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ABSTRACT

KEYWORDS: GPS (Global Positioning System), SDR (Software Defined Ra-
dio), FPGA (Field Programmable Gate Array), HDL (Hard-
ware Description Language), HLS (High Level Synthesis)

Software defined radio implementation of GPS receiver is carried out to study the under-
lying principles and algorithms of the GPS system. SDR implementation requires minimal
hardware such as antenna, down converter and sampler along with a host computer. The
digital samples are fed to the computer and all the required signal processing operations are
performed by a software. SDR implementation is more convenient for setting new parame-
ters and introducing changes in the algorithms. The main aim of this project is to develop
an FPGA prototype of GPS L1 receiver using HLS tool such as HDL Coder™. The SDR
implementation is used as a reference model to verify the FPGA prototype of GPS receiver.
A GPS receiver has to perform three main steps to estimate the location of the receiver
antenna: acquisition, tracking and navigation data decoding. Designing an HDL compatible
Simulink model for GPS L1 signal acquisition and its HDL code generation and synthesis
work flow are explained in this thesis. The FPGA design flow starts from algorithms. The
behavioural model is designed first in floating point and verified using simulators. Then the
synthesis constraints are set and the floating point model is converted to fixed point. HDL
code generation and synthesis are performed by HDL Coder via HDL Workflow Adviser.
The ’bit file’ generated is then loaded to FPGA. The area and timing optimisation is done
in order to reduce resource utilization and improve the clock speed. Timing optimisation is
done by pipe-lining and area optimisation is done by resource sharing and word length op-
timisation. HDL Coder provides choice to automatically perform many of the optimization
features and therefore it saves a lot of time as compared to manually optimizing the design.
Functional verification of the FPGA synthesis is performed FPGA-in-the-Loop co-simulation
by interfacing Simulink with the target FPGA board with the help of HDL Verifier™. Rapid
FPGA prototyping of GPS receiver using an HLS tool such as HDL Coder™and the design

and verification challenges are the main focus of the thesis.
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CHAPTER 1

INTRODUCTION

Global Positioning System(GPS) is the world’s first Global Navigation Satellite System(GNSS)
developed and deployed by the US department of defence. GPS became fully functional in
1995 and it consists of a cluster of 32 satellites orbiting around the earth in the medium
earth and geostationary orbits. GPS satellites send data using the CDMA transmission
scheme in the L1 and L2 band of frequencies. GPS data is BPSK modulated and it uses
Gold codes for spread spectrum modulation. All the GPS satellites have a high precision
atomic clock which are internally synchronised between them and it plays a major role in
the accuracy of position measurements. These satellites send their position information and
time of transmission as GPS data. A GPS receiver on earth requires data from at least four
satellites to calculate its position. The underlying principle behind the position calculation

is the method of trilateration.

A GPS receiver has to perform three major steps in order to compute the position in-
formation: Acquisition, tracking and Navigation data decoding. In this project, an FPGA
prototype of GPS L1 signal acquisition is built with the aim of implementing Standard Posi-
tioning Service(SPS) of GPS on an FPGA platform. The Acquisition algorithm is designed
as an HDL compatible Simulink Model and then FPGA synthesis is performed with the help
of HDL Coder. HDL Coder™is an High Level Synthesis (HLS) tool that accelerates the
design flow for ASIC/FPGA development of Matlab and Simulink models and it supports
complex data types. Classically ASIC designs include the manual coding of the whole system
and verifying the design. Introduction of the HLS tools for FPGA prototyping shifts the
focus from low end to high end of the de sign flow. From the designer point of view, the
designing of the SoC IP becomes less complex and there is provision for the verification of

the design in real time.

In this project, Simulink model of the acquisition part of the GPS receiver have been
designed in order to generate the HDL code. The Simulink model has to be constructed
only using HDL supported blocks present in the Simulink library. The design is tested for

its accuracy and speed with reference to a software defined radio(SDR) implementation of the



GPS receiver which only requires an antenna and a USRP as hardware. The USRP digitizes
the received GPS signal and the digital samples are processed using the SDR developed in
software(MATLAB) in order to extract the receiver location. The software code developed

for SDR implementation is used as a reference for the FPGA prototyping.

The ASIC/FPGA design flow using HDL Coder starts from algorithms. A reference
model is created from the algorithms using Simulink/Matlab, in this case Simulink. The
reference model is a behavioural model that requires no timing, concurrency or target tech-
nology information. A reference model is generally represented in floating point arithmetic.
The floating point model is further converted to fixed-point arithmetic for synthesis. The
fixed-point arithmetic enables usage of optimal word lengths and integral arithmetic on hard-
ware, therefore, is cheaper and smaller in area compared to the floating point arithmetic.
Fixed-point model is verified in a simulator to have equal functionality as that of floating-
point model. When the model has been verified and is working, synthesis constraints can
be set. The implementation of the Acquisition module from algorithm level to FPGA using
HDL Coder and the testing of the model using Virtex-5 XC5V-LX110T FPGA board are

discussed in detail in the following chapters.

1.1 Organisation of the thesis

Chapter 2 briefly describes the underlying principles of GPS receiver design.

Chapter 3 presents a detailed description of the theories behind GPS signal acquisition.
Chapter 4 briefly explains about the various hardware components used in the front-end
of the GPS receiver

Chapter 5 introduces the high level synthesis(HLS) tool HDL Coder™and the ASIC/FPGA
prototyping design flow using the same.

Chapter 6 briefs the functionality of the subsystems used in constructing the Simulink
model of acquisition and the floating point to fixed-point conversion of the design.
Chapter 7 shows the HDL code generation via HDL Workflow Adviser and the usage of
validation model of the generated HDL code.

Chapter 8 presents various optimization features provided by HDL Coder. FPGA synthesis
and functional verification in 'FPGA in the loop(FIL)’ configuration are also discussed.

Chapter 9 summarises the works done and the future prospects



CHAPTER 2

HOW DOES GPS WORK?

In GPS, there are 32 satellites deployed around the earth with at least 24 of them are
operational at any given time in order to provide navigational solution(location and time
information) in all weather conditions, anywhere on or near the earth, where there is an
unobstructed line of sight connection to four or more of GPS satellites. The receiver design
for standard positioning service(SPS) of GPS consists of mainly three parts: acquisition,
tracking and navigation data processing. In acquisition, we process the received digitized
signal to extract the signals of each contributing satellite. In tracking, we keep track of
the changes in the signal frequency caused due to the relative motion of the satellite with
receiver. In navigation data processing, we extract the satellite information from the received
signal, find the satellite position, calculate the pseudo distance between the satellites to the
receiver and then estimate the receiver position based on technique of trilateration. A brief
description to trilateration, acquisition, tracking and navigation data decoding is given below
in the interest of highlighting the over all working principles of GPS receiver. GPS signal
acquisition algorithms are further explained in detail with FPGA implementation of the

same via HDL coder in subsequent chapters.

2.1 Trilateration

The position of a certain point in space can be found from the distance measured from
this point to some known positions in space. This concept is known as trilateration in
geometry and is the fundamental idea behind the working of GPS. Let’s illustrate this point
using a one-dimensional case. If the satellite position S; and the distance to the satellite d;
from the user are both known, the user position can be at two places, either to the left or
right of S;. In order to determine the user position, the distance dy of the user to another
satellite S with known position must be known. Thus in a one-dimensional case, we need

two satellites to uniquely determine the user location as shown in Fig. 2.1]



dz dz

~ —

di d1

Figure 2.1: Trilateration in One-dimensional case

In a two-dimensional case, in order to determine the user position, three satellites and
three distances are required. The locus of a point with constant distance to a known satellite
is a circle in the two-dimensional case. Two satellites and two distances give two possible
solutions because two circles intersect at two points. A third circle is needed to uniquely

determine the user position as shown in Fig. 2.2]

Figure 2.2: Trilateration in Two-dimensional case

Similarly, in a three-dimensional case, we require four satellites and four distance mea-
sures from the user. The locus of a point with constant distance to a given satellite is a
sphere. The two spheres intersect to form a circle, whose intersection with another sphere
gives two points. One of the points will be very far from the earth and can be neglected,

thereby obtaining position fix using three satellites in three-dimension. Theoretically, we

4



need a fourth satellite to obtain a unique solution as shown in Fig. In GPS, the po-
sitions of the satellites are obtained from the ephemeris data transmitted by the satellites.
The distance from the receiver to the satellites are estimated by finding the time taken for
the signals transmitted by the satellites to reach the receiver and then multiplying it with
the speed of light. Each GPS satellite is internally synchronized with each other to transmit
signals at the same time and each of them stamps the time at which it transmits into the
data transmitted. At the receiver we find the time of arrival of each of the signals. The time
of arrival measured is not absolute, because the user clock might lead or lag when compared
to the GPS clock, since the cheap user clock is not synchronized with the GPS clock. For-
tunately, as the signals are transmitted from the satellites at the same time, all the received
satellite signals contains the same unknown constant bias in their estimate of time of arrival.
Due to this constant unknown bias, the distance estimated between the user and satellites
are not absolute and hence are referred to as pseudo-range. Therefore, the GPS system has
to estimate (X, Y,, Z,) and the time offset between the GPS clock and the user clock t u
in order to solve for position. Extending the argument for the requirement of three satellites
in three-dimension to solve for three unknowns (neglecting the point far from earth in the
final solution), we now need four satellites in three-dimension to solve for four unknowns(ie.

three space coordinates of the receiver antenna and the constant unknown clock bias).

Figure 2.3: Trilateration in Space



2.2 Acquisition

The key purposes of acquisition are :

A. To find the satellites which are visible from the user location.
B. To find the time alignment (code phase) of C/A codes in the each satellite signals.

C. To find the Doppler shift in the carrier frequency (Carrier Doppler) of each satellite
signals.

Although there are at least 24 operational GPS satellites in space, not all of them will
be visible from the user’s location on earth. In order to get a fix on the location of the
GPS user, we need to know the spatial coordinates of at-least four satellites contributing
to the received user signal. Each satellites data is spread with its unique pseudo random
noise(PRN) code and at the receiver side, we find out the satellites contributing to the
received signal by correlating with locally generated PRN codes. The CDMA codes have
high correlation only for zero lag. Therefore, in order to properly decode the received signal,
we need to locally generate time aligned PRN codes of each visible satellites. The term
‘code phase’ here stands for the time alignment of the PRN code in the current block of
data. The line-of-sight velocity of the satellite with the receiver causes a Doppler shift in the
carrier frequency of at-most +10kHz. Tt is important to know the exact carrier frequency
for demodulating the received signal with the locally generated carrier signal. The Doppler
shift encountered for each satellites have to be determined with an accuracy of +500H z.
Thus the correlation of the received signal with a PRN code and the local carrier frequencies
will result in two-dimensional correlation. A satellite that is visible to the receiver will have
a significant correlation peak in the acquisition search space, corresponding to its carrier
frequency and alignment of it’s C/A code in the received data as shown in Fig. whereas
a satellite that is not visible to the receiver will not have a significant peak in the search
space as shown in Fig. The ratio of the highest correlation peak to the second highest
correlation peak is taken as a peak metric for detecting the visibility of the satellite. If the
peak metric is greater than a predetermined threshold, then the satellite is considered to be

visible.



Acquisition Search Space for GPS Satellite PRN-28
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Figure 2.4: Satellite 28 is visible so a significant peak is present

Acquisition Search Space for GPS Satellite PRN-29
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Figure 2.5: Satellite 29 is not visible so no peak is present



2.3 Tracking

After acquisition we only get the initial estimates of carrier frequency and code phase pa-
rameters. Due to the relative velocity of the satellite with the receiver, the carrier and code
frequency varies slowly over time. In order to correctly demodulate the signal we also need
to make sure that the phase of both the incoming carrier signal and the locally generated
signal are matched. Therefore the tracking block implements a phase locked loop(PLL) sys-
tem to make fine corrections to the frequency of carrier and code replica, so as to accurately
demodulate the signal. A PLL will have a phase detector and a loop filter in general as
shown in Fig. If there is phase error between the received signal and the generated
signal, then a control mechanism kicks in to adjust the frequency and phase of the generated
signal, so as to match it with that of the received GPS signal. Fig. [2.7] depicts simulation of
the working of a designed PLL.

Phase
Incoming Error
signal, y(t) Detector

Figure 2.6: Carrier tracking algorithm

U\

100y 150

Figure 2.7: Simulating the working of the designed PLL

The C/A code in the incoming signal and the locally generated C/A code can drift apart,

as the frequency of the C/A code in the incoming signal changes due to relative motion of

8



the satellite with the receiver. In order to estimate the code phase error, a delay locked
loop(DLL) was implemented. The carrier removed signal is correlated with early, prompt
and late version of the PRN code, with early and late code having a shift of +1/2 chips from
the prompt version as shown in Fig. , and their extent of correlation with the received
signal is determined as (Ig,Qg), (Ip,@Qp) and (I1,Qr). A measure of the code phase error
detector can be expressed as :
_ (Ie* + Qs*) — (IL* + Q1”)
(Ie* + Qr®) + (I.* + Qr%)

Figure. 2.9 shows an optimized version of the combined tracking loops. Here the I and Q

inputs to the phase discriminator are the I, and (), correlation from the code tracking loop.

Incoming signal

Generated signals

Early

Prompt

Late

Correlation
| A P

172

S1C12 0 12 1 " Chips

Figure 2.8: Early Prompt Late correlator

The navigation bit sequence is obtained from the in-phase prompt correlator output. The

constellation plot of the prompt correlator output shows that the data is concentrated in the

in-phase arm as shown in Fig. and Fig.



W—y EPL correlator
Ie lIL
Incoming
signal, y(t)
QeT TQL
EPL correlator
Figure 2.9: Combined Carrier and Code tracking algorithm
: Tracking output in Inphase arm
T T T T T T T T T
Navigation Bits
05 i
0 —
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: Tracking output in Quadrature arm
T T T T T T T T T
05 4
0 I \A
-05 - b
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Figure 2.10: Tracking output Ip and Qp. Navigation bit sequence visible in the inphase arm
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Figure 2.11: BPSK constellation of the GPS navigation data

2.4 Nayvigation Data Decoding

The navigation bits transmitted on the L1 frequency have a bit rate of 50 bps. The basic
format of the navigation data is a 1500-bit-long frame containing 5 subframes (SF;, SF5,
SF3, SF,, SF5), each having length 300 bits as shown in Fig. . One subframe contains
Ten words (Wy, Ws, ..., Wyg), each word having length 30 bits. Subframes 1, 2, and 3 are
repeated in each frame. The last subframes, 4 and 5, have 25 versions (with the same
structure, but different data) referred to as page 1 to 25. With the bit rate of 50 bps, the
transmission of a subframe lasts 6 s, one frame lasts 30 s, and one entire navigation message
lasts 12.5 minutes. Each subframe starts with two special 30 bit long words, the telemetry
(TLM) and handover (HOW). TLM contains an 8 bit preamble sequence which is used for
identifying the beginning of the subframe (frame synchronization). HOW word contains
the information about the subframe number and the GPS time of week at which the signal
was transmitted. Subframe 1 contains information needed for the satellite clock correction
and the accuracy/health of the data transmitted. Subframe 2 and 3 contains the satellite
ephemeris data, which is the information regarding the satellite orbits required for estimating
the satellite position. Subframe 4 and 5 contain data which are 12.5 minutes long. They
are referred to as almanac data and contains the ephemerides and clock data with reduced
precision. Additionally, each satellite transmits almanac data for all GPS satellites while it

only transmits ephemeris data for itself.

11
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Figure 2.12: GPS Navigation Data Structure

In order to find the beginning of the subframes from the navigation data (obtained from
the tracking block), we make use of the preamble sequence found in the word W 1 of each
subframes. The data structure in word W 1 is as shown in Fig. 2.13| Besides 24 bits of
data, every 30-bit word contains 6-bits for parity checking. D; — D4 are the 24 data bits,
while D5 — D3g are the 6 parity bits in a word. D*y9 and D*3q represents the last two parity
bits from the previous word. From the parity check equations, we calculate the parity bits
Dss — D3y and check if they match with the parity bits of the received navigation bits. Parity
Checking also decides if the received navigation bits have to be inverted or not. d;_3¢ here
refers to the received navigation data bits. Details of every word can be obtained from the

GPS interface control document ICD-GPS-200C.

MSB LSB

Preamble Reserved Parity

1 0 0 0 1 0 1 1

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 2.13: Structure of first word in subframe

GPS ephemeris (satellite and orbital information) parameters are extracted from the

navigation data after parity checking following the ICD-GPS-200C decoding scheme. The
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pseudo-range measurement is computed as the travel time from the satellite to the receiver
multiplied by the speed of light in vacuum. The receiver has to estimate exactly when the
start of a frame arrives at the receiver.Once the pseudo-range is estimated, the GPS position

algorithm (based on trilateration) can be used to estimate the location of the receiver.
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CHAPTER 3

A DETAILED DESCRIPTION OF GPS SIGNAL
ACQUISITION

3.1 GPS Signal Structure

The signal transmitted in the L1 frequency by the GPS satellites are a combination of the
standard positioning service (SPS) and the precise positioning service (PS). The signal S¥,
transmitted in the L1 frequency by satellite k can be mathematically expressed as:

S5, (t) = A.CF()DF(t) cos(2m frat + ¢) + A, PH(¢) D¥(t) sin(27 frat + &)

(3.1)
= mk(t) cos(2m frit + @) + m’é(t) sin(27 fr1t + @)

where A, is the amplitude of the P(Y) code, P(t) is the P(Y) code, A, is the amplitude of
the C/A code, C(t) is the C/A code, D(t) = £1 is the data, f; is the L1 frequency, ¢ is
the initial phase. The P(Y) part is attenuated by 3dB compared to C/A part. The C/A
code repeats itself every ms, and one navigation bit lasts 20 ms (Since, data rate is 50bps) .
Hence for each navigation bit, the signal contains 20 complete C/A codes and at the receiver

the data bit is found by integrating over the 20 C/A codes.

The received power of the GPS SPS L1 signal is nearly -130dBm. The thermal noise
power at the absolute temperature ¢ in °/ and for an equivalent bandwidth of B in Hz can
be calculated as

PThermalNoise = ktB

where k = 1.38 x 10723J/°K. For the GPS SPS L1 signal with a null to null bandwidth of

2M H z, the thermal noise power is

= 1.38 x 10723 x 290 x 2 x 10°
= 8.004 x 107w (3.2)

= —110.97dBm



S| UL

ceD ‘ \
Final
Signal

Figure 3.1: The resulting L1 signal obtained by modulating the data signal D with the C/A
code C' and carrier

As the received signal power is below the noise floor, the signal presence cannot be determined
from it’s spectrum. This is a feature of the code division multiple access (CDMA) spread
spectrum signal and requires the appropriate signal processing to acquire and process the
signal. This also implies that the design of the front end is based more on the level of the
thermal noise rather than the received L1 band navigation signal. Thus, the voltage induced
within the GNSS antenna element results from the thermal noise, which dominates, as well
as the GNSS signals from the satellites in view. Theoretically, the spectrum of GPS system
with the BPSK modulation for SPS and PS signals should look like in Fig.

3.2 Downconversion of the Received signal

The signal received by a receiver antenna on earth will be a superposition of the delayed
version of the transmitted signal from all the satellites visible from the receiver location. As

the satellites are moving, their will be a Doppler effect on its transmitted frequency. It can

15



GPS L1 RF Spectrum

20.46 MHz - L, = 1575.42 MHz

2.046 MHz
C/A Copde

.~ P(Y) Code

150

160 -

s

[=2]

%]
T

185

Received Signal Power (dBW)

L,-20.46 L,-10.23 L4 L,+10.23 L,+20.46
Frequency (MHz)

= GPS L, RF Spectrum

= 2

m 150 T T T

= 20.46 MHz L, = 1227.60 MHz
o]

=

& 166 |
§ - P(Y) Code

=

3]

=

@

g 185

o L2-20.4I’5 L2-10.23 L2 L2+10,23 L2+20.46

Frequency (MHz)

Figure 3.2: Spectrum of GPS SPS + PS in L1 band and PS in 1.2 band

be expressed as:

VisibleSat
Yre(t) = Z S% (t — %) + noise
k

VisibleSat

= > mj(t =) cos(2m(fra — fh)t+ 0F) + m(t — 7F) sin(2m(fr1 — fh,)t + )
k
VisibleSat

= Z mh(t — %) cos(QWfffft + ¢") + m(t — ) sin(27rfffft + ¢")
k

(3.3)

where yg,(t) is the received signal by the antenna, 7% is the time taken for the signal to
reach the receiver from satellite k, fj  is the Doppler shift in transmitted frequency, fl;; is
the effective transmitted frequency and ¢* is the phase of the received signal from satellite
k. The signal is then down-converted to baseband using USRP N210 at a local oscillator
frequency f, = fr1 . The down-conversion of the signal received yg, from satellite k alone
can be expressed as :

Signal in the in-phase arm y¥(¢) is :
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mk(t) ko k k k
[ cos (2m(flp — fo)t + &F) 4 cos (2m(f¥s s + fo)t + &) |

Yre(t) * cos(2f,t) =
(3.4)

2
mo(t) ¢ k k - k k
[ sin (27 (f¥; — fo)t + ") +sin (27 (f3s + fo)t + ") |

Signal in the Quadrature arm yf(t) is :

mk
Yra(t) * sin(2f,t) = 12“) [sin (2 (fLy; = fo)t + &%) —sin (2x(f¥ + fo)t + ¢) | 55
; .
+ m%(t) [ cos (27r(ffff — fo)t + qbk) — oS (27T(ffff + fo)t + gbk) }

After low pass filtering, we get

cos(2Mnf,t)
% LPF —>yi(t)
yrx(t))
@ le
LPF ——>Yqol(t)
sin(2n fyt)

Figure 3.3: Passband to baseband down-conversion in USRP

mF(t mk (t )
1) * COS (27Tf§0pt + qbk) + %< ) * sin (27Tf§0pt - gbk)

yi(t) =
2 (3.6)
my(t) = . k o, mo(t) k k
yo(t) = 5 *sin (2rfit+ ") + x cos (2m f1,t + ¢F)

The final signal after down-conversion to complex baseband in USRP can be expressed as :

VisibleSat
y(t) = D (mf(t) + j e mby(t)) €Tt e") (3.7)
k
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where y(t) is the received signal after down-conversion in USRP, m%(t) = CF(t)D*(t),
m§(t) = P¥(t)D*(t), f},, is the Doppler shift for satellite k, ¢* is the phase of satellite
k.

3.3 Serial Search Acquisition

From the received signal y(t), we need to find which are the visible satellites, their Doppler
shift fc’fop and the beginning of the C/A code of each satellite. For demodulating the received
signal, we need a locally generated carrier signal as well as a time aligned locally generated
PRN code. If both the locally generated signal and code are perfect, then on correlation with
the received signal, the output would be very high. A brute force way to do this will be to
down convert the received signal with all possible carrier signals and then correlate in time
domain with all possible code alignments of the PRN code. We know that |f}, | < 10kHz,
so we multiply the received signal y(t) with a locally generated carrier signal e 92"/t | where
f is varied from -10kHz to 10kHz in steps of 500Hz ¢.e 41 different values of f , one in each

iteration. The resultant signal can be expressed as :

VisibleSat

gy = S (mb(e) +j xmby(t)) & Crlibm=T)ers")
Visi:leSat (38)
= Y (CHE)DH(t) + j* PRt DH(t)) & Uy =1)10")
k

After wiping off the carrier signal in an iteration, we correlate the signal with C* | the C/A
code of satellite k. The correlation process is repeated with shifted version of C/A code. If
the C/A code of 1ms is sampled at 2MHz, then it will have 2000 samples, therefore we have

to perform the correlation with 2000 different shifted version of C*.

y(t) ® C* = GDk(t)ej(%(fgop_f)twk) + noise (3.9)

where G is the processing gain of C/A correlation. For the C/A code of correct code align-
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ment and correct carrier signal, the correlation output will be high.

Incomin Time domain
; 9 Correlator —>
signal, y(t)

Carrier wave replica Code replica with
at frequency f given shift

Figure 3.4: Serial search acquisition

3.4 Parallel Code Phase Search Acquisition

The serial search acquisition algorithm is too computationally heavy. Modification to the
above algorithm to make it computationally efficient can be done by doing the correlation
operation in the frequency domain and then take inverse-FFT to find the results of the
correlation in time-domain. The code alignment corresponding to the highest correlation is
the start of the C/A code in the received signal. A detailed block diagram of the method

discussed can be found below:

Relation between circular correlation in time domain and frequency domain:
Let m(n) be the received signal down-converted by the generated carrier frequency at f and
c(n) be the locally generated C'/A code of a particular satellite. As both these signals are in
discrete time domain, they are periodic and hence the correlation is circular.

The correlation between the two signals can be written as:

m(i)c(i + n) (3.10)

The discrete Fourier transform of the two finite length sequences can be computed as:

N-1
M(k) = m(n)e’ﬂ”k”/N

3
Il
=)

and
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C(k) — C<n)€fj2ﬂ'k’n/N

(3.11)

= C(k) m(i)ejzﬂki/N

where M~1(k) is the inverse DFT of m(n).
Alternatively,

N-1 N-1
- c(i) Z m(i + n)e*ﬂﬂk(nﬂ')/N oi2ki/N
- = (3.12)

= M(k) c(z’)eﬂ“’“/N

Since c¢(n) is real C'(k) = C(k)
Using this relation, the time domain result can be obtained by taking IFFT of Z(k)

z(n) _ Z(k)ej%rkn/N
0

=

i

The maximum of |z(n)| in the n'® location and respective frequency step gives the beginning

of the C/A code and the carrier frequency of the signal.
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3.5 How to Determine the Length of Signal Used for Ac-
quisition

The C/A code of satellites C* are 1ms long, while the navigation data D* transmitted from
the satellites are 20ms long. Typically 1ms of data from the received signal is used for
correlating with the locally generated C/A code during acquisition. If the received satellite
signal is very weak, then long data length are required for acquisition to detect satellites.
The longer the data record used the higher the signal-to-noise ratio that can be achieved.

The factors that limit the length of the data record are

e Navigation data transition in the data

The navigation data remains constant for 20ms or in other words, if we take 20 ms of
received data, then there can be at-most one data transition. The navigation data transition
will spread the spectrum and the output will no longer be a continuous signal. The spectrum
spread will degrade the acquisition result. To overcome this, we take two consecutive 1ms
received data blocks and perform acquisition algorithm on both. As the data blocks are

contiguous, there can be navigation data transition in at-most one of the blocks.

e Doppler effect on the C/A code (Code Doppler)

The Doppler effect on C/A code frequency can be obtained after determining the Doppler

effect on the carrier by the following relation:

Jri+ fa
fi

’
fcode = fcode *

where fooqe = 1.023MHz, fr1 = 1575.42M Hz and f,; is the carrier Doppler estimated from
the acquisition. As f; = £10kH z, the maximum Doppler shift expected on a C/A code is 6.4
Hz. Hence the chip duration in the C/A code varies due to Doppler. If a perfect correlation
peak of C/A code with the locally generated C/A code is 1, the correlation peak decreases to
0.5 when a C/A code is off by half a chip. This corresponds to 6 dB decrease in amplitude. If
the maximum allowable code misalignment is half a chip (0.489 us) for effective correlation.

It takes about 78 ms (1/(2 x 6.4)) for two frequencies different by 6.4H z to change by half
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a chip. This data length limit is much longer than the duration of 1ms used for acquisition
here. Hence, the variation in code Doppler need not be considered during acquisition but

they have to be considered during the tracking block.

3.6 How to Determine the Number of Frequency Steps

Used in Acquisition

The Doppler frequency range that needs to be searched is +10kHz. It is important to
determine the frequency steps needed to cover this 20 kHz range. The frequency step is
closely related to the length of the data used in the acquisition. When the input signal
and the locally generated carrier signal are off by 1 cycle there is no correlation. When the
two signals are off by less than 1 cycle there is partial correlation. It is arbitrarily chosen
that the maximum frequency separation allowed between the two signals is 0.5 cycle. If
the data record is 1 ms, then a 1 kHz signal will change 1 cycle in the 1 ms. In order to
keep the maximum frequency separation at 0.5 cycle in 1 ms, the frequency step should be
1 kHz. Under this condition, the furthest frequency separation between the input signal
and the correlating signal is 500 Hz or 0.5 Hz/ms and the input signal is just between two
frequency bins. If the data record is 10 ms, a searching frequency step of 100 Hz will fulfil
this requirement. In our experiments, a frequency step of 500 Hz is used to cover the 20 kHz

range, which will amount to 41 frequency steps.
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CHAPTER 4

FRONT-END OF GPS RECEIVER

4.1 Block Diagram of Receiver Chain

Active Antenna

N/
LNA
Roof
LMS 400 Lab
20m cabl
m cavle SMA-F to | RF+DC [ RF USRP Desktop
T Bias Tee N210 Computer
DC
Power
Supply

Figure 4.1: Block diagram

The active antenna fitted on the roof of Electrical Science block is able to receive the GPS
signal in the L1 band (fr; = 1575.42M Hz). The antenna has an inbuilt filter with a
bandwidth of fr; & 50M Hz and an amplifier of gain 30dB. Signal from the antenna is
carried to the laboratory through the 20m long coaxial cable. A bias tee is used to power
up the amplifier in the antenna by supplying 4V DC. An SMA-F to SMA-F connector was
required to connect the coax cable (SMA-M) with the bias tee’s RF+DC port (SMA-M). The
bias tee outputs RF signal centred at 1575.42M H z to the USRP N210, which down-converts
the signal to baseband using its local oscillator at 1575.42M H z, followed by sampling the
signal at 2M H z.

4.2 Components of the Receiver

4.2.1 Integrated GPS Antenna

The key features required for a GPS antenna are:



Item Specifications

Model Synergy Telecom Outdoor Antenna
Center frequency 1575.42 + 3MH =z
LNA Gain 28 + 2dB
Noise figure 1.5dB
Filter Out Band Attenuation 12dB min fo = 50MH z
DC Voltage 2.2 -5V
DC Current 5—15mA

Table 4.1: GPS Active Antenna specifications

e Wide spatial angle : The antenna should have wide spatial angle to receive the low
elevation satellite signals as well as the high elevation angle signals. The spatial angle
should also be narrow enough to block the interfering signal which usually arrive at
low elevation angles.

e Small gain variation : The antenna should have small gain variation from zenith to
azimuth, so that all the received satellite signal should be of comparable strength.
In the CDMA system if the received signals are not of comparable strength then the
strong signals may interfere with the detection of the weak signals.

e Right-handed circular polarized (RHCP) : The GPS signals are right-handed circular
polarized signals and hence the antenna should also be RHCP. This indirectly helps in
mitigating multipath interference as the reflection of an RHCP signal will be an LHCP
signal. As the antenna is RHCP, it has lower gain for LHCP signal.

4.2.2 Coax Cable

The 20m long coax cable has N-M and SMA-M connectors at it’s end. The N-M connector
connected to the N-F connector of the GPS Active antenna and the SMA-M connector has
to be connected to the Bias Tee’s RF+DC port.

Item Specification
Model No LMR-400
Length 20m

Cable Run Attenuation 3.9dB

Table 4.2: Coax cable specifications
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Figure 4.2: Experimental Setup

4.2.3 Connector

The LMR-400 cable running from the roof has SMA-M connection at its end and the Bias
Tee also has SMA-M at its RF+DC port, so an SMA-F to SMA-F RF connector was used

for connecting the cable with the bias-tee.

Item Specification

Model No SF-SF50-+-
Insertion Loss 0.05dB

Table 4.3: Coax cable adapter specifications

4.2.4 Bias Tee

The Bias Tee when powered with power supply at 4.3V is able to power the amplifier/filter
in the active antenna without disrupting the GPS signal. The RF+DC port of the bias tee
is connected with the GPS antenna and the RF port is connected with USRP N210.
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Item Specification
Model No ZFBT-4R2G-FT+
Voltage 4.3V
Insertion Loss 0.47dB

Table 4.4: Bias Tee specifications

Figure 4.3: Bias Tee Electrical Schematic

4.2.5 USRP N210

The USRP is configured to receive the gps signal by creating a flowgraph in GNURadio-
companion. GNURadio is a graphical toolkit used to develop mod- ular SDR systems,
which can then be run using USRP devices, using the UHD API. The UHD: USRP Source
block is configured to down-convert the signal at 1575.42M Hz to complex baseband and
sample it at 2M Hz. The sampled data contain I and () signals and are saved to a file in

gnuradio-complex datatype.

Ettus Research -

@ USRP N210

CLOCK MO EXPANSION

Figure 4.4: Front view of the USRP N210 transceiver
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Figure 4.5: GNURadio FlowGraph for configuring USRP to receive GPS signal

4.3 Amplification Consideration

The available thermal noise power Pr at the input of the receiver can be calculated as:
Pr=kTB

where k is the Boltzmann’s constant (= 1.38 x 107*J/K), T = 300K and B = 2.046M H z

is the bandwidth of the receiver in hertz.
Pr(dBm) = 10logyo(kTB) = —111dBm

The maximum voltage required to exercise all the levels of the ADC is about 100mV and
the corresponding power is nearly 0.1mW (—10dBm). The C/A code signal power level at
the receiver will be approximately —130dBm, hence the signal is 19dB(—111 + 130) below
the noise floor. Therefore, in order to amplify the GPS signal, we need to raise noise floor
level to the maximum range of the ADC (= —10dBm). If we raise the signal to the level
of the ADC, then noise will saturate the ADC output. Hence, we need a net gain of about
101dB(—104111). Since in the RF chain there are filters and cable losses, the insertion loss
of these components must be compensated with additional gain. The net gain must be very
close to the desired value of 101dB. Too low a gain value will not activate all the possible
levels of the ADC. Too high a gain will saturate some components or the ADC and create

an adverse effect.
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Figure 4.6: Spectrum of the received signal in baseband
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CHAPTER 5

INTRODUCTION TO HDL CODER

HDL Coder™ generates portable, synthesizable Verilog and VHDL code from MATLAB
functions, Simulink models, and State-flow charts. The generated HDL code can be used for

FPGA programming or ASIC prototyping and design.

HDL Coder provides a work-flow advisor that automates the programming of Xilinx and
Altera FPGAs. User can control HDL architecture and implementation, highlight critical
paths, and generate hardware resource utilization estimates. HDL Coder provides traceabil-
ity between the Simulink model and the generated Verilog and VHDL code, enabling code
verification for high-integrity applications adhering to DO-254 and other standards.

Figure 5.1: HDL code generation from Matlab/Simulink model using HDL Coder

5.1 Algorithm Design for HDL Code Generation

MathWorks HDL coder is a HLS -tool to synthesize MATLAB or Simulink algorithm model
to VHDL or SystemVerilog code. This chapter covers the design principles for synthesizable
MATLAB or Simulink model. HDL synthesis is performed with an example IP block. HDL
coder uses the designed model, including the user-defined settings and the target technology
files, as input to generate HDL code for both FPGA and ASIC. The tool has floating point
to fixed-point converter built-in so both the floating point and the fixed-point algorithms
are supported, which makes it flexible. However, HDL coder has some limitations on design
principles to be able to synthesize the design into HDL. These limitations are discussed in

the section 4.1 below.



5.1.1 From Matlab Model

MATLAB is generally used for algorithm design of a system for fast simulation and verifi-
cation purposes of the behavioural model.

Since Soft Ware(SW) technology has more degrees of freedom compared to Hard Ware(HW),
HDL coder supports only a subset of MATLAB language that is targeted for HW. For exam-
ple, synthesis from MATLAB Object-Oriented Programming (OOP) classes is not supported.
However, it supports synthesis from MATLAB System Objects that are specialized objects
designed for dynamic systems.

To produce rational HDL code, the algorithm should be written from the HW perspective.
Algorithm models are often written into simulation optimized vector operations that create
parallel structures and copies of combinational logic blocks in HW when processed by HDL
coder.An optimized way is to use only the necessary amount of the combinational logic to
perform the logic operations within the timing constraint and multiplexing time- variant in-
put signals into the circuit. This reduces the area of the hardware significantly as described
in section Optimization.Loop structures can be automatically converted to streaming struc-
tures by using loop unrolling. However, parallel structures can be used if the target is to
maximize the speed. To optimize the generated model, the algorithm model should be writ-
ten in a way it is desired to be on HW.

The first thing when starting to design a model for the HDL code generation is to verify
that Data Types, Operators and Control Flow Statements to be used are supported by the
tool.

To create synthesizable MATLAB code, the structure has to be correct. The design func-
tionality has to be written in functions or MATLAB System Objects that are targeted for
dynamic systems. Sub-functions or System Objects are then called within a main function
to be included in the synthesis. Handshaking/synchronization between blocks, functions,
variable indexing and also signal buffering should be coded in the MATLAB design in a way
it is desired to be in RTL.

A feature that limits MATLAB for being used for large designs is that it has no concept

of time. Therefore, it is not compatible with multi-rate designs using multiple clock domains.
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5.1.2 From Simulink Model

Simulink is a graphical design tool that uses library blocks, MATLAB functions and System
Objects to perform certain functionality. Simulink library includes vast selection of hardware
optimized blocks and cover some of the functionalities needed in SoC development. User-
defined MATLAB function blocks and System Object blocks can be used to create design
specific functionalities or to re-utilize existing MATLAB algorithms. Simulink supports the
multi-rate designs, therefore, it has an advantage over MATLAB when a design has more
than one clock domain.

For HDL code generation, all the blocks available in the Simulink library cannot be used to
design the simulink models but only HDL code generation supported blocks are to be used.
Fixed-point Converter can be used to convert floating point data types into user-defined
fixed-point types. Solver settings can also affect the simulation speed. "MultiTasking"
option can be used to speed up the simulation but it’s not supported for HDL generation.
For HDL code generation "SingleTasking" option has to be used. In this project Simulink

is used to implement the GPS signal acquisition algorithms.

5.2 HDL Code Generation From Model

Completed and behaviourally verified algorithm design can be synthesized into RTL. HDL
coder takes MATLAB or Simulink design as input and generates either VHDL or Verilog
from it. In Simulink case all blocks inside the top-level design are synthesized into separate
VHDL-files and are imported as components on the top-level VHDL. An example of the
code generation principle is shown in Fig. The top- level VHDL-file includes design 1/0
ports, internal signal declaration, port mapping of the components and assigning internal

signals into the I/O ports.

Generating HDL code from a MATLAB design follows the same principle as shown above
if sub-functions are written in separate MATLAB function files and are called within a main
function. If all the functionality is written in a single MATLAB function or System Object,
the whole design is synthesized into a single VHDL-file.

The target specific parameters can be configured by the user in HDL coder. After setting the

parameters, HDL coder performs checks for global settings, algebraic loops, compatibility
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Figure 5.2: HDL code generation principle from Simulink/MATLAB Design

and sample time to verify that the design is synthesizable. Depending on the design size, the
RTL synthesis takes from a few seconds to a few minutes. The output is human readable
HDL code making it really interesting from the point of RTL coding by automating the RTL
code generation. The design flow times are depicted in Fig. [5.3]

HLS Flow
Inceased algorithm design
_ and validation time
Reference model

Validation Time sava in_ RTL coding
RTL and verification

Fast iteration from ASIC ready

the model to RTL Verification o
Logic Synthesis
Manual Flow
Aigorithms
Referance model
Validation
RTL
Verification
Logic Synthesis
ASIC i
Time

Figure 5.3: Approximate ASIC design flow timeline.

If changes are made on the algorithm design, a new HDL code can be rapidly generated.
The generated HDL code also provides visibility backwards to the algorithm model from
VHDL-file trough links that take the user to corresponding MATLAB function. It also
preserves all the comments of the MATLAB function into VHDL.

HDL coder generates traceability, resource utilization, critical path and optimization reports

for the RTL model automatically but user can also disable the report generation. The user
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can also view detailed resources block by block. The critical path of the VHDL design can

be back annotated in Simulink model.

5.3 HDL Code Verification

In this chapter, HDL code verification possibilities that the MathWorks work-flow provides

are discussed.

5.3.1 Verification in RTL simulator

Co-simulation automatically generates stimulus for a HDL model from MATLAB/Simulink
test bench and runs a RTL simulator in the background. Co- simulation compares output
of the code generation model of the algorithm to the HDL model’s output. HDL Verifier
is required to be installed. The HDL model is simulated in the background in user-defined
RTL Simulator and the output is imported in MATLAB. Co-simulation compares the models
bit-accurately and cycle-accurately. Simulation configuration is presented in Fig. [27].

MATLAB

Output . MATLAB test bench Input
Alignments ¢ ST Mex-function R Alignments

HDL Simulator

Figure 5.4: HDL co-simulation configuration.

Error is calculated from the differences of code generation model simulation and RTL
simulation. The error comes mostly from quantization inaccuracies and if the algorithm
model is written with fixed-point data types the error should be zero. The comparison
is done on the output ports and it is a rapid way to verify HDL design correctness every
time the algorithm is changed. Co-simulation window of the example design is presented in

Fig. 5.5

The other way to simulate RTL is to generate a HDL test bench with HDL coder from
MATLAB/Simulink test bench and simulate it manually in a RTL simulator with the gen-
erated HDL design files and HDL test bench. Generating the HDL test bench takes roughly
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Figure 5.5: Co-simulation window where error between Algorithm model and HDL model is
shown

two times longer than the entire co-simulation, thus the user have to manually verify the cor-
rectness of design functionality in the RTL simulator. Manual verification further increases
the verification time. The automatic HDL code generation from the algorithm model and
the RTL functional verification against the algorithm can provide great improvement in

prototyping times and efficiency.

5.3.2 Additional RTL verification methods

HDL Coder has support also for other RTL verification methods such as lint checking, code-
coverage analysis and verification with validation model.

The code-coverage analysis is done on the algorithm model and since HDL Coder generates
the RTL from the algorithm there is no need for RTL code-coverage. The code-coverage
checks that all the functions defined are used, all statements are executed, all branches are
executed at some condition and all Boolean expressions are evaluated to true and false. This
is a fast way to check if there are some functions that are not executed in any conditions.
HDL Coder supports 3¢ party lint checking tools. These are Ascent Lint, HDL Designer,
Leda and SpyGlass. By enabling the lint checking, the tool generates a script for specified
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lint tool and user can also configure lint checking parameters to meet the requirements. The
lint checking is used to check suspicious behaviour of the model such as division by zero or
assigning values to a variable before variable declaration.[25]

HDL Coder provides validation model verification method to verify functional equivalence
of the original algorithm and the code generation model. Difference to the co-simulation
is that this compares the original model to the code generation model over comparing the
code generation model to the RTL model. Both models are fed with the same stimulus on
each time step and output is compared similarly. An example design’s validation model

simulation output is shown in Fig.

: %1010 code gen model
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Figure 5.6: Validation model simulation output.

The flow has vast support for different RTL verification methods and all of them can
be controlled within one tool. This provides improvement in prototyping flow clarity and
may slightly improve the design flow times by automating the 3" party tool usage. For very
detailed verifications with 37 party programs, it is easier to use the tools manually with

Graphical User Interface (GUI) due to better visibility to the configuration parameters.
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5.4 FPGA Synthesis and Functional Verification in FPGA

Environment

In this section, synthesizing of VHDL/VERILOG model into a gate-level design, program-

ming FPGA and verification of the functionality is discussed.

5.4.1 Logic synthesis

The logic synthesis is performed after the HDL model generated has proper functionality.
The flow does not include own synthesis tool but it supports the following tools: Xilinx
ISE, Xilinx Vivado, Synopsys Synplify Pro, Altera Quartus II, Mentor Graphics Precision
and Microsemi Libero. The user can choose to use any of the listed tools depending on the
requirements. HDL coder generates a tool specific script which is used to start the selected
tool and synthesize the generated RTL code with the user-defined settings. Synthesis time
and result depends on the VHDL/VERILOG model and the chosen synthesis tool. Synthesis
tools provide an area report presented in logic cells once synthesis is completed.

The HDL coder generated RTL utilizes less resources than the hand-written model. Hence
automated HDL coder work-flow is beneficial for FPGA based rapid prototyping due to
faster iteration times compared to hand-writing the model in VHDL/VERILOG . It also
creates synthesizable HDL and logic in reasonable size.

The maximum clock frequency can be achieved for the design is

1
fmaz =

Teritical

where 7..0q 1S critical path delay.
By following good algorithm coding rules good design speed can be achieved with the HDL

coder workflow.

5.4.2 FPGA environment verification

FPGA verification can be done with FPGA-in-the-loop (FIL) configuration using the gener-
ated design and FPGA evaluation board. The FIL flow provides capability of using MATLAB

or Simulink for testing the design in a real hardware environment. After HDL code genera-
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tion it performs logic synthesis and generates a FPGA programming file with target FPGA
specific files. FPGA is further programmed through GUI through either Ethernet or JTAG
connection. The FPGA programming file can also be generated from the hand-written RTL
by using FIL wizard [27]. Programmed FPGA is running in real hardware environment
with MATLAB or Simulink stimulus. Data is streamed through FPGA chip and output is

compared to the algorithm simulation output. FIL configuration is shown in Fig.

MATLAS o Algorithm
Simulink > 3 . Comparison t |Display Results
. esign
stimulus
JTAG/Ethernert
Interface
FPGA board
design

Figure 5.7: FPGA-in-the-loop simulation configuration.

The FIL output is a similar window as in co-simulation (Model Validation). The output
data from the FPGA board and the algorithm is presented as waves and the difference

between the outputs is compared in an error plot. An FIL simulation window is shown in
Fig.

From the simulation results in Fig. it can be seen that the FPGA model has the
same functionality as the algorithm model created in the beginning of the work. The results
verify that the FIL flow produces improvement for rapid IP prototyping compared to manual
verification in FPGA environment by decreasing the verification times and also making the
prototyping flow faster and easier from algorithm into FPGA prototype. The flow provides
also additional target work-flows such as Generic ASIC/FPGA, FPGA Turnkey, Simulink
Real-Time FPGA T/O and IP Core Generation.

5.5 HDL Code Optimization

HDL Coder provides optimization features that user can apply on a design. Optimization
features include adding pipeline registers, resource sharing and loop unrolling.

HDL coder allows user to specify optimization features on top-level or on a single block.
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Figure 5.8: FPGA-in-the-loop simulation window presenting error between DUT and FPGA.

HDL properties window allows the user to set input and output pipeline register count,
sharing factor and streaming factor. Setting "Distributed Pipelining" option "on" lets HDL
Coder to distribute existing or added pipeline registers across the selected block to improve
the timing characteristics. "Constrained Output Pipeline" count can be set to redistribute
existing delays within your design to meet the constraints. Adding registers in a long logic
path is illustrated in Fig. [.I0[Registers specified by "Constrained Output Pipeline" are
not affected by "Distributed Pipelining". RAM mapping can be also used to map registers
on RAM to save area. It can be specified on every block separately and it only maps

those registers to RAM that are larger than the threshold value. HDL properties window is
presented in Fig.

Using built-in optimization features efficiently requires understanding the design and the
hardware implementation. Adding unnecessary pipeline registers increase s circuit delay
and using sharing or streaming options on already optimal blocks may increase the design
complexity and decrease the design quality. Therefore, if algorithm is designed with opti-
mized functions, HDL Coder’s optimization features have no effect but may reduce the qual-
ity.Sometimes RAM mapping will leads to more resource utilization, for instance enabling

RAM mapping in structures which uses more than one clock cycle for configuration process
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requires additional pipeline registers and some logic around it to access RAM correctly.
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CHAPTER 6

DESIGNING ACQUISITION ALGORITHM IN
SIMULINK FOR HDL CODE GENERATION

The acquisition algorithm is designed using HDL coder library blocks in Simulink. The
functional description of various blocks and subsystems in the design will be discussed in
this chapter. The model is verified by running a simulation on the sample GPS signal
data. The design involves look-up tables, delay blocks, memory blocks, logical circuits
and arithmetic circuits etc. Mathematical operations like exponential carrier generation,
taking the reciprocal etc cannot be implemented directly. However the HDL coder library
is equipped with functional blocks which can carry out these operations either by look up
tables, CORDIC algorithm or Newton-Raphson etc implementations. Such implementations
are not included in the initial design(which is the floating point design). However in the later
stages, these issues are taken care of along with the conversion of the floating point model to
fixed-point model. The initial design need not be optimised in terms of timing and resources.
Optimisation aspects come to picture only when the design is fully HDL compatible. Area
and timing optimization can be performed depending upon the construction of the design in

order to reduce the resource utilization and increase the clock speed.

6.1 Floating Point Model: Functional Blocks and Sub-

systems

Data samples for acquisition are stored in a workspace variable as a time series and taken
into Simulink model using FromWorkspace block in Simulink library. Fig. represents the

initial floating-point design.
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6.1.1 Data Splitter

The purpose of this block is to provide two consecutive 1ms(in this case 2000 samples since
fs = 2MHz) received data as explained in section for performing acquisition algo-
rithm. The sample GPS signal data in the workspace contains samples received for a long
time(>35sec). Therefore Data Splitter subsystem has designed to take only 2ms of data
into the Simulink model in order to perform the acquisition. The data is split into two, each
having data of 1ms duration and they are streamed parallely as shown in Fig. Since
the same signal data has to be correlated with different PRN codes and Doppler carriers, we
need to stream the same data repeatedly for each iteration. So Data Splitter block traps
this 2000 samples in a loop and streamed repeatedly as shown in Fig. [6.3] HDL counter,
deserializer , serializer, switch and memory etc are used to implement Data Splitter sub-

system.

Ts inherited

; #E Datain  Data Out|

Int

Datat
Delay1 Delay2

Acquisition data

— >0 H{Datain  Data Out »(3)
— Data2
Switch1
.1 >0 »{end count. Acquisition data1 H Compare
To Zero
ooz Swichz HOLCoumert oS
H>o »D
D L, CountEnable
Switch17

Memoryt
Memory2

Figure 6.2: Construction of "Data Splitter" subsystem
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DI12000
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D{1.2000 )
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Memory!

Tsinherited l

@

Datain

Tsinherited

Figure 6.3: Construction of "Acquisition data" subsystem of "Data Splitter"
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6.1.2 Correlator

Correlator block executes repeated correlation of various Doppler carrier removed data and
the C/A code corresponds to each PRN. Frequency bins of width 500Hz have been arbitrarily
chosen for locally generating Doppler carriers. It turns out that the Doppler shift in carrier
frequency rarely exceeds bkHz. Hence total 21 carriers are generated locally in order to cover
+5kH 2 range. Fig. shows the entire construction of the correlator block. The subsystem
shown in Fig. is responsible for periodically generating all the required Doppler carriers.
C/A codes corresponds to each PRN is stored in a Look-up-Table in "PRN code table’
subsystem as shown in Fig. The subsystem 'PRN index’ shown in Fig. helps to
perform rotational shift of C/A codes and advance the correlation. The subsystem 'Block
Sum’ as shown in Fig. implement the dot product functionality required to conduct

correlation.

6.1.3 First Peak and Second Peak Finder

The block 'FirstPeak AndSecondPeak’ finds out the first peak and second peak along with

their indices(C/A code shifts) from each correlation output vector. It is done in two steps

as shown in Fig. :

1. Initially, finds out the first six peak points and their C/A code indices by subsystem
‘Sorting in code phase’ as shown in Fig.

2. Second peak is found out by avoiding peaks which fall in "Exclude Range’ by subsystem
"Choose Second Peak’ as shown in Fig. [6.11]

The "ExcludeRange’ is two samples before and after the C/A code index corresponds to
the first peak point. This ’ExcludeRange’ has come into picture due to over sampling of

C/A code. Therefore the second peak is chosen outside of "ExcludeRange’.

6.1.4 Pick Max

The "Pick Max’ system helps to pull out the best correlation results corresponds to a PRN.
It passes the the informations like code phase, Doppler carrier shift, first peak and second
peak etc to the block ’Satellite Specs’ corresponds to each PRN successively. The Simulink
construction of "Pick Max’ is shown in Fig.
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Figure 6.6: 'PRN index’ subsystem of 'Correlator’ block
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Figure 6.7: 'PRN code table’ subsystem of 'Correlator’ block
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6.1.5 Switch Control

The subsystem ’Switch Control” helps to identify the end of correlations corresponds to a
PRN so that the results from "Pick Max’ subsystem can be passed to 'Satellite Specs’. The
construction of ’Switch Control” is shown in Fig.

6.1.6 Satellite Specs

The desire of this block is to sort correlation results corresponds to each PRN based on
peakl(first peak) by peak2(second peak) ratio. Then the best four PRNs(Satellites) are
chosen out of it. If peakl by peak2 ratio of a satellite is above a predetermined threshold(In
this case, it is taken to be 2) then it is declared as a visible satellite to the user. The design

of ’Satellite Specs’ system is shown in Fig. [6.14]

6.2 Results

A sample GPS signal data is used to test the design and the simulation results are verified
with reference to the results of GNSS-SDR. GNSS-SDR is an open-source GNSS software
receiver freely available to the research community. More details on GNSS-SDR and its

installation is given in Appendix. ??. The simulation results are documented in Table. [6.1]

‘ Channel ‘ Peak Ratio ‘ PRN ‘ Doppler Frequency Bin ‘ Code Phase ‘

1 28 7.4504 1000 338
2 6 4.2549 200 1751
3 2 4.0474 2500 689
4 17 3.9556 -500 977

Table 6.1: Acquisition simulation results

6.3 Fixed Point Conversion of the Design

Prior to the HDL code generation, the floating point model need to be converted to fixed
point. The fixed point model will have fixed word lengths for various blocks included in

the design. This will result in quantisation errors and in some cases saturation of included
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blocks for out of bound inputs. Much care need to be given to fixed point conversion as it
plays a major role in resource utilisation and accuracy of the results. HDL code generation
from the fixed point model is straight forward using the HDL workflow advisor. Fixed point
conversion of the floating point model can be done by the Fixed point designer as well as

manually adjusting the data types of Simulink blocks from properties.

6.3.1 Using Fixed Point Designer

Fixed point designer is equipped with the essential steps for converting the floating point
model to fixed point. The tool initially derives the range information of the outputs of
various blocks by running a simulation over a pre- scribed data set. The range information
regarding external inputs need to be set manually. Once the range information of all the
blocks in the model are derived, fixed point designer further uses these informations for
estimating the required word length at the output of various blocks.

In the Fixed point Designer window pain there is provision to see if saturation occurs at
any point in the design due to out of bound inputs. The designer can manually set the
required word lengths according to the accuracy requirements. The quantisation errors may
accumulate over a certain path and result in erroneous outputs. The word lengths should
be increased in such cases to reduce the error. There is always a trade off between word
length optimisation and accuracy of the output. The word length of various blocks should

be selected such that the quantisation errors lie within a specified range.

The fixed point model of 'Block sum’ is given in Fig. with all the port data types
shown. Fixed point data types can be signed or unsigned. sfix refers to signed and ufix
refers to unsigned data types. sfix32_En24 means signed data type of word length 32 and
24 bits out of these 32 are used for representing decimal part. So the integer part has 8 bits
left and the range will be -128 to 127.

As discussed in chapter 5, certain mathematical operations such as tan~!

, division, com-
plex magnitude, exponential wave form generation etc can’t be implemented in a single step
in FPGA. Even though the HDL coder library is equipped with blocks to carry out such
operations, these blocks may not be supported during the HDL code generation. Alter-
natively these operations can be implemented by Look up tables, CORDIC algorithm or

mathematical approximations and Simulink provides such blocks exclusively for HDL code
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CHAPTER 7

HDL CODE GENERATION AND VALIDATION

HDL code generation can be performed readily by the help of HDL workflow adviser once
the model is fully converted to fixed-point and all the blocks used in the design is HDL
compatible. In this project, the code generation and verification are conducted on a Xilinx
Virtex-5 XUPVS-LX110T development board and the synthesis tool used is Xilinx ISE. For
advanced FPGA boards such as Virtex-7, Zyng-7000 the synthesis tool required is Xilinx
Vivado. By selecting the target workflow as FPGA-in-the-Loop, the HDL verifier allows
HDL co-simulation in which the output from the FPGA and the simulation output of corre-
sponding Simulink model can be observed simultaneously. A brief description of principles

pertaining to HDL code generation from model is depicted in section.

7.1 HDL Code Generation via HDL Workflow Adviser

HDL workflow adviser automates various steps required for programming Xilinx and Altera
FPGAs from Simulink/Matlab model. User can set the target workflow, target FPGA
platform, synthesis tool and project folder etc as shown in Fig. After configuring the
target specific parameters, HDL coder performs checks for global settings, algebraic loops,
compatibility and sample time to verify that the design is synthesizable. Depending on
the design size, the RTL synthesis takes from a few seconds to a few minutes. The output
is human readable VHDL/VERILOG files and all the blocks inside a top-level design are
synthesized into separate VHDL/VERILOG files and are imported as components on the
top-level VHDL/VERILOG.

User can opt for generating traceability, resource utilization, critical path, optimization
reports and validation model via "HDL coder properties’ of the design under target(DUT)
along with RTL synthesis. Traceability report allows navigation between the code and
the corresponding Simulink blocks through hyperlinks. The timing and high level resource

utilisation reports can be used as a reference to design optimisation. The critical path of the
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Figure 7.1: HDL workflow adviser

design will be depicted using highlighted blocks which is useful for identifying the scope of
pipe-lining. Validation model is used for validating the functional behaviour of the generated

HDL code with the help of HDL Verifier as explained in Section.

HDL workflow adviser proceeds for logic synthesis once the RTL synthesis is completed.
However, user can optimize the design in terms of area and speed by examining the RTL

synthesis reports, which has been discussed in Chapter. |

7.2 RTL Verification Using Validation Model

Validation model enables simultaneous simulation of the Simulink model and corresponding
RTL generated. Which also provides a platform to analyse outputs of both model and the
error occurred through a scope. In this project, subsystem wise validation is carried out as

the simulation of the top-level design is time consuming.

The validation model corresponding to ’correlator’ block is shown in Fig. [7.2l The out-
puts CorrOutl and CorrOut2 are analysed through scopes shown in Fig. and Fig. [7.4]
respectively. The RTL model generated is verified for its functional behaviour as the outputs
from both models exactly matches and the error continues to be zero. In this fashion RTL

model corresponds to every subsystems can be verified for its functional behaviour using
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validation model.
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Figure 7.2: Validation model generated corresponds to 'correlator’ subsystem



Figure 7.3: The output 'CorrOutl’ from both Simulink and RTL model during simulation
of the validation model

Figure 7.4: The output 'CorrOut2’ from both Simulink and RTL model during simulation
of the validation model

60



CHAPTER 8

OPTIMIZATION AND SYNTHESIS OF THE HDL
CODE

Timing and area optimisation plays a key role in achieving faster clock rates and a concise
design that effectively fits into the target FPGA device respectively. Traceability reports
can be used to find the high level resource utilisation and critical path in the current design.
Area optimisation is mainly done by reducing the word length of various blocks without
affecting the accuracy of results. Multiplexing can also be done for functionally-equivalent
Simulink blocks by enabling resource sharing so as to further optimize area. Timing opti-
misation is mainly done by fragmenting the critical path using delays and it is known as
pipelining. Via HDL block properties window pane user can set various optimize features like
DistributedPipelining, SharingFactor and StreamingFactor etc as shown in Fig. 8.1}
HDL coder will then automatically enable these optimization features for the subsystem

during the code generation.

Register usage can be reduced tremendously by allowing delays in the design to use

RAM by enabling UseRAM option in the HDL properties pane of the delay block as shown in
Fig.

The optimised design of Acquisition Algorithm is shown in Fig.

8.1 Ciritical Path Estimate and Resource Report

The critical path estimate for the unoptimized initial design was 103.978ns which is high-
lighted in Fig. 8.4l The critical path estimate after optimizing the design by pipe-lining
was reduced to 49.801ns which is highlighted in Fig. [8.5] The high level resource utilization
report for the unoptimized design and the optimized design is shown in Fig. and Fig.

respectively.
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HDL Properties: correlator

General | Target Specification

Implementation

Architecture | Module - |

Implementation Parameters

BalanceDelays | inherit - |

ConstrainedOutputPipeline | o |

DistributedPipelining | off - |
DSPstyle | none - |
FlattenHierarchy | inherit - |
InputPipeline | 0 |
OutputPipeline | 0 |
SharingFactor | v] |
StreamingFactor | o |
’ OK ] | Cancel | | Help

Figure 8.1: HDL block properties

HDL Properties: Delay

General ‘

Implementation

Architecture | default g |

Implementation Parameters

InputPipeline |D |
OutputPipeline |D |
ResetType | default -
UseRAM | off -

Figure 8.2: HDL Properties: Delay
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Figure 8.6: High level resource utilization report of the unoptimized design
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Figure 8.7: High level resource utilization report of the optimized design
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8.2 Logic Synthesis and Functional Verification in FPGA

Environment

The logic synthesis and functional verification of the design in FPGA in the Loop(FIL) con-
figuration is previously discussed in Section. [5.4. The optimized HDL code is synthesized
using Xilinx ISE on Xilinx XUPV5-LX110T Evaluation Platform via HDL Workflow Ad-
viser. See Fig. A Simulink model is generated during the synthesis which enables HDL
cosimulation in order to verify the functionality in FPGA platform with the help of HDL
Verifier'™ as shown in Fig. The bit file generated after the synthesis can be downloaded
to FPGA by double clicking on FIL block and then loading the bit file as shown in Fig. [8.10]
Now HDL cosimulation can be performed by running the simulation. The output from the
FPGA and the simulation output of Simulink model can be seen simultaneously using scopes
provided in Simulink. The error between the two outputs is also shown in the scope and the
model can be verified for correctness if the error is always zero. Once the functionality is
verified, user can remove the Simulink counterpart and work only on FPGA counterpart in

order to have fast communication between FPGA and host computer as shown in Fig. [8.11]

ol
Display3
HDL WorkFflow Advisor - acqFixedPipelined/Acquisition/fcorrelator
File Edit Run Settings Help
[ Find: - <@ 5
1.1. Set Target Device and Synthesis Tool
~ [ HDL Workflow Advisor A .
- Li. 1. 5et Tari ot Analysis (~Triggers Update Diagram)
sl Ll oS IEGGEELEUIIE Set Target Device and Synthesis Tool for HDL code generation
~ lzg 2. Prepare Model For HDL C
@ 2.1. Check Global Settin Input Parameters
@ ~2.2. Check Algebraic L
@ ~2.3. Check Block Comy Target workflow: | FPGA-in-the-Loop -
—r R @ ~2.4. Check Sample Tin
@ ~2.5. Check FPGA-in-the Target platform: | Xilinx Virtex-5 XUPVY5-LX110T development board - Launch Beard Manager
¥ [# 3. HDL Code Generation
» g 3.1. Set Code Generatio Synthesis tool: | Xilinx ISE - Refresh
(| ~3.2. Generate RTL Cod
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Figure 8.8: HDL workflow adviser
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Figure 8.10: Programming the FPGA by loading the bit file generated via JTAG conncetion
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CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

The FPGA prototype of the acquisition algorithm from Simulink model using HDL coder
was tested and verified over Xilinx Virtex-5 XC5V-LX110T FPGA evaluation platform.
The verification was done by FPGA in the Loop cosimulation model using HDL Verifier.
Mathwork’s HDL coder is an HLS tool for rapid prototyping of Xilinx and Altera FPGAs
from Simulink and MATLAB models. The FPGA design flow starts from algorithms and
the SDR implementation of real time GPS L1 receiver was used as a reference to developing
the behavioural model of GPS receiver in Simulink by using functional blocks from HDI
Coder library alone. The behavioural model was implemented as floating point and was
tested for correctness. The floating point model was then converted to fixed point using the
Fixed Point Designer. The accuracy of fixed point model was verified using simulations and

comparing the result with that of the floating point model.

Synthesis constraints for the FPGA design are not set while developing the initial design.
Synthesis constraints depend on the resource limitations of the target FPGA device and clock
speed requirements. To make a design that works at high clock rate and fits into the target
FPGA, Tt is required to carry out the timing and area optimisation over the initial design.
Timing optimisation is done by distributed pipelining, which is the process of introducing
delays appropriately in between the blocks in the critical path. Area optimisation is mainly
done by word length minimisation and resource sharing. The traceability reports of high
level resource utilisation and critical path information generated by HDL coder during HDL

code generation is used as a reference for timing and area optimisation.

The HDL code is generated after the model is converted to fixed point with the help of
HDL Workflow Adviser. HDL Workflow Adviser automatically performs a series of steps
and generate the HDL code, validation model, high level resource utilization report, critical

path estimation , traceability report and optimization report etc. Finally logic synthesis is



carried out and the bit file is generated at the end of it. All of them can be accomplished
very quickly depending upon the size of the design with the help of HDL. Workflow Adviser.
Verification of the generated HDL code can be done by HDL cosimulation model or FPGA

in the Loop co-simulation model with the help of HDL Verifier.

In this project, FPGA in the Loop configuration is used and it involves interfacing
Simulink with the FPGA board and running a simulation in loop by programming the FPGA
with the generated HDL code. The verification process is accurate but time consuming due

to the delays incurred by interfacing of OS and I/O devices.

9.2 Future Works

In order to complete the implementation of GPS receiver in an FPGA | tracking and naviga-
tion data decoding algorithms are also to be implemented along with Acquisition. Tracking
algorithm has been implemented by another person in the group, hence the navigation data
decoding algorithm has to be implemented in future. Putting all of these three algorithms
and generating HDI code will be challenging as far as fitting it into a target FPGA is con-
cerned. It requires a lot of area and timing optimization as the design will be so large in

size.

Currently, the algorithm used for acquisition is "Serial Search" and it is very time con-
suming. So, developing an optimised design for "Parallel Search" will speed up the whole
system. But, implementing the parallel search in FPGA requires a lot of resources. Also
HDL Optimized FFT block supports only radix-2 algorithm, hence the sampling frequency
has to be radix-2( eg:2.048MHz,4096MHz,..). But achieving such a sample frequency using
USRP N210 is difficult. Therefore, implementing acquisition in "Parallel Search" algorithm

will be challenging but it is essential for speed-up.

The SDR implementation of IRNSS(Indian Regional Navigation Satelliete System) re-
ceiver can be done by referring to the algorithms of its GPS counterpart since the basic
architecture of both systems are very much similar. Once the SDR, of IRNSS is developed,

it can be further used a reference to make the Simulink model for HDL code generation.
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APPENDIX A

INTRODUCTION TO GNSS-SDR

GNSS-SDR is an open-source GNSS software receiver freely available to the research com-
munity. This project provides a common framework for GNSS signal processing which can
operate in a variety of computer platforms. This tool is intended to foster collaboration,
increase awareness, and reduce development costs in the field of GNSS receiver design and

customized use of GNSS signals.

A.1 Installing GNURadio and GNSS-SDR by Pybombs
Refer

Install pybombs (python build overlay managed bundle system)

git clone git://github.com/pybombs/pybombs
cd pybombs

sudo ./pybombs install gnuradio

sudo ./pybombs install uhd

sudo ./pybombs install gnss—sdr

L L L L PR

You can also specify the version of gnuradio to install

git clone git://github.com/pybombs/pybombs
cd pybombs

git checkout gr—3.6

sudo ./pybombs install gnuradio

L L L L

After the install is finished you can create an environment file (located in § pre-
fix/setup _env.sh) for your install by running

$ ./pybombs env

Source this file (replace $ prefix with the prefix of your recently finished pybombs in-
stall) with

$ source S$prefix/setup env.sh



A.2 Running GNSS-SDR

After install GnuRadio, UHD, GNSS-SDR and other dependencies, you can run GNSS-SDR

as follows:

e Check if the USRP is connected to the system by running the following command in
the terminal

$ uhd_ find devices

You should get output like this

— UHD Device 0

Device Address:

type: usrp2
addr: 192.168.10.1
name: 6

serial: E8R28M9UP

e Go to gnss-sdr folder in the pybombs directory

$ cd pybombs/src/gnss—sdr/

e In the conf directory, you can find the configuration files for various GNSS satellites
and front-end devices. The configuration files contains the settings for parameters like
sampling frequency, gain and other settings for processing the signal. For example,
gnss-sdr_ GPS L1 USRP_realtime.conf file has settings for gnss-sdr to acquire GPS
L1 using USRP in realtime. Save the GPS signal received by gnss-sdr automatically
by modifying SignalSource.dump to true in the conf file.

e Run gnss-sdr by

$ cd install
./ gnss—sdr —config file = ../conf/gnss—sdr GPS_ L1 USRP realtime.conf

o After execution, the GPS signal will be saved in the folder data

e Modify the conf file to print out more information like acquisition,telemetry and pvt
data

e To process gps data from a file using gnss-sdr, run

$ ./gnss—sdr —config file = ../conf/mygnss.conf
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A.3 Experimenting with GNSS-SDR

e Read README.md file in the gnss-sdr directory

e Download a sample signal 2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat here. The
* . conf file is outdated, don’t use it.

e Download the *.conf file from the attachment in this mailing list

e Make the following changes in 2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.conf file:
SignalSource.filename to the relative path of the download data

e Datatype of this file is 2byte I/Q interleaved short integer. So size of each sample is
4bytes, 2byte for I + 2byte for Q . (Note if datatype used is gr complex then we’ll
have 32bit float T and Q).

e Sampling frequency = 4MHz

e File size = 1.6GB

e recorded time =100sec

e 1.6GB = 100sec x 4MHz x 4 bytes

e Run gnss-sdr by

$ c¢d install
./ gnss—sdr —config file = ../ conf/
2013 04 04 GNSS_SIGNAL at CTTC SPAIN. conf

e After processing, gnss-sdr outputs data processed at the acquisition, tracking and
navigation stage for the user. These outputs can be read using the matlab scripts at
/src/utils folder in the gnss-sdr directory
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APPENDIX B

INTERFACING USRP HARDWWARE WITH
MATLAB FOR GPS DATA RECEPTION

The digitized IQQ samples of GPS received signal at USRP N210 hardware(which is connected
to GPS antenna) can be received by MATLAB as well. The sampling frequency and the
center frequency of the USRP need to be set according to the signal specifications. MAT-
LAB has the object SDRuReceiver which can configure the USRP and receive data samples
from it. MATLAB requires the support package USRP Radio to support the aforementioned

object and it can be easily installed using the support package installer. The hardware set

up required is given in Fig.

1
o

. ~._\~. " \
%\_

Figure B.1: Hardware set up for GPS signal reception



B.1 Configuring the USRP

In order to communicate with the USRP, an object need to be created in MATLAB using
the function comm.SDruReceiver. There are many parameters for this object which need to
be specified for proper communication with the USRP. In this project, USRP N210 is used
and sampling frequency is set as 2 MHz. The center frequency of the received signal is the
L1 frequency which is 1575.42 MHz. The following piece of MATLAB code gives the insights
about configuring the USRP and taking the data samples to the system.

B.1.1 MATLAB Code

global dataOut
dfactor=>50;
frame=375000;

time=40; % 40 seconds of data need to be aquired

radio = comm.SDRuReceiver (...

'Platform "N200/N210,/USRP2’

'TPAddress ’ | '192.168.10.1",

"CenterFrequencySource’, ’property ...

"CenterFrequency’, 1.57542e9,... % 380 MHz to 4.42 GHz
"LocalOscillatorOffset > ,4000,...

"Gain 7, 38, ... % 0—38 dB
"DecimationFactor’, dfactor ,... % sampling frequency of USRP
"SampleRate | 2¢6, ... % N210 is fixed at 100 MHz.
"OverrunOutputPort’ , true , ... % It need to be decimated —
"FrameLength frame , ... % to required value
"OutputDataType "single 7 ...

"EnableBurstMode’, true,...

"NumFramesInBurst’, ceil (80%2¢6/frame)+6);
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rx_log = dsp.SignalSink; % step access of object "dsp.SignalSink"
% will store the contents of data in a —

% buffer. This buffer is of infinite size

% and can be accessed as given

YISSTTTTIISSTTTIITISTH Tnitial data acquiring SAISSTTTIISSTTIIISITSTS o

data=step (radio);
step (rx_log, data);

pause (2); % wait for some time to get non zero values

cle;

fprintf (’Data acquisition started , wait for 50 seconds ...\n’);

%%% Simulation—receive data from usrp and store it in a buffer %%

count=ceil ((100e6/dfactor )*time/frame);

for counter = 1:count
data=step (radio ); % one step execution receives almost 1 ms data
step(rx_log, data);

end

fprintf(’\n\nSaving acquired data ...\n’);

output=rx_log.Buffer; % the captured signal ’data’ will be stored in
% a buffer in the object rx log Initial values—
% in this buffer are transients (leb samples).
% So skip these much number of samples before —

% processing

YSHTTTTTTRITII S Save the acquired Data to a variable YWOSTITTTISTIITISe
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skip=1e6;
dataOut=output (skip+1l:end).’;
dataOut=double (dataOut );

save capture output dataOut data ;

release (radio );
clear radio;
release (rx_log);

clear rx_log;

fprintf (’\n\n40 seconds of data has been acquired.\n’);

USRP is connected to the digital computer using Ethernet cable. The connection to

USRP can be checked using the following command.

> > >uhd find devices

You should get output like this

—— UHDDevice ) - - - - - — - — — — — — — — — — — — —
Device Address:

type: usrp?2

addr: 192.168.10.1

name: 6

serial: ESR28MOUP
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