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ABSTRACT

KEYWORDS: Compressed Sensing; Restricted Isometry Property; Sparse ap-

proximation; Sparse Signal Recovery

Consider a linear system of equations x = Dα where D is an undetermined m × p

matrix (m � p) and x ∈ Rm, α ∈ Rp where D is called the dictionary or the de-

sign matrix. The problem is to estimate the vector α, subject to the constraint that it is

sparse. The underlying motivation behind finding such a sparse approximation is that

although we observe the signal in a high dimensional space(Rm), we assume that the

actual signal can be described in a lower dimensional space (Rk, k � m).

Since α is sparse, only few of its components are non zero. x can be decomposed

as a linear combination of a small number of m× 1 vectors. The subspace spanned by

these vectors contains x. Thus they can be seen as a basis of that subspace. These basis

vectors are not required to be orthogonal, unlike that in other dimensionality reduction

techniques like PCA.

Mathematically the problem can be formulated as,

min
α∈Rp
‖α‖0 such that x = Dα

where ‖α‖0 is the l0 norm which is nothing but the number of non zero components

in the vector α

One such paradigm for sparse signal recovery, compressed sensing, will be explored

in this thesis.
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CHAPTER 1

Introduction

The rapid advances in technology in the last century has led to an enormous increase

in our capacity to store, process and transmit data. Nyquist and Shannon ? showed in

their pioneering work that it is possible for a discrete time signal to capture all the infor-

mation from a continuous time signal of a finite bandwidth. This allowed the transition

of signal processing from the analog to the digital domain. Sampling theorem piggy-

backed on the success of Moore’s Law resulting in a widespread use of high quality

sensing systems. These digital sensing systems are more durable, flexible and inexpen-

sive compared to their analog equivalents.

Despite the tremendous success of sampling signals at the Nyquist rate, there are

emerging applications where the data acquired is extremely high dimensional. Sam-

pling such high dimensional signals at Nyquist rate, we could end up with a large num-

ber of samples or it may simply not be cost effective or even physically possible to

build such a sensing system. The acquisition and processing of signals in application

areas such as imaging, video, medical imaging, remote surveillance, spectroscopy, and

genomic data analysis continues to pose a tremendous challenge ?.

Compression techniques, used in dealing with high dimensional data, often rely on

the motivation that the data has an intrinsically simple structure. For example, trans-

form coding maps natural data like audio or images to a basis that produces a sparse

representation of the signal. This approximates the information of the data by retaining

only the largest coefficients of the signal. This process is called sparse approximation

and is the basis of transform coding schemes, including the JPEG, JPEG2000, MPEG

and MP3 standards ?.

Since, the actual information content is much lower than the dimensionality of the

signal, the conventional approach of sampling a signal at Nyquist rate and then dis-

carding a large part, appears to be inherently excessive. The fundamental idea behind

CS is that if the signal has an inherent sparse representation, it is possible to sense the

data using fewer observations and have the compression inherent to the sensing process.

Candès ? showed that finite dimensional sparse signals and images can be reconstructed



accurately and sometimes exactly by solving a simple convex optimization problem.

The foundation for compressed sensing is based on fundamental mathematical ideas

from the areas of linear algebra, linear optimization, probability theory, approximation

theory and signal processing.

1.1 Chapter Outline

In Chapter 2, the underlying concepts of compressed sensing are explained. Properties

like sparsity, incoherence, their relation to compressed sensing as well as the success of

l1 minimization for sparse recovery are described in this chapter.

Chapter 3 gives a mathematical insight into compressed sensing. Properties like

the Restricted Isometry Property and conditions for exact recovery of sparse signal are

derived in this chapter. It is assumed that the reader has some knowledge of elementary

probability theory.

In Chapter 4, Compressed sensing is applied to a practical example of image de-

tection using fewer observations than the dimension of the original signal. Difference

in the representation basis of the sparse signal leads to a difference in the quality of

recovery.

Chapter 5 concludes the discourse of compressed sensing and ends the thesis with a

discussion on possible future developments.

1.2 Contributions of This Thesis

From the year 2004, when the field of compressed sensing was explored for the first

time by David Donoho, Emmanuel Candès, Justin Romberg and Terence Tao, CS has

now become a popular subject in applied mathematics and signal processing. It has

been applied to fields as diverse as biology, magnetic resonance imaging, astronomical

imaging, infrared imaging, machine learning, facial recognition and even in geology.

This thesis aims to serve as an introductory guide to the enormous field of CS. The

wide range of applications of CS means that it is not just electrical engineers with

a background in signal processing who may need to learn such a tool. It is aimed

at undergraduates who have an elementary understanding of mathematics, specifically
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probability theory. The area of CS is a relatively recent field of study and this thesis

explores the underlying concepts that one who wishes to go deeper into the field must

have a clear grasp of. This thesis is essentially divided into three parts. The first part

intends to lay the heuristic foundation of the key principles behind CS. The second

part builds on the first part and is directed towards the mathematics that governs the

principles discussed in the previous part. In the final part, we take a jump from theory

into practice and deal with applying CS to the problem of image detection. All the

graphs and images have been generated by the author unless stated otherwise and the

Matlab codes for generating them have been uploaded on the Internet for anyone to

wishes to see, use or learn.
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CHAPTER 2

Introduction to Compressed Sensing

Compressed Sensing deals with extracting information about a signal using as few mea-

surements as possible. This can be better viewed by first looking at a simpler problem

- the well known puzzle of finding the counterfeit coin.

2.1 Counterfeit Coin Problem

To understand the basic ideas of compressed sensing, we look at the counterfeit coin

problem. Suppose we have 8 coins of which one is counterfeit, what is the minimum

number of weighings needed to find the counterfeit coin? Clearly we can find the coun-

terfeit by weighing each coin separately but this requires 8 weighings at most. Using

binary search, we can always narrow down on the counterfeit in 3 weighings.

An alternate way to look at this is to create a weighing matrix Φ. Element at row

k and column j indicates whether the jth coin is being weighed in the kth weighing.

8× 1 vector x represents each coin’s weight deviation from the nominal. Since we are

assuming that only one coin is counterfeit, x has only one non zero element. 3× 1 vec-

tor b, is the outcome of the weighing. b can take 8 distinct values depending on which

of the 8 coin is counterfeit. For N coins, one can deduce which coin is counterfeit by

looking at the results of log2N measurements.

Can we extend this result to the case when we have more than one counterfeit coin?

This turns out to be an instance of combinatorial group testing where we perform tests

on groups of elements to locate elements that have a required property. As an example,

group testing and compressed sensing finds application in measuring the gene expres-

sion levels. In contrast to conventional DNA microarrays, in which each genetic sensor

is designed to respond to a single target, in compressive sensing microarrays, each sen-

sor responds to a set of targets ?.

To answer the question above, let us first assume that the number of counterfeits

m and total number of coins N are such that m � N . We want to recover x using



fewer measurements than N . Our sensing matrix is Φm×N and the measured vector is b.

The system of equations Φx = b is underdetermined and can thus have infinitely many

solutions. To recover x from b we find solutions of Φx = b where x has fewest non zero

components.

min
x∈RN

‖x‖0 such that Φx = b (2.1)

The quantity ‖x‖0 denotes the number of non zero components of x and is called

as the "l0 norm". Minimizing l0 norm is a procedure combinatorial in nature and has

exponential complexity, and has led researchers to develop alternatives ?. One such

alternative comes from the fact that when x is sufficiently sparse, the l1 norm mini-

mization and l0 norm minimization solutions coincide ? where the l1 norm is defined

as

‖x‖1 =
N∑
i=1

|xi|

2.2 l1 Minimization

The success of applying l1 minimization to recover the signal perfectly has been illus-

trated by Bryan and Leise ? who performed l1 regularization on the counterfeit coin

problem for N = 100 coins for different number of weighings, with each coin being

chosen for every weighing with a probability of 0.5. The probability of successful re-

covery using l1 minimization for varying number of counterfeits and for varying number

of weighings is shown in Figure ??.

min
x∈RN

‖x‖1 such that Φx = b (2.2)

There exist different algorithms to solve the problem of l1 regularization ?. Why do

we use l1 minimization and not something else like l2 minimization? We perform the

5



Figure 2.1: Probability of successful recovery for different number of counterfeits and
different number of weighings.(Bryan and Leise, 2013)

following 2 experiments to get an insight into why l1 is the more appropriate choice in

our case.

In our first experiment, we generate a matrix A200×100 where each element Aij is an

i.i.d. standard normal variable and a measurement vector b200×1 whose every element

is also an i.i.d. standard normal variable. This is an overdetermined system and we fit

x100×1 to this data using both l1 and l2 regularization. Comparing the results we see that

minimizing ‖Ax− b‖1 sets a large number of components to zero while minimizing

‖Ax− b‖2 doesn’t have the same effect. Intuitively this could be understood because

l1 places less weight on larger residuals and more weight on smaller residuals when

compared to l2 and thus causes a large number of residuals to be exactly zero.

Figure 2.2: Residual distributionAx−b for l2 regularization on the left when compared
with that of l1 regularization on the right.
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In our second experiment, we generate a matrix A100×200 where each element Aij is

an i.i.d. standard normal variable and a measurement vector b100×1 whose every element

is also an i.i.d. standard normal variable. This is an underdetermined system and we find

a solution x200×1 to this system using both l1 and l2 regularization. Again, this leads to

very different kinds of solution. A lot of the components of x are set to zero when l1

regularization is used.

Figure 2.3: Distribution of components of x for l2 regularization on the left when com-
pared with that of l1 regularization on the right.

Figure ?? shows, geometrically, why l1 regularization works while l2 regularization

does not for a three dimensional equivalent of our problem. To find the solution to the

plane, increase the size of the l1 or the l2 ball until it meets the plane. Clearly, such l1

solutions have more components set to zero when compared to the l2 solutions.

To understand CS it is important to first understand the two key concepts on which

it relies - sparsity and incoherence. These two conditions are required for the recovery

of the signal to be possible.

2.3 Sparsity

Sparsity is a property of the signal. It comes from the fact that signals may have a much

lower information content than that suggested by the sampling theorem. The actual

number of independent variables may be much smaller than the length of the signal. CS

makes use of the knowledge that real world signals usually have a sparse representation

when expressed using the right basis Ψ.

7



Figure 2.4: (a) Intersection of the plane of possible solutionsH with l2 ball of minimum
radius doesn’t lead to a sparse solution. (b) Intersection of the plane of pos-
sible solutionsH with l1 ball of minimum radius leads to a sparse solution.
(Baraniuk 2007 ?)

To illustrate sparsity, we will take an image, transform it to an appropriate orthog-

onal basis and then throw out the components of this transform that have values lower

than a certain threshold. We then perform an inverse transform to get an approximation

of the original image. Figure ?? shows the difference between the two images. The

transformation applied is the discrete wavelet transform using Deslauriers wavelets.

95.35% of the components were discarded during the compression. The difference in

the first thousand wavelet coefficients of the two images is shown in Figure ?? illus-

trating the negligible effect on quality of setting a major chunk of coefficients to zero.

JPEG2000 uses 2D discrete wavelet transform for image compression ?.

2.4 Incoherence

The basis Ψ is such that the signal has a sparse representation in it. Apart from that,

there exists the sensing basis Φ. Sparsity deals with the signal and the basis Ψ whereas

incoherence relates the signal to the sensing modality Φ.

CS requires that the signal have a dense representation in the sensing basis Φ. For

example, suppose we want to measure a signal that is sparse in time such that it has a

few spikes at some unknown time instances. If our sensing modality was also such that

8



Figure 2.5: Comparison of original image vs compressed image(PSNR 44.02dB) con-
taining only the largest 4.65% of the discrete wavelet transform components
done using Deslauriers wavelets.

Figure 2.6: Comparison of the first 1000 wavelet coefficients of the original and the
compressed image shows how majority of the coefficients are set to zero for
the compressed image.
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it gave us the values of the signal at a few instances of time, we would need a lot of

measurements to be sure that no information is lost. Now consider the case when our

sensing basis was the Fourier basis and we had a way to sense the Fourier transform

of the previous signal at some frequencies. Then using these measurements, the signal

can be recovered exactly. On the other hand if we wanted to sense sinusoids instead of

spikes, we would need to sample the signal at a few instances of time since sinusoids

have a sparse representation in the Fourier domain.

Intuitively, every measurement should gather a small knowledge about each com-

ponent. So although the signal is sparse, a few measurements give us sort of a linear

combination of every component of the sparse signal.

Figure 2.7: Discrete time sparse signal to be recovered using coherent(time) and inco-
herent(frequency) systems

To illustrate the difference in performing sparse signal recovery between a coherent

system and an incoherent system, we perform the following experiment. We create a

sparse discrete time signal, X as shown in Figure ?? whose values are X(10) = 2,

X(23) = −1.7, X(57) = 4.6, X(67) = 1.1 and 0 elsewhere. For the first part, we

choose a sensing basis that is incoherent. To do this we sample the discrete Fourier

transform of the above signal at 15 different randomly selected frequencies. So our

sensing matrix is Φ15×100 and our measurement vector is b15×1. On recovering x by

performing l1 minimization we get the exact solution 998 times out of 1000. One such

successful recovery is shown in Figure ??. For the second part, we choose a sensing

basis that is coherent. We sample the signal at 75 different, randomly chosen instances

10



of time. On recovering x by performing l1 minimization we get the exact solution just

321 times out of 1000.

Figure 2.8: Comparison of original signal and signal recovered using just 15 measure-
ments.

Even after sampling at 75 different time instances, exact recovery of the signal hap-

pened roughly 30% of the times. To explain this, let’s look at the probability that the 4

time instances, t = 10, 23, 57, 67 are present in the 75 samples.

P (t = 10, 23, 57, 67 ∈ 75 random samples) =

(
96
71

)(
100
75

) ≈ 31%

As seen above time and frequency are maximally incoherent. Signals compact in

frequency domain (sine waves) will be spread out in the time domain and vice versa

(spikes). Random noise is incoherent with almost any signal. We have already seen an

instance of using randomness to create an incoherent basis which was used to detect the

counterfeits by Bryan and Leise ?. We will look at other ways to use randomness to

generate sensing systems that are incoherent with almost any fixed representation basis

Ψ. The key takeaway we should note is that depending on what signal we want to sense,

we can design an efficient sensing scheme that minimizes the number of measurements

needed to recover the sparse signal.

11



CHAPTER 3

Mathematical Introduction to Compressed Sensing

In the last chapter, we got an instinctive grasp of CS by looking at the counterfeit coin

problem. We gained a better understanding of how l1 regularization is fundamentally

different from other types of regularization techniques and the concepts of sparsity and

incoherence were introduced. In this chapter, we will dive deeper into the fundamental

mathematical ideas that will help us realize how and why CS works. We will first look at

why some matrices created using some random process help us in recovering the sparse

solution. Then we will look at the conditions under which l1 minimization successfully

recovers the sparse solution.

3.1 Mathematical Definitions and Assumptions

We wish to recover xN×1 which is a solution to the underdetermined system b = Φx,

where Φm×N , m � N , is the sensing matrix and bm×1 is the measurement vector. CS

works when the signal we want to recover is sparse in some representation basis Ψ. For

the sake of simplicity, we will assume that the signal x, is sparse in the canonical basis.

This implies that most of the components of x will be zero. Let the number of non zero

components of x be k. Clearly k � N . We say that a vector is k-sparse if it has at most

k non zero components.

As discussed earlier, randomness can be used to generate sensing systems that are

incoherent with almost any representation basis. One such way to generate an inco-

herent sensing system is to let each element Φij of the matrix Φ be an i.i.d. Gaussian

random variable of mean 0 and variance 1/m. Thus, Φij ∼ N (0, 1/m). These defini-

tions will be used in the theorems that follow in this chapter.

How can we be sure that the solution recovered is indeed the signal we wish to

detect? One important property that we want our system to have is the uniqueness of

solution. Otherwise, if we have two distinct signals giving the same measured vector,



we will have no way of looking at the measurement to deduce what the original sig-

nal was. So let’s look at a property that if satisfied by our sensing matrix Φ, we are

guaranteed that the solution we are looking for, if it exists, is unique.

3.2 Restricted Isometry Property

The matrix Φ is said to satisfy the Restricted Isometry Property(RIP) of order k with

constant δ if there exists some δ ∈ (0, 1) such that

(1− δ) ‖x‖2
2 ≤ ‖Φx‖

2
2 ≤ (1 + δ) ‖x‖2

2 (3.1)

for all k-sparse vectors x ∈ RN

Theorem 3.1. If a matrix Φ satisfies the RIP of order 2k for some integer k ≥ 1, then

any k-sparse solution to the system of equations Φx = b is unique.

Proof. To prove it by contradiction let’s assume that the statement is false, i.e. there

exists two distinct k-sparse solutions xa and xb.

Φxa = b

Φxb = b

Φ (xa − xb) = 0

Let η = xa − xb. Thus, Φη = 0. Since xa and xb are k-sparse, η is 2k-sparse.

However, matrix Φ satisfies the RIP. Therefore, there exists some δ ∈ (0, 1) such that

Φη ≥ (1− δ) ‖η‖2
2. But Φη = 0.

Assuming the statement to be false leads us to a contradiction. Hence, if a solution

exists, it must be unique.

We want our sensing system Φ to satisfy the RIP so according to Theorem ?? if any

solution exists, we know that it is unique. It should be noted that RIP is only a sufficient

condition for a unique solution. Verifying that a matrix Φ satisfies the RIP is an NP

hard problem ?. However, certain matrices created using randomness can be shown to

satisfy the RIP with high probability. Now, we will prove that the Gaussian matrix as

13



defined in the previous section satisfies the RIP with high probability. To do this, in

Theorem ?? a result similar to RIP is shown to hold for any fixed x ∈ RN . This result

is then extended to all k-sparse unit vectors with the help of Theorems ??, ?? and ??.

Theorem 3.2. For any δ ∈ (0, 1/2) and any fixed vector x ∈ RN , the inequality

(1− δ) ‖x‖2
2 ≤ ‖Φx‖

2
2 ≤ (1 + δ) ‖x‖2

2

holds with probability greater than 1− 2e−δ
2m/8

Proof. We know that each element of the matrix Φij ∼ N (0, 1/m). Let us express

the random variable ‖Φx‖2
2 that we are trying to bound. The ith element of Φx will

be (Φx)i =
∑N

j=1 Φijxj . Thus (Φx)i is a sum of weighted i.i.d. Gaussian random

variables. Therefore, (Φx)i is also a Gaussian with mean =
∑N

j=1 E [Φij]xj = 0 and

variance =
∑N

j=1 V ar [Φij]x
2
j = ‖x‖2

2 /m.

Thus,

(Φx)i ∼ N
(
0, ‖x‖2

2 /m
)

√
m

‖x‖2

(Φx)i ∼ N (0, 1)

The sum of the squares of m independent standard normal random variables is the

chi-squared distribution with m degrees of freedom. Therefore,

m

‖x‖2
2

‖Φx‖2
2 ∼ χ2 (m)

From Chernoff Bound, we know that for a random variable X and for every t > 0,

P (X ≥ a) ≤ E[et.X ]

et.a

To get the upper bound on ‖Φx‖2
2, we set X as m

‖x‖22
‖Φx‖2

2, which is nothing but the

chi-squared distribution with m degrees of freedom, and a as (1 + δ)m. Also, E
[
et.X
]

is the moment generating function of X . Moment generating function of chi squared

14



distribution with m degrees of freedom is (1− 2t)−m/2 Therefore,

P
(
‖Φx‖2

2 ≥ (1 + δ) ‖x‖2
2

)
≤ E[et.X ]

et(1+δ)m

≤ (1− 2t)−m/2

et(1+δ)m

≤
[
e−2t(1+δ)

1− 2t

]m/2
(3.2)

We choose t such that the term inside the bracket is minimum. Differentiating the

term with respect to t and setting it to zero, we get the minimum.

d

dt

[
e−2t(1+δ)

1− 2t

]
= 0

Solving, we get,

t =
δ

2 (1 + δ)

Substituting t back in Equation ?? and since δ ∈ (0, 1) , we get,

P
(
‖Φx‖2

2 ≥ (1 + δ) ‖x‖2
2

)
≤
[
(1 + δ) e−δ

]−m/2
≤ e−(δ2−δ3)m/4

≤ e−δ
2m/8

Similarly, to get the lower bound of the inequality ??, use the following variation of

Chernoff Bound.

P (X ≤ a) = P
(
e−tX ≥ e−ta

)
≤
E
[
e−tX

]
e−ta

On solving as we did for the upper bound, we get,

P
(
‖Φx‖2

2 ≤ (1− δ) ‖x‖2
2

)
≤
[
(1− δ) e−δ

]−m/2
≤ e−(δ2−δ3)m/4

≤ e−δ
2m/8

Thus for any fixed vector x ∈ RN , the inequality ?? holds with probability greater

than 1− 2e−δ
2m/8
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We have proved that the inequality holds with high probability for a single vector

x. Let T be a subset of size k of the set {1, 2, ..., N}. Let us denote by XT the set of

vectors whose elements are zero when their indices are outside T . We will first extend

the result of the Theorem ?? to a fixed finite set of k sparse vectors. Then, we shall

extend the result to all vectors of the set XT for any fixed T with |T | = k and finally to

all such possible sets T i.e. the set of all k sparse vectors.

Theorem 3.3. Fix any subset T ⊂ {1, 2, ..., N} such that |T | = k. Let AS be a finite

subset of XT such that that |AS| = S. Then, for any δ ∈ (0, 1/2) the inequality

(1− δ) ‖x‖2
2 ≤ ‖Φx‖

2
2 ≤ (1 + δ) ‖x‖2

2

holds concurrently for all x ∈ AS with probability greater than 1− 2Se−δ
2m/8.

Proof. For a fixed x, the inequality fails to hold with a probability less than 2e−δ
2m/8.

We want the inequality to hold for all x ∈ AS . This is nothing but the complement

of the event that the inequality fails to hold for at least one of the vector x ∈ AS .

The event that the inequality fails to hold for at least one of the vector is the union

of the events that the inequality fails to hold for each vector. From the union bound

we know that, P (A1 ∪ A2 ∪ ... ∪ Aj) ≤ P (A1) + P (A2) + ... + P (Aj) Thus, the

probability that the inequality fails to hold for at least one of the vector is bounded above

by 2Se−δ
2m/8. Hence, the inequality holds for all x ∈ AS with probability greater than

1− 2Se−δ
2m/8.

Let Sk−1 =
{
u ∈ Rk : ‖u‖2 = 1

}
denote the unit sphere.

Now let’s look at a way to come up with an appropriate finite subset AS (ε). Choose

ε ∈ (0, 1) and k ≥ 2. Then at each step i, choose point pi on the unit sphere such that

‖pi − pj‖ ≥ ε for all j < i. This process will terminate once you can find no such

point on the unit sphere and hence there is a bound on the size of our set AS . To get this

bound, imagine spheres of radius ε/2 centered at each of the points in our finite set AS .

Clearly none of these spheres overlap otherwise they would not have been part of our set

because of the way we constructed it. Also all these spheres are enclosed in the sphere

centered at the origin having radius 1+ε/2. Thus S.V ol (r = ε/2) ≤ V ol(r = 1+ε/2).

Also, V ol (r = R) = Const.Rk. This gives us S ≤ (1 + 2/ε)k ≤
(

3
ε

)k
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Theorem 3.4. Fix any subset T ⊂ {1, 2, ..., N} such that |T | = k. Then, for any

δ ∈ (0, 1/2) the inequality

(1− δ) ‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ) ‖x‖2

holds for all x ∈ XT with probability greater than 1− 2 (12/δ)k e−δ
2m/32.

Proof. Note that we are working with the norms and not the square of the norms unlike

in our previous theorems. Additionally, it will be enough to prove that the inequality

holds with high probability for ‖x‖2 = 1, because Φ is linear. Construct a finite sub-

set of points AS (δ/4) as described in the previous paragraph. |AS (δ/4)| ≤ (12/δ)k.

Applying Theorem ?? to the finite subset AS (δ/4),

1− δ/2 ≤ ‖Φpi‖2
2 ≤ 1 + δ/2 holds ∀ pi ∈ AS (δ/4)

with probability greater than 1− 2 (12/δ)k e−δ
2m/32.

Let us define A to be the smallest number such that

‖Φx‖2 ≤ (1 + A) ‖x‖2 ∀ x ∈ XT such that ‖x‖2 = 1 (3.3)

We intend to show that A ≤ δ with a very high probability. Now for any x ∈ XT

such that ‖x‖2 = 1, there exists a point pi ∈ AS (δ/4) such that ‖pi − x‖ ≤ δ/4

‖Φx‖2 = ‖Φ (x− pi) + Φpi‖2

≤ ‖Φ (x− pi)‖+ ‖Φpi‖

≤ (1 + A) ‖x− pi‖+
√

1 + δ/2

≤ (1 + A) δ/4 + 1 + δ/2

The above inequality holds true with probability larger than 1− 2 (12/δ)k e−δ
2m/32.

Further since the inequality holds for any x, it also holds true for that x for whichA was

the smallest in ??. Thus, 1 +A ≤ (1 + A) δ/4 + 1 + δ/2. This simplifies to A ≤ 3δ
(4−δ) .

Since δ ∈ (0, 1/2), A ≤ δ with probability greater than 1− 2 (12/δ)k e−δ
2m/32.

It is straightforward to get the other inequality by using the triangle inequality dif-
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ferently ‖Φpi‖2 = ‖Φ (pi − x) + Φx‖2 ≤ ‖Φ (pi − x)‖2 + ‖Φx‖2. This leads to,

‖Φx‖2 ≥ ‖Φpi‖2 − ‖Φ (pi − x)‖2

≥
√

1− δ/2− (1 + A) ‖pi − x‖2

≥ 1− δ/2− (1 + δ)δ/4

≥ 1− δ

with probability greater than 1− 2 (12/δ)k e−δ
2m/32.

Theorem 3.5. For any δ ∈ (0, 1/2), the sensing matrix Φ whose elements are i.i.d.

standard normal random variables, satisfies the RIP of order k with constant δ with

probability greater than 1− 2
(

36Ne
kδ

)k
e−δ

2m/288.

Proof. Applying Theorem ?? with δ/3 in place of δ, demonstrates that the inequality

(1− δ/3) ‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ/3) ‖x‖2

holds for all x ∈ XT with probability greater than 1−2 (36/δ)k e−δ
2m/288. On squaring,

(1 + δ) ‖x‖2
2 ≤ (1− δ/3)2 ‖x‖2

2 ≤ ‖Φx‖
2
2 ≤ (1 + δ/3)2 ‖x‖2

2 ≤ (1 + δ) ‖x‖2
2

∴ (1 + δ) ‖x‖2
2 ≤ ‖Φx‖

2
2 ≤ (1 + δ) ‖x‖2

2

holds with a high probability for a fixed subset T ⊂ {1, 2, ..., N} such that |T | = k.

There are
(
N
k

)
such subsets and we want the inequality to hold for all of them simultane-

ously. It fails to hold with probability less than 2 (36/δ)k e−δ
2m/288 for one such subset.

The event that it fails to hold for at least one such subset is nothing but the union of

the events that it fails to hold for each subset. But according to Boole’s inequality, the

probability of at least one event happening is not greater than sum of probabilities of the

individual events. Thus the probability PF that the inequality fails to hold for at least

one such subset is less than
(
N
k

)
times that it fails to hold for one such subset.

PF ≤
(
N

k

)
2 (36/δ)k e−δ

2m/288

18



It can be shown that
(
N
k

)
is bounded above by

(
Ne
k

)k. Thus,

PF ≤ 2

(
36Ne

kδ

)k
e−δ

2m/288

Theorem ?? shows us that for any combination ofN , k, δ we can choose the number

of observationsm such that the probability that RIP fails to hold for Φ is very small. On

rearranging terms, we see that m = O (k log (N/kδ)/ δ2). Davenport ? showed that it

is not possible for a matrix Φ to satisfy the RIP if the number of observations m is not

greater than Cδk log (N/k). Bounds obtained in Theorem ?? are not exact and sensing

matrix Φ can satisfy the RIP for smaller number of observations than that suggested by

the theorem.

3.3 Exact Recovery Using l1 Minimization

We have established conditions under which the sensing matrix Φ satisfies RIP with

high probability which is useful in determining the uniqueness of the recovered solution.

Now, under what conditions does the l1 minimization result in exact recovery of the

original signal? The following theorem answers this question.

Theorem 3.6. Let Φ be an m × N matrix that satisfies RIP of order 3k with constant

δ3k < 1/3. Let x0 be a k-sparse vector such that we observe the measured vector

b = Φx0. Given measured vector b, performing the l1 minimization

min
x∈RN

‖x‖1 subject to Φx = b

exactly recovers the k-sparse vector x0.

Proof. Let x′′ be the solution to

min
x∈RN

‖x‖1 subject to Φx = b

19



Let η = x′′−x0. Since x′′ and x0 are both solutions to the underdetermined system,

Φx0 = b and Φx′′ = b. Thus,

Φη = Φ (x′′ − x0) = Φx0 − Φx′′ = 0 (3.4)

Also since x′′ is the solution with the least possible l1 norm, we have,

‖x′′‖1 = ‖x0 + η‖1 ≤ ‖x0‖1 (3.5)

We will show that when Φ satisfies RIP of order 3k with constant δ < 1/3, the

above two conditions are contradictory and imply that η = 0.

For any subset T ⊂ 1, 2, ..., N and any vector η, ηT is another vector defined to be

the same as vector η at indices that are present in the set T and zero at indices that are

not present in the set T .

Let T0 be the set of indices at which x0 is not zero. Thus its complement TC0 denotes

those indices at which x0 is zero. Since x0 is k-sparse, |T0| = k. Let T1 be the set of

indices of the 2k elements largest in magnitude in ηTC
0

. Let T2 be the set of indices of

the next 2k elements largest in magnitude in ηTC
0

and define such sets of size 2k until Ts.

Note that the size of the last such set Ts could be any value between 1 and 2k depending

on N .

Before proceeding, let us convert the Equation ?? to a form that will be more useful.

‖x0‖1 ≥ ‖x
′′‖1 = ‖x0 + η‖1

= ‖x0 + ηT0 + ηTC
0
‖1

≥ ‖x0 + ηTC
0
‖1 − ‖ηT0‖1 (Triangle inequality)

≥ ‖x0‖1 + ‖ηTC
0
‖1 − ‖ηT0‖1

⇒ ‖ηT0‖1 ≥ ‖ηTC
0
‖1 (3.6)

Define T = T0 ∪ T1. Therefore, TC = ∪si=2. Observe that Φη = 0 = ΦηT + ΦηTC .

Therefore, ΦηT = −ΦηTC . Clearly ηT is 3k-sparse, whereas ηTi is 2k sparse for all
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i ≥ 1.

‖ηT0‖1 ≤
√
k‖ηT0‖2 (Using Cauchy Schwarz inequality)

≤
√
k‖ηT‖2 since ‖ηT‖2 = ‖ηT0‖2 + ‖ηT1‖2

≤
√
k√

1− δ
‖ΦηT‖2 (RIP of order 3k)

≤
√
k√

1− δ
‖ΦηTC‖2 since ΦηT = −ΦηTC

≤
√
k√

1− δ

s∑
i=2

‖ΦηTi‖2 (Applying the triangle inequality)

≤
√

(1 + δ) k√
1− δ

s∑
i=2

‖ηTi‖2 (RIP of order 2k) (3.7)

We have a bound on the l2 norm on the right hand side. We would like to have terms

with l1 norm instead. By construction, every element in ηTi is larger in magnitude than

every element in ηTi+1
. Thus, average of the magnitude of elements in ηTi , which is

equal to ‖ηTi‖1
2k

, is larger than every element in ηTi+1
. Thus,

‖ηTi+1
‖2 ≤

√(
‖ηTi‖1

2k

)2

+

(
‖ηTi‖1

2k

)2

+ · · ·+
(
‖ηTi‖1

2k

)2

≤

√(
‖ηTi‖1

2k

)2

× 2k

≤ ‖ηTi‖1√
2k

(3.8)

Substituting inequality ?? in ??, we get,

‖ηT0‖1 ≤
√

(1 + δ) k√
1− δ

s−1∑
i=1

‖ηTi‖1√
2k

≤

√
1 + δ

2 (1− δ)

s−1∑
i=1

‖ηTi‖1

≤

√
1 + δ

2 (1− δ)
‖ηTC

0
‖1

However, δ < 1/3 implies,
√

1+δ
2(1−δ) < 1. Therefore,

‖ηT0‖1 ≤ ‖ηTC
0
‖1
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This contradicts with Inequality ?? which should hold if x′′ 6= x0. Thus x′′ = x0

and the signal is recovered exactly.

This concludes our discussion on the mathematics behind CS. The conditions un-

der which there exists a unique solution to the underdetermined system as well as the

conditions under which this solution can be exactly recovered have been detailed in this

chapter. For those interested in some more fundamental results about CS, Davenport ?

has listed some of them.
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CHAPTER 4

Application of Compressed Sensing

The previous two chapters deal with the theory behind CS. In this chapter, we apply CS

principles to detect sparse signals. Many real world signals have a sparse representation

in some representation basis. As seen in Section ?? one such group of signals are

images which have a sparse representation in basis formed by its wavelet transform.

We shall see two more such sparse representation basis of images - the Fourier basis

and the discrete cosine transform basis.

4.1 Recovering Images Using CS

4.1.1 Formulating the Problem

In Section ??, we had assumed the signal to be sparse under the canonical basis. How-

ever, images are not sparse in the canonical way. The sparsity is apparent when ex-

pressed in a different basis. Let us assume that it is sparse in some representation basis

Ψ. Ψ could be the wavelet basis, Fourier basis or the DCT basis. Let our image(signal)

be denoted as x ∈ RN . The basis Ψ = [ψ1 ψ2 · · ·ψN ]. The signal in terms of the basis

will be x = Ψs where s is a N × 1 vector. Since s is sparse a lot of its components

will be zero. In practice, a lot of the components will be much smaller in magnitude.

This concise representation of image signal makes it possible to sense it using CS tech-

niques. Our sensing basis is Φm×N (m < N ). As discussed in Section ?? our sensing

basis Φ must be incoherent with the representation basis Ψ. The measured m×1 vector

will be b = Φx.



4.1.2 Mathematical Model of the Problem

Since x is sparse in Ψ, we have to choose the solution that gives the minimum l1 norm

of s. Mathematically it is formulated as follows,

min
s∈RN

‖s‖1 such that ΦΨs = b (4.1)

However s may not be strictly sparse. Nevertheless, CS holds in such common

settings too. We simply relax the constraint ΦΨs = b. Instead,

min
s∈RN

‖s‖1 such that ‖ΦΨs− b‖2 ≤ ε (4.2)

The above formulation leads to an approximate recovery of the signal ?.

The problem above is solved using Candès and Romberg’s Matlab library l1-magic

?. The above formulation works by itself when the representation matrix is real(DCT),

however, for complex representation matrix(DFT), l1-magic fails. To get l1-magic to

work for the complex case, i.e. when our representation basis is the Fourier basis, we

formulate the problem using just real numbers instead of complex numbers as follows.

We wish to regularize ?? when Ψ is complex. Ψ can be written as R + Ci, where R is

the real part and C is the imaginary part of Ψ. Also s ∈ CN . Thus, we have,

min
s∈CN

‖s‖1 such that Φ (R + iC) s = b

Since s is complex, the constraint can be written as,

Φ (R + iC) (sR + isC) = b

Φ [RsR − Csc + i (RsC + CsR)] = b

Since b is real, this implies,

Φ (RsR − Csc) = b

Φ (RsC + CsR) = 0
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Now we have two real constraints instead of a complex constraint. We can merge

them into a single real constraint as followsΦ 0

0 Φ

R −C

C R

sR
sC

 =

b
0



Let Φ′ =

Φ 0

0 Φ

, Ψ′ =

R −C

C R

, s′ =

sR
sC

 and b′ =

b
0

. This gives,

Φ′Ψ′s′ = b′

and this constraint can be implemented using l1-magic since it has no complex numbers

in it.

4.2 Results

The simulation was run on three different images. The image was reconstructed using

samples 1/4th of the dimension of the signal. The reconstruction methods used were

an l2 regularization for representation basis (Ψ) as the DCT and l1 regularization for

representation basis as the DCT as well as the DFT.

(a) (b) (c) (d)

Figure 4.1: (a) Original image. (b) l2 recovery. (c) l1 recovery using the DCT basis. (d)
l1 recovery using the DFT basis, image - cameraman.png
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(a) (b) (c) (d)

Figure 4.2: (a) Original image. (b) l2 recovery. (c) l1 recovery using the DCT basis. (d)
l1 recovery using the DFT basis, image - moon.jpg

(a) (b) (c) (d)

Figure 4.3: (a) Original image. (b) l2 recovery. (c) l1 recovery using the DCT basis. (d)
l1 recovery using the DFT basis, image - ski.jpg

Table 4.1: Comparison in image reconstruction quality for the different recovery meth-
ods.

PSNR values(dB) for different images/reconstructions
Reconstruction method l2 dct l1 dft l1

Image 1 - cameraman.png 8.3893 13.1746 12.1882
Image 2 - moon.jpg 10.3961 17.2207 18.2311
Image 3 - ski.jpg 9.0060 17.6027 17.0713
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CHAPTER 5

Conclusion and Discussions

In this thesis, we’ve looked at compressed sensing, a signal processing technique for

reconstruction of sparse signals. The two properties essential for efficient recovery of

signals, sparsity and incoherence were discussed in detail in Chapter ??. This was ac-

companied by an analysis of l1 minimization where its characteristics were examined

in contrast to the widely used l2 minimization. Solutions returned by l1 regularization

turned out to be much more sparser than those returned by l2 regularization. The finer

mathematical aspects behind CS were explored in Chapter ??. First we looked at the

Restricted Isometry Property and its implications in finding a unique solution to our

underdetermined system of equations. RIP is a sufficient condition for uniqueness of

k-sparse solutions, however, it is NP-hard to determine whether a given matrix satisfies

RIP. Certain random matrices do satisfy the RIP with a high probability as observed in

Theorem ??. Conditions for exact recovery using l1 minimization were scrutinized by

Theorem ??. CS was applied using Matlab and the l1-magic library in Chapter ??. The

problem had to be modeled to take into account the complex DFT matrix while using

the Fourier basis. The difference in reconstruction for different type of representation

basis was examined.

For further topics in CS, ? applies CS in efficient recovery of higher dimensional

signals. ?? deal with finding the solutions of l1 regularization. For a practical applica-

tion of CS, take a look at the single pixel camera ? developed at Rice University. A list

of hardware implementation of CS can be found at ?.

CS finds application in fields varying from biology, geophysics, medical imaging,

data compression and channel coding. The field of CS is growing rapidly. It is an in-

teresting branch in applied mathematics that spreads to a wide range of disciplines and

will most likely interface with other disciplines soon.



APPENDIX A

Moment Generating Function of a Chi Squared

Distribution

The pdf of χ2 distribution is

fχ2(x; k) =


x(k/2−1)e−x/2

2k/2Γ(k/2)
x > 0

0 otherwise

where Γ(t) =
∫∞

0
xt−1e−x dx.

Therefore, assuming t < 1/2,

E[etX ] =
1

2k/2Γ(k/2)

∫ ∞
0

x(k−2)/2e−x/2etx dx

=
1

2k/2Γ(k/2)

∫ ∞
0

x(k−2)/2ex(t−(1/2)) dx

Changing variable, x(1
2
− t) = u,

E[etX ] =
1

2k/2Γ(k/2)

∫ ∞
0

(
u

1
2
− t

)(k−2)/2

(e−u)

(
du

1
2
− t

)
=

1

2k/2Γ(k/2)

1

(1
2
− t)k/2

∫ ∞
0

u(k−2)/2e−u du.

The integral is nothing but the value of gamma function at k/2, = Γ(k/2). Thus,

E[etX ] = (1− 2t)(−k/2)



APPENDIX B

Chernoff Bound

Markov’s Inequality

If X is a non negative random variable and a > 0, then

P (X ≥ a) ≤ E (X)

a

Proof. For any event E, let IE be the indicator random variable of E, i.e. IE = 1 when

E occurs and IE = 0 when it doesn’t.

E (IE) = 1 · P (E) + 0 · P
(
EC
)

= P (E) (B.1)

For any given a > 0, let E be the event such that X ≥ a, therefore, I(X≥a) = 1 if

X ≥ a and I(X≥a) = 0 if X < a. Clearly,

aI(X≥a) ≤ X

E
(
aI(X≥a)

)
≤ E (X) since E is a monotonically increasing function

aP (X ≥ a) ≤ E (X) linearity of expectations and Equation ??

Chernoff Bound

Applying Markov’s inequality to etX , For every t > 0,

P (X ≥ a) = P
(
et·X ≥ et·a

)
≤

E
(
et·X
)

et·a
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