Train track extraction and haze removal

A Project Report

submitted by

KAMMULA RUPADITYA

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2016

THESIS CERTIFICATE

This is to certify that the thesis titled Train track extraction and haze removal sub-
mitted by Kammula Rupaditya to the Indian Institute of Technology, Madras, for the
award of the degree of Dual Degree, is a bona fide record of the research work carried
out by him under my supervision. The contents of this thesis, in full or in parts, have

not been submitted to any other Institute or University for the award of any degree or

diploma.

Dr. A.N. Rajagopalan
Place: Chennai (Research Guide)
Date: Professor

Dept. of Electrical Engg.
IIT Madras
Chennai - 600 036.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my project guide Dr. A. N. Rajagopalan
for his valuable guidance and motivation throughout the course of the project. I am very

grateful to him for providing his valuable time to guide me during my project.

It is a privilege to be a student at IIT Madras. The time I got to spend at the Image
Processing and Computer Vision Lab has been extremely fruitful, given the extremely
healthy research environment that exists in the lab. Thanks to all my teachers for the
academic insight obtained from them. I also acknowledge the excellent facilities pro-

vided by the institute to the students.

I am indebted to my parents for their unconditional love, support and motivation. I

dedicate this thesis to them.

ABSTRACT

KEYWORDS: Train tracks, haze removal, dark channel prior.

Safety is very important for any railway system. A train is controlled by its driver and
the safety of a train depends on the vigilance of the driver. The driver of the train must
be constantly aware of the tracks and the surrounding environment. The the field of
view of a train driver must contain the space between two rails in front of the train and
the near lateral area (left and right side) of these rails. A support system that can quickly

identify such regions can be very helpful by improving the reaction time of the driver.

This thesis is an attempt to develop a safety system for trains which can detect the
train tracks and also remove haze in hazy scenarios. The detected tracks can help the
driver or an automation to quickly identify the region of interest and look for possible
obstacles. Haze removal helps in improving the visibility of the driver and makes it
possible to detect tracks in bad weather. A well known technique used for haze removal
for outdoor scenes uses a prior called the dark channel prior to remove haze from the

hazy scene. An efficient implementation of this technique is discussed.

il

TABLE OF CONTENTS

ACKNOWLEDGEMENTS| i
ABSTRACT ii
LIST OF FIGURES! v
ABBREVIATIONS vi
1 INTRODUCTION 1
1

(1.2 Objectivesand Scope] 2
(1.3 Organization of the thesis| 4
2 TRACK EXTRACTION 5
5

[2.2° Technical Background 5
[2.2.1 Sobeledgefilterff 6

[2.2.2 Hough transform for detecting lines| 7

2.3 Tracksextraction| 9
[2.3.1 Computing the Gradient image|. 10

[2.3.2 Detecting straight lines| 10

[2.3.3 Selecting the tracks from the set of rail pairs|. 12

3 HAZE REMOVAL 16
16

[3.1.1 Estimating atmospheric light 16

[3.1.2 Dark channelpriory 17

[3.1.3 Estimating the transmission| 17

[3.1.4 Recovering the scene radiance| 18

B2 OurModell. 18

il

[3.2.1 Estimating atmospheric light A|

[3.2.2 Estimating the dark channel|

[3.2.3 Computing the transmissionmap|

[3.2.4 Removinghaze|,

4 EXPERIMENTS AND RESULTS

4.1 Experiments|

S CONCLUSIONS

REFERENCES|

v

19
19
22
22
23

25
25
25

29

29

LIST OF FIGURES

(1.1 Examplesof rail tracks.|
(1.2 Examples of hazy images of tracks.|
2.1 "mmageofaraltracks.,.
[2.2 Example of an 1image and 1ts gradient magnitude.|
2.3 Plot of a single sinusond.|o
[2.4 Plot of multiple sinusoids intersecting at a point.|.
[2.5 Example of lines detected by HT.|.
[2.6 Flow-chart of the track extraction algorithm.|.
[2.7 Gradient imageof Fig2.1|
(2.8 The binary image of Fig 2.6 when threshold of 150 1s used.|
(2.9 All the lines detected by HT on Faig 2.7
[2.10 All the lines detected n Fig2.1.|
[2.11 Best pair of lines detected as tracks.|
[2.12 Nextbestparrof lines.|
[2.13 The final output of our algorithm..
[2.14 Examples of rail tracks detection.|.
3.1 Ahazymmage|.
[3.2 Flow-chart of haze removal algorithm.|
(3.3 Dark channel of the hazy image Fig 3.1
[3.4 Transmission map of the hazy image Fig 3.1.|
[3.5 Haze removed image from the Fig 3.1.f.
[3.6 Examples tracks detection 1n hazy image after haze removal|
[3.7 Examples of haze removal|
4.1 Examples of rail tracks detection.|.
4.2 Examples of rail tracks detection.|.
4.3 Examples of tracks detection combined with haze removal.|

W

O o0 o0 9 N W

10
11
11
12
13
14
14
15

16
19
21
22
22
23
24

26
27
28

ROI
POV
HT
DCP
ERTMS
ETCS
DEQUE
FPS
GPU
PC

ABBREVIATIONS

Region of Interest

Point of View

Hough Transform

Dark Channel Prior

European Rail Traffic Management System
European Train Control System

Double Ended Queue

Frames Per Second

Graphics Processing Unit

Personal Computer

vi

CHAPTER 1

INTRODUCTION

Sensor based support for driver assistance to improve safety has been in development
for auto-mobiles recently. These vary from total automation to alerting the driver of
possible collisions. Similar support systems can also be envisaged for railways. Detect-
ing the tracks becomes a fundamental task for such systems. It can help in delimiting
the search space for possible obstacles and signs. This can help the driver in quickly as-
sessing the region of interest (ROI) and can also be used for automation of the obstacle

detection process.

Yet another useful functionality of these type of support systems is haze removal.
Haze limits the driver’s perception and can make it hard to notice the signs and to fixate
on the tracks. Haze removal can help the driver get a better view of the tracks, signs

and the environment.

1.1 Previous Works

Existing train anti-collision systems such as the european railway traffic management
system (ERTMS) or european train control system (ETCS) rely on infrastructure equip-
ments. They work by having configured fixed blocks and track-side equipment that
monitors individual signals and passing this information to trains via track-mounted
transponders or radio link. This permits the train to reach its maximum permitted speed
while maintaining safe braking distance. Some safety systems exist for rail-road cross-
ing which uses stationary cameras mounted on the ground as described in Sheikh ez al.

(2004), | Xue et al.| (2008)) and |Silar and Dobrovolny| (2013)).

The problem of track detection is very similar to detecting roads. There are road lane
markings detection systems that are mature enough to be commercially used for driver
assistance. Some of the road detection techniques such as |Yu and Jain (1997) |Wang

et al.| (2004)) use lane markings as guidance and some variant of Hough transform (HT)

to detect the lanes. These techniques can be extended to detect tracks. One example
of track detection is Kaleli and Akgul (2009) where a dynamic programming based
approach is used to detect tracks. Other techniques also exist for track detection (Ross
(2010)) which assumes a clothoid model to represent the tracks and uses it to extract
them. Maire and Bigdeli (2010) take a rectangular region in-front of the camera and

detect a pair of lines in it and use it to detect tracks.

Haze removal is a challenging problem because haze depends on the depth of the scene.
A single image haze removal is an under-constrained problem. Many methods have
been proposed that use multiple images or additional depth information. Polariza-
tion based methods (Schechner et al.| (2001), Shwartz et al.| (2006)) use multiple im-
ages taken with different polarizations. Depth based methods (Narasimhan and Nayar

(2003))) require additional depth information from user input or known 3D models.

Single image haze removal uses strong priors or assumptions to compensate for the
limited constraints. [Tan/ (2008)) is based on the observation that haze free image must
have higher contrast compared to its input hazy image and removes haze by maximiz-
ing the local contrast of the input hazy image. An image prior called dark channel
prior (DCP) was introduced in He et al.| (2011) which helps in removing the haze by

estimating the transmission map of the input hazy image.

1.2 Objectives and Scope

Railway tracks usually have a high contrast with the environment and are distinguish-
able. They have certain properties which can be exploited to make the detection possi-
ble. The train moves along the tracks so they are not affected by motion blur i.e they
still appear sharp while the other edges in the environment are blurred. From the point
of view (POV) of the engine, they also appear as a pair of lines moving towards each
other. These properties can be observed in the images included in Fig [I.1| which shows
4 images in which we would like to detect the tracks. We first use simple edge detectors
to find the edges followed by line detection using Hough transform. Then, we exploit

these properties to detect the tracks given a scene that contains them.

We limit ourselves to situations where the tracks are completely straight or approxi-

mately straight. For cases where there is a curvature or when multiple tracks cross over,

2

a different technique will be needed.

Figure 1.1: Examples of rail tracks.

Fig[1.2 shows some examples of hazy images from which we aim to remove the haze
component. Many algorithms exist to remove haze. However, for practical purposes
we need one that can be used in real-time. A dark channel prior (DCP) based approach
works here because it is an outdoor scene which satisfies the DCP property and the
algorithm can be designed to run fast and reliably. We skip the refinement step in the

standard DCP method proposed by He et al.| (2011) to save on speed as this doesn’t

affect the output too much and is not an absolute necessity for videos. The most de-
manding operation of this method is estimation of the dark channel. We present an
optimized algorithm using the data structure double ended queue (DEQUE) to improve

the running time of this operation by 7-8 times when compared to the normal method.

Figure 1.2: Examples of hazy images of tracks.

1.3 Organization of the thesis

In chapter 2, we begin by covering the technical background related to track extraction.

Then, our algorithm is discussed in detail.

In chapter 3, we discuss haze removal by using dark channel prior. The idea of dark

channel prior is first presented followed by a detailed discussion of our algorithm.
In chapter 4, the performance analysis of the algorithm is presented along with results.

In chapter 5, we present the conclusions of the thesis.

CHAPTER 2

TRACK EXTRACTION

2.1 Introduction

In this chapter, an algorithm for track extraction will be discussed. Railway tracks are
differentiable from the environment and an edge filter will help highlight the tracks. We
assume that the scene is viewed from the POV of the driver. This makes the tracks ap-
pear like a pair of lines moving towards each other. As the train moves along the tracks,
the tracks do not appear blurred in the image since they have a uniform composition
while the other strong edges in the environment get blurred. These properties can be
observed in Fig[2.1] This assumption is exploited to devise an algorithm for extraction
of the rail pairs which form the tracks. The Sobel operator is used for edge filtering and

the lines are detected using HT.

Figure 2.1: image of a rail tracks.

2.2 Technical Background

In this section, we discuss the theory of Sobel operator and Hough transform to detect

straight lines which are used in our method .

2.2.1 Sobel edge filter

The Sobel operator is used for edge detection. The Sobel operator is based on convolv-
ing the image with a small, separable, and integer-valued filter in the horizontal and

vertical directions and is therefore relatively inexpensive in terms of computations.

The operator uses two 3x3 kernels which are convolved with the input image A to
produce two gradient images, one for the horizontal Gz and one for the vertical G.

The computations for Gz, Gy and the final gradient magnitude image G are as follows:

-1 0 +1
Gr=|-2 0 42| %A 2.1
-1 0 +1

-1 -2 -1
Gy=10 0 0l =*xA 2.2)
+1 +2 +1

G = Gx? + Gy? (2.3)

" I h.:}\ . IJ y . I \..\H{ \ {ﬁ'
X% b (YRR
Nl
y .\'- ‘i'."l..‘-:_";,‘""!,... i:d.f\‘.,'fﬂ* '—h N,

wF iy

%

Figure 2.2: Example of an image and its gradient magnitude.

2.2.2 Hough transform for detecting lines

Hough transform can be used to detect straight lines (Duda and Hart| (1972)). In gen-
eral, a straight line y = mx + ¢ can be uniquely represented as a point (m,c) in the
parameter space. However, there is a problem when m is unbounded (i.e vertical) with
this representation. This would give rise to unbounded values of the slope parameter m.
Thus, for computational reasons, the Hesse normal form r = x cos 6 + y sin 6§ where r
is the distance from origin to the closest point on the line and 6 is the angle between the
X-Axis and the line joining the closet point on the line to origin is used. Therefore it is
now possible to uniquely represent each line in the (r,f) parameter space (also known

as Hough space)within bounded values.

For a given point (z, 7o) in the image, we have all the possible lines passing through
itas r = xgcosf + yo sin 6. The plot of r vs € is a sinusoid. As an example, plot for x

=8 yp = 6 is shown in Fig[2.3]

Figure 2.3: Plot of a single sinusoid.

Thus, each point on the image produces a sinusoid in the Hough space graph r vs
6. The intersection of sinusoids implies that there is a line passing through these points.

The above plot combined with plot of xg =4 yy =9 and xy = 12 yo = 3 is shown in Fig
2.4

10

13

] 0% 1 L5 2 2.5 3

@

Figure 2.4: Plot of multiple sinusoids intersecting at a point.

The more number of curves intersecting at a point means that there are more number
of points on that line. A desired threshold can be set to use those intersection points as

lines.

Fig [2.5] shows an example of the lines detected by the HT. The left image is the
original image and the detected lines found in the input image are shown in the right

image.

Figure 2.5: Example of lines detected by HT.

2.3 Tracks extraction

In our method, we start by computing the gradient image and threshold it to obtain a
binary image. Then we use HT to detect all the lines in the binary image. We then find
all possible pairing of the detected lines and check each pair for the conditions that rail
tracks will satisfy (Equations and). Finally of all the pairs satisfying
these conditions, we pick that pair which is of the longest length. The flow-chart of our

algorithm is given in Fig[2.6]

Input image o Compute gra-
d ° dient image

Compute HT to
find all lines

Enumerate all pos-
sible pair of lines

Check which of the

pairs satisty the tracks N e "
conditions and add ossible tracks

them to possible tracks

Pick the best tracks
from the possible tracks

Stop

Figure 2.6: Flow-chart of the track extraction algorithm.

2.3.1 Computing the Gradient image

To represent images, the OPENCV Mat data-structure is used. We begin by applying
a Gaussian blur with a kernel of size 3 x 3 pixels. This is followed by a conversion to
Gray scale image. Inbuilt OpenCV functions are used for both these operations. We
then proceed to compute the gradient image using Sobel operator. The gradient-z and
gradient-y are computed and then combined in a 3:1 ratio as opposed to 1:1 ratio. This
is done to highlight the rail edges which have larger gradient along x than along y. This
will also suppress those edge which have stronger y gradient which will be removed

later when we threshold the image. Fig[2.7|shows the gradient image of Fig[2.1]

Figure 2.7: Gradient image of Fig 2.1.

2.3.2 Detecting straight lines

Now we threshold the gradient image to obtain a binary image. This operation is as

follows

255 ifG(z,y) > to
B(z,y) = (2.4)

0 otherwise

where B(x,y) is the intensity of the binary image at pixel (z,y) and G(z,y) is the
intensity of the gradient image at pixel (z,y). to is the threshold for the binary image.
Fig 2.7 shows the binary image obtained when a threshold of 150 is used (i.e £y = 150).

The threshold is chosen to be 150 because we found that the rail edges have magnitude

10

stronger than 150 while other unimportant edges had around 80-130 magnitude. This

way the rail edges are preserved while removing unimportant edges.

Figure 2.8: The binary image of Fig 2.6 when threshold of 150 is used.

Next, we proceed to apply the Hough transform on the binary image to get the lines.
A line is represented by the data structure Vec4i which is a vector of four integers.
These four integers hold the end points of the line segment. For end points (1, ;)
and (2, y2), Vecdi is organised as [z1, Y1, T2, y2]. The OpenCV function Houghlines is
used to get the lines. Although this function returns line segments, we refer to them as
lines as they can be extended. Fig shows all the lines detected by HT on Fig in

red color. Fig[2.10|shows the lines as detected on the original image.

Figure 2.9: All the lines detected by HT on Fig 2.7.

11

Figure 2.10: All the lines detected in Fig 2.1.

2.3.3 Selecting the tracks from the set of rail pairs

Next, we enumerate all the possible pair of lines from the set of lines detected by the

HT and check them for two conditions to determine if they can indeed be train tracks.

The first condition is the intersection criteria which checks if a pair of line segments
intersect with each other. For this purpose, we compare the end points of both the line
segments. Let the first line segment have end points (1, y1),(x2, y2) and the second line
segment have end points (X1, Y7),(Xo, Ys). If the line segments do not intersect, then

the following equations are satisfied i.e

(éL'l — Xl)({EQ — Xg) >0 (25)

(11 = Y1) (y2 — Y2) > 0 (2.6)

The second condition is the slope criteria which follows from our assumption of
drivers POV. From the POV of the driver, the lines corresponding to tracks should ap-
pear as converging at a point near the center starting from the bottom of the frame.
With the assumption that the camera is positioned between the pair of lines that form
the tracks, the left line will have a positive slope and the right line will have a negative

slope. The slopes of the lines previously assumed are given by the equations 2.7 and

12

2.8 respectively. The left rail and right rail are first marked by their respective x co-
ordinates. Then we check the slope of the left rail and right rail. These two steps can be

combined and written in a single conditions as Equations [2.9]and [2.10]

_ Y2 — U1

myp 2.7)
Ty — I

my = % (2.8)

(X1 —x1)*my >0 (2.9)

(x1 — X1)*mg >0 (2.10)

If a pair of lines satisfy both the criteria, they are added to a set of possible tracks.
We finally pick the best pair from the set of possible tracks. The pair with the longest
combined length is taken as the best pair (i.e, combined length is the cost function). For

the lines assumed earlier, the cost function can be written as

V(e —22)2 + (g1 — 12)2 + V(X1 — Xo)2 + (Y1 — Ya)? 2.11)

Figs [2.11] and [2.12] show best pair and the next best pair of lines detected as tracks

respectively.

Figure 2.11: Best pair of lines detected as tracks.

13

vl

bl

:]
o

.“‘Im. A
e '
il

“WM
il
AL

Lﬂ‘l.ﬁ"

Figure 2.12: Next best pair of lines.

After this, we extend the pair of lines in both directions till they meet in one direction
and to the bottom of the frame in the other so that the entire track is selected. Fig[2.13]
shows the tracks extended as mentioned. We can also use a mask to reduce the region

to look for lines if there are other strong edges in the environment such as electric poles

on track-side or another set of tracks on the side.

Figure 2.13: The final output of our algorithm.

More examples of tracks detection are given in Fig[2.14] The left column contains

the input images while the right column contains the corresponding output by our algo-
rithm.

14

Figure 2.14: Examples of rail tracks detection.

15

CHAPTER 3

HAZE REMOVAL

3.1 Introduction

The model used to describe hazy images is given by

I(z) = J(2)t(z) + A(1 — t(z)) 3.1)

where [is the observed image, J is the scene radiance(desired image), A is the global
atmospheric light and ¢ is the medium transmission. The goal of haze removal is to
recover J, A and ¢ given I which is an N-pixel image. Thus, we have 3V constraints to

estimate 4/N+3 values.

Figure 3.1: A hazy image.

3.1.1 Estimating atmospheric light

The brightest pixels in the hazy image are considered to be the most haze-opaque. This
is true when atmospheric light is the only source of illumination and sunlight can be

ignored. The scene radiance is given by

J(z) = R(z)A (3.2)

where R(x) is the reflectance of the scene points. In this case, the haze imaging equation

can be rewritten as
I(x) = R(x)At(z) + A(1 — t(z)) (3.3)

When pixels at infinite distance exist(i.e ¢(x)=0) which is often the case for the images
we are concerned with because of the presence of sky, the atmospheric light A can be

considered to be equal to the brightest pixels of the image.

3.1.2 Dark channel prior

Dark channel prior is based on the observation that in general non-sky patches of an
outdoor image, atleast one color channel has some pixels with intensities close to zero.

Which means that the minimum of the intensities in such a patch is close to zero.

For an image J, its dark channel J%"* is given by

dark o : : c
J (x)—-ﬁggﬁéggng(yD) (34

where c is a color channel of J and 2(x) is a local patch centred at x. The dark channel

prior observation says that, J9* — for pixels in the non-sky region.

3.1.3 Estimating the transmission

Rearranging equation 3.1, we get

+1—t(z) (3.5)

for each channel. Assuming that the transmission in a local patch €2(x) is constant, let

it be #(x). Applying min on both sides, we have

. Iy, . [Jy) -
i (m(x)) =) <m< ac) ricle 6o

17

As J is the haze free image, the dark channel of this should be zero. Therefore,

;%1(%(“%1,%}3(‘] (y) =0 (3.7

. _ J(y) B

R . [1°(y)
= <m< A)) 5

min (min (I C(y)>> is the dark channel of the normalized hazy image. Note that,

Also, A€ is positive.

{ can be estimated as

yeQ(z) \ ceB,G,R As
this is not a good approximation for sky regions as hazy image is very close to A°.

Hence, in the sky region, we have

. [I(y)
o (am(52)) - 310

3.1.4 Recovering the scene radiance

Rearranging equation 3.1,

J@)= D24 (3.11)

When t(x) is close to zero, the noise gets amplified. So, we set a lower bound to t(x)

which is to

+ A (3.12)

3.2 Our Model

We begin by estimating the atmospheric light A and dark channel of the input hazy

image. Next we use the estimated A and dark channel to compute the transmission

18

map of the image. Finally, we use the transmission map to remove haze from the input

image. The flow-chart of our algorithm is shown in Fig[3.2]

‘nput imase o estimate Atmo- |
2 . spheric light A

!
|
|
|
A

estimate the compute the trans-
dark channel mission map

T
!
|
|
|
|
|
|

remove haze using
dark channel - . !
the transmission map

stop

Figure 3.2: Flow-chart of haze removal algorithm.

3.2.1 Estimating atmospheric light A

To estimate the atmospheric light A, we split the image into the R, G, B channels and
calculate the max intensity in each channel. Equation [3.13] shows how each channel of

A is calculated.

A =max ¢ ceB,G,R (3.13)

3.2.2 Estimating the dark channel

To calculate the dark channel for a pixel (z,y) we take a patch of size 15 x 15 centred
at (x,y) and find the minimum of the minimum of each channel(B,G,R). This is done
at all the pixels of the hazy image. This whole process can be optimized by using a
double-ended queue(DEQUE) data structure. A DEQUE is an abstract data type which
behaves as a queue to which elements can be added or removed from the front(head)

or back(tail). While the insertion/deletion operation is inefficient at the middle of the

19

DEQUIE, it can be performed in O(1) at the head/tail ends. This makes it very useful

in designing an efficient algorithm to estimate the dark channel. In our algorithm, we

insert and remove each and every pixel only once and we do it at the head/tail ends

of the DEQUE. For an NxN image and patch size KxK, this reduces the time com-

plexity from O(N2K?) to O(N?). We use the inbuilt C++ implementation for which the

documentation can be found at cplusplus.com. The algorithm is as follows:

Algorithm 1 Estimating Dark Channel using DEQUE

Require: (a) Matrices src,dark_bgr, temp_channel, dark_channel (b) A DEQUE Dq

(c) WIN_SIZE

1: src matrix is the input image
2: for i from O to N,,,,s do
3 for j from O to N5 do
4: dark_bgr(i,j) = min of B,G,R channels of src(i,j)
5: end for
6: end for
7: win_center = WINSIZE—1
8: for i from O to N,.,,,; do
9: clear Dq
10: for j from O to N.,;s do
11 while Dg# ® and front element y co-ordinate < j-win_center do
12: remove the front element Dq
13: end while
14: while Dg# ® and back element y co-ordinate < j-win_center and back ele-
ment intensity >intensity of current pixel of dark_bgr do
15: remove the back element of Dq
16: end while
17: add dark_bgr(i,j) to the back of Dq
18: temp_channel(i,j) = front element of Dq
19: end for
20: end for
21: for j from O to N, do
22: clear Dq
23: forifrom O to N, do
24: while Dq# ® and front element x co-ordinate < i-win_center do
25: remove the front element Dq
26: end while
27: while Dg# ® and back element x co-ordinate < i-win_center and back ele-
ment intensity >intensity of current pixel of temp_channel do
28: remove the back element of Dq
29: end while
30: add temp_channel(i,j) to the back of Dq
31: dark_channel(i,j) = front element of Dq
32: end for
33: end for

We first compute dark_bgr matrix which has the minimum intensity of the three

20

channels of each pixel.i.e

dark_bgr(z,y) = CE1}19171GI}RI (x,y) (3.14)

which is then used for the next part. This algorithm then makes two passes. In the first
pass, we go across the columns and insert the pixels into the DEQUE. Because of the
manner in which we insert elements into the DEQUE, the first element of deque at each
pixel say (z,y), is the minimum of all the k-pixels ((z — k + 1,y) to (x,y)) before it
and this value is stored in a new matrix at the location (z — %, y). Let this new matrix

be called temp_channel. The new matrix elements can be written as

temp_channel(z,y) = min dark_bgr(i,y) (3.15)

x-k+1<i<x

This new array is then used to make a second pass, now across the rows. Finally we
will have a new array which has the dark channel of the input image. The computation

of dark_channel matrix from the temp_channel matrix can be written as

dark_channel(z,y) = min temp_channel(z, j) (3.16)
y-k+1<j<y

Fig[3.3]| shows the dark channel computed by out algorithm.

Figure 3.3: Dark channel of the hazy image Fig 3.1.

21

3.2.3 Computing the transmission map

Next, we compute the transmission map following the procedure described in subsec-
tion [3.1.3] The atmospheric light and the dark channel estimated earlier are used for

this step. Fig[3.4] shows the tranmission map computed using the dark channel Fig[3.3]

Figure 3.4: Transmission map of the hazy image Fig 3.1.

3.2.4 Removing haze

We finally use the transmission map computed earlier to remove the haze. This step is
based on equation [3.12] We use the threshold ¢, = 0.1. Fig[3.5|shows the final output

after removing haze.

Figure 3.5: Haze removed image from the Fig 3.1.

22

3.3 Results

Fig [3.7] shows some results of our method. The left side column has the input hazy
images and the corresponding outputs are shown in the right side column.We can notice
that there is still haze around the objects like poles, sign-boards and trees. This is

because we have skipped the refinement step as proposed in |He et al.| (2011) since it

takes too long to process and is impractical for real-time videos. The alternative to

this step as proposed by [Kil ez al.| (2013)) was found to be unreliable because of the

significant presence of sky-region and a large portion of pixels being close to the value

of A. The other alternative proposed by Hsieh ez al.| (2014) resulted in only marginal

improvements for the haze around the objects while the output appeared more saturated.

Fig[3.6]shows an example where the tracks detection algorithm presented in Chapter
fails to detect tracks on the hazy image but is able to detect the tracks after removing
haze from the input image. The top-left image is the input image. The failed output of
the tracks detection algorithm is the top-right image. Bottom-left image is the output of

haze removal algorithm and the tracks detected are shown in the bottom-right image.

Figure 3.6: Examples tracks detection in hazy image after haze removal

23

Figure 3.7: Examples of haze removal

24

CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Experiments

The algorithm designed to detect the train tracks was tested on over 4000 frames of size
596 x 336 pixels and 30000 frames of size 1280 x 720 pixels with good success. These
frames were obtained from videos found on the internet. The most demanding step of
the algorithm is the dark channel estimation which has a time complexity of O(N?) and
complexity of every other process is of same or lower order. So the time complexity of
the system is O(N?). The average running time was found to be 35 ms for each frame.
This means the algorithm can be used to process a video of frame rate upto 29 FPS with
one frame delay. When coupled with haze removal algorithm, the average running time
was increased to 100 ms. So a video of frame rate upto 10 FPS can be processed with a
one frame delay. With a GPU based implementation as explained in OpenCV), a further

speed up of 10 - 20 times can be achieved.

The system was developed in C++ using OpenCV libraries and other C/C++ li-
braries.The experiments were performed on a system with 8 GB RAM and intel i7-

3537U processor with no processes running in the background.

4.2 Results

Figs 4.1 and {4.2] show the input and the output of the algorithm over various frames
of two different videos. The left column shows the input image and the right column
shows the output for the corresponding input image. The scene in both these examples
is day-time and not hazy with straight or approximately straight tracks. The detection
of the tracks is done accurately in both these cases. Fig{.3| shows the input and output
of the haze removal algorithm along with tracks detection on various frames of a hazy
video. The input hazy images are shown in the left column and their corresponding

output in the right column.

Figure 4.1: Examples of rail tracks detection.

26

Figure 4.2: Examples of rail tracks detection.

27

Figure 4.3: Examples of tracks detection combined with haze removal.

28

CHAPTER 5

CONCLUSIONS

In this thesis, we have proposed a system to detect the train tracks given a video se-
quence from a camera mounted on the train. With the help of Sobel operator and Hough
Transform, we find all the lines in the image. Then, tracks are detected by checking the
possible pairs of lines for some conditions as discussed in section [2.3.3] The detected
tracks can be used as a ROI to look for obstacles by driver or an obstacle detection

automation.

We have also developed a method to remove haze when the scene is hazy using the dark
channel prior method. We designed an optimized algorithm to estimate the dark channel
which is the most demanding operation of this method using the DEQUE data structure
which improves the speed by 5 times and makes it possible to run the algorithm on

real-time videos.

We have achieved reasonable processing time for the videos on the PC. With an em-
bedded systems implementation, the system proposed can perform these tasks real-time
on a live video sequence to assist the driver by detecting the tracks and removing haze
when the scene is hazy. Our system does not detect the haze automatically and user

input is needed to inform the system about presence of haze in the scene.

10.

1.
12.

13.

14.

REFERENCES

. cplusplus.com (). http://www.cplusplus.com/reference/deque/

deque/.

Duda, R. O. and P. E. Hart (1972). Use of the hough transformation to detect lines
and curves in pictures. Communications of the ACM, 15(1), 11-15.

ERTMS (). http://www.ertms.net/?page_id=42/.
ETCS (). http://uic.org/ETCS.

He, K., J. Sun, and X. Tang (2011). Single image haze removal using dark channel
prior. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(12), 2341—
2353.

Hsieh, C.-H., Y.-S. Lin, and C.-H. Chang, Haze removal without transmission map re-
finement based on dual dark channels. In Machine Learning and Cybernetics (ICMLC),
2014 International Conference on, volume 2. IEEE, 2014.

Kaleli, F. and Y. S. Akgul, Vision-based railroad track extraction using dynamic pro-
gramming. In Intelligent Transportation Systems, 2009. ITSC’09. 12th International
IEEE Conference on. IEEE, 2009.

Kil, T. H., S. H. Lee, and N. I. Cho, Single image dehazing based on reliability map of
dark channel prior. In Image Processing (ICIP), 2013 20th IEEE International Confer-
ence on. IEEE, 2013.

Maire, F. and A. Bigdeli, Obstacle-free range determination for rail track maintenance
vehicles. In Control Automation Robotics & Vision (ICARCV), 2010 11th International
Conference on. IEEE, 2010.

Narasimhan, S. G. and S. K. Nayar, Interactive (de) weathering of an image using
physical models. In IEEE Workshop on Color and Photometric Methods in Computer
Vision, volume 6. France, 2003.

OpenCV (). http://opencv.org/platforms/cuda.html.

Ross, R., Vision-based track estimation and turnout detection using recursive estima-
tion. In Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Con-
ference on. IEEE, 2010.

Schechner, Y. Y., S. G. Narasimhan, and S. K. Nayar, Instant dehazing of images
using polarization. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on, volume 1. IEEE, 2001.

Sheikh, Y. A., Y. Zhai, K. Shafique, and M. A. Shah, Visual monitoring of railroad
grade crossing. In Defense and Security. International Society for Optics and Photonics,
2004.

30

http://www.cplusplus.com/reference/deque/deque/
http://www.cplusplus.com/reference/deque/deque/
http://www.ertms.net/?page_id=42/
http://uic.org/ETCS
http://opencv.org/platforms/cuda.html

15.

16.

17.

18.

19.

20.

Shwartz, S., E. Namer, and Y. Y. Schechner, Blind haze separation. In Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2.
IEEE, 2006.

Silar, Z. and M. Dobrovolny, The obstacle detection on the railway crossing based on
optical flow and clustering. In Telecommunications and Signal Processing (TSP), 2013
36th International Conference on. IEEE, 2013.

Tan, R. T., Visibility in bad weather from a single image. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008.

Wang, Y., E. K. Teoh, and D. Shen (2004). Lane detection and tracking using b-snake.
Image and Vision computing, 22(4), 269-280.

Xue, J., J. Cheng, L. Wang, and X. Gao, Visual monitoring-based railway grade cross-
ing surveillance system. In Image and Signal Processing, 2008. CISP’08. Congress on,
volume 2. IEEE, 2008.

Yu, B. and A. K. Jain, Lane boundary detection using a multiresolution hough trans-
form. In Image Processing, 1997. Proceedings., International Conference on, volume 2.
IEEE, 1997.

31

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Previous Works
	Objectives and Scope
	Organization of the thesis

	TRACK EXTRACTION
	Introduction
	Technical Background
	Sobel edge filter
	Hough transform for detecting lines

	Tracks extraction
	Computing the Gradient image
	Detecting straight lines
	Selecting the tracks from the set of rail pairs

	HAZE REMOVAL
	Introduction
	Estimating atmospheric light
	Dark channel prior
	Estimating the transmission
	Recovering the scene radiance

	Our Model
	Estimating atmospheric light A
	Estimating the dark channel
	Computing the transmission map
	Removing haze

	Results

	EXPERIMENTS AND RESULTS
	Experiments
	Results

	CONCLUSIONS
	REFERENCES

