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ABSTRACT

KEYWORDS: Square Ice, Plane Partitions

The square ice is a model in statistical physics describing certain configurations of

water molecules on a 2D lattice. The model can be fully solved under certain boundary

conditions, but this is not always possible. Therefore, we attempt an enumeration of

these configurations. In order to do so square ice is recast as an analogue of plane

partitions. Hence, it’s enumeration may be studied as a problem in combinatorics and

solved by numerical methods.

In this thesis, we estimate the asymptotic behaviour of these configurations by counting

the combinatorics equivalent. The bounds for the asymptotic behaviour are analytically

determined, and then established by means of Monte Carlo simulations, with suitable

error bars.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Square Ice

A vertex model is a model in statistical mechanics where boltzmann weights are as-

signed to each of a set of possible vertices associated with the model. The particles

being described by these models live on the vertices, and the interactions are described

by the type of vertex, rather than by bonds with adjacent particles, like the Ising model.

An ice-type model is a type of vertex model where each vertex represents a water

molecule. The vertices are connected by directed edges. They are called "square

ice" when represented on a 2D lattice, with coordination number 4. Ice type models

were originally proposed by Linus Pauling [3] to calculate the residual entropy of water

ice, giving the model its name. In 1967, Elliot Lieb found the exact solution to the

residual entropy problem for 2D square ice. The residual entropy was expressed as

S = NKB logW , where W was calculated as (4
3
)3/2. This is known as Lieb’s square

ice constant [4].

Each configuration of square ice represents an arrangement of water molecules on a

plane, with the constraint that every vertex represents an oxygen atom, and is sur-

rounded by four hydrogen atoms. Since the oxygen atom can only be attached to

two hydrogens out of four, the hydrogen atoms attached to the oxygen are represented

by edges pointing towards it, and those unattached are represented by edges pointing

away from it. It is clear that there are six such lattice point configurations of the water

molecule. Hence, square ice is also called the six-vertex model. Generalizations of the

model can be constructed in terms of the eight, or sixteen vertex models. Figure 1.1

shows the six possible vertex configurations.

Solving square ice is dependent on the boundary conditions imposed on it. The open

boundary condition, with vertical boundaries having arrows pointing outwards, and hor-

izontal boundaries having arrows pointing inwards could be imposed, or the domain



w1 w2 w3 w4 w5 w6

Figure 1.1: The allowed vertices of the six vertex model, with associated weights.

wall boundary conditions, as represented below, are some possible boundary condi-

tions.

Figure 1.2: Boundary conditions on Square Ice - the configuration on top has the open

boundary condition imposed on it, while the second configuration has the

domain wall boundary condition imposed on it.

A partition function can be written for the model by assigning energies ǫi, and hence

boltzmann weights, to each of the 6 vertex types, as follows -

Z =
∑

{ni}

e
− ε

kBT , where ε =
6

∑

i=1

niǫi. (1.1)

This sum can be written to account for various boundary conditions, or to accommodate

constraints in the energy levels, leading to sub-classes of the square ice model. Solving

the model completely involves determination of the partition function, or equivalently,

counting all possible configurations on the lattice. While it is possible to exactly solve
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the six vertex model under specific boundary conditions, it might not be possible to

obtain closed form solutions for others. In cases where closed form solutions cannot be

obtained, we adopt other methods to study the model, one of which is described in this

project.

1.2 Other related Combinatorics Problems

The square ice model can be bijectively mapped onto various other combinatorial prob-

lems, like Alternating Sign Matrices, Domino Tilings etc. These maps aid in under-

standing both objects better, and have lead to seminal discoveries. One of the proofs of

the ASM conjecture was given by Zeilberger using the square ice model [5]. The map

from square ice to alternating sign matrices is described below.

1.2.1 Alternating Sign Matrices

An alternating sign matrix (ASM) is an n× n square matrix which obeys the following

constraints -

• The matrix is composed of only −1,0 and 1

• The non-zero entries in each row and column alternate in sign

• The sum of entries in each row and each column is 1

Every configuration of the six vertex model can be bijectively mapped onto an alternat-

ing sign matrix.

Consider an n × n patch of square ice, with boundary conditions such that the vertical

arrows on the boundary point outwards, and the horizontal arrows on the boundary

point inwards. Each vertex has 2 incoming arrows. Replace every vertex that has both

incoming arrows on the horizontal with +1, and every vertex with both incoming arrows

on the vertical with −1. Every other vertex is replaced by 0. This gives an n × n

ASM. The map is reversible in every step, and hence, forms a bijection [6]. Figure

1.3 shows a configuration of square ice with domain wall boundary conditions, and the

corresponding ASM that it maps on to.

4



Figure 1.3: A square ice configuration and the corresponding alternating sign matrix it

maps on to.

It is also interesting to note that ASMs have the same enumeration as totally sym-

metric self-complementary plane partitions (TSSCPPs). A totally symmetric plane par-

tition of size n is a plane partition whose Young diagram is contained in a box of size

n×n×n and which is mapped to itself under all permutations of the coordinate axes.A

totally symmetric plane partition is self-complementary if it is identical to its comple-

ment within the same box. The TSSCPP conjecture was first proposed by G.Andrews

[7]. Zeilberger later showed that they are equinumerous with ASMs, though his proof

was not bijective. A bijection between the two objects is yet to be established.

This thesis is an attempt to study the asymptotic behaviour of configurations of the

generalized square ice model, by casting it as an analogue of plane partitions, and using

properties of plane partitions to solve it as a problem in combinatorics.

5



CHAPTER 2

PARTITIONS

2.1 Definitions

A partition of a positive integer n is a representation of n as a sum of positive integers

lesser than itself. Formally,

Definition 2.1. The set λ = {Si} is a partition of n if
∑

i

Si = n, Si ∈ N.

It is denoted by λ ⊢ n. Each Si is called a part of the partition λ. Partitions are order

independent, i.e., sums that differ only by the order of their summands are considered to

be the same partition. For example: The positive integer 5 has the following 7 distinct

partitions -

(5), (4 + 1), (3 + 2), (3 + 1 + 1), (2 + 2 + 1), (2 + 1 + 1 + 1), (1 + 1+ 1 + 1 + 1).

Partitions are usually represented by means of Young diagrams, or Ferrer diagrams.

The growth of partitions along integers can be represented by means of a Young lattice.

Traversing any arm of the Young Lattice results in a unique partition. Mathematically, a

lattice is defined as a partially ordered set in which every two elements of the set consist

of a unique supremum and a unique infimum. It is clear that Young lattice follows this

definition.

Young diagrams are a special case of Bratteli diagrams, which are defined in the fol-

lowing way [8].

Definition 2.2. A Bratteli diagram is an oriented graph Γ =
⋃

n≥0

Γi, where each Γi is a

set of vertices at level i. It has the following properties -

• Γ0 is the vertex φ.

• If an edges starts at a vertex in Γi, then it ends at a vertex in Γi+1.

• Every vertex has atleast one outgoing edge.

• All Γi are finite sets.



Figure 2.1: The Young Lattice for integer partitions in terms of Young diagrams, ex-

plained in Section 2.3 (Source: David Eppstein, Wikimedia Commons)

Partitions have rich structure and well-documented properties in number theory and

combinatorics. They find applications in a number of areas in Physics and Mathematics,

like the representation theory of symmetric groups.

2.2 Counting of Partitions

We define a generating function for integer partitions, of the form F (q) =
∞
∑

i=0

aiq
i,

where ai denotes the number of partitions of i.

Theorem 2.1. The generating function for integer partitions is given by

F (q) =
∞
∏

i=1

(1− qi)−1.

Proof. Consider

F1(q) =
1

1− q
= 1 + q + q2 + q3 + . . . =

∞
∑

i=0

a
(1)
i qi,

F2(q) =
1

(1− q)(1− q2)
= (1+q+q2+q3+ . . . )(1+q2+q4+q6+ . . . ) =

∞
∑

i=0

a
(2)
i qi.

Clearly, the coefficient of qn in F1(q), a
(1)
n gives the number of ways in which n, the

power of q, can be enumerated as a sum of 1s viz. 1. Correspondingly, the coefficient

of qn in F2(q), a
(2)
i gives the number of ways of expressing n as a sum of 1s and 2s.
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Therefore,

Fm(q) =
m
∏

i=1

(1− qi)−1 =
∞
∑

i=0

a
(m)
i qi

gives coefficients a
(m)
i that express n as a sum of integers lesser than or equal to m. By

extension, the generating function for integer partitions is given by

F (q) =
∞
∑

i=0

aiq
i =

∞
∏

i=1

(1− qi)−1.

Enumerating the function gives the following sequence -

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385,...

This is the sequence of integer partitions.

2.3 Young Diagrams

Partitions may be visually represented by means of Young diagrams or equivalently,

Ferrer Diagrams. It consists of rows of boxes on a 2D plane. When the elements of Si

are decreasingly ordered, then a each element in the set denotes the number of boxes in

the subsequent row.

The following set of Young diagrams are drawn corresponding to the partitions of 5 -

1. S1 = {5}

2. S2 = {1, 4}

3. S3 = {2, 3}

4. S4 = {1, 1, 3}

5. S5 = {1, 2, 2}

6. S6 = {1, 1, 1, 2}
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7. S7 = {1, 1, 1, 1, 1}

When represented on the cartesian plane with origin at the bottom-left corner, each

square of a Young diagram has an associated pair of co-ordinates. Thus, partitions can

also be defined by means of these Young diagrams.

Definition 2.3. A partition λ of integer n can be defined as a collection of co-ordinates

such that if (x1, y1) ∈ λ, then (x2, y2) ∈ λ, ∀ x2 ≤ x1 and y2 ≤ y1. The total number of

squares is n, and is also called the volume of the partition.

The two definitions are equivalent, and a unique diagram can be assigned to each par-

tition, once a convention is chosen, as demonstrated by the example above. One could

also draw Ferrer Diagrams, which are equivalent to Young diagrams.

1. • • • • • S1 = {5}

2.
• • • •
•

S2 = {4, 1}

3.
• • •
• •

S3 = {3, 2}

4.

• • •
•
•

S4 = {3, 1, 1}

5.

• •
• •
•

S5 = {2, 2, 1}

6.

• •
•
•
•

S6 = {2, 1, 1, 1}

7.

•
•
•
•
•

S6 = {1, 1, 1, 1, 1}

9



2.4 Plane Partitions

Partitions, when expressed as a Young Diagram, with co-ordinates for each square, can

easily be extended to higher dimensions - plane partitions in 2D and solid partitions in

3D.

Definition 2.4. A plane partition λ can be defined as a collection of co-ordinates such

that if (xi, yi, zi) ∈ λ, then (xj, yj , zj) ∈ λ, ∀ xj ≤ xi, yj ≤ yi and zj ≤ zi.

The following figure is one of the plane partitions of 26 -

7

6

3

5

3

2

4

2

Figure 2.2: A plane partition of 32 in the isometric view.

One may also represent them in 2D, like a Young diagram, with numbers in each box

denoting height of the plane partition in the dimension projecting out of the plane, as

shown in Figure 2.3. The 13 plane partitions of 4 are drawn out in Figure 2.4.

4 2

5 3 2

7 6 3

Figure 2.3: Young diagram representation of the plane partition in Figure 2.2.

The Young diagram definition of partitions could be extended to an arbitrary d dimen-

sions. Therefore -

Definition 2.5. A d-dimensional partition λ of n can be defined as a collection of co-

ordinates such that if (x
(1)
i , x

(2)
i , . . . , x

(d)
i ) ∈ λ, then (x

(1)
j , x

(2)
j , . . . , x

(d)
j ) ∈ λ, ∀x

(k)
j ≤

x
(k)
i , 1 ≤ k ≤ d.

10



1 1 1 1 2 1 1 3 1 2 2

4 1
3

1
1
2

2
2

1
1
1
1

1
1 1 1

1
1
1 1

1 1
1 1

1
2 1

Figure 2.4: The plane partitions of 4.

Plane partitions are enumerated by the MacMahon function -

F (q) =
∞
∏

i=1

(1− qi)−i.

While this may be seen as the 2D extension of the generating function for integer par-

titions, there is no analogous formula in 3D, for solid partitions. Further, the number

of plane partitions that could fit into a box of dimensions a × b × c is given by the

MacMahon formula [9]-

M(a, b, c) =
a
∏

i=1

b
∏

j=1

c
∏

k=1

i+ j + k − 1

i+ j + k − 2
. (2.1)

The formula was given by Percy MacMahon and later written in its current form by Ian

MacDonald. Asymptotically, log(an) ∼ n2/3, or c1 < n−2/3 log(an) < c2, where c1, c2

are real constants. This form was worked out by E.M. Wright [10]. In general, one

observes that a partition of d-dimensions assumes the following form asymptotically -

log(adn) ∼ nd/d+1 [11].

The first few numbers for each dimension, generated via the Bratley-McKay algorithm

(Appendix A) are given in Table 2.1.

2.4.1 Pyramid Partitions

Like square ice, pyramid partitions are also closely related to plane partitions. An empty

pyramid partition, with n top layer blocks,and with no blocks removed is shown in

Figure 2.5, and is denoted by ǫn.

11



❍
❍

❍
❍
❍
❍

pd(n)
d

1 2 3 4 5

p(0) 1 1 1 1 1

p(1) 1 1 1 1 1

p(2) 2 3 4 5 6

p(3) 3 6 10 15 21

p(4) 5 13 26 45 71

p(5) 7 24 59 120 216

p(6) 11 48 140 326 657

p(7) 15 86 307 835 1907

p(8) 22 160 684 2145 5507

p(9) 30 282 1464 5345 15522

p(10) 42 500 3122 13220 43352

p(11) 56 859 6500 32068 119140

p(12) 77 1479 13426 76965 323946

p(13) 101 2485 27248 181975 869476

p(14) 135 4167 54804 425490 2308071

p(15) 176 6879 108802 982615 6056581

p(16) 231 11297 214071 2245444 15724170

p(17) 297 18334 416849 5077090 40393693

p(18) 385 29601 805124 11371250 102736274

p(19) 490 47330 1541637 25235790 258790004

p(20) 627 75278 2930329 55536870 645968054

p(21) 792 118794 5528733 121250185 1598460229

p(22) 1002 186475 10362312 262769080 3923114261

p(23) 1255 290783 19295226 565502405 9554122089

p(24) 1575 451194 35713454 1209096875 23098084695

p(25) 1958 696033 65715094 2569270050 55458417125

Table 2.1: Explicit enumeration of partitions for dimensions from 1 to 5. These se-

quences can be found on [1]

.

Figure 2.5: An empty pyramid partition, with 3 blocks on top.
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Definition 2.6. A pyramid partition of length n is a finite subset Π of the bricks of ǫn

such that if B is a brick in Π, then all of the bricks of ǫn which rest upon B are also in

Π [12].

The generating function for pyramid partitions can be expressed in closed form, and

was first conjectured by Szendrői[13] (a special case of it by Kenyon), and was proved

by Benjamin Young[12]. It is given by

Z(n)(q0,−q1) = M(1, q0q1)
2
∏

k≥1

(1 + qk0q
k−1
1 )k+n−1

∏

k≥1

(1 + qk0q
k+1
1 )max(k−n+1,0)

where M(x, q) is the MacMahon function

M(x, q) =
∞
∏

n=1

(1− xqn)−n.

For n = 1, and when q0 = −qr, q1 = −r−1, the generating function becomes that of a

generalized version of plane partitions[13],

Z(1) = M(1, q)2
∏

k≥1

(1+qkr)k
∏

k≥1

(1+qkr−1)k = M(1, q)2
∏

k≥1

(1−qkr)−k
∏

k≥1

(1−qkr−1)−k.

which can be written in the compact form

Z(1) = M(1, q)2M(r, q)M(r−1, q).

2.5 Plane Partitions and the Five Vertex model

A special case of the six vertex model is the five vertex model, where the weight w1

is set to 0. Hence the vertex corresponding to this weight does not occur in any of the

configurations. For finite sizes, under fixed boundary conditions, each configuration

of square ice can be bijectively mapped onto a corresponding set of lattice paths, and

hence onto row strict plane partitions [14].

Definition 2.7. A row strict plane partition is one in which the numbers in the boxes

that denote height, strictly decrease along the rows of the partition.

Consider a configuration of vertices on a 2N × (M + 1) lattice. The fixed boundary

13



conditions dictate that all arrows on the left and right boundaries point left, the arrows

on the top and bottom boundaries of the first N columns point inwards, while the others

point outwards. One such configuration is shown in Figure 2.6.

Figure 2.6: Example configuration to be converted to lattice paths.

Figure 2.7: The allowed vertices of the five vertex model, with the transformations re-

quired to map onto lattice paths.

To describe the map, we associate each vertex with lines crossing the vertex, as shown

in the Figure 2.7. Replacing each vertex by the lines results in lattice paths that begin

in the south-west end of the lattice and travel towards the north-east. The associated

row strict plane partition can be directly read off starting from the leftmost lattice path.

Figures 2.8 and 2.9 show the lattice paths associated with the configuration in Figure

2.6, and the plane partition thus obtained. The bijection can be reversed step-wise to

obtain a five-vertex configuration, given a row strict plane partition.

Counting the height at which each path makes each of its turns, gives the partition

matrix, from which the partition is obtained.

2.5.1 Square ice analogues of plane partitions

The square ice model, when cast as a combinatorics problem, can be decomposed into

four plane partitions, or skewed plane partitions. Hence, in the asymptotic limit, they

behave similarly. This has been elaborated in Chapter 3.

14



Figure 2.8: Lattice paths on the five vertex configuration.

6

5

3

4

2
2

3

1





6 4 3
5 2 1
3 2 0



 3 1
4 2 2
6 5 3

Figure 2.9: Lattice paths converted to a plane partition.
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CHAPTER 3

Square Ice Analogues

Square ice can be viewed in multiple ways, by defining maps on its structure. One such

map for the finite lattice in the five vertex version has already been defined. Two other

interpretations are described below.

3.1 Square Ice as Lattice Paths

The map from square ice to non-crossing lattice paths is an extension of the five-vertex

map. It is obtained by replacing every configuration by the following lattice lines,

leading to non-crossing paths. Since these are not further mapped onto row strict plane

partitions, boundary conditions aren’t defined for the map.

Figure 3.1: Map for conversion of the six vertex model to lattice paths.

3.2 Square Ice as Heights

It is also possible to associate a height function with the square ice configuration. This

is obtained by associating the following map to every vertex of the lattice.

Figure 3.2: Map for conversion of the six vertex model to heights. [2]

Here, the numbers denote a change in height rather than absolute height. Hence it is

clearly seen that the choice of origin is arbitrary as the difference in heights of any 2



points is independent of position of origin. This idea of height functions where neigh-

bouring points differ in height by 1, can be generalized to define the model in a more

precise manner.

3.3 The Generalized Square Ice

The generalized square ice model is described through the proposition of James Propp.

Consider a 2D lattice Z
2, and define a height function h0 on it, with parameter ℓ.

Definition 3.1. For every v = (x, y) ∈ Z
2, define

h0(v) =



















|x|+ |y| x ∈ (−∞, 0)

|x+ y| x ∈ [0, ℓ)

|x− ℓ+ 1|+ |y + ℓ− 1| x ∈ [ℓ,∞)



















Clearly, ℓ describes the number of points with h0 = 0.

4 3 2 3 4

3 2 1 2 3

2 1 0 1 2

3 2 1 2 3

4 3 2 3 4

4 3 2 3 4

3 2 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 2

2 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 2

Table 3.1: Height function h0 for ℓ = 1, 2, 3.

Also, define h(u) on Z
2 such that

• h agrees with h0 on all but finitely many places on Z
2,

• h ≥ h0,

• |h(u)− h(v)| = 1 for every adjacent u, v on Z
2.

Further, the reduced height function is defined as

r(u) =
1

2
(h(u)− h0(u)). (3.1)

The volume of the configuration is defined as n =
∑

r(u).

Proposition 3.1. The reduced height function r is such that, for u, v adjacent on Z
2,

|r(u)− r(v)| ∈ {0, 1}.

17



Proof. Consider adjacent points u, v such that u is closer to the points on x+y = 0, x ∈

[0, l), than v, with both points belonging in the x ∈ (−∞, 0) region.

r(u)− r(v) = 1
2
(h(u)− h(v))− 1

2
(h0(u)− h0(v)),

h0(u)− h0(v) = |xu|+ |yu| − |xv| − |yv|.

Since u and v are adjacent, they share one common co-ordinate and differ in the other

by 1, and since u is closer to origin, h0(u)− h0(v) = −1. Similarly,

h0(u)− h0(v) = |xu + yu| − |xv + yv| = −1, x ∈ [0, l),

h0(u) − h0(v) = |xu − ℓ + 1| + |yu + ℓ − 1| − |xv − ℓ + 1| − |yv + ℓ − 1| = −1,

x ∈ [ℓ,∞).

This follows in each case since the co-ordinates that differ by 1 are simply shifted by

equal amounts. Now we consider the points along the lines of discontinuity -

h0(u)− h0(v) = |y| − |y| − 1 = −1 for xu = 0, xv = −1,

h0(u)− h0(v) = |y + ℓ− 1| − |ℓ− ℓ+ 1| − |y + ℓ− 1| = −1 for xu = ℓ− 1, xv = ℓ.

By definition, for each case, h(u) − h(v) ∈ {−1, 1}. Therefore, it follows from the

definition of the reduced height function that r(u)− r(v) ∈ {0, 1}.

This also shows that the r(t,−t), t ∈ [0, l) is the maximum of the reduced height

function, and that it is weakly decreasing. Since volume is fixed, it can be seen that

r(x, y) = 0 for h0(x, y) > n and the non-zero values lies within a square of length 2n.

The problem is to count the number of such configurations of heights that can be ob-

tained for each n, and determine this sequence aℓ(n) along with its generating function.

3.4 The Oranges Formulation

The question can be recast as a combinatorics problem (as proposed by R. Kenyon).

Consider an infinite 3D prism of oranges, stacked such that the k-th layer of oranges

from the top is a rectangle having k × (k + ℓ − 1) spheres. Therefore, the prism has a

peak of length ℓ, when k = 1. Figure 3.3 shows the stack of oranges in question. The

number of ways to remove n spheres from the pyramid without disturbing the other

18



spheres gives the sequence aℓ(n). Every orange removed from the stack corresponds

to an increase in the reduced height by 1, in the height function formulation. That is,

an untouched stack corresponds to a configuration where the reduced heights is zero

everywhere. As oranges are picked, the configuration builds up. Thus, the problem of

counting the number of ways of unstacking oranges is equivalent to the height function

interpretation of the generalized square ice.

Figure 3.3: A stack of oranges with ℓ = 1, with no oranges removed.

Figure 3.4: A stack of oranges with ℓ = 3, with no oranges removed.

3.5 The Counting Problem

The sequence aℓ(n) does not have a closed form representation. But it is possible to

determine the behaviour of aℓ(n) for a given ℓ. We can analytically determine the

asymptotic behaviour by breaking the lattice, or stack of oranges, into 4 plane partitions

each.

Decomposing the stack this way gives us an idea about the long range behaviour of

aℓ(n). It is clear that the asymptotic behaviour would be similar to that of plane parti-

tions. A detailed analysis of the asymptotics is done in a subsequent chapter.
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1 2 1

1 2 3 2 1

1 2 3 4 3 2 1

1 2 3 2 1

1 2 1

1

1

1 2

1

2 1

3 2 1

3 2 1

2 1

1

1 2 3 4

1 2 3

1 2

1

Figure 3.5: A square ice configuration of ℓ = 1 decomposed into 4 plane partitions

1

1 2 1

1 2 3 2 1

1 2 3 4 3 2 1

1 2 3 4 3 2 1

1 2 3 4 3 2 1

1 2 3 4 3 2 1

1 2 3 2 1

1 2 1

1

1

1 2

1

2 1

3 2 1

3 2 1

3 2 1

3 2 1

3 2 1

2 1

1

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

1 2

1

Figure 3.6: A square ice configuration of ℓ = 4 decomposed into 4 plane partitions,

except for the missing piece in white, which is negligible for ℓ ≪ n1/3.
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CHAPTER 4

Analytical Results

4.1 2D Oranges

Stepping the problem down by one dimension, one might ask the same question for the

enumeration of stacks of oranges in 2 dimensions, as shown in Figure 4.1.

Figure 4.1: A stack of 2D oranges with ℓ = 1.

It is seen (Figure 4.2) that for the case ℓ = 1, the enumeration is the same as that of

integer partitions. Also, for different values of ℓ, the pyramid is cut off at the top (Figure

4.3), and hence enumeration can be done as shifted partitions. It is possible to determine

generating functions for some values of ℓ.

Let the enumeration of 2D orange stacks be denoted by bℓ(n). They can be enumerated

by using the Bratley-McKay algorithm, in the same way as enumeration of integer

partitions, except with the blocked blue region as initial condition. Such enumeration

leads to the following results. For ℓ > 5, there are no closed form representations of the

sequences obtained.

• For ℓ = 1, clearly b1(n) = p(n).

• For ℓ = 2, b2(n) = p(n+1), because the block at the origin can be considered as

present by default, but not counted.

• For ℓ = 3, b3(n) = p(n+ 3)− 2.

• For ℓ = 4, b4(n+ 6) = p(n+ 6)− (n+ 6) + 2− 2p(n+ 6|2 parts).



Figure 4.2: The red oranges represent the oranges that have been removed from the

stack. Counting the number of ways of removing oranges from such a stack

is clearly given by integer partitions, as can be seen from the second figure.

Figure 4.3: A stack of ℓ = 3 with the corresponding partition representation. The

blue part represents the missing portion, which results in the counting being

given by shifted partitions.
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4.2 Some results on partitions

4.2.1 Addition and Deletion Operators

Definition 4.1. Define the following operators on a general D dimensional partition λ

-

D =
N−
∑

i=1

Di, U =
N+
∑

i=1

Ui,

where Di and Ui are operators that indicate deletion and addition of a node at position

i of λ respectively. N+ and N− are the number of positions in λ where a node may be

added or deleted respectively.

Since the square ice resembles plane partitions far away from the origin, it is important

to understand the action of these operators on partitions, to understand their behaviour

on square ice.

Proposition 4.1. DU − UD = (N+ −N−)I .

Proof. For all pairs of nodes i, j such that addition or deletion of a node at one of

them does not affect the addition or deletion at the other, the operators commute. That

is, DiUj − DjUi = 0. Also, when the operations are performed on the same spot,
N−
∑

N+
∑

DiUi = N+I and
N+
∑

N−
∑

UiDi = N−I .

2 2 1

1

2 2 1

1

Figure 4.4: Here, the blue nodes belong to S+(λ) and the green nodes belong to S−(λ).

Let S±(λ) denote the set of nodes addable or removable from λ. Let λ′ be the new

partition obtained after an operation is performed, and bi be the node on which the

operation is performed. After U, S−(λ
′) = S−(λ) + bi+ (local changes). After D,

S+(λ
′) = S+(λ) + bi+ (local changes). Clearly, when the commutation is performed,

only the identity remains, leading to (N+ −N−)I .

Posets that satisfy DU − UD = rI , r > 0, for some r are called differential posets

[15, 16]. The Young lattice is a poset with ordering such that, for 2 partitions λ =
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{λ1, λ2, . . . } and µ = {µ1, µ2, . . . } (λi and µi arranged in descending order here),

λ < µ if and only if λi < µi for every i. Thus integer partitions are differential posets

with r = 1.

Definition 4.2. Define nd
+(n) and nd

−(n) as the average number of additions and re-

movals made over all partitions for a given n, i.e -

nd
+(n) = pd(n)

−1
pd(n)
∑

i=1

N+(λi) and nd
−(n) = pd(n)

−1
pd(n)
∑

i=1

N−(λi).

Proposition 4.2. nd
±(n) ∼ P1 n

d/d+1 + P±
2 nd−1/d+1 + P±

3 .

Proof. The condition of detailed balance is given by

pd(n)n
d
+(n) = pd(n+ 1)nd

−(n1), (4.1)

∴ log
nd
+(n)

nd
−(n+ 1)

= log
pd(n+ 1)

pd(n)
∼ n−1/d+1. (4.2)

By observation of integer and plane partition data (Figure 4.5), it is clear that

n1
+(n)− n1

−(n) = 1 and n2
+(n)− n2

−(n) ∼ n1/3.

Therefore, we might make the general assumption nd
+(n)− nd

−(n) ∼ nd−1/d+1.

This implies that nd
±(n) ∼ P1n

α + P±
2 nd−1/d+1 + P±

3 . Substituting this expression in

the detailed balance condition and solving to leading order yields α = d
d+1

.

From the observed data, and the form of n±(n), the following conjecture may be made.

Conjecture 4.1. nd
±(n+ 1) > nd

±(n).

Proposition 4.3. In the asymptotic limit, nd
+(n) > nd

−(n).

Proof. From the condition of detailed balance -
nd
+
(n)

nd
−
(n+1)

= pd(n+1)
pd(n)

.

In the asymptotic limit, log pd(n) ∼ nd/d+1, which is an increasing function. Hence,

pd(n + 1) > pd(n). This implies that nd
+(n) > nd

−(n + 1). From the Conjecture 4.1,

nd
−(n+ 1) > nd

−(n), which gives -

nd
+(n) > nd

−(n).
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Figure 4.5: Plots for n+(n), n−(n) and their difference, for integer partitions(top) and

plane partitions(bottom). The averages data (in blue) have been fit to the

model described in Proposition 3. The fit for n+ is in green and the fit for

n− is in red. The difference plot shows the leading behaviour is nd−1/d+1,

which in the case of integer partitions is a constant, viz. 1.

An analytic proof for nd
+(n) > nd

−(n) for all integers is yet to be given.

4.3 Analytic form of aℓ(n)

Despite the absence of a closed form expression for aℓ(n), wee can still propose the

form it takes for various ℓ given n, or vice versa. This leads to various expressions for

aℓ(n), as described in this section.

Table 4.1 lists the exact enumeration of aℓ(n) for ℓ going from 1 to 6. The following

conjecture for aℓ(n) was made by exact enumeration. aℓ(0) is set to 1.

Conjecture 4.2. The expressions for aℓ(n) for different ℓ, given n, are -

aℓ(1) =
(

ℓ
1

)

aℓ(2) =
(

ℓ
2

)

+ 4

aℓ(3) =
(

ℓ
3

)

+ 6ℓ, ℓ ≥ 2

aℓ(4) =
(

ℓ
4

)

+ 8
(

ℓ
2

)

− ℓ+ 23, ℓ ≥ 2
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❍
❍

❍
❍
❍
❍

a(n)
ℓ

1 2 3 4 5 6

a(0) 1 1 1 1 1 1

a(1) 1 2 3 4 5 6

a(2) 4 5 7 10 14 19

a(3) 10 12 19 28 40 56

a(4) 24 29 44 68 103 152

a(5) 51 64 98 158 247 378

a(6) 109 139 213 350 567 898

a(7) 222 286 448 750 1252 2042

a(8) 452 582 918 1559 2668 4476

a(9) 890 1148 1832 3170 5539 9526

a(10) 1732 2227 3584 6292 11214 19740

a(11) 3298 4234 6882 12252 22247 39978

a(12) 6204 7950 13012 23445 43300 79342

a(13) 11470 14692 24220 44164 82871 154650

a(14) 20970 26842 44480 81995 156152 296489

a(15) 37842 48438 80678 150288 290202 560022

a(16) 67572 86509 144697 272150 532430 1043404

a(17) 119368 152902 256775 487388 965395 1919708

a(18) 208943 267783 451305 863887 1731351 3491081

a(19) 362389 464766 786008 1516592 3073660 6280514

a(20) 623438 800095 1357414 2638648 5404984 11185375

a(21) 1064061 1366512 2325540 4552488 9420512 19734004

a(22) 1802976 2316840 3954366 7792566 16282463 34509347

a(23) 3033711 3900502 6676369 13239698 27922063 59847208

a(24) 5071418 6523432 11196599 22336630 47527430 102976946

a(25) 8424788 10841282 18657454 37433466 80331385 175877782

a(26) 13913192 17909533 30901434 62337628 134873275 298279841

a(27) 22847028 29416966 50884452 103186612 225015223 502496682

a(28) 37315678 48055443 83327163 169824540 373141724 841161007

a(29) 60631940 78093926 135733071 277967860 615224276 1399559416

a(30) 98030644 126276743 219978688 452594316 1008792896 2315201903

Table 4.1: Explicit enumeration of aℓ(n) for ℓ = 1, . . . , 6.

aℓ(5) =
(

ℓ
5

)

+ 10
(

ℓ
3

)

− 2
(

ℓ
2

)

+ 36ℓ− 14, ℓ ≥ 3

aℓ(6) =
(

ℓ
6

)

+ 12
(

ℓ
4

)

− 3
(

ℓ
3

)

+ 53
(

ℓ
2

)

− 25ℓ+ 132, ℓ ≥ 3

aℓ(7) =
(

ℓ
7

)

+ 14
(

ℓ
5

)

− 4
(

ℓ
4

)

+ 74
(

ℓ
3

)

− 40
(

ℓ
2

)

+ 220ℓ− 182, ℓ ≥ 4

aℓ(8) =
(

ℓ
8

)

+ 16
(

ℓ
6

)

− 5
(

ℓ
5

)

+ 99
(

ℓ
4

)

− 59
(

ℓ
3

)

+ 345
(

ℓ
2

)

− 308ℓ+ 858, ℓ ≥ 4

aℓ(9) =
(

ℓ
9

)

+18
(

ℓ
7

)

−6
(

ℓ
6

)

+128
(

ℓ
5

)

−82
(

ℓ
4

)

+515
(

ℓ
3

)

−488
(

ℓ
2

)

+1463ℓ−1764, ℓ ≥ 5

Counting based explanations for these conjectures can be made for small values of n.

Since aℓ(n) refers to the number of ways of choosing n oranges from a stack of given
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ℓ, an explicit enumeration leads to the following -

• aℓ(0) = 1., fixed by choice.

• aℓ(1) =
(

ℓ
1

)

. - We pick one orange from the only available layer, which has ℓ
oranges.

• For aℓ(2), the counting involves

–
(

ℓ
2

)

. (We pick both oranges from Layer 1)

–
(

2
1

)(

2
1

)

= 4. (We pick one from Layer 1, one from the 2 exposed oranges in

Layer 2, because of picking the first orange. Since we need the picking of

the first orange to expose some oranges in the second layer, there are only

two options for the first layer as well - the ones at the ends.)

Sum =
(

ℓ
2

)

+ 4.

• For aℓ(3), the counting involves

–
(

ℓ
3

)

. (We pick both oranges from Layer 1)

–
(

4
1

)

+
(

2
1

)(

2
1

)(

ℓ−3
1

)

+
(

2
1

)(

4
1

)

+
(

ℓ−3
1

)(

2
1

)

. (There are many ways of picking two

oranges from Layer 1 and one from Layer 2, each taking care of whether the

oranges form the ends of Layer 1, or if they are consecutive, and how many

oranges of the second layer they open up.)

–
(

2
1

)

. (The only way of picking one orange from Layer 1 and two from Layer

2 is to pick one of the ends and follow it by picking both exposed oranges

of Layer 2.)

–
(

2
1

)(

2
1

)

= 4. (Similar to the previous choice, we pick one of the ends from

Layer 1, one of the two exposed oranges from Layer 2, and further, the only

exposed orange from Layer 3)

Sum =
(

ℓ
3

)

+ 6ℓ.

This way of decomposing the final expression becomes highly non-trivial for higher n.

Though this conjecture is based on exact enumeration, we are yet to understand the form

that each expression takes. The alternating signs of the coefficients and the absence of

the
(

ℓ
n−1

)

terms are especially noteworthy, and need to be explained, perhaps with the

help of a new statistic.
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4.3.1 Conjecture on generalized aℓ(n)

Conjecture 4.3. For ℓ ≥
⌊

n
2

⌋

, aℓ(n) is given by the following polynomial -

aℓ(n) =

(

ℓ

n

)

+ 2n

(

ℓ

n− 2

)

− (n− 3)

(

ℓ

n− 3

)

+ (2n2 − 5n+ 11)

(

ℓ

n− 4

)

− (2n2 − 11n+ 19)

(

ℓ

n− 5

)

+ . . . .

4.4 Analytic bounds on aℓ(n)

Theorem 4.1. For a given ℓ, aℓ(n− 1) < aℓ(n).

Proof. Define a removable one-part of a partition as follows - consider a configuration

λ of volume n. If there exists x > 0 such that the reduced height r(x+ l−1, l−1) = 1,

and if setting this height to zero (removing a block, or equivalently, adding an orange at

the node) leads to a valid configuration of volume n−1, then the node (x+l−1, l−1) is

called a removable one part. A given configuration might or might not have removable

one parts, and there exists at least one configuration with no removable one-parts for

every volume n, as demonstrated in the Figure 4.6.

1

1 2 1

1 2 3 2 1

1 2 1

1

Figure 4.6: An example of a configuration with no removable one-part.

1 1

1 2 1

1 2 3 2 1

1 2 1

1

Figure 4.7: An example of a configuration with a removable one-part.
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Reversing the statement, one can always add a removable one-part to a configuration

of volume n − 1 to make a valid configuration of volume n. So each configuration of

volume n− 1 corresponds uniquely to a configuration of volume n. Therefore

aℓ(n) = aℓ(n− 1) + aℓ(n|no removable one parts) > aℓ(n− 1). (4.3)

4.4.1 Lower Bound for aℓ(n)

1

1 2 1

1 2 3 2 1

1 2 3 2 1

1 2 3 2 1

1 2 3 2 1

1 2 1

1

Figure 4.8: A configuration of ℓ = 4 and n = 46.

Consider configurations like the one shown in Figure 4.8. For m > 0, the volume

of such configurations is given by n =
m+1
∑

j=1

j(j + ℓ − 1). Say we pick the first type.

There are 2n0 such configurations with columns ranging from n to n− n0, where n0 =

(m+ 1)(m+ ℓ), the number of oranges in the (m+ 1)-th layer. Clearly,

n
∑

n−n0

aℓ(n) > 2n0 =⇒ n0aℓ(n) > 2n0 .

Since n0 ∼ (3n)2/3 − (3n)1/3 +O(1), and m ∼ (3n)1/3 − (l+2)
2

+O(n−1/3), (under the

conditions n → ∞, ℓ ≪ n1/3) we can put them together to get the bound on log aℓ(n)

as follows -

n0aℓ(n) > 2n0 =⇒ log aℓ(n) > n0 log 2− log n0 > n0 log 2 = CLn
2/3 +O(n1/3).

where CL = 32/3 log 2 = 1.4418. Therefore,

log aℓ(n) > 1.4418n2/3 (4.4)
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under the conditions n → ∞, ℓ ≪ n1/3.

4.4.2 Upper Bound on aℓ(n)

As indicated before, the upper bound will be fixed by the observation that the square

ice resembles plane partitions in the long range. Every configuration of square ice can

be broken into 4 plane partitions/skewed plane partitions as shown in Figure 3.6.

If p2(n) indicates number of plane partitions of volume n, let pℓ(n) indicate number of

skew plane partitions of the shape λ/µℓ, where µℓ is a plane partition that has l parts,

and a largest part l, i.e., forms a right triangle of side l at the origin. It can be seen that

each configuration has 2 plane partitions and 2 such skew partitions. Therefore,

aℓ(n) <
∑

∑
ni=n

2
∏

j=1

p2(nj)
4
∏

j=3

pℓ(nj) <
∑

∑
ni=n

2
∏

j=1

p2(nj)
4
∏

j=3

p2(nj +
l2

2
(3n)1/3).

This follows from the maximum ways of filling up the part µℓ. Since ℓ ≪ n1/3, this

section becomes O(1). Also, an upper bound can be fixed by maximizing the 4 plane

partitions to be equal in volume. Therefore,

aℓ(n) < p(n|4 parts)p2(
n
4
)4.

Since p(n|4) ∼ O(n3) [17],

log aℓ(n) < 4 log p2(
n

4
) ∼ 3ζ(3)1/3n2/3 = 3.1898n2/3, (4.5)

using the asymptotic behaviour of log p2(n) [10].

4.4.3 Final conjecture

Proposition 4.4. Putting the above two results together, it is clear that

32/3 log 2 < n−2/3 log aℓ(n) < 3ζ(3)1/3.

Conjecture 4.4. From the previous proposition, it can be seen that n−2/3 log aℓ(n) tends

to an ℓ-independent constant as → ∞, and ℓ ≪ n1/3.
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The heuristic explanation for this can be seen by examining large rectangles. As ex-

plained before, for n ≫ ℓ3, the number of oranges in the rectangle go as (3n)1/3((3n)1/3+

ℓ) ∼ (3n)2/3 + O(ℓn1/3). Since ℓ ≪ n1/3, the ℓ term is heavily suppressed, and does

not feature in the counting when the asymptotic limit is considered. We further show

that the estimates of the Monte Carlo simulations lie within these bounds.
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CHAPTER 5

Simulation Methods

5.1 Monte Carlo simulations

Monte Carlo simulations, so named for city of the same name in France and its popular

gambling culture, are one of the strongest tools to examine systems that are finite sized,

and exist in a very large number of microstates. They provide a systematic means for

determining ensemble averages of various measurables of the system by statistically

visiting certain microstates, and using weighted averages to estimate the actual ensem-

ble average. The system is setup as desired in a certain microstate of the system, chosen

arbitrarily, or to create a specific bias, as the need may be. The system is then allowed

to randomly pick microstates to jump to. The choice of states, weighting of these states

and the statistical spread of the visited microstates form the basis of the algorithm.

Monte Carlo simulations are typically setup for Markovian processes [18]. So a tran-

sition rate can be used to enable the system to move between states. A steady state

is obtained when the system attains detailed balance, that is, when the rate of outflow

from a specific microstate equals the rate of inflow into the state. Such a condition

is usually obtained when the distribution of states is uniform. When detailed balance

is attained, the system is in steady state, and the required ensemble averages can be

accurately calculated [19].

5.1.1 The Metropolis-Hastings Algorithm

The most popular type of Monte Carlo simulations is the Metropolis-Hastings Algo-

rithm. The algorithm is implemented for canonical ensembles that are Markovian in

nature, i.e. systems that can exchange energy with a temperature bath, but remain at

the fixed temperature of the bath. Hence, the tunable parameter for these systems is

the temperature of the bath. The boltzmann weight assigned to each state is given by



e−βE , where E is the energy of the system in the current microstate, and β is the inverse

temperature 1
KBT

. Therefore, the partition function of such systems is given by

Z = Tr(e−βH),

where H is the Hamiltonian of the system. It is clear that the system has a higher

probability of existing in microstates of lower energies, and hence, would prefer to

spontaneously jump from a state of higher energy to one with lower energy. The reverse

process, while possible, would not be spontaneous.

The Metropolis algorithm exploits this fact to create a transition rate between states.

Consider the system which is in the current state x, and proposes to jump to state x′.

The condition of detailed balance is stated as -

P (x)P (x → x′) = P (x′)P (x′ → x) =⇒
P (x → x′)

P (x′ → x)
=

P (x′)

P (x)
= e−β∆E.

The ratio
P (x→x′)
P (x′→x)

is called the transition probability or the acceptance rate Wxx′ . When

∆E = Ex′ −Ex < 0, the transition probability is greater than 1. So the transition takes

place with full certainty, and the proposed state is accepted as the new state, as it has a

lower energy as compared to the current state. If it is greater than one, then the higher

energy state x′ is accepted with probability equal to e−β∆E . Therefore, the new state x′

is accepted with a probability = Min(1,e−β∆E).

This entire process of picking a proposed state and accepting or rejecting it is called one

Monte Carlo step, and the process is repeated until the required distribution of states is

obtained.

5.2 Transition Matrix Monte Carlo

The Transition Matrix Monte Carlo is used when transitions can only occur between

"adjacent" microstates, and the transition probabilities depend on details of the 2 states

involved. So a matrix can be populated with the transition probabilities between any

2 states. The problem of counting oranges can be cast into that of a transition matrix

Monte Carlo algorithm.
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The pyramid of peak length ℓ, and the shapes formed by removal of oranges from the

pyramid is the structure of interest. By adding or removing oranges, each structure

becomes part of a Bratelli diagram, where the addition and removal form the means of

traversing the diagram through its edges. That is, each configuration leads to multiple

other possible valid configurations connected through the edges of the diagram. Thus,

all transitions occur between states that are adjacent on the Bratelli diagram. Traversing

the diagram by probabilistic means and keeping track of the number ways to move out

of a particular configuration forms the basis of the algorithm.

The system is Markovian in nature, since it has a finite system size, and hence a finite

phase space that is covered by traversing its Bratelli diagram. The system is aperiodic,

and hence is suitable for the implementation of Markovian Monte Carlo methods. Since

the simulation is carried out stepwise, it is essentially a simulation of discrete-time

Markov chains.

Consider a given configuration λ of n oranges. We define the following terms -

• N ℓ
+(n) - The number of oranges that may be removed to the current configuration

of oranges

• N ℓ
−(n) - The number of oranges that may be added to the current configuration

of oranges

• nℓ
+(n) - The number of oranges that may be removed to a configuration of n

oranges, averaged over all possible configurations

• nℓ
−(n) - The number of oranges that may be added to a configuration of n oranges,

averaged over all possible configurations

• aℓ(n) - The number of valid configurations for a given n.

The number of possible configurations, and possible positions of change grow very

rapidly, as can be seen from the first few exactly calculated numbers. So to explicitly

find aℓ(n) is a costly process, both in terms of time and resources. What might be

more useful is to estimate the asymptotic behaviour of aℓ(n). Thus, in order to estimate

the nature of the growth, we use an alternative method, by finding average number of

additions and removals that are possible per n. We use Monte Carlo simulations to

achieve this end.

Here, it may be noted that the algorithm establishes transition probabilities between

configurations that are on adjacent rows of the Bratelli diagram. This can be visualized
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as a matrix with transition probabilities on the primary off-diagonal both in the upper

and lower triangles. The diagonal would thus have the forbidden transitions.

Probabilistically traversing the Bratelli diagram is essentially a method of sampling

certain configurations of the system, as opposed to visiting every possible configuration.

If weighted appropriately, sampling the configurations is sufficient to estimate ensemble

averages of relevant quantities.

The algorithm is set up such that each Monte Carlo sweep takes the following steps

[20, 21].

begin sweep

find possible_additions and possible_removals;

update counters with weight:

1/{number(possible_additions)+number(possible_removals)};

Define prob_thermal=exp{-1/(temperature x scale)};

Choose chosen_pos uniformly from

possible_additions and possible_removals;

According to chosen_pos,

choose either to_add_orange or to_remove_orange;

If to_add_orange,

Perform add_orange at chosen_pos;

Else if to_remove_orange,

Perform remove_orange with probability prob_thermal;

end sweep.

Thus the Monte Carlo step is completed for the specific temperature. The temperature

could be varied to get the required distribution. The sweep is performed over a range

of temperatures from Tmin to Tmax, and a scale chosen by trial and error, to ensure a

uniform distribution of hits over the range of n. When the Monte Carlo sweeps have

been performed in repeated cycles of temperature sweeps, one can see that the system

"thermalizes" in its distribution, i.e., it reaches a stationary probability. In terms of the

35



transition matrix W and the probability distribution vector Π, this is given as

WΠ = Π. (5.1)

The attainment of stationary probability also guarantees detailed balance, i.e, the rate

of climbing up the Bratelli diagram equals the rate of climbing down. Satisfying de-

tailed balance ensures uniform sampling distribution over the range of integers under

consideration. Mathematically, this is expressed as -

aℓ(n)n
ℓ
+(n) = aℓ(n+ 1)nℓ

−(n+ 1). (5.2)

Thus, the Monte Carlo sweeps are performed until stationary probability is reached.

This could, in theory, be done until a pre-calculated "stopping time" is reached, which

we do not perform here. Instead, we look at the nature of the obtained distribution, and

compare the simulated ensemble averages with exactly calculated numbers to establish

that the stationary probability distribution has been attained.

Once the stationary probability is reached, we now use the counter data to calculate

the average quantities nℓ
+ and nℓ

−. The calculated averages and the detailed balance

condition, along with specified boundary conditions give the list of aℓ(n) when applied

recursively in the following manner.

aℓ(n) = aℓ(0)
n
∏

k=1

nℓ
+(k − 1)

nℓ
−(k)

. (5.3)

The minimum and maximum temperatures, and the temperatures used were dependent

on the specific run. The data was collected for 1000 oranges, 2000 oranges and 4000

oranges.

To sum up, we estimate aℓ(n) by using the Markovian nature of traversing the Bratelli

diagram. We calculate the ensemble averages n±(n) and further use the averages to

estimate aℓ(n). Error bars are established by comparing the obtained data with exactly

calculated numbers available. Thus, the asymptotic behaviour is determined by a two-

step process.
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CHAPTER 6

Results

The method of employing Monte Carlo simulations to estimate the asymptotic be-

haviour has been elaborated before. Based on analytic bounds, it is conjectured that

aℓ(n) will take the following form -

log aℓ(n) ∼ α1n
2/3 + α2n

1/3 + α3 + g log n.

From the condition of detailed balance aℓ(n − 1)n+(n − 1) = aℓ(n)n−(n), it is clear

that -

log
aℓ(n)

aℓ(n− 1)
= log

n+(n− 1)

n−(n)
∼

2

3
α1n

−1/3 +
1

3
α2n

−2/3 + gn−1.

So the required parameters to establish aℓ(n) can be found by fitting the ratio of n+ and

n− instead. Since they are the actual quantities being determined by the simulation, this

leads to greater accuracy in the asymptotics. It is also notable that the constant α3 is

absent in the above form.

6.1 Results of the simulation

The Monte Carlo simulation was run for values of n in the range [1,4200] for suitable

number of iterations, and the data for [ℓ3,4200] was appropriately averaged before being

fit to the above model to obtain the Table 6.1.

As can be seen from the data, α1 is nearly ℓ-independent, while α2 and g are clearly

dependent on ℓ. The parameter α1 can be estimated as 2.344±0.002.

If another term is added to the expression to make it

log
n+(n− 1)

n−(n)
∼

2

3
α1n

−1/3 +
1

3
α2n

−2/3 + gn−1 + ǫn−4/3,



ℓ α1 α2 g

1 2.34438 −0.0142642 −0.743792

2 2.34433 −0.0129182 −0.741693

3 2.34488 −0.0433843 −0.653471

4 2.34549 −0.0872087 −0.479429

5 2.34624 −0.14655 −0.209070

6 2.34662 −0.195253 0.121852

Table 6.1: Results of the three parameter fit.

then Table 6.2 is obtained. It can be seen that the estimate of α1 still holds. This table

indicates a possible suppression of the parameter α2. So after fitting with α2 removed,

we obtain Table 6.3.

ℓ α1 α2 g ǫ
1 2.34387 −0.00885166 −0.791637 0.0800653

2 2.34361 −0.0210338 −0.817617 0.142351

3 2.34418 −0.00770004 −0.742808 0.196249

4 2.34432 −0.0231988 −0.658148 0.454063

5 2.34544 −0.099351 −0.354031 0.415889

6 2.34502 −0.0944759 −0.214161 1.06672

Table 6.2: Results of the four parameter fit.

The ℓ-dependence of g is given by -

gℓ = −0.692854− 0.908691ℓ+ 0.0288371ℓ2.

The asymptotic behaviour clearly follows the analytic form

aℓ(n) ∼ Aµn2/3

ng.

ℓ α1 g

1 2.34393 −0.757374

2 2.34393 −0.755175

3 2.34365 −0.705109

4 2.34317 −0.596929

5 2.34259 −0.428581

6 2.34203 −0.198032

Table 6.3: Results of the two parameter fit.

38



When fit explicitly to this form as log aℓ(n) ∼ an2/3 + b log n + c, we can estimate µ

and A. The parameters thus obtained are given in Table 6.4. The data estimates a as

2.343±0.001, which lies within the range predicted by the first fit. Fitting the logA

term c gives -

logAℓ = −1.87944 + 0.257933ℓ.

ℓ a b c
1 2.34386 −0.750724 −1.68906

2 2.34389 −0.750636 −1.4316

3 2.3436 −0.70123 −1.03514

4 2.34297 −0.584432 −0.690943

5 2.34213 −0.39474 −0.50498

6 2.34131 −0.13896 −0.508337

Table 6.4: Fit to analytic form to estimate Aℓ.

6.2 Summary of results

In conclusion, the results obtained during the course of this project are summarized

below.

• The square ice was modelled in the form of stacking oranges, and the first few

numbers of the sequence were explicitly enumerated by appropriately modifying

the Bratley-McKay algorithm [22].

• Conjecture 4.3, on the analytic form of the sequence aℓ(n), was derived from the

generated data, for a given ℓ, for n = 1 to 9.

• Conjecture 4.3, on the analytic form of the sequence aℓ(n), was derived from the

generated data, for a given n.

• A Monte Carlo code was developed to calculate the required averages n+ and n−

numerically. The generated data was fit to appropriate models, and the required

coefficients were obtained. Three such parameter fits were executed.

• It was observed that the simulated data agreed with the exactly calculated num-

bers, and the three fits overlap in the region n ≫ ℓ3, where the asymptotic be-

haviour holds.

• Bounds on the asymptotic behaviour of aℓ(n) were analytically established, and

a conjecture (Conjecture 4.4) was proposed regarding its limit value.
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• The numerical simulations were shown to lie between the theoretically estab-

lished bounds ℓ ≪ n1/3, 1.4418 < n−2/3 log aℓ(n) < 3.1898.

• Conjecture 4.5, which stated that n−2/3 log aℓ(n) → C, for large n, was also

established. The ℓ-independent constant was determined to be C = 2.344±0.002.

• The four-parameter model gives the significant ℓ-dependent parameter

gℓ = −0.692854− 0.908691ℓ+ 0.0288371ℓ2.

• The data was also fit to the analytic form aℓ(n) ∼ Aµn2/3
ng. The ℓ-dependence

is given by logAℓ = −1.87944 + 0.257933ℓ.

❍
❍

❍
❍
❍
❍

n
ℓ

1 2 3 4 5 6

1 4. 3. 3.33333 4. 4.8 5.66667

2 4. 3.6 4.42857 5. 5.57143 6.21053

3 4.4 4.5 4.73684 5.35714 6.05 6.75

4 4.66667 4.96552 5.22727 5.88235 6.49515 7.14474

5 5.11765 5.5 5.77551 6.3038 6.94737 7.60318

6 5.46789 5.84173 6.22066 6.72 7.36332 8.00891

7 5.96396 6.26573 6.64955 7.12533 7.74042 8.39373

8 6.34513 6.5945 7.01852 7.5279 8.12331 8.77301

9 6.76854 6.94948 7.38264 7.89022 8.48059 9.12954

10 7.12933 7.27436 7.72628 8.24317 8.8361 9.4766

11 7.49545 7.61644 8.06117 8.58031 9.1736 9.8135

12 7.81883 7.9366 8.3765 8.90493 9.50095 10.1415

13 8.14612 8.26382 8.68592 9.21855 9.81632 10.4589

14 8.44864 8.57619 8.98595 9.52451 10.1246 10.7685

15 8.74732 8.88604 9.28026 9.82073 10.4235 11.0696

16 9.03321 9.18483 9.56815 10.1099 10.7154 11.3636

17 9.31608 9.47848 9.85231 10.3921 11.0002 11.6509

18 9.59022 9.76273 10.131 10.6682 11.279 11.9321

19 9.86206 10.0416 10.4055 10.939 11.5519 12.2074

20 10.1283 10.3128 10.6752 11.2051 11.8196 12.4775

Table 6.5: Data for n+(n), evaluated exactly by the Bratley-McKay algorithm.
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❍
❍

❍
❍
❍
❍

n
ℓ

1 2 3 4 5 6

1 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000

2 1.000000 1.200000 1.428571 1.600000 1.714286 1.78947

3 1.600000 1.500000 1.631579 1.785714 1.950000 2.10714

4 1.833333 1.862069 2.045455 2.205882 2.349514 2.48684

5 2.196079 2.250000 2.346939 2.531646 2.708502 2.87302

6 2.394495 2.532374 2.657277 2.845714 3.026455 3.20045

7 2.684685 2.839161 2.957589 3.136000 3.334665 3.52204

8 2.929204 3.079038 3.245098 3.427838 3.632309 3.82931

9 3.222472 3.343206 3.516921 3.702208 3.912800 4.12219

10 3.478060 3.582398 3.773716 3.975207 4.188871 4.40567

11 3.744087 3.826169 4.023685 4.233268 4.453994 4.67927

12 3.984526 4.056352 4.263526 4.483941 4.713279 4.94472

13 4.229119 4.294582 4.500206 4.727289 4.964233 5.20304

14 4.455698 4.523210 4.729609 4.965278 5.209590 5.4554

15 4.681782 4.752508 4.954201 5.196436 5.447833 5.70111

16 4.898715 4.975459 5.174351 5.423252 5.681336 5.94135

17 5.113531 5.196597 5.391810 5.645207 5.909697 6.17639

18 5.322227 5.412136 5.605582 5.863015 6.133674 6.4067

19 5.529442 5.624968 5.816928 6.076886 6.353322 6.63255

20 5.732570 5.833040 6.025264 6.287327 6.569233 6.85436

Table 6.6: Data for n−(n), evaluated exactly by the Bratley-McKay algorithm.
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Figure 6.1: Plots of log aℓ(n−1)
aℓ(n)

versus n−1/3. The three fits, along with actual data and

simulation data. The green points indicate explicitly enumerated data, the

red points are the data generated in simulation. The pink line is the three

parameter fit, the brown line is the three parameter fit, and the blue line is

the four parameter fit. Note that they all agree for n−1/3 ≪ ℓ−1. The plots

represent data from ℓ = 1, . . . , 6. Key: Black plot - Two parameter fit, Blue

plot - Three parameter fit, Purple plot - Four parameter fit, Red points -

Simulated data, Green points - Actual data
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Figure 6.2: A fit of g as a function of ℓ.

42



1 2 3 4 5 6 7
l

-1.5

-1.0

-0.5

logHAlL

Figure 6.3: A fit of logAℓ as a function of ℓ.
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CHAPTER 7

Conclusion and Unresolved Issues

The primary question proposed in this thesis was to study the behaviour of aℓ(n) by

decomposing it into plane partitions, and establish an exponent for its asymptotic be-

haviour. This question, along with an analytic study of the problem has been presented

in this thesis so far. However, there are several unresolved questions with respect to the

problem, some of which have been listed here.

• It can be seen from the generated data that the relation aℓ(n) > aℓ−1(n) holds for

ℓ between 1 and 6. It is conjectured that this relationship is true for all ℓ and a

given n. However, this conjecture has yet to be analytically proven.

• There is no closed form representation of aℓ(n), but for a given ℓ, an expression

for aℓ(n) for different n has been conjectured. This needs to be proved.

• Conjectures for aℓ(n), given n, have been made. They need to be further under-

stood in terms of combinatorics, and a new statistic has to be found.

• It is possible that the operators D and U have an underlying algebra to them, with

respect to generalized d-dimensional partitions, since these operations on other

similar objects are known to have an associated algebra.

• The generated data shows that n+(n) > n−(n) for n in the range [1,4200]. The

conjecture that this is true for all integers has to be established. It is easily shown

in case of integer partitions though the proof has to be generalized for all dimen-

sions.

• It is also seen that the averages n±(n + 1) > n±(n). This can be easily proved

if the previous conjecture, when established, is used along with the condition of

detailed balance.

Thus, there are several loose ends that have been left untied at the time of completion

of this report, which will hopefully be resolved soon.



APPENDIX A

The Bratley-McKay Algorithm

The Bratley-McKay algorithm [22] is a method of explicitly counting multi-dimensional

partitions. It can be modified as required to count configurations of any object that can

be placed on a Bratelli diagram, including generalized square ice. The original partition

algorithm is explained here.

Recall the following definition of an integer partition.

Definition A.1. A partition λ of integer n can be defined as a collection of nodes such

that if (x1, y1) ∈ λ, then (x2, y2) ∈ λ, ∀ x2 ≤ x1 and y2 ≤ y1. The total number of

nodes is n, and is also called the volume of the partition.

This can be generalized to higher dimensions as -

Definition A.2. A partition λ of integer n can be defined as a collection of nodes such

that if {xi} ∈ λ, then {yi} ∈ λ, ∀ xi ≤ yi, 1 ≤ i ≤ d + 1, where d is the dimension

of the partition. The total number of nodes is n, and is also called the volume of the

partition.

Therefore, to get a new valid configuration of volume n+1, a node has to be added such

that it does not violate the condition described in the definition. But it should be noted

that there are multiple such valid configurations that can be attained by adding a node at

the appropriate position. The algorithm has to visit each configuration exactly once in

order to count the total number of partitions of a given volume. This is done through a

recursive algorithm. The algorithm is explained for integer partitions, and can be easily

extended to higher dimensions as well.

We start with a node at the origin (0, 0), which will be the only node in the current

partition P. There are two possible locations to add nodes to get valid configurations,

as per the required condition - (0, 1) and (1, 0). They are stored in the set of possible

additions Poss_Add.



The central part of the algorithm is the recursive method that visits a partition, adds

a node, updates Poss_Add and blocks certain nodes from being added, to avoid over-

counting. Let it be called addpart(n,from,to), where n is the number of nodes currently

in P, and from and to determine which nodes are allowed, and which are blocked. There-

fore, in the beginning, this routine will be called as addpart(1,0,1), since there is 1 node

in P and 2 possible nodes to be added. The routine would then go into recursion as

described in the following pseudocode -

routine addpart(n,from,to)

for i=from; i=to; i++

{

addnode Poss_Add[i] to P;

if size of P=N, continue to end of loop;

update Poss_Add by adding "s" new nodes;

increment "to" by the number of nodes added to Poss\_Add;

addpart(n+1,i,to+s);

}

Here, N is the number whose integer partitions are to be enumerated. Note that we are

adding the next node with the from adjusted to avoid overcounting. The only difference

in enumerating higher dimensional partitions would be in the dimensionality of the

nodes, and the complexity in checking for the condition while updating Poss_Add.

The algorithm can be used to enumerate any object with a Bratelli lattice structure.

Given the condition for valid configurations, one can traverse the lattice and counting

configurations after blocking nodes that would result in overcounting.
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