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ABSTRACT

KEYWORDS: left-right stereo image pair, disparity, Depth first search traversal.

With increasing number of road accidents, the need for systems that assist the driver

in emergencies have increased. Electronics has developed to a large scale and good

algorithms on faster processors allow orders of reduction in response time compared to

human reaction time.

This project is an attempt to reduce car accidents by identifying the drivable areas

on the road and alert when unexpected obstacles come up. These alerts can be used

to develop semiautomatic or automatic cars. We develop a real time algorithm , which

quickly detects objects like pedestrians and cars with help of the disparity map, His-

togram of Oriented Gradients (HOG) and Haar cascade classifier. It also tracks them

to estimate the future motion of the object with respect to the car by using optical flow

and feature points.
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CHAPTER 1

INTRODUCTION

The aim of this project is to detect pedestrians and cars on the road and alert the driver

to save him from unexpected accidents. In this project, we also estimate area of the road

where he can safely move. In order to do all these, we should estimate the road in the

image captured while the car is moving. We should also detect the objects relative to

both the road and car, and track their motion. The algorithms of this project should be

fast enough to alert drivers in real time.

This project is the first step to go towards autopilot car projects. Many companies

are making autopilot cars but the equipment used for it is costly. Here in this project we

want to make a driver assistance pedestrian and object detection system which is cheap,

so that this can be equipped in any car. This project can be extended to a complete

autopilot system.

Having defined the problem statement for the project, we now discuss the approach

to solve it. First we need to calculate a depth map of the scene from which we can easily

locate objects in the 3D world and track them. To calculate depth map, the following

approaches exist.

• Axial Stereo: It has a single camera where we use the images at time t and t −
1(adjacent images) to calculate the depth map.

• Stereo Rig: It has two cameras which are fixed rigidly to one another. This is
similar to binocular vision of a human. Here we calculate depth map using the
images from both cameras at the same time.

In axial stereo case, camera motion at t and t−1 can be different while car is moving

on the road. So we need to calculate the camera motion in order to calculate depth for

this case. It is algorithmically hard and takes more time to calculate the camera motion

at t and t−1. In stereo rig both the cameras undergo same motion at time t. So we need

not calculate camera motion in order to compute depth map. Hence, we follow stereo

rig approach to solve the problem.



1.1 Previous Works

Ewerth et al. (2004) and Wang and Huang (1999) find camera motion based on motion

vectors at a pixel or for rigid blocks. Ewerth et al. (2004) estimates motion vectors for

small patches. Based on location of the patch in the image, they formulated a relation

between motion vector of the patch and the camera motion parameters (like zooming,

rotation and translation) to estimate the camera motion.

We implemented the technique mentioned in Murphey et al. (2000) and Gong et al.

(2014) to calculate depth map of a real video assuming camera motion in the axial

direction alone, as in the case of axial stereo. They formulated the technique which

will work for less Depth Of Field (DOF) and small shift of camera in axial direction.

However, it is not the case for real world road scenes.

Stixels are defined as vertical stick or object above the flat ground in the correspond-

ing column of the image. Benenson et al. (2011) estimated stixels without computing

depth map. They estimated the stixel height by formulating cost function which assigns

a local minimum value to object. After estimating stixels, (Benenson et al., 2012) used

HOG based pedestrian detection. Won et al. (2014) estimated stixels by formulating a

cost function and guided filtering. Pfeiffer and Franke (2011) estimated stixels using

Maximum Aposterior probability (MAP) of a pixel in the image given a stixel.

1.2 Organisation of the thesis

In chapter 2, we begin by explaining the stereo rig set-up and about disparity. We also

explain how to calculate the disparity map for given left-right stereo image pair and

reduce it’s size without affecting performance.

In chapter 3, we discuss how to smooth disparity map and compute ground segmen-

tation. We also discuss how to remove the errors in the ground segmentation.

In chapter 4, we discuss how to segment different objects each in column and row,

called as Vertical and Horizontal Segmentation respectively. We also explain how to

obtain objects given the segmentation and track them.

In chapter 5, we discuss results and performance of the algorithm.
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CHAPTER 2

Introduction To Stereo Vision

2.1 Stereo Rig Setup

A stereo rig is designed to extract 3D information of objects from the images which

helps to locate an object in both 3D space and images, calculate height of the object

and track it. We follow the stereo rig system explained in Labayrade et al. (2002) and

Hu and Uchimura (2005). A stereo rig has two cameras separated by a known base

distance,b which take pictures of the scene at the same time. We assume that the stereo

rig mounted on the vehicle has two coplanar cameras with the same intrinsic parame-

ters and their horizontal co-axis is parallel to the road surface (see Fig.2.1), where the

pitch angle to the ground plane is θ. We follow three co-ordinate systems, World Coor-

dinate System, WCS(Xw, Yw, Zw) and two Camera Coordinate Systems (Left Camera

Coordinate System, LCCS(Xl, Yl, Zl) and Right Camera Coordinate System, RCCS

(Xr, Yr, Zr)). The origin of WCS is center of the origins of LCCS and RCCS. The

optical axis of the WCS is parallel to the ground plane and it indicates the vehicle’s di-

rection of motion. In the camera coordinate system, the position of a point in the image

plane is given by its coordinates (u, v). The image coordinates of the projection of the

optical centre will be denoted by (uo, vo), assumed to be at the centre of the image.

Figure 2.1: Relationship between Camera Coordinate System and World Coordinate
System



Let us assume a pin-hole camera model for calculating the projection of any point

in 3D world with respect to WCS on the image with camera coordinate system. As-

suming the camera’s aspect ratio is 1.0 and focal lengths of both the cameras as f , the

perspective projection matrix is expressed as follows:

P =


f 0 u0 0

0 f v0 0

0 0 1 0

 (2.1)

We can obtain the transformation from WCS to CCS on translating by ± b
2

and

rotating by −θ. So the transformation between the WCS homogeneous coordinates

(Xw, Yw, Zw, 1)T and the image coordinates (u, v, 1)T is given by,

Dl,r = Rl,rTl,r =


1 0 0 ± b

2

0 cos(θ) − sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1

 (2.2)

λ


u

v

1

 = PDl,r


Xw

Yw

Zw

1

 = Ml,r


Xw

Yw

Zw

1

 (2.3)

where λ is scale factor and Ml,r is the transformation matrix,

Ml,r =


f u0 sin(θ) u0 cos(θ) ±fb

2

0 f cos(θ) + v0 sin(θ) −f sin(θ) + v0 cos(θ) 0

0 sin(θ) cos(θ) 0

 (2.4)

From equation Eq.2.3 and Eq.2.4, we can simply calculate the camera’s image coordi-

nates: 
ul,r = u0 + f

Xw ±
b

2
Yw sin(θ) + Zw cos(θ)

v = v0 + f
Yw cos(θ)− Zw sin(θ)

Yw sin(θ) + Zw cos(θ)

(2.5)
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2.2 Calibration Of Stereo Rig

Calibration of stereo rig is about estimating intrinsic and extrinsic parameters of two

cameras in the rig and hence the transformation between the two camera images. Cali-

brating the camera gives us some specific values which can be used to measure distances

in length units and not in pixels. Before calibrating parameters of stereo rig we should

make sure the cameras are rigidly fixed such that relative position and orientation re-

mains same. From Eq. 2.1 in the previous section 2.1, if A be a matrix such that,

P = [A O] where O = [0 0 0]T , then

A =


f 0 u0

0 f v0

0 0 1

 (2.6)

A is called the intrinsic parameter of stereo rig. Intrinsic parameter includes focal

length, image format and principal point (uo, vo). The matrix of intrinsic parameters, A

does not depend on the scene viewed. So, once estimated, it can be re-used as long as

the focal length is fixed.

The joint rotation-translation matrix [R|T ] is called a matrix of extrinsic parameters.

It is used to describe the camera motion around a static scene, or vice versa, rigid motion

of an object in front of a still camera. If the poses of an object relative to the first

camera and to the second camera, (R1, T1) and (R2, T2), respectively are computed,

then those poses definitely relate to each other. This means that, given (R1, T1), it

should be possible to compute (R2, T2). To relate those, we only need to know the

position and orientation of the second camera relative to the first camera, i.e relative

rotation and translation (R, T ) with respect to first camera. R2 = R∗R1T2 = R∗T1+T

2.2.1 How To Calibrate

We use the CV::stereoCalibrate() function in OpenCV libraries to calibrate intrinsic

and extrinsic parameters of stereo rig. After making sure that the cameras are rigidly

fixed, we need to capture atleast 20 images of chessboard pattern in different positions

positions. Chessboard pattern should contain minimum of 10 columns and 6 rows with

size of the square around 2.5cm. In order to get a good calibration we should place the

5



chessboard pattern in the camera frame such that:

• It is at the left and right edges of the field of view (X calibration)

• It is at the top and bottom edges of the field of view (Y calibration)

• It is detected at various angles to the camera ("Skew")

• It fills the entire field of view (Size calibration)

• It is tilted to the left, right, top and bottom (X,Y, and Size calibration)

We use CV::findChessboardCorners() function present in OpenCV to find corners

of the chessboard pattern in the left-right pair of stereo images. These found corners

in the left-right pair of stereo images are given as input to the CV::stereoCalibrate()

which calculates matrices of intrinsic and extrinsic parameters. This function uses the

technique mentioned in (Zhang, 2000) for calculating the parameters.

2.3 Rectification Of Stereo Images

Rectification of stereo images is required before proceeding for further calculations.

Rectification of stereo image pair makes epipolar lines parallel to each other which

ensures search space for particular pixel is horizontal in the stereo image pair while

calculating disparity of pixel. Given the intrinsic and extrinsic parameters of stereo rig

we rectify the images using inbuilt function in OpenCV libraries, CV::stereoRectify().

CV::stereoRectify() calculates the wrap which rectifies the left-right stereo image pair.

We used "CV::remap()" function to wrap the images such that there is only horizontal

shift of the object in the left-right stereo image pair. We can check the performance of

these function by calculating and displaying the epipolar lines. For example in Fig.2.2

we can observe the difference in the stereo pair images before and after rectification.

The images in Fig.2.2 are captured using the stereo rig set-up built by using web cam-

eras. We fixed two web cameras rigidly to a wooden plank so that there is no relative

motion between them.

6



(a) (b)

(c) (d)

Figure 2.2: (a),(b) left and right stereo image pair respectively, before rectification.
(c),(d) are corresponding left and right stereo image pair after rectification

2.4 Disparity

Disparity is defined as the difference in image location of an object seen by the two

cameras of a stereo rig. This is because the stereo rig is designed such that there is

only horizontal shift of the object between left and right stereo image pair. For example

we observe only horizontal shift of tree and house in the below Fig.2.3 Thus here, the

Figure 2.3: example for disparity between left and right stereo image pair
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disparity,∆ is equal to change in x-coordinates of corresponding pixel in the left-right

stereo image pair. From Eq.2.5 in section 2.1 we have, where (ul, v) and (ur, v) are

coordinates in LCCS and RCCS of corresponding pixels in left-right stereo image pair.


ul,r = u0 + f

Xw ±
b

2
Yw sin(θ) + Zw cos(θ)

v = v0 + f
Yw cos(θ)− Zw sin(θ)

Yw sin(θ) + Zw cos(θ)

(2.7)

For more simplification, we denote new set of image coordinates (U, V ) with respect

to camera optical center:
U = ul,r − u0 =f

Xw ±
b

2
Yw sin(θ) + Zw cos(θ)

V = v − v0 =f
Yw cos(θ)− Zw sin(θ)

Yw sin(θ) + Zw cos(θ)

(2.8)

Thus from Eq.2.7 we have disparity,∆ as,

∆ = ul − ur = f
b

Yw sin(θ) + Zw cos(θ)
(2.9)

If θ = 0 then,

∆ = ul − ur = f
b

Zw

(2.10)

2.4.1 Representing Different Planes in U-V domain

Generally in the real world, we can approximate road, buildings and objects to differ-

ent planes like horizontal, vertical and oblique planes. Here we define all planes with

respect to WCS as shown in the Fig.2.4.

As explained in the paper (Hu and Uchimura, 2005) , we can represent different

planes of WCS in U-V domain as

• Horizontal Planes
A horizontal plane in WCS can be described as,

Yw = h constant (2.11)

From Eq.2.9 and Eq.2.8 in the previous section 2.4, we can deduce below equa-

8



Figure 2.4: Planes in WCS

tion with respect to the left image

h

b
∆ = f sin(θ) + V cos(θ) (2.12)

Eq.2.12 shows that horizontal planes in WCS are projected as straight line in
V-disparity domain

• Vertical Planes
A vertical plane in WCS can be described as,

Zw = p constant (2.13)

If θ = 0 from Eq.2.10 in the previous section 2.4, then disparity,∆ is

∆ = f
b

Zw

=
fb

p
· · · constant (2.14)

Disparity is constant in U-V domain for Vertical plane in WCS.

• Oblique Planes
An oblique plane in WCS can be described as,

Xw = β constant (2.15)

If θ = 0 from Eq.2.10 and Eq.2.8 in the previous section 2.4, we deduce a linear
relation between U and ∆ with respect to left image.

U = f

(
Xw + b

2

)
Zw

and ∆ = f
b

Zw(
β + b

2

)
b

∆ = U (2.16)

Eq.2.16 shows that Oblique planes which are perpendicular to x-axis in WCS are
projected as straight line in U-disparity domain

9



2.4.2 Disparity Calculation

Disparity Calculation at any pixel can be done by using several algorithms. As we are

dealing with road scenes, and implementing an algorithm for detection and tracking

of pedestrians and objects in driver assistance car, algorithm should be fast enough to

alert the driver, in order to prevent accidents. We use Stereo Semi Global Block Match-

ing, (StereoSGBM) algorithm in OpenCV as it performs faster than other algorithms

like Stereo Block Matching (StereoBM). StereoSGBM is less accurate than StereoBM,

but the performance of StereoSGBM is good enough for further calculations as we

smooth the disparity map, as explained in later chapters. StereoSGBM matches the

blocks centred around the pixels in the left-right stereo image pair. StereoSGBM uses

Boyer Moore’s algorithm (as explained in Boyer and Moore (1977) ) for block matching

purpose. StereoSGBM was constructed from the algorithm in the paper Hirschmuller

(2008). StereoSGBM also includes Birchfield and Tomasi (1998) sub-pixel metric.

We use StereoSGBM class available in OpenCV for calculating disparity. We should

set parameters to get accurate disparity values. The in-built class function sgbm->compute()

computes the disparity values at every pixel of given left-right stereo image pair. The

parameters set for calculating disparity are:

• SADWindowSize = 7; numberOfDisparities = 160; cn = image1.channels(); sgbmWin-
Size=9;

• sgbm->setPreFilterCap(63);

• sgbm->setBlockSize(sgbmWinSize);

• sgbm->setP1(8*cn*sgbmWinSize*sgbmWinSize);

• sgbm->setP2(32*cn*sgbmWinSize*sgbmWinSize);

• sgbm->setMinDisparity(-31);

• sgbm->setNumDisparities(numberOfDisparities);

• sgbm->setUniquenessRatio(15);

• sgbm->setSpeckleWindowSize(100);

• sgbm->setSpeckleRange(32);

• sgbm->setDisp12MaxDiff(1);

"sgbm->compute(image1, image2, disp);" computes the disparity for left-right stereo

image pair of image1 and image2. Disparity value at pixel obtained will range betweem

10



[−32 128]. For example see Fig.2.5 disparity for the left-right stereo image pair Fig.2.5

(a) and Fig.2.5 (b).

(a) (b)

(c) (d)

Figure 2.5: (a),(b) are rectified left and right stereo image pair respectively. (c) is dispar-
ity map computed using StereoSGBM. (d) is disparity map where disparity
values are mapped to gray values [0 255]

Disparity map contains black patches (as shown in Fig.2.5) where StereoSGBM was

unable to match block in the given search space so it will simply assign minimum dis-

parity value to those pixels.
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CHAPTER 3

Ground Segmentation

3.1 Introduction

In this chapter we learn how to obtain the road plane from disparity map. The disparity

map contains several black patches where StereoSGBM is unable to match blocks for

the pixels. So before going for road segmentation, we need to remove the patches.

Images used here are of size 1344 columns and 391 rows which implies the size of

Disparity is also 1344 columns and 391 rows. If we proceed with the disparity of same

size for further calculations the time complexity of the algorithm increases. As our goal

of this project is to achieve a fast algorithm that detects and tracks pedestrians on road,

we decrease the size of disparity map in a way that does not affect our output results.

LetNrows be the number of rows andNcols be the number of columns in left-right stereo

image pair.

3.2 Reduction of Disparity Map Size

Time complexity of the overall algorithm can be reduced by reducing the disparity map

size. In this report, we reduce disparity map by clubbing 3 columns into 1 column

which means stixel width in each column will become 3 pixels. Even if we reduce it

this way, performance is not affected as explained in Benenson et al. (2012). Benenson

et al. (2012) has explained different ways of reducing disparity so as to make algorithm

fast, among which fixing stixel width as 3 pixels in each column has better performance,

so we use it.

Let D be the disparity Matrix. We create M , Marker matrix such that

M(i, j) =

 1 D(i, j) < −8

0 otherwise
(3.1)



We average the pixels whose corresponding marker value is ’0’, in 3 columns of

original disparity to corresponding single column in updated disparity matrix. Let the

updated matrix be Dm,

Dm(i, j) =


0

2∑
k=0

M(i, 3j + k) = 3∑2
k=0 (1−M (i, 3j + k))D (i, 3j + k)(

3−
(∑2

k=0M(i, 3j + k)
)) otherwise

(3.2)

This type of reduction removes small black patches of size less than 5X5 pixels.

3.3 Smoothing

Black patches occur due to occlusions, oversaturation of pixels, parallax errors and

insufficient data during computing. Smoothing should be done to remove these errors

and to get better results. Here while smoothing we initially made an assumption that the

lower 15 rows of the image belong to road. Firstly, we perform row by row smoothing

and then we smooth the entire image using column smoothing.

3.3.1 Row Smoothing

We take the Marker matrix,M and the updated matrix Dm from section 3.2, as input

and smooth the lower 11 rows. Before smoothing we invert each column such that top

goes to bottom and bottom goes to top for easy calculations. The new matrix will be

D̂m,

D̂m(i, j) = Dm(Nrows − i, j) (3.3)

Nrows and Nth are number of rows and reduced number of columns of disparity

matrix. Here in row smoothing, we calculate average disparity value, Avg of valid

pixels in a row whose Marker value is "0". Now we calculateAvg−D̂m(i, j), difference

between disparity value and average disparity value of the corresponding row. If it is

greater than 30, then we make pixel disparity value as invalid by updating its marker

value to 1 in M (as shown in the Algorithm 1). We join all the valid points by straight

lines and linearly interpolate disparity from those straight lines for invalid pixels.
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Algorithm 1 Row Smoothing

Require: Matrices D̂m, M
1: for i= 0 to 10 do
2: calculate Avg,Average disparity of valid pixel in row
3: for j=0 to Nth do
4: if Avg − D̂m(i, j) >30 then M(i, j) = 1
5: end for
6: join all valid pixels by straight lines and calculate disparity value for invalid

points
7: end for

3.3.2 Column Smoothing

We remove the patches along the columns by calculating possible slope of the line by

differentiating cases like occlusion, large patch of missing pixels and errors due to over

saturation. Large patch of missing pixels can occur due to mirrors and over saturation

of very shiny objects. We find window size of the invalid pixels and decide whether it

belongs to same object or may be it is mirror or due to occlusion or it may appear in left

but may not appear in right because of parallax vision.

We go along the column, and when we encounter invalid pixel, we start to calculate

length of the window which is difference between previously encountered invalid pixel

to next valid pixel when we are going along the column. Now we differentiate the cases

based on the length of window obtained. Let previously encountered invalid pixel be

pprev and next valid pixel to pprev when we are going along the column be pv. Thus

window size is pv − pprev. The cases we consider are

• if the window size > 90, then we check neighbouring pixels of pprev + k (where
k>90 and k<110) which are valid. if we get any we use that value and draw
a straight from pprev to pprev + k. Thus we get disparity value for in between
invalid pixels. This case occurs mainly for large transparent mirrors of cars.

• if (D̂m(pprev) − D̂m(pv)) < 10 then we draw a straight from pprev to pv. This
case generally occurs for near large objects.

• if (D̂m(pprev) − D̂m(pv)) > 10 and window size > 80, then we draw a straight
from pprev to pv. this generally occurs when road surface is occluded or small
objects are occluded by the others.

• For all the other cases, we calculate the slope using next 10 to 20 valid pixels from
pv and using D̂m(pv) and slope we calculate disparity value for invalid pixels.

Ds is disparity matrix after complete smoothing. In Fig.3.1 we clearly observe the

difference in disparity map before and after smoothing.

14



(a) (b)

(c) (d)

(e) (f)

Figure 3.1: (a),(b) are rectified left and right stereo image pair respectively. (c) is dispar-
ity map computed using StereoSGBM. (d) is disparity map where disparity
values are mapped to gray values [0 255]. (e) is disparity map obtained after
smoothing. (f) is disparity map where disparity values of (e) are mapped to
gray values [0 255]

3.4 Ground Segmentation

We make the following assumptions about road scene and differentiated road from the

objects,

• We assume the lower 15 rows in the image belongs to the road.

• Road cannot exceed
2Nrows

3
.

• In general we observe the road in the middle of the image and sides of the image
may belong to objects like cars and buildings. So, we assume any pixel p in the

columns, from 0 to
Nth

3
and from

2Nth

3
to Nth may belong to the object but not

the ground. So we check pixels belonging that range of columns for twice or
thrice whether it belongs to ground or not.

3.4.1 Algorithm

In a road scene left-right stereo image pair, if we go along the column, objects will have

a slope less than 0 or very near to zero (as mentioned in the section 3.3.1). Using this,

we separate objects from ground. We calculate the average slope for a block size of 10
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pixels, at every pixel in both up and down direction using Dynamic programming. Let

UD(i, j)orUD(p) and DD(i, j)orDD(p) be average of slope at pixel ’p’(at location

(i, j)) in up and down directions respectively. Let G be the ground segmentation matrix

such that G(i, j) = 0 if p belongs to road otherwise G(i, j) = 255.

Algorithm 2 Ground Segmentation
Require: Matrices UD, DD

1: for i= 15 to Nrows and j=0 to Nth do
2: if DD(i, j) < Tg and DD(i+ 1, j) < Tg then
3: then it belong to Object
4: else
5: if UD(i, j) < Tg and UD(i− 1, j) < Tg then
6: then it belong to Object
7: else
8: pixel belongs to road. calculate the slope the road
9: end if

10: end if
11: end for

(a) (b)

(c) (d)

Figure 3.2: (a),(b) are rectified left and right stereo image pair respectively. (c) disparity
map after smoothing. (d) resultant G, ground segmentation matrix obtained
using this algorithm

Ground segmented image for an example left-right stereo image pair is shown in the

above Fig.3.2.

3.4.2 Removal Of Errors

The result obtained in the previous subsection 3.4.1 contains errors. These errors can be

removed by the assumptions made earlier in this section. In the following subsection,

we discuss two ways of removing the errors,
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• based on checking with threshold for each row.

• based on size of patch of the road or object.

Comparing with Threshold

We will calculate average road value for each row by going along left and right from

middle column for 10 pixels. Let Nmid be middle column and Avg(i) be average dispar-

ity value of road pixels in ith row.

Avg(i) =

∑Nmid+10

j=Nmid−10

255−G(i, j)

255

Ds(i,j)

∑Nmid+10

j=Nmid−10

255−G(i, j)

255

 (3.4)

Using Avg(i) we calculate average slope of this road scene. Let rlimit be,

rlimit = 11 +

(
Avg(11)

averageslope

)
(3.5)

We set threshold Tr(i) for ith row as,

Tr(i) =


7.5 i < (

rlimit

2
)

5(
rlimit− i
rlimit

+ 1) (
rlimit

2
) < i < rlimit

(3.6)

Based on the experiments on the video frames collected from publication Geiger

et al. (2011), we modelled average disparity value of road for each row, Âvg(i) (as

shown in the Eq.3.7) in the road scenes for those videos and average slope value as 0.4.

Âvg(i) = 90− (0.4 ∗ (i− 15)) (3.7)
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We update the G matrix as,

G(i, j) =



255 if G(i, j) = 0 and |Ds(i, j)− Avg(i)| > 5

0 if G(i, j) = 255, |Ds(i, j)− Avg(i)| < Tr(i) and j ∈
[
Nth

3

2Nth

3

]
0 if G(i, j) = 255, |Ds(i, j)− Âvg(i)| < Tr(i) and j ∈

[
Nth

3

2Nth

3

]
G(i, j) otherwise

(3.8)

Using Patch Size

We take the G matrix obtained after removal of errors by comparing with the threshold

and build a graph such that we add an edge between p and q, if q ∈ Ne(p) and G(q) =

G(p), where p,q are pixels in the image and q is the neighbour p. Ne(p), Neighbour of

p is defined as if p = (i, j) then q ∈ {(i, j − 1), (i− 1, j), (i+ 1, j), (i, j + 1)}. All the

pixels in the image are nodes in the graph. We use Depth First search Traversal, DFS

as explained in King and Launchbury (1995), to find the size of a patch i.e we go from

a pixel p to its all connected nodes and count the size of the patch.

Algorithm 3 Removing Error using DFS
Require: Matrices G, Vs(Visited matrix) and St(empty stack)

1: for i= 0 to Nrows and j=0 to Nth do
2: if Vs(i,j)==FALSE then
3: initiate count=0
4: DFS algo:
5: push pitr=(i,j) to stack St
6: while St not empty do
7: pop the top most element in the St and assign it to p
8: V s(p) = TRUE and increment count by 1
9: if ∀q ∈ Ne(p) and G(q) = G(pitr) then

10: push q to the stack
11: end if
12: end while
13: if G(pitr) = 255 and count<400 then
14: using DFS inverse values of the nodes connected to pitr
15: end if
16: if G(pitr) = 0 and count<5000 then
17: using DFS inverse values of the nodes connected to pitr
18: end if
19: end if
20: end for
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In the algorithm 3, we initialize bool matrix Vs to "0 or FALSE" and St to a empty

stack which can store pixels. We will iterate the "for" loop until the value of every point

in the matrix Vs becomes "1 or TRUE". While iterating the loop we check the value

of Vs at every point, if Vs(p)=FALSE then we use DFS and find the size of the patch

by visiting all the connected nodes to p. After calculating the patch size we decide it

as error or not by comparing it with threshold and update the value of pixels in matrix

G correspondingly. In Fig.3.3 for the given left-right stereo image pair, we can clearly

observe the white and black error patches are removed using the algorithms discussed

in this subsection.

(a) (b)

(c) (d)

Figure 3.3: (a),(b) are rectified left and right stereo image pair respectively. (c)G,
ground segmentation matrix or image before removing errors. (d) resul-
tant G, ground segmentation matrix or image after removing errors using
the algorithms in this subsection
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CHAPTER 4

Object Detection And Labelling

4.1 Introduction

In this chapter we discuss how to detect the objects and label them using the disparity

matrix, Ds and ground segmented matrix, G calculated in the chapter 3. As mentioned

in section 2.4, we approximate real world objects with several planes and detect them

for object segmentation. Disparity value behaviour for each plane will be different and

there will be either smooth jumps or sharp jumps in disparity map at the boundaries

of two different objects. We segment the objects in each row and each column both

vertically and horizontally. We use these results for further object segmentation using

our algorithm which is similar to graph-cut algorithms in Ding et al. (2001). We use

different classifiers to classify different objects like cars and pedestrians. We label the

objects and track them using optical flow.

4.2 Vertical Segmentation

In this section we discuss how to segment the objects in each column by using the

matrices Ds and G. In general when we go along the column from bottom to top in the

image and corresponding top to bottom in the matrices Ds and G, we observe sudden

jumps or disparity window in between the road map which implies an object. Here

we detect those jumps by calculating difference between averages of disparity values

in the windows in up and down directions. Let the matrix Vseg represent the vertical

segmentation matrix. The following algorithm is used for segmenting objects in vertical

direction in each column, where Tv1 and Tv2 are thresholds.



Algorithm 4 Vertical Segmentation
Require: Matrices Ds and G

1: for j= 1 to Nth do
2: initialize count=0
3: for i= 0 to Nrows − 9 do
4: if G(i, j) = 255 then
5: if G(i− 1, j) = 0 then
6: increment count by 1 and update Vseg(i, j) = count
7: else
8: if |Ds(i, j)−Ds(i− 1, j)| < Tv1 then
9: Vseg(i, j) = Vseg(i− 1, j) as it belongs to same object

10: else
11: calculate average disparity for 5 pixels in the up and down direction.

Let those averages are Upavg and Dnavg

12: if |Upavg − Upavg| > Tv2 then
13: if in the previous iteration same step was performed then don’t in-

crement count otherwise increment count by 1 and update Vseg(i, j)
accordingly

14: else
15: it belongs to the same object so don’t increment count and update

Vseg(i, j) = Vseg(i− 1, j)
16: end if
17: end if
18: end if
19: end if
20: end for
21: end for

In Fig.4.1 we shown the resultant vertical segmentation along the column 927.

(a)

(b)

Figure 4.1: (a) left camera image (b) 50Vseg, vertical segmentation matrix values along
the column 927.
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4.3 Horizontal Segmentation

We use a similar approach to the one in the previous section to segment objects hori-

zontally in each row. We calculate average disparity value at every pixel for window

size of 5 pixels in the left and right directions and obtain Lavg and Ravg as shown in Eq.

4.1. We use Dynamic programming to calculate these matrices.

Lavg(i, j) =

(
1

5

) j∑
k=j−4

Ds(i, k)

Ravg(i, j) =

(
1

5

) j+4∑
k=j

Ds(i, k) (4.1)

Now we define LRavg as,

LRavg(i, j) = Ravg(i, j)− Lavg(i, j) (4.2)

Let Hseg be the horizontal segmentation matrix which is obtained using the following

algorithm. The algorithm for segmenting objects along horizontal in each row, in given

next,

Algorithm 5 Horizontal Segmentation
Require: Matrices LRavg, Ds, G and Tmp (temporary matrix)

1: for i= 0 to Nrows do
2: initialize count=0
3: for j= 4 to Nth − 4 do
4: if |Ds(i, j)−Ds(i, j − 1)| < Th1 then
5: (i,j) belongs to the same object of (i,j-1). Tmp(i, j) = Tmp(i, j − 1)
6: else
7: if |LRavg(i, j)| > Th2 then
8: if in previous iteration same step was performed then don’t increment

count as this pixel belongs to boundary, otherwise increment the count as
this doesn’t belong the same object. Thus update Tmp(i, j) accordingly.

9: else
10: (i,j) belongs to the same object of (i,j-1). Tmp(i, j) = Tmp(i, j − 1)
11: end if
12: end if
13: end for
14: end for
15: Combine G and Tmp to get updated horizontal segmentation matrix, Hseg

where Th1 and Th2 are thresholds. In Fig.4.2 we shown the horizontal segmentation
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along the rows 162 and 212.
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Figure 4.2: (a) left camera image (b) Hseg, horizontal segmentation along the row 162
in the image. (c) Hseg, horizontal segmentation along the row 212 in the
image.

4.4 Object Segmentation

In this section we use matrices Ds, G, Vseg and Hseg to detect the objects by construct-

ing a graph and using a cost function that cuts edges in the graph similar to graph cut

algorithms. We construct the graph with all pixels in the image as nodes and add undi-

rected edges between any two nodes p and q if q ∈ Ne(p) , G(q) = G(p) and either

Vseg(q) = Vseg(p) if p and q are in same column or Hseg(q) = Hseg(p) if p and q are in

same row. Let O represent the list of the objects to be detected in the image and O(i)

represent ith object. We use the below cost function,C to cut the edge between p and q,

where already p ∈ O(i). Let ci, be the centroid of the object,O(i).

C(q,O(i)) = |Ds(q)−Ds(ci)|+ (µ ∗ (Dist(q, ci))) (4.3)

where Dist(q, ci) calculates the distance between q and ci.

We use Breadth First Search, BFS traversal explained in Silvela and Portillo (2001)

and cost function in Eq. 4.3 to segment object in the constructed graph. Let Oseg,

object segmentation matrix obtained using this algorithm, where, if Oseg(p) = Oseg(q)

23



for pixels p and q then it implies that they belong to same object. The algorithm for

object segmentation, in given next, where Tob1 and Tob2 are thresholds.

Algorithm 6 Object Segmentation

Require: (a)Matrices Ds, G, Vseg and Hseg. (b) Functions C() and Dist() (distance
function). (c) Quo (empty queue to store pixels in BFS algo), V ist (visited matrix)

1: initialize count=0 (object number)
2: for i= 15 to Nrows − 9 do
3: for j= 4 to Nth − 4 do
4: initialize obcount=0 (number of pixel in object)
5: if Vist(i,j)=0 then
6: pitr = (i, j) , initialize citr = (0, 0)(centroid) and push pitr to Quo
7: increment count and add pitr to O(count)
8: BFS algorithm:
9: while Quo is not empty do

10: assign top element in Quo to p and pop it from it
11: V ist(p) = 1 and add p to O(count)
12: calculate centroid citr of the object O(count)
13: increment obcount and Oseg(p) = count
14: if ∀q ∈ Ne(p) and G(q) = G(p) then
15: if p and q are in same row, and Hseg(q) = Hseg(p) then
16: calculate C(q,O(count))
17: end if
18: if p and q are in same column, and Vseg(q) = Vseg(p) then
19: calculate C(q,O(count))
20: end if
21: if C(q,O(count)) < Tob1 then push q into Quo
22: end if
23: end while
24: if obcount<Tob2 then
25: use BFS algorithm change Oseg value for all the pixels belonging to

O(count) and remove them from O(count)
26: decrement the count
27: end if
28: end if
29: end for
30: end for

All the pixels belonging to the same object will have same value in the matrix, Oseg.

In Fig.4.3, to observe different objects clearly, values of Oseg are mapped to gray scale

values [0 255].

24



(a) (b)

(c) (d)

Figure 4.3: (a),(b) are rectified left and right stereo image pair respectively. (c) dispar-
ity map after smoothing. (d) Oseg, object segmentation matrix which was
obtained using the algorithm mapped to gray scale values [0 255]

4.5 Labelling Objects

In this section, we assign labels to detected objects in section 4.4. We pass the image

to different classifiers for detection of pedestrians and cars which gives a rectangle as

output surrounding the detected elements. We will match the detected rectangles to the

object in O with maximum overlap region with detected rectangle.

4.5.1 Pedestrian Detection

Pedestrians in the image are detected using HOG based pedestrian method explained

in Dalal and Triggs (2005) . We have inbuilt class "HOGDescriptor()" where we set

parameters and the following two steps yield pedestrian detection.

• hog.setSVMDetector(cv::HOGDescriptor:: getDefaultPeopleDetector());

• hog.detectMultiScale(); (you should provide parameter, inputs and outputs to this
function)

After getting the FR, the list of detected rectangles of pedestrians, we use the fol-

lowing algorithm to match them with the objects in O.
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Algorithm 7 Pedestrian Labeling
Require: Lists FR, O

1: for i=1 to size of FR do
2: intialize maxarea=0 and outindex=-1
3: for k=1 to size of O do
4: r= insterction rectangle of FR(i) and Rect(O(k))
5: if maxarea < area of r then update maxarea= area of r and outindex=k
6: if area of r > 0.6*(area of FR(i)) and area of r > 0.8*(area of O(k)) then
7: update maxarea= area of r and outindex=k and break the loop
8: end if
9: end for

10: label the object O(outindex) as pedestrian
11: end for

4.5.2 Car Detection

Cars in the image are detected using Haar Cascade Classifier in the OpenCV libraries.

Haar Cascade Classifier in OpenCV uses the techniques explained in Viola and Jones

(2001) and Lienhart and Maydt (2002). We need to provide trained ".xml" file for de-

tection of cars. "(CvHaarClassifierCascade*) cvLoad()" in built function loads trained

vectors stored in the ".xml" file into the variable cascade. "cvHaarDetectObjects()" in

built function in OpenCV gives the output list of cars, FC. We match every detected

car in the list, FC with the objects which are not labelled as pedestrian in the list O.

Algorithm 8 Car Labeling
Require: Lists FC, O

1: for i=1 to size of FC do
2: intialize maxarea=0 and outindex=-1
3: for k=1 to size of O do
4: if label of O(k) is not pedestrian then
5: r= insterction rectangle of FC(i) and Rect(O(k))
6: if maxarea < area of r then update maxarea= area of r and outindex=k
7: if area of r ==(area of O(k)) and (area of O(k))>3000 then
8: update maxarea= area of r and outindex=k and break the loop
9: end if

10: end if
11: end for
12: if (maxarea>0.25*area of FC(i))label the object O(outindex) as car
13: end for
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4.6 Tracking

We track the objects and calculate their velocities using feature points and optical flow.

Let Il,t−1 be the previous and Il,t be the current left images of the left-right stereo im-

age pairs. Using "goodFeaturesToTrack()" inbuilt function in OpenCV we detect good

features in previous left image, Il,t−1 which can be tracked. Let these good features

be Fpprev. We use Fpprev and in built function "calcOpticalFlowPyrLK()" in OpenCV

to compute optical flow and tracked features in the current left image for Fpprev. "cal-

cOpticalFlowPyrLK()" function uses the iterative Lucas-Kanade method with pyramids

to compute optical flow (which was explained in Bouguet (1999)). Let those tracked

features be Fpcurr and objects detected for the previous left-right stereo image pair is

PO. We link the objects in both PO and O with help of Fpprev and Fpcurr by match-

ing maximum number of features common between the objects in previous and current

stereo image pairs. In Fig.4.4 we show the final results of a scene where tracking is

detected clearly for the objects like pedestrian and cars.

(a) (b)

(c) (d)

Figure 4.4: (a) Oseg, object segmentation matrix at time=2,(b) Oseg, object segmenta-
tion matrix at time=20. (c) final result at time=2. (d) final result at time=20
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CHAPTER 5

Displaying Results And Performance Of Algorithm

Left-right stereo images used to conduct experiments are collected from the publication

Geiger et al. (2011). We ran our algorithm on four videos of each around one and

half minutes. Video-1 contains 1200 frames, video-2 contains 1000 frames, video-3

contains 300 frames and video-4 contains 1200 frames.

5.1 Displaying Results

We use G calculated in chapter 3, and display the road upto where car can move safely

(as shown in Fig. 5.1). We display the objects which are labelled in the current left-

right stereo image pair. Before displaying them we assign colour to the object if not

assigned earlier. We also display objects which are labelled as pedestrians or cars in

the earlier images and not labelled in the current left-right stereo image pair, but on

a condition that their size should be less than 15000 pixels, to differentiate cars and

pedestrians from building and background. For example in the first three images of Fig.

5.1 pedestrian was labelled as "Pt" and in next two images pedestrian was not labelled

in next two, but in all images the pedestrian was surrounded by same green colour box.

We displayed pedestrian in the last two images in Fig. 5.1, although the pedestrian was

not detected by the classifier as pedestrian size is than 15000 pixels and detected by

classifier in the previous frames. We can clearly observe in Fig. 5.1 building was not

displayed even though it was detected as car in some images since it’s size greater than

15000 pixels.



(a) Final output image time,t=2

(b) Final output image time,t=20

(c) Final output image time,t=30

(d) Final output image time,t=35

(e) Final output image time,t=38

Figure 5.1: Final output images of a scene at different time instances
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Results for Video-1

Video-1 was taken in narrow urban roads during day time. In Fig. 5.2 (a) and (b)

images, the pedestrians and cars have the same colour of rectangle by which they are

circumscribed. In the image Fig. 5.2 (d), we displayed tracking of the pedestrian walk-

ing on the foot path. We tracked the cyclist who is coming in the opposite direction on

the road as shown in Fig. 5.2 (e) and (f).

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.2: results for video-1

Results for Video-2

Video-2 was taken in narrow urban roads during day time. In Fig. 5.3, we can observe

that the occluded cars are detected as different cars by the algorithm.
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(a) (b)

Figure 5.3: results for video-2

Results for Video-3

Video-3 was taken in urban roads of cold countries during winter. In Fig. 5.4, we can

observe snow in the sides of the road is not include the road. So it is alerting the driver

about snow region in the sides of the road. By the results in Fig. 5.4 we can conclude

that this algorithm will work in the urban roads of cold countries.

(a) (b)

(c) (d)

(e)

Figure 5.4: results for video-3

Results for Video-4

Video-4 was taken in wide urban roads during day time. In Fig. 5.5(a), footpath was

not included in the road, and we can observe that pedestrians on the road are detected

and tracked. The cyclists in Fig. 5.5(b) are also detected and tracked by the algorithm.
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In Fig. 5.5(c) and (d) divider in the middle of the road is not included in the road, and

cars parked on the side of the are detected by the algorithm.

(a) (b)

(c) (d)

Figure 5.5: results for video-4

5.2 Performance

5.2.1 Time complexity

In this section we discuss about time complexity of the algorithm. As we saw this algo-

rithm contains different steps like column smoothing, ground, vertical, horizontal and

object segmentation. The time complexity of all these is O (NrowsNth). The algorithm

also contains tracking and its time complexity isO
(

2 ∗ (size of Fpcurr) ∗ ( size of O )
)

where for the images used here size of Fpcurr ≤ 1500 and size of O ≤ 40.

We ran the algorithm on the videos mentioned in the section 5.1 in our laptop which

has 8GB RAM and intel-i7 processor. If no task is running in the back ground, here are

the time taken by different modules of the algorithm.

• For getting disparity using StereoSGBM : 467.179ms

• For row smooth algorithm : 0.346ms

• For column smooth algorithm : 8.352ms

• For ground segmentation algorithm (including removing errors) : 193.302ms

• For vertical segmentation algorithm : 5.242ms

• For horizontal segmentation algorithm : 14.679ms
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• For object segmentation algorithm : 75.800ms

• HOG and Haar cascade classifiers : 467.624ms

• For optical flow and tracking algorithm : 45.707ms

• Total time taken by the algorithm : 1291.497ms

If processor was running some other tasks in the background, following are the time

taken by different modules of the algorithm.

• For getting disparity using StereoSGBM : 1294.991ms

• For row smooth algorithm : 1.176ms

• For column smooth algorithm : 28.857ms

• For ground segmentation algorithm (including removing errors) : 720.876ms

• For vertical segmentation algorithm : 19.962ms

• For horizontal segmentation algorithm : 53.047ms

• For object segmentation algorithm : 280.652ms

• HOG and Haar cascade classifiers : 1457.303ms

• For optical flow and tracking algorithm : 125.439ms

• Total time taken by the algorithm : 4027.046ms

5.2.2 Failures

This algorithm shows errors when there is a transition from shadow region to bright

sunny region as shown in the Fig.5.6

Figure 5.6: error in ground detection due to transition between shadow and bright re-
gions.

We made an assumption in chapter 3 that middle of the image is road. So this

algorithm can not remove errors in ground segmentation while car is turning right or
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left, as shown in the Fig. 5.7 we can clearly observe errors in ground estimation in the

middle of the image i.e it included some parts of the car in ground.

Figure 5.7: error in ground detection while car is turning right

This algorithm divides an object into 2 or 3 objects if they are very near. In the

below Fig.5.8 car highlighted in the box is divided into two objects.

Figure 5.8: error in object detection
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CHAPTER 6

Conclusions

This project is an attempt to build a system for car which can detect pedestrians, cars,

obstacles and show the safe road area to the driver. As discussed in the section 5.1,

this algorithm will yield good results in narrow road, wide road and on the road of cold

countries. Time taken by the algorithm can be reduced from 2 seconds to
1

20
seconds.

As explained OpenCV performance of different functions can be improved if we use

GPU instead CPU. In Fig. 6.1 we can observe speed-up factor of different modules

when we use GPU instead of CPU.

Figure 6.1: performance of CPU Vs GPU for different modules

Thus, by moving from CPU to GPU we can we can make algorithm 8 times faster.

Another advantage in using GPU, we can run the modules like Vertical and Horizontal

segmentation, and Object segmentation, classifier and tracking algorithm in parallel.

By running modules in parallel we can make the algorithm 5 times faster. Hence, we

can run the algorithm in
1

20
for a single left-right stereo image pair.

We can conclude that in the real time this algorithm can run at 20 frames per second.
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