache, and is dirty; it

has been modified from the value in main memory. The cache is required to write

the data back to main memory at some time in the future, before permitting any

other read of the (no longer valid) main memory state. The write-back changes

the line to the Shared state.

b) Exclusive: The cache line is present only in the current cache, but is clean;

it matches main memory. It may be changed to the Shared state at any time, in

response to a read request. Alternatively, it may be changed to the Modified state

when writing to it.

c) Owned: This cache is one of several with a valid copy of the cache line, but

has the exclusive right to make changes to it. It must broadcast those changes

to all other caches sharing the line. The introduction of owned state allows dirty

sharing of data, i.e., a modified cache block can be moved around various caches

without updating main memory. The cache line may be changed to the Modified

state after invalidating all shared copies, or changed to the Shared state by writing

the modifications back to main memory. Owned cache lines must respond to a

snoop request with data.

d) Shared: This line is one of several copies in the system. This cache does not

have permission to modify the copy. Other processors in the system may hold

copies of the data in the Shared state, as well. The cache line may not be written,

but may be changed to the Exclusive or Modified state after invalidating all shared

copies. It may also be changed to the Invalid state at any time.

e) Invalid: Indicates that this cache line is invalid.

10

CHAPTER 3

Manager-Client pairing

Manager-Client Pairing enables coherence hierarchies to be constructed and evalu-

ated quickly without the high design-cost previously associated with hierarchical

composition. Manager-Client defines a standardized coherence communication

interface and permissions checking algorithm, MCP defines a clear communica-

tion interface between users of data (clients) and the mechanisms that monitor

coherence of these users (managers). MCP provides encapsulation within each

tier of the hierarchical protocol so each component coherence protocol can be

considered in isolation. MCP can be applied in a divide-and-conquer manner to

partition a many core processor into arbitrarily deep hierarchies.

Figure 3.1: Coherence hierarchy labeled with MCP terminology

Figure 3.2: Base functions for standardized communication between processors,
clients and managers

3.1 Defining Base functions

In a shared memory machine, the cache coherence protocol is responsible for en-

forcing a consistent view of memory across all caches within a coherence domain.

This includes defining the mechanisms that control acquisition and holding of read

permissions, write permissions, the respective restrictions on each, and how up-

dates to data are propagated through the system. The responsibilities of this effort

can be divided between two kinds of agents: managers that manage permission

propagation and clients that hold these permissions. Figure 3.2 summarizes and

enumerates a comprehensive list of the base functions required for communication

between processors, clients, managers and memory in a flat protocol.

An example of how a read sequence would operate on an invalid block-

i) First a Processor issues a ReadP to its client. This client replies with ‘false’.

12

ii) Processor takes another action, GetReadD. This results in the client executing

its GetReadD action, which in turn will cause the Manager to execute its GetReadD

action.

iii) The Manager GetReadD action is a forward request. Assuming there is no

client owner, Memory is regarded as the owner of the data and asked to execute

its GrantReadD action. This results in Memory supplying Data to the client,

completing the GetReadD.

iv) Upon completion, the processor can retry its ReadP action, which the client

will respond with ‘true’.

v) The processor can safely execute its DoRead action for which the client will

supply data.

3.2 Coherence Hierarchy Construction

The relationship between processor and client agents has similarities to that be-

tween manager agents and memory. If manager agents were given the ability

to issue permissions-query upwards like processors do towards their client, then

replacing the implementation details of the coherence protocol with a black box

yields a self-similar upper and lower interface. Not only does this insight enable

recursion through a simple interface definition, but also allows encapsulation of the

coherence protocols used in the hierarchy, reducing design complexity. Manager

queries are accomplished by pairing the manager agent of each coherence realm in

a tier with a client in the next higher-up tier in the hierarchy (or an all-permission

client if there is no higher tier, e.g., memory). Since there is one logical manager

agent per coherence realm, this allows the client to represent the permissions of

13

the entire realm and all tiers beneath this realm. Permission/Data acquisition and

supply are also possible due to the pairing of managers with clients in the next tier.

The manager requires no details regarding the operation of the higher coherence

protocol provided, it can defer that responsibility to it’s paired client. By systemat-

ically asking the paired client for either read or write permission, the client can take

part in its native coherence scheme until it has completed the request. This is much

like how a processor is unaware of how coherence in the caches are implemented;

it simply asks if it has permissions and receives data.

Figure 3.3: Manager-Client Pairing and associated interfaces to preserve encapsu-
lation

3.3 Permission Hierarchy Algorithm

the client agent must behave as a gateway for the manager of the coherence realm,

restricting what permissions can be awarded, and taking action when permissions

must be upgraded in the coherence realm before the manager can begin request

14

resolution. The manager agents now must consult the gateway client before allo-

cating permission, which in turn may recursively send another permission request

to another manager-client pair. Figure 3.4 demonstrates the Manager- Client Pair-

ing algorithm for processing permission acquires.

Figure 3.4: Coherence hierarchy permission checking algorithm

15

CHAPTER 4

Tilelink

TileLink is a protocol designed to be a substrate for cache coherence transactions

implementing a particular cache coherence policy within an on-chip memory hi-

erarchy. Its purpose is to orthogonalize the design of the on-chip network and the

implementation of the cache controllers from the design of the coherence protocol

itself. It assumes Manager-Client pairing Architecture.

The participating agents in this coherence protocol are:

i) clients requesting access to cache blocks.

ii) managers overseeing the propagation of cache block permissions and data.

A client may be a cache, a DMA engine, etc. A manager may be an outer-level

cache controller, a directory, or a broadcast medium such as a bus. In a multi-

level memory hierarchy, a particular cache controller can function as both a client

(wrt. caches further out in the hierarchy) and a manager (wrt. caches closer to the

processors).

4.1 Channels

TileLink defines five independent transaction channels. Channels may contain

both metadata and data components. The channels are:

a) Acquire: Initiates a transaction to acquire access to a cache block with proper

permissions. Also used to write data without caching it.

Table 4.1: Acquire signals

Signal Name Description
addr_block Physical address of the cache block, with block offset removed

client_xact_id Client’s id for the transaction
data Client-sent data, used for Put transactions

a_type Type of the transaction defined by coherence protocol

b) Probe: Queries a client to determine whether it has a cache block or revoke

its permissions on that cache block.

Table 4.2: Probe signals

Signal Name Description
addr_block Physical address of the cache block, with block offset removed

p_type Transaction type, defined by coherence protocol

c) Release: Acknowledgement of probe receipt, releasing permissions on the

line along with any dirty data. Also used to voluntarily write back data.

Table 4.3: Release signals

Signal Name Description
addr_block Physical address of the cache block, with block offset removed

client_xact_id Client’s id for the transaction
data Client-sent data, used for Put transactions

r_type Transaction type, defined by coherence protocol

d) Grant: Provides data or permissions to the original requestor granting,

access to the cache block. Also used to acknowledge voluntary Releases.

e) Finish: Final acknowledgement of transaction completion from requestor,

used for transaction ordering.

These channels may be multiplexed over the same physical link, but to avoid

deadlock TileLink specifies a priority amongst the channels that must be strictly

enforced. The prioritization of channels is Finish >> Grant >> Release >> Probe

>> Acquire. Preventing messages of a lower priority from blocking messages of a

higher priority from being sent or received is necessary to avoid deadlock. When

17

Table 4.4: Grant signals

Signal Name Description
client_xact_id Client’s id for the transaction

manager_xact_id Manager’s id for the transaction, passed to Finish
data Client-sent data, used for Put transactions

g_type Transaction type, defined by coherence protocol

Table 4.5: Finish signals

Signal Name Description
manager_xact_id Manager’s id for the transaction, passed to Finish

running on networks that provide guaranteed ordering of messages between any

client/manager pair, the Finish acknowledgment of a Grant can be omitted.

4.2 Transaction Flow

There are two types of transaction that can occur on a cache block managed by

TileLink:

i) The first type enables clients to acquire a cache block: A client sends an

Acquire to a manager The manager sends any necessary Probes to clients The

manager waits to receive a Release for every Probe that was sent The manager

communicates with backing memory if required Having obtained the required

data or permissions, the manager responds to the original requestor with a Grant

Upon receiving a Grant, the original client responds to the manager with a Finish

to complete the transaction.

ii) The second type of transaction is supports clients voluntarily releasing a

cache block: A client sends a Release to a manager, specifying that it is volun-

tary The manager communicates with backing memory if required The manager

acknowledges completion of the transaction using a Grant.

18

Figure 4.1: Tilelink Architecture

4.3 Metadata

Metadata are the opaque sets of bits which are processed and mutated by the

coherence policy. Metadata are divided into client-side and manager-side classes,

and any particular cache controller can store either or both types.

i) ClientMetadata:

ClientMetadata is a set of bits that abstracts the “state” of a certain cache block,

w.r.t. the permissions available on that block inside this particular client cache

controller. The metadata may also store other information about the cache block,

for example whether it has been dirtied by a store operation. There are three types

of calls that can be made against this metadata:

a) Permissions checks: Boolean functions answer questions about the permis-

sions on a cache line.

19

Figure 4.2: Metadata Hierarchy

b) Message creations: Functions return TileLink channel bundles based on the

combination of current metadata state and particular memory operations.

c) Metadata updates: Functions return new ClientMetadata objects whose

internal state has been updated based on a particular coherence event or message

received.

ii) ManagerMetadata:

ManagerMetadata is a set of bits that abstracts the “state” of certain cache block,

w.r.t. the existence of copies of that block in all the client caches managed by this

manager cache controller.

a) Permissions checks: Boolean functions answer questions about the permis-

sions on a cache line

b) Message creations: Functions return TileLink channel bundles to use as

responses to Clients based on the combination of current metadata state and par-

ticular TileLink messages

c) Metadata updates: Functions return new ManagerMetadata objects whose

internal state has been updated based on a particular coherence event or message

20

CHAPTER 5

Implementation

This chapter discusses the architecture of Tilelink protocol in single core I-class

processor of Shakti series, and how it is implemented in Bluespec SystemVerilog.

Let us discuss first about the architecture of the processor.

5.1 Architecture

CPU contains the processor, L1Cache, L1ICache, L2DCache, and L2ICache as rep-

resented in Figure 5.1. Here, SOC contains the processor and the L1, L2 caches,

the L1ICache and L2ICache are connected by Tilelink_icache, and L1DCache

and L2DCache are connected by the Tilelink_dcache. The tilelink_icache and

tilelink_dcache are the variants of Tilelink protocol which are customised for their

respective cache functions.

Figure 5.1: SOC Architecture

5.2 Tilelink Implementation

As represented in Figure 4.1, Tilelink contains a client, manager and Logical Tilelink

Network modules. But as shown in Figure 5.2, Tilelink protocol for single core

requires only two channels- Acquire and Grant. As there is only one L1Cache and

one L2Cache, there is no need for channel Probe, Release, and in this implemen-

tation of the cache in I-class processor, the ordering of messages is maintained, so

there is no need of Finish channel also. Here, To_L2 and From_L2 are the meth-

ods from L1Cache and From_L1 and To_L1 are the methods from L2Cache. The

communication between Client module and Logical Tilelink Network module is

made by TLM interfaces provided by TLM module in BSV, TLMSendIFC on the

Client side interface and TLMRecvIFC on Logical Tilelink Network side. Similarly,

the communication between manager module and Logical Tilelink Network mod-

ule is made by TLMSendIFC on the Logical Tilelink Network side interface and

TLMRecvIFC on Manager side.

Figure 5.2: Tilelink Implementation

22

5.2.1 Client

The implementation of the Client module in the above Tilelink protocol is shown in

Figure 5.3. The struct from the To_L2 method coming from L1Cache is converted

into a acquire signal of tilelink protocol specifications, as a RequestDescriptor of

TLMRequest which is provided by TLM module of BSV. The converted TLMRe-

quest is enqueued into a fifo_send_acquire, a FIFO of BSV. The grant signal in

fifo_recv_grant created using TLMResponse is converted into the required struct

of the method From_L2. The FIFOs - fifo_send_acquire and fifo_recv_grant are

connected to the TLMSendIFC using toGet() and toPut() respectively, the inbuilt

functions provided by BSV.

Figure 5.3: Client Implementation

23

5.2.2 Manager

The implementaion of the manager module in the above Tilelink protocol is shown

in Figure 5.4. The acquire signal in fifo_recv_acquire created using TLMRequest

is converted into the required struct of the method From_L1. The struct from the

To_L1 method coming from L2Cache is converted into a grant signal of tilelink

protocol specifications, as a TLMResponse which is provided by TLM module

of BSV. The converted TLMResponse is enqueued into a fifo_send_grant, a FIFO

of BSV. The FIFOs - fifo_recv_acquire and fifo_send_grant are connected to the

TLMRecvIFC using toPut() and toGet() respectively, the inbuilt functions provided

by BSV.

Figure 5.4: Manager Implementation

5.2.3 Logical Tilelink Network

The implementaion of the Logical Tilelink Network module in the above Tilelink

protocol is shown in Figure 5.5. The FIFOs - fifo_recv_acquire and fifo_send_grant

24

are connected to the TLMRecvIFC using toPut() and toGet() respectively, and the

FIFOs - fifo_send_acquire and fifo_recv_grant are connected to the TLMSendIFC

using toGet() and toPut() respectively. The acquire signal in fifo_recv_acquire

in the form of TLMRequest is enqueued into the fifo_send_acquire by the rule

rule_acquire. Similarly, the grant signal in fifo_recv_grant in the form of TLMRe-

sponse is enqueued into the fifo_send_grant by the rule rule_grant. The rules -

rule_acquire and rule_grant should not fire in parallel and the rule_grant should

be given priority over rule_acquire as the channel Grant has more priority than

channel Acquire in the Tilelink protocol, to avoid deadlock. This priority of the

rules is maintained by the scheduling attributes - descending_urgency, and mutu-

ally_exclusive, which are provided by BSV.

Figure 5.5: Logical Tilelink Network Implementation

These modules have been connected in SOC by mkConnection of Connectable

class, which is provided by BSV, the resultant SOC is then connected to memory.

25

CHAPTER 6

Conclusion and Future work

The Tilelink protocol is implemented on both Instruction caches and Data caches.

It has been tested with RISC-V instruction set, and it’s working perfectly. This

design is realized in Bluespec System Verilog (BSV) which provides module and

configuration flexibility. The design is fully synthesizable by the verilog code

generated by the Bluespec compiler. Sizes of the FIFOs used in the implementation

are random numbers that are adequate enough for testing purposes.

This thesis shows the implementation of the Tilelink protocol in the single-core

processor, it can be easily extended to the multi-core processor with the given

Tilelink specifications in chapter-4 and with a similar implementation and extend-

ing the modules specified in the chapter-5. For implementing Tilelink protocol in

multi-core processor, the Client Metadata should be added to the client module,

and the Manager Metadata should be added to the Manager module. All the five

channels (or four excluding the Finish) are needed for implementing multi-core,

and the priority is maintained by the given scheduling attributes. When one of

these channels make a hit with either the Client Metadata or Manager Metadata, the

metadata should be updated and any new messages should be created if required

by the corresponding Cache Coherence policy implemented in that domain.

REFERENCES

[1] Jesse G. Beu, Michael C. Rosier, and Thomas M. Conte, “Manager-Client Pair-

ing: A Framework for Implementing Coherence Hierarchies”, December

2011.

[2] https://github.com/ucb-bar/uncore, Tilelink 0.3.3 specification, 2015

[3] Bluespec,Inc.Bluespec System Verilog Reference Guide, Revision 30 July 2014.

27

