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ABSTRACT

KEYWORDS: GPS (Global Positioning System), SDR (Software De�ned Ra-

dio), FPGA (Field Programmable Gate Array), HDL (Hard-

ware Description Language), HLS (High Level Synthesis)

Software de�ned radio implementation of GPS receiver is carried out to study the under-

lying principles and algorithms of the GPS system. SDR implementation requires minimal

hardware such as antenna, down converter and sampler along with a host computer. The

digital samples are fed to the computer and all the required signal processing operations are

performed by a software. SDR implementation is more convenient for setting new parame-

ters and introducing changes in the algorithms. The main aim of this project is to develop

an FPGA prototype of GPS L1 receiver using HLS tool such as HDL CoderTM. The SDR

implementation is used as a reference model to verify the FPGA prototype of GPS receiver.

A GPS receiver has to perform three main steps to estimate the location of the receiver

antenna: acquisition, tracking and navigation data decoding. Designing an HDL compatible

Simulink model for GPS L1 signal acquisition and its HDL code generation and synthesis

work �ow are explained in this thesis. The FPGA design �ow starts from algorithms. The

behavioural model is designed �rst in �oating point and veri�ed using simulators. Then the

synthesis constraints are set and the �oating point model is converted to �xed point. HDL

code generation and synthesis are performed by HDL Coder via HDL Work�ow Adviser.

The 'bit �le' generated is then loaded to FPGA. The area and timing optimisation is done

in order to reduce resource utilization and improve the clock speed. Timing optimisation is

done by pipe-lining and area optimisation is done by resource sharing and word length op-

timisation. HDL Coder provides choice to automatically perform many of the optimization

features and therefore it saves a lot of time as compared to manually optimizing the design.

Functional veri�cation of the FPGA synthesis is performed FPGA-in-the-Loop co-simulation

by interfacing Simulink with the target FPGA board with the help of HDL Veri�erTM. Rapid

FPGA prototyping of GPS receiver using an HLS tool such as HDL CoderTMand the design

and veri�cation challenges are the main focus of the thesis.
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CHAPTER 1

INTRODUCTION

Global Positioning System(GPS) is the world's �rst Global Navigation Satellite System(GNSS)

developed and deployed by the US department of defence. GPS became fully functional in

1995 and it consists of a cluster of 32 satellites orbiting around the earth in the medium

earth and geostationary orbits. GPS satellites send data using the CDMA transmission

scheme in the L1 and L2 band of frequencies. GPS data is BPSK modulated and it uses

Gold codes for spread spectrum modulation. All the GPS satellites have a high precision

atomic clock which are internally synchronised between them and it plays a major role in

the accuracy of position measurements. These satellites send their position information and

time of transmission as GPS data. A GPS receiver on earth requires data from at least four

satellites to calculate its position. The underlying principle behind the position calculation

is the method of trilateration.

A GPS receiver has to perform three major steps in order to compute the position in-

formation: Acquisition, tracking and Navigation data decoding. In this project, an FPGA

prototype of GPS L1 signal acquisition is built with the aim of implementing Standard Posi-

tioning Service(SPS) of GPS on an FPGA platform. The Acquisition algorithm is designed

as an HDL compatible Simulink Model and then FPGA synthesis is performed with the help

of HDL Coder. HDL CoderTMis an High Level Synthesis (HLS) tool that accelerates the

design �ow for ASIC/FPGA development of Matlab and Simulink models and it supports

complex data types. Classically ASIC designs include the manual coding of the whole system

and verifying the design. Introduction of the HLS tools for FPGA prototyping shifts the

focus from low end to high end of the de sign �ow. From the designer point of view, the

designing of the SoC IP becomes less complex and there is provision for the veri�cation of

the design in real time.

In this project, Simulink model of the acquisition part of the GPS receiver have been

designed in order to generate the HDL code. The Simulink model has to be constructed

only using HDL supported blocks present in the Simulink library. The design is tested for

its accuracy and speed with reference to a software de�ned radio(SDR) implementation of the



GPS receiver which only requires an antenna and a USRP as hardware. The USRP digitizes

the received GPS signal and the digital samples are processed using the SDR developed in

software(MATLAB) in order to extract the receiver location. The software code developed

for SDR implementation is used as a reference for the FPGA prototyping.

The ASIC/FPGA design �ow using HDL Coder starts from algorithms. A reference

model is created from the algorithms using Simulink/Matlab, in this case Simulink. The

reference model is a behavioural model that requires no timing, concurrency or target tech-

nology information. A reference model is generally represented in �oating point arithmetic.

The �oating point model is further converted to �xed-point arithmetic for synthesis. The

�xed-point arithmetic enables usage of optimal word lengths and integral arithmetic on hard-

ware, therefore, is cheaper and smaller in area compared to the �oating point arithmetic.

Fixed-point model is veri�ed in a simulator to have equal functionality as that of �oating-

point model. When the model has been veri�ed and is working, synthesis constraints can

be set. The implementation of the Acquisition module from algorithm level to FPGA using

HDL Coder and the testing of the model using Virtex-5 XC5V-LX110T FPGA board are

discussed in detail in the following chapters.

1.1 Organisation of the thesis

Chapter 2 brie�y describes the underlying principles of GPS receiver design.

Chapter 3 presents a detailed description of the theories behind GPS signal acquisition.

Chapter 4 brie�y explains about the various hardware components used in the front-end

of the GPS receiver

Chapter 5 introduces the high level synthesis(HLS) tool HDL CoderTMand the ASIC/FPGA

prototyping design �ow using the same.

Chapter 6 briefs the functionality of the subsystems used in constructing the Simulink

model of acquisition and the �oating point to �xed-point conversion of the design.

Chapter 7 shows the HDL code generation via HDL Work�ow Adviser and the usage of

validation model of the generated HDL code.

Chapter 8 presents various optimization features provided by HDL Coder. FPGA synthesis

and functional veri�cation in 'FPGA in the loop(FIL)' con�guration are also discussed.

Chapter 9 summarises the works done and the future prospects

2



CHAPTER 2

HOW DOES GPS WORK?

In GPS, there are 32 satellites deployed around the earth with at least 24 of them are

operational at any given time in order to provide navigational solution(location and time

information) in all weather conditions, anywhere on or near the earth, where there is an

unobstructed line of sight connection to four or more of GPS satellites. The receiver design

for standard positioning service(SPS) of GPS consists of mainly three parts: acquisition,

tracking and navigation data processing. In acquisition, we process the received digitized

signal to extract the signals of each contributing satellite. In tracking, we keep track of

the changes in the signal frequency caused due to the relative motion of the satellite with

receiver. In navigation data processing, we extract the satellite information from the received

signal, �nd the satellite position, calculate the pseudo distance between the satellites to the

receiver and then estimate the receiver position based on technique of trilateration. A brief

description to trilateration, acquisition, tracking and navigation data decoding is given below

in the interest of highlighting the over all working principles of GPS receiver. GPS signal

acquisition algorithms are further explained in detail with FPGA implementation of the

same via HDL coder in subsequent chapters.

2.1 Trilateration

The position of a certain point in space can be found from the distance measured from

this point to some known positions in space. This concept is known as trilateration in

geometry and is the fundamental idea behind the working of GPS. Let's illustrate this point

using a one-dimensional case. If the satellite position S1 and the distance to the satellite d1

from the user are both known, the user position can be at two places, either to the left or

right of S1. In order to determine the user position, the distance d2 of the user to another

satellite S2 with known position must be known. Thus in a one-dimensional case, we need

two satellites to uniquely determine the user location as shown in Fig. 2.1.



Figure 2.1: Trilateration in One-dimensional case

In a two-dimensional case, in order to determine the user position, three satellites and

three distances are required. The locus of a point with constant distance to a known satellite

is a circle in the two-dimensional case. Two satellites and two distances give two possible

solutions because two circles intersect at two points. A third circle is needed to uniquely

determine the user position as shown in Fig. 2.2.

Figure 2.2: Trilateration in Two-dimensional case

.

Similarly, in a three-dimensional case, we require four satellites and four distance mea-

sures from the user. The locus of a point with constant distance to a given satellite is a

sphere. The two spheres intersect to form a circle, whose intersection with another sphere

gives two points. One of the points will be very far from the earth and can be neglected,

thereby obtaining position �x using three satellites in three-dimension. Theoretically, we

4



need a fourth satellite to obtain a unique solution as shown in Fig. 2.3. In GPS, the po-

sitions of the satellites are obtained from the ephemeris data transmitted by the satellites.

The distance from the receiver to the satellites are estimated by �nding the time taken for

the signals transmitted by the satellites to reach the receiver and then multiplying it with

the speed of light. Each GPS satellite is internally synchronized with each other to transmit

signals at the same time and each of them stamps the time at which it transmits into the

data transmitted. At the receiver we �nd the time of arrival of each of the signals. The time

of arrival measured is not absolute, because the user clock might lead or lag when compared

to the GPS clock, since the cheap user clock is not synchronized with the GPS clock. For-

tunately, as the signals are transmitted from the satellites at the same time, all the received

satellite signals contains the same unknown constant bias in their estimate of time of arrival.

Due to this constant unknown bias, the distance estimated between the user and satellites

are not absolute and hence are referred to as pseudo-range. Therefore, the GPS system has

to estimate (Xu, Yu, Zu) and the time o�set between the GPS clock and the user clock t u

in order to solve for position. Extending the argument for the requirement of three satellites

in three-dimension to solve for three unknowns (neglecting the point far from earth in the

�nal solution), we now need four satellites in three-dimension to solve for four unknowns(ie.

three space coordinates of the receiver antenna and the constant unknown clock bias).

Figure 2.3: Trilateration in Space

.
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2.2 Acquisition

The key purposes of acquisition are :

A. To �nd the satellites which are visible from the user location.

B. To �nd the time alignment (code phase) of C/A codes in the each satellite signals.

C. To �nd the Doppler shift in the carrier frequency (Carrier Doppler) of each satellite
signals.

Although there are at least 24 operational GPS satellites in space, not all of them will

be visible from the user's location on earth. In order to get a �x on the location of the

GPS user, we need to know the spatial coordinates of at-least four satellites contributing

to the received user signal. Each satellites data is spread with its unique pseudo random

noise(PRN) code and at the receiver side, we �nd out the satellites contributing to the

received signal by correlating with locally generated PRN codes. The CDMA codes have

high correlation only for zero lag. Therefore, in order to properly decode the received signal,

we need to locally generate time aligned PRN codes of each visible satellites. The term

'code phase' here stands for the time alignment of the PRN code in the current block of

data. The line-of-sight velocity of the satellite with the receiver causes a Doppler shift in the

carrier frequency of at-most ±10kHz. It is important to know the exact carrier frequency

for demodulating the received signal with the locally generated carrier signal. The Doppler

shift encountered for each satellites have to be determined with an accuracy of ±500Hz.

Thus the correlation of the received signal with a PRN code and the local carrier frequencies

will result in two-dimensional correlation. A satellite that is visible to the receiver will have

a signi�cant correlation peak in the acquisition search space, corresponding to its carrier

frequency and alignment of it's C/A code in the received data as shown in Fig. 2.4, whereas

a satellite that is not visible to the receiver will not have a signi�cant peak in the search

space as shown in Fig. 2.5. The ratio of the highest correlation peak to the second highest

correlation peak is taken as a peak metric for detecting the visibility of the satellite. If the

peak metric is greater than a predetermined threshold, then the satellite is considered to be

visible.
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Figure 2.4: Satellite 28 is visible so a signi�cant peak is present

Figure 2.5: Satellite 29 is not visible so no peak is present

7



2.3 Tracking

After acquisition we only get the initial estimates of carrier frequency and code phase pa-

rameters. Due to the relative velocity of the satellite with the receiver, the carrier and code

frequency varies slowly over time. In order to correctly demodulate the signal we also need

to make sure that the phase of both the incoming carrier signal and the locally generated

signal are matched. Therefore the tracking block implements a phase locked loop(PLL) sys-

tem to make �ne corrections to the frequency of carrier and code replica, so as to accurately

demodulate the signal. A PLL will have a phase detector and a loop �lter in general as

shown in Fig. 2.6. If there is phase error between the received signal and the generated

signal, then a control mechanism kicks in to adjust the frequency and phase of the generated

signal, so as to match it with that of the received GPS signal. Fig. 2.7 depicts simulation of

the working of a designed PLL.

Figure 2.6: Carrier tracking algorithm

Figure 2.7: Simulating the working of the designed PLL

The C/A code in the incoming signal and the locally generated C/A code can drift apart,

as the frequency of the C/A code in the incoming signal changes due to relative motion of
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the satellite with the receiver. In order to estimate the code phase error, a delay locked

loop(DLL) was implemented. The carrier removed signal is correlated with early, prompt

and late version of the PRN code, with early and late code having a shift of ±1/2 chips from

the prompt version as shown in Fig. 2.8 , and their extent of correlation with the received

signal is determined as (IE, QE), (IP , QP ) and (IL, QL). A measure of the code phase error

detector can be expressed as :

D =
(IE

2 +QE
2)− (IL

2 +QL
2)

(IE
2 +QE

2) + (IL
2 +QL

2)

Figure. 2.9 shows an optimized version of the combined tracking loops. Here the I and Q

inputs to the phase discriminator are the Ip and Qp correlation from the code tracking loop.

Figure 2.8: Early Prompt Late correlator

The navigation bit sequence is obtained from the in-phase prompt correlator output. The

constellation plot of the prompt correlator output shows that the data is concentrated in the

in-phase arm as shown in Fig. 2.10 and Fig. 2.11.
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Figure 2.9: Combined Carrier and Code tracking algorithm
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Figure 2.10: Tracking output IP and QP . Navigation bit sequence visible in the inphase arm
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Figure 2.11: BPSK constellation of the GPS navigation data

2.4 Navigation Data Decoding

The navigation bits transmitted on the L1 frequency have a bit rate of 50 bps. The basic

format of the navigation data is a 1500-bit-long frame containing 5 subframes (SF1, SF2,

SF3, SF4, SF5), each having length 300 bits as shown in Fig. 2.12 . One subframe contains

Ten words (W1,W2, ...,W10), each word having length 30 bits. Subframes 1, 2, and 3 are

repeated in each frame. The last subframes, 4 and 5, have 25 versions (with the same

structure, but di�erent data) referred to as page 1 to 25. With the bit rate of 50 bps, the

transmission of a subframe lasts 6 s, one frame lasts 30 s, and one entire navigation message

lasts 12.5 minutes. Each subframe starts with two special 30 bit long words, the telemetry

(TLM) and handover (HOW). TLM contains an 8 bit preamble sequence which is used for

identifying the beginning of the subframe (frame synchronization). HOW word contains

the information about the subframe number and the GPS time of week at which the signal

was transmitted. Subframe 1 contains information needed for the satellite clock correction

and the accuracy/health of the data transmitted. Subframe 2 and 3 contains the satellite

ephemeris data, which is the information regarding the satellite orbits required for estimating

the satellite position. Subframe 4 and 5 contain data which are 12.5 minutes long. They

are referred to as almanac data and contains the ephemerides and clock data with reduced

precision. Additionally, each satellite transmits almanac data for all GPS satellites while it

only transmits ephemeris data for itself.
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Figure 2.12: GPS Navigation Data Structure

In order to �nd the beginning of the subframes from the navigation data (obtained from

the tracking block), we make use of the preamble sequence found in the word W 1 of each

subframes. The data structure in word W 1 is as shown in Fig. 2.13. Besides 24 bits of

data, every 30-bit word contains 6-bits for parity checking. D1 −D24 are the 24 data bits,

while D25−D30 are the 6 parity bits in a word. D∗
29 and D∗

30 represents the last two parity

bits from the previous word. From the parity check equations, we calculate the parity bits

D25−D30 and check if they match with the parity bits of the received navigation bits. Parity

Checking also decides if the received navigation bits have to be inverted or not. d1−30 here

refers to the received navigation data bits. Details of every word can be obtained from the

GPS interface control document ICD-GPS-200C.

Figure 2.13: Structure of �rst word in subframe

GPS ephemeris (satellite and orbital information) parameters are extracted from the

navigation data after parity checking following the ICD-GPS-200C decoding scheme. The
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pseudo-range measurement is computed as the travel time from the satellite to the receiver

multiplied by the speed of light in vacuum. The receiver has to estimate exactly when the

start of a frame arrives at the receiver.Once the pseudo-range is estimated, the GPS position

algorithm (based on trilateration) can be used to estimate the location of the receiver.
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CHAPTER 3

A DETAILED DESCRIPTION OF GPS SIGNAL

ACQUISITION

3.1 GPS Signal Structure

The signal transmitted in the L1 frequency by the GPS satellites are a combination of the

standard positioning service (SPS) and the precise positioning service (PS). The signal SkL1

transmitted in the L1 frequency by satellite k can be mathematically expressed as:

SkL1(t) = AcC
k(t)Dk(t) cos(2πfL1t+ φ) + ApP

k(t)Dk(t) sin(2πfL1t+ φ)

= mk
I (t) cos(2πfL1t+ φ) +mk

Q(t) sin(2πfL1t+ φ)
(3.1)

where Ap is the amplitude of the P(Y) code, P(t) is the P(Y) code, Ac is the amplitude of

the C/A code, C(t) is the C/A code, D(t) = ±1 is the data, fL1 is the L1 frequency, φ is

the initial phase. The P(Y) part is attenuated by 3dB compared to C/A part. The C/A

code repeats itself every ms, and one navigation bit lasts 20 ms (Since, data rate is 50bps) .

Hence for each navigation bit, the signal contains 20 complete C/A codes and at the receiver

the data bit is found by integrating over the 20 C/A codes.

The received power of the GPS SPS L1 signal is nearly -130dBm. The thermal noise

power at the absolute temperature t in ◦K and for an equivalent bandwidth of B in Hz can

be calculated as

PThermalNoise = ktB

where k = 1.38× 10−23J/◦K. For the GPS SPS L1 signal with a null to null bandwidth of

2MHz, the thermal noise power is

= 1.38× 10−23 × 290× 2× 106

= 8.004× 10−15W

= −110.97dBm

(3.2)



Figure 3.1: The resulting L1 signal obtained by modulating the data signal D with the C/A
code C and carrier

As the received signal power is below the noise �oor, the signal presence cannot be determined

from it's spectrum. This is a feature of the code division multiple access (CDMA) spread

spectrum signal and requires the appropriate signal processing to acquire and process the

signal. This also implies that the design of the front end is based more on the level of the

thermal noise rather than the received L1 band navigation signal. Thus, the voltage induced

within the GNSS antenna element results from the thermal noise, which dominates, as well

as the GNSS signals from the satellites in view. Theoretically, the spectrum of GPS system

with the BPSK modulation for SPS and PS signals should look like in Fig. 3.2

3.2 Downconversion of the Received signal

The signal received by a receiver antenna on earth will be a superposition of the delayed

version of the transmitted signal from all the satellites visible from the receiver location. As

the satellites are moving, their will be a Doppler e�ect on its transmitted frequency. It can
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Figure 3.2: Spectrum of GPS SPS + PS in L1 band and PS in L2 band

be expressed as:

yRx(t) =
V isibleSat∑

k

SkL1(t− τ k) + noise

=
V isibleSat∑

k

mk
I (t− τ k) cos(2π(fL1 − fkdop)t+ φk) +mk

Q(t− τ k) sin(2π(fL1 − fkdop)t+ φk)

=
V isibleSat∑

k

mk
I (t− τ k) cos(2πfkeff t+ φk) +mk

Q(t− τ k) sin(2πfkeff t+ φk)

(3.3)

where yRx(t) is the received signal by the antenna, τ k is the time taken for the signal to

reach the receiver from satellite k, fkdop is the Doppler shift in transmitted frequency, fkeff is

the e�ective transmitted frequency and φk is the phase of the received signal from satellite

k. The signal is then down-converted to baseband using USRP N210 at a local oscillator

frequency fo = fL1 . The down-conversion of the signal received yRx from satellite k alone

can be expressed as :

Signal in the in-phase arm ykI (t) is :
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yRx(t) ∗ cos(2fot) =
mk
I (t)

2

[
cos
(
2π(fkeff − fo)t+ φk

)
+ cos

(
2π(fkeff + fo)t+ φk

) ]
+
mk
Q(t)

2

[
sin
(
2π(fkeff − fo)t+ φk

)
+ sin

(
2π(fkeff + fo)t+ φk

) ] (3.4)

Signal in the Quadrature arm ykQ(t) is :

yRx(t) ∗ sin(2fot) =
mk
I (t)

2

[
sin
(
2π(fkeff − fo)t+ φk

)
− sin

(
2π(fkeff + fo)t+ φk

) ]
+
mk
Q(t)

2

[
cos
(
2π(fkeff − fo)t+ φk

)
− cos

(
2π(fkeff + fo)t+ φk

) ] (3.5)

After low pass �ltering, we get

LPF

LPF

y
rx

(t)

@ fL1

cos(2 f0t)

sin(2 f0t)

yI(t)

yQ(t)

Π

Π

Figure 3.3: Passband to baseband down-conversion in USRP

yI(t) =
mk
I (t)

2
∗ cos

(
2πfkdopt+ φk

)
+
mk
Q(t)

2
∗ sin

(
2πfkdopt+ φk

)
yQ(t) =

mk
I (t)

2
∗ sin

(
2πfkdopt+ φk

)
+
mk
Q(t)

2
∗ cos

(
2πfkdopt+ φk

) (3.6)

The �nal signal after down-conversion to complex baseband in USRP can be expressed as :

y(t) =
V isibleSat∑

k

(
mk
I (t) + j ∗mk

Q(t)
)
ej(2πf

k
dopt+φ

k) (3.7)
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where y(t) is the received signal after down-conversion in USRP, mk
I (t) = Ck(t)Dk(t),

mk
Q(t) = P k(t)Dk(t), fkdop is the Doppler shift for satellite k, φk is the phase of satellite

k.

3.3 Serial Search Acquisition

From the received signal y(t), we need to �nd which are the visible satellites, their Doppler

shift fkdop and the beginning of the C/A code of each satellite. For demodulating the received

signal, we need a locally generated carrier signal as well as a time aligned locally generated

PRN code. If both the locally generated signal and code are perfect, then on correlation with

the received signal, the output would be very high. A brute force way to do this will be to

down convert the received signal with all possible carrier signals and then correlate in time

domain with all possible code alignments of the PRN code. We know that |fkdop| ≤ 10kHz,

so we multiply the received signal y(t) with a locally generated carrier signal e−j2πft , where

f is varied from -10kHz to 10kHz in steps of 500Hz i.e 41 di�erent values of f , one in each

iteration. The resultant signal can be expressed as :

y(t) =
V isibleSat∑

k

(
mk
I (t) + j ∗mk

Q(t)
)
ej(2π(f

k
dop−f)t+φk)

=
V isibleSat∑

k

(
Ck(t)Dk(t) + j ∗ P k(t)Dk(t)

)
ej(2π(f

k
dop−f)t+φk)

(3.8)

After wiping o� the carrier signal in an iteration, we correlate the signal with Ck , the C/A

code of satellite k. The correlation process is repeated with shifted version of C/A code. If

the C/A code of 1ms is sampled at 2MHz, then it will have 2000 samples, therefore we have

to perform the correlation with 2000 di�erent shifted version of Ck.

yc(t)⊗ Ck = GDk(t)ej(2π(f
k
dop−f)t+φk) + noise (3.9)

where G is the processing gain of C/A correlation. For the C/A code of correct code align-
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ment and correct carrier signal, the correlation output will be high.

Incoming
signal, y(t)

Carrier wave replica 
at frequency f

Code replica with
given shift

Time domain
Correlator

Figure 3.4: Serial search acquisition

3.4 Parallel Code Phase Search Acquisition

The serial search acquisition algorithm is too computationally heavy. Modi�cation to the

above algorithm to make it computationally e�cient can be done by doing the correlation

operation in the frequency domain and then take inverse-FFT to �nd the results of the

correlation in time-domain. The code alignment corresponding to the highest correlation is

the start of the C/A code in the received signal. A detailed block diagram of the method

discussed can be found below:

Relation between circular correlation in time domain and frequency domain:

Let m(n) be the received signal down-converted by the generated carrier frequency at f and

c(n) be the locally generated C/A code of a particular satellite. As both these signals are in

discrete time domain, they are periodic and hence the correlation is circular.

The correlation between the two signals can be written as:

z(n) =
N−1∑
i=0

m(i)c(i+ n) (3.10)

The discrete Fourier transform of the two �nite length sequences can be computed as:

M(k) =
N−1∑
n=0

m(n)e−j2πkn/N

and
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C(k) =
N−1∑
n=0

c(n)e−j2πkn/N

The N point Fourier transform of z(n) can be expressed as:

Z(k) =
N−1∑
n=0

N−1∑
i=0

m(i)c(i+ n)e−j2πkn/N

=
N−1∑
i=0

m(i)

[
N−1∑
i=0

c(i+ n)e−j2πk(n+i)/N

]
ej2πki/N

= C(k)
N−1∑
i=0

m(i)ej2πki/N

= C(k)M−1(k)

(3.11)

where M−1(k) is the inverse DFT of m(n).

Alternatively,

Z(k) =
N−1∑
n=0

N−1∑
i=0

c(i)m(i+ n)e−j2πkn/N

=
N−1∑
i=0

c(i)

[
N−1∑
i=0

m(i+ n)e−j2πk(n+i)/N

]
ej2πki/N

=M(k)
N−1∑
i=0

c(i)ej2πki/N

=M(k)C∗(k)

(3.12)

Since c(n) is real C1(k) = C(k)

Using this relation, the time domain result can be obtained by taking IFFT of Z(k)

z(n) =
N−1∑
k=0

Z(k)ej2πkn/N

The maximum of |z(n)| in the nth location and respective frequency step gives the beginning

of the C/A code and the carrier frequency of the signal.
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3.5 How to Determine the Length of Signal Used for Ac-

quisition

The C/A code of satellites Ck are 1ms long, while the navigation data Dk transmitted from

the satellites are 20ms long. Typically 1ms of data from the received signal is used for

correlating with the locally generated C/A code during acquisition. If the received satellite

signal is very weak, then long data length are required for acquisition to detect satellites.

The longer the data record used the higher the signal-to-noise ratio that can be achieved.

The factors that limit the length of the data record are

• Navigation data transition in the data

The navigation data remains constant for 20ms or in other words, if we take 20 ms of

received data, then there can be at-most one data transition. The navigation data transition

will spread the spectrum and the output will no longer be a continuous signal. The spectrum

spread will degrade the acquisition result. To overcome this, we take two consecutive 1ms

received data blocks and perform acquisition algorithm on both. As the data blocks are

contiguous, there can be navigation data transition in at-most one of the blocks.

• Doppler e�ect on the C/A code (Code Doppler)

The Doppler e�ect on C/A code frequency can be obtained after determining the Doppler

e�ect on the carrier by the following relation:

f
′

code = fcode ∗
fL1 + fd
fL1

where fcode = 1.023MHz, fL1 = 1575.42MHz and fd is the carrier Doppler estimated from

the acquisition. As fd = ±10kHz, the maximum Doppler shift expected on a C/A code is 6.4

Hz. Hence the chip duration in the C/A code varies due to Doppler. If a perfect correlation

peak of C/A code with the locally generated C/A code is 1, the correlation peak decreases to

0.5 when a C/A code is o� by half a chip. This corresponds to 6 dB decrease in amplitude. If

the maximum allowable code misalignment is half a chip (0.489 us) for e�ective correlation.

It takes about 78 ms (1/(2× 6.4)) for two frequencies di�erent by 6.4Hz to change by half
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a chip. This data length limit is much longer than the duration of 1ms used for acquisition

here. Hence, the variation in code Doppler need not be considered during acquisition but

they have to be considered during the tracking block.

3.6 How to Determine the Number of Frequency Steps

Used in Acquisition

The Doppler frequency range that needs to be searched is ±10kHz. It is important to

determine the frequency steps needed to cover this 20 kHz range. The frequency step is

closely related to the length of the data used in the acquisition. When the input signal

and the locally generated carrier signal are o� by 1 cycle there is no correlation. When the

two signals are o� by less than 1 cycle there is partial correlation. It is arbitrarily chosen

that the maximum frequency separation allowed between the two signals is 0.5 cycle. If

the data record is 1 ms, then a 1 kHz signal will change 1 cycle in the 1 ms. In order to

keep the maximum frequency separation at 0.5 cycle in 1 ms, the frequency step should be

1 kHz. Under this condition, the furthest frequency separation between the input signal

and the correlating signal is 500 Hz or 0.5 Hz/ms and the input signal is just between two

frequency bins. If the data record is 10 ms, a searching frequency step of 100 Hz will ful�l

this requirement. In our experiments, a frequency step of 500 Hz is used to cover the 20 kHz

range, which will amount to 41 frequency steps.
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CHAPTER 4

FRONT-END OF GPS RECEIVER

4.1 Block Diagram of Receiver Chain

Figure 4.1: Block diagram

The active antenna �tted on the roof of Electrical Science block is able to receive the GPS

signal in the L1 band (fL1 = 1575.42MHz). The antenna has an inbuilt �lter with a

bandwidth of fL1 ± 50MHz and an ampli�er of gain 30dB. Signal from the antenna is

carried to the laboratory through the 20m long coaxial cable. A bias tee is used to power

up the ampli�er in the antenna by supplying 4V DC. An SMA-F to SMA-F connector was

required to connect the coax cable (SMA-M) with the bias tee's RF+DC port (SMA-M). The

bias tee outputs RF signal centred at 1575.42MHz to the USRP N210, which down-converts

the signal to baseband using its local oscillator at 1575.42MHz, followed by sampling the

signal at 2MHz.

4.2 Components of the Receiver

4.2.1 Integrated GPS Antenna

The key features required for a GPS antenna are:



Item Speci�cations
Model Synergy Telecom Outdoor Antenna

Center frequency 1575.42± 3MHz
LNA Gain 28± 2dB
Noise �gure 1.5dB

Filter Out Band Attenuation 12dB min f0 ± 50MHz
DC Voltage 2.2− 5V
DC Current 5− 15mA

Table 4.1: GPS Active Antenna speci�cations

• Wide spatial angle : The antenna should have wide spatial angle to receive the low
elevation satellite signals as well as the high elevation angle signals. The spatial angle
should also be narrow enough to block the interfering signal which usually arrive at
low elevation angles.

• Small gain variation : The antenna should have small gain variation from zenith to
azimuth, so that all the received satellite signal should be of comparable strength.
In the CDMA system if the received signals are not of comparable strength then the
strong signals may interfere with the detection of the weak signals.

• Right-handed circular polarized (RHCP) : The GPS signals are right-handed circular
polarized signals and hence the antenna should also be RHCP. This indirectly helps in
mitigating multipath interference as the re�ection of an RHCP signal will be an LHCP
signal. As the antenna is RHCP, it has lower gain for LHCP signal.

4.2.2 Coax Cable

The 20m long coax cable has N-M and SMA-M connectors at it's end. The N-M connector

connected to the N-F connector of the GPS Active antenna and the SMA-M connector has

to be connected to the Bias Tee's RF+DC port.

Item Speci�cation
Model No LMR-400
Length 20m

Cable Run Attenuation 3.9dB

Table 4.2: Coax cable speci�cations

24



Figure 4.2: Experimental Setup

4.2.3 Connector

The LMR-400 cable running from the roof has SMA-M connection at its end and the Bias

Tee also has SMA-M at its RF+DC port, so an SMA-F to SMA-F RF connector was used

for connecting the cable with the bias-tee.

Item Speci�cation
Model No SF-SF50+

Insertion Loss 0.05dB

Table 4.3: Coax cable adapter speci�cations

4.2.4 Bias Tee

The Bias Tee when powered with power supply at 4.3V is able to power the ampli�er/�lter

in the active antenna without disrupting the GPS signal. The RF+DC port of the bias tee

is connected with the GPS antenna and the RF port is connected with USRP N210.
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Item Speci�cation
Model No ZFBT-4R2G-FT+
Voltage 4.3 V

Insertion Loss 0.47dB

Table 4.4: Bias Tee speci�cations

Figure 4.3: Bias Tee Electrical Schematic

4.2.5 USRP N210

The USRP is con�gured to receive the gps signal by creating a �owgraph in GNURadio-

companion. GNURadio is a graphical toolkit used to develop mod- ular SDR systems,

which can then be run using USRP devices, using the UHD API. The UHD: USRP Source

block is con�gured to down-convert the signal at 1575.42MHz to complex baseband and

sample it at 2MHz. The sampled data contain I and Q signals and are saved to a �le in

gnuradio-complex datatype.

Figure 4.4: Front view of the USRP N210 transceiver
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Figure 4.5: GNURadio FlowGraph for con�guring USRP to receive GPS signal

4.3 Ampli�cation Consideration

The available thermal noise power PT at the input of the receiver can be calculated as:

PT = kTB

where k is the Boltzmann's constant (= 1.38× 10−23J/K), T = 300K and B = 2.046MHz

is the bandwidth of the receiver in hertz.

PT (dBm) = 10log10(kTB) = −111dBm

The maximum voltage required to exercise all the levels of the ADC is about 100mV and

the corresponding power is nearly 0.1mW (−10dBm). The C/A code signal power level at

the receiver will be approximately −130dBm, hence the signal is 19dB(−111 + 130) below

the noise �oor. Therefore, in order to amplify the GPS signal, we need to raise noise �oor

level to the maximum range of the ADC (= −10dBm). If we raise the signal to the level

of the ADC, then noise will saturate the ADC output. Hence, we need a net gain of about

101dB(−10+111). Since in the RF chain there are �lters and cable losses, the insertion loss

of these components must be compensated with additional gain. The net gain must be very

close to the desired value of 101dB. Too low a gain value will not activate all the possible

levels of the ADC. Too high a gain will saturate some components or the ADC and create

an adverse e�ect.
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Figure 4.6: Spectrum of the received signal in baseband
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CHAPTER 5

INTRODUCTION TO HDL CODER

HDL CoderTM generates portable, synthesizable Verilog and VHDL code from MATLAB

functions, Simulink models, and State-�ow charts. The generated HDL code can be used for

FPGA programming or ASIC prototyping and design.

HDL Coder provides a work-�ow advisor that automates the programming of Xilinx and

Altera FPGAs. User can control HDL architecture and implementation, highlight critical

paths, and generate hardware resource utilization estimates. HDL Coder provides traceabil-

ity between the Simulink model and the generated Verilog and VHDL code, enabling code

veri�cation for high-integrity applications adhering to DO-254 and other standards.

Figure 5.1: HDL code generation from Matlab/Simulink model using HDL Coder

5.1 Algorithm Design for HDL Code Generation

MathWorks HDL coder is a HLS -tool to synthesize MATLAB or Simulink algorithm model

to VHDL or SystemVerilog code. This chapter covers the design principles for synthesizable

MATLAB or Simulink model. HDL synthesis is performed with an example IP block. HDL

coder uses the designed model, including the user-de�ned settings and the target technology

�les, as input to generate HDL code for both FPGA and ASIC. The tool has �oating point

to �xed-point converter built-in so both the �oating point and the �xed-point algorithms

are supported, which makes it �exible. However, HDL coder has some limitations on design

principles to be able to synthesize the design into HDL. These limitations are discussed in

the section 4.1 below.



5.1.1 From Matlab Model

MATLAB is generally used for algorithm design of a system for fast simulation and veri�-

cation purposes of the behavioural model.

Since Soft Ware(SW) technology has more degrees of freedom compared to Hard Ware(HW),

HDL coder supports only a subset of MATLAB language that is targeted for HW. For exam-

ple, synthesis from MATLAB Object-Oriented Programming (OOP) classes is not supported.

However, it supports synthesis from MATLAB System Objects that are specialized objects

designed for dynamic systems.

To produce rational HDL code, the algorithm should be written from the HW perspective.

Algorithm models are often written into simulation optimized vector operations that create

parallel structures and copies of combinational logic blocks in HW when processed by HDL

coder.An optimized way is to use only the necessary amount of the combinational logic to

perform the logic operations within the timing constraint and multiplexing time- variant in-

put signals into the circuit. This reduces the area of the hardware signi�cantly as described

in section Optimization.Loop structures can be automatically converted to streaming struc-

tures by using loop unrolling. However, parallel structures can be used if the target is to

maximize the speed. To optimize the generated model, the algorithm model should be writ-

ten in a way it is desired to be on HW.

The �rst thing when starting to design a model for the HDL code generation is to verify

that Data Types, Operators and Control Flow Statements to be used are supported by the

tool.

To create synthesizable MATLAB code, the structure has to be correct. The design func-

tionality has to be written in functions or MATLAB System Objects that are targeted for

dynamic systems. Sub-functions or System Objects are then called within a main function

to be included in the synthesis. Handshaking/synchronization between blocks, functions,

variable indexing and also signal bu�ering should be coded in the MATLAB design in a way

it is desired to be in RTL.

A feature that limits MATLAB for being used for large designs is that it has no concept

of time. Therefore, it is not compatible with multi-rate designs using multiple clock domains.
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5.1.2 From Simulink Model

Simulink is a graphical design tool that uses library blocks, MATLAB functions and System

Objects to perform certain functionality. Simulink library includes vast selection of hardware

optimized blocks and cover some of the functionalities needed in SoC development. User-

de�ned MATLAB function blocks and System Object blocks can be used to create design

speci�c functionalities or to re-utilize existing MATLAB algorithms. Simulink supports the

multi-rate designs, therefore, it has an advantage over MATLAB when a design has more

than one clock domain.

For HDL code generation, all the blocks available in the Simulink library cannot be used to

design the simulink models but only HDL code generation supported blocks are to be used.

Fixed-point Converter can be used to convert �oating point data types into user-de�ned

�xed-point types. Solver settings can also a�ect the simulation speed. "MultiTasking"

option can be used to speed up the simulation but it's not supported for HDL generation.

For HDL code generation "SingleTasking" option has to be used. In this project Simulink

is used to implement the GPS signal acquisition algorithms.

5.2 HDL Code Generation From Model

Completed and behaviourally veri�ed algorithm design can be synthesized into RTL. HDL

coder takes MATLAB or Simulink design as input and generates either VHDL or Verilog

from it. In Simulink case all blocks inside the top-level design are synthesized into separate

VHDL-�les and are imported as components on the top-level VHDL. An example of the

code generation principle is shown in Fig. 5.2. The top- level VHDL-�le includes design I/O

ports, internal signal declaration, port mapping of the components and assigning internal

signals into the I/O ports.

Generating HDL code from a MATLAB design follows the same principle as shown above

if sub-functions are written in separate MATLAB function �les and are called within a main

function. If all the functionality is written in a single MATLAB function or System Object,

the whole design is synthesized into a single VHDL-�le.

The target speci�c parameters can be con�gured by the user in HDL coder. After setting the

parameters, HDL coder performs checks for global settings, algebraic loops, compatibility
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Figure 5.2: HDL code generation principle from Simulink/MATLAB Design

and sample time to verify that the design is synthesizable. Depending on the design size, the

RTL synthesis takes from a few seconds to a few minutes. The output is human readable

HDL code making it really interesting from the point of RTL coding by automating the RTL

code generation. The design �ow times are depicted in Fig. 5.3.

Figure 5.3: Approximate ASIC design �ow timeline.

If changes are made on the algorithm design, a new HDL code can be rapidly generated.

The generated HDL code also provides visibility backwards to the algorithm model from

VHDL-�le trough links that take the user to corresponding MATLAB function. It also

preserves all the comments of the MATLAB function into VHDL.

HDL coder generates traceability, resource utilization, critical path and optimization reports

for the RTL model automatically but user can also disable the report generation. The user
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can also view detailed resources block by block. The critical path of the VHDL design can

be back annotated in Simulink model.

5.3 HDL Code Veri�cation

In this chapter, HDL code veri�cation possibilities that the MathWorks work-�ow provides

are discussed.

5.3.1 Veri�cation in RTL simulator

Co-simulation automatically generates stimulus for a HDL model from MATLAB/Simulink

test bench and runs a RTL simulator in the background. Co- simulation compares output

of the code generation model of the algorithm to the HDL model's output. HDL Veri�er

is required to be installed. The HDL model is simulated in the background in user-de�ned

RTL Simulator and the output is imported in MATLAB. Co-simulation compares the models

bit-accurately and cycle-accurately. Simulation con�guration is presented in Fig. 5.4 [27].

Figure 5.4: HDL co-simulation con�guration.

Error is calculated from the di�erences of code generation model simulation and RTL

simulation. The error comes mostly from quantization inaccuracies and if the algorithm

model is written with �xed-point data types the error should be zero. The comparison

is done on the output ports and it is a rapid way to verify HDL design correctness every

time the algorithm is changed. Co-simulation window of the example design is presented in

Fig. 5.5.

The other way to simulate RTL is to generate a HDL test bench with HDL coder from

MATLAB/Simulink test bench and simulate it manually in a RTL simulator with the gen-

erated HDL design �les and HDL test bench. Generating the HDL test bench takes roughly
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Figure 5.5: Co-simulation window where error between Algorithm model and HDL model is
shown

two times longer than the entire co-simulation, thus the user have to manually verify the cor-

rectness of design functionality in the RTL simulator. Manual veri�cation further increases

the veri�cation time. The automatic HDL code generation from the algorithm model and

the RTL functional veri�cation against the algorithm can provide great improvement in

prototyping times and e�ciency.

5.3.2 Additional RTL veri�cation methods

HDL Coder has support also for other RTL veri�cation methods such as lint checking, code-

coverage analysis and veri�cation with validation model.

The code-coverage analysis is done on the algorithm model and since HDL Coder generates

the RTL from the algorithm there is no need for RTL code-coverage. The code-coverage

checks that all the functions de�ned are used, all statements are executed, all branches are

executed at some condition and all Boolean expressions are evaluated to true and false. This

is a fast way to check if there are some functions that are not executed in any conditions.

HDL Coder supports 3rd party lint checking tools. These are Ascent Lint, HDL Designer,

Leda and SpyGlass. By enabling the lint checking, the tool generates a script for speci�ed
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lint tool and user can also con�gure lint checking parameters to meet the requirements. The

lint checking is used to check suspicious behaviour of the model such as division by zero or

assigning values to a variable before variable declaration.[25]

HDL Coder provides validation model veri�cation method to verify functional equivalence

of the original algorithm and the code generation model. Di�erence to the co-simulation

is that this compares the original model to the code generation model over comparing the

code generation model to the RTL model. Both models are fed with the same stimulus on

each time step and output is compared similarly. An example design's validation model

simulation output is shown in Fig. 5.6.

Figure 5.6: Validation model simulation output.

The �ow has vast support for di�erent RTL veri�cation methods and all of them can

be controlled within one tool. This provides improvement in prototyping �ow clarity and

may slightly improve the design �ow times by automating the 3rd party tool usage. For very

detailed veri�cations with 3rd party programs, it is easier to use the tools manually with

Graphical User Interface (GUI) due to better visibility to the con�guration parameters.
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5.4 FPGA Synthesis and Functional Veri�cation in FPGA

Environment

In this section, synthesizing of VHDL/VERILOG model into a gate-level design, program-

ming FPGA and veri�cation of the functionality is discussed.

5.4.1 Logic synthesis

The logic synthesis is performed after the HDL model generated has proper functionality.

The �ow does not include own synthesis tool but it supports the following tools: Xilinx

ISE, Xilinx Vivado, Synopsys Synplify Pro, Altera Quartus II, Mentor Graphics Precision

and Microsemi Libero. The user can choose to use any of the listed tools depending on the

requirements. HDL coder generates a tool speci�c script which is used to start the selected

tool and synthesize the generated RTL code with the user-de�ned settings. Synthesis time

and result depends on the VHDL/VERILOG model and the chosen synthesis tool. Synthesis

tools provide an area report presented in logic cells once synthesis is completed.

The HDL coder generated RTL utilizes less resources than the hand-written model. Hence

automated HDL coder work-�ow is bene�cial for FPGA based rapid prototyping due to

faster iteration times compared to hand-writing the model in VHDL/VERILOG . It also

creates synthesizable HDL and logic in reasonable size.

The maximum clock frequency can be achieved for the design is

fmax =
1

τcritical

where τcritical is critical path delay.

By following good algorithm coding rules good design speed can be achieved with the HDL

coder work�ow.

5.4.2 FPGA environment veri�cation

FPGA veri�cation can be done with FPGA-in-the-loop (FIL) con�guration using the gener-

ated design and FPGA evaluation board. The FIL �ow provides capability of using MATLAB

or Simulink for testing the design in a real hardware environment. After HDL code genera-
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tion it performs logic synthesis and generates a FPGA programming �le with target FPGA

speci�c �les. FPGA is further programmed through GUI through either Ethernet or JTAG

connection. The FPGA programming �le can also be generated from the hand-written RTL

by using FIL wizard [27]. Programmed FPGA is running in real hardware environment

with MATLAB or Simulink stimulus. Data is streamed through FPGA chip and output is

compared to the algorithm simulation output. FIL con�guration is shown in Fig. 5.7.

Figure 5.7: FPGA-in-the-loop simulation con�guration.

The FIL output is a similar window as in co-simulation (Model Validation). The output

data from the FPGA board and the algorithm is presented as waves and the di�erence

between the outputs is compared in an error plot. An FIL simulation window is shown in

Fig. 5.8.

From the simulation results in Fig. 5.8, it can be seen that the FPGA model has the

same functionality as the algorithm model created in the beginning of the work. The results

verify that the FIL �ow produces improvement for rapid IP prototyping compared to manual

veri�cation in FPGA environment by decreasing the veri�cation times and also making the

prototyping �ow faster and easier from algorithm into FPGA prototype. The �ow provides

also additional target work-�ows such as Generic ASIC/FPGA, FPGA Turnkey, Simulink

Real-Time FPGA I/O and IP Core Generation.

5.5 HDL Code Optimization

HDL Coder provides optimization features that user can apply on a design. Optimization

features include adding pipeline registers, resource sharing and loop unrolling.

HDL coder allows user to specify optimization features on top-level or on a single block.
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Figure 5.8: FPGA-in-the-loop simulation window presenting error between DUT and FPGA.

HDL properties window allows the user to set input and output pipeline register count,

sharing factor and streaming factor. Setting "Distributed Pipelining" option "on" lets HDL

Coder to distribute existing or added pipeline registers across the selected block to improve

the timing characteristics. "Constrained Output Pipeline" count can be set to redistribute

existing delays within your design to meet the constraints. Adding registers in a long logic

path is illustrated in Fig. 5.10.Registers speci�ed by "Constrained Output Pipeline" are

not a�ected by "Distributed Pipelining". RAM mapping can be also used to map registers

on RAM to save area. It can be speci�ed on every block separately and it only maps

those registers to RAM that are larger than the threshold value. HDL properties window is

presented in Fig. 5.9

Using built-in optimization features e�ciently requires understanding the design and the

hardware implementation. Adding unnecessary pipeline registers increase s circuit delay

and using sharing or streaming options on already optimal blocks may increase the design

complexity and decrease the design quality. Therefore, if algorithm is designed with opti-

mized functions, HDL Coder's optimization features have no e�ect but may reduce the qual-

ity.Sometimes RAM mapping will leads to more resource utilization, for instance enabling

RAM mapping in structures which uses more than one clock cycle for con�guration process
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Figure 5.9: HDL Properties window to set optimization parameters.

Figure 5.10: Illustration of adding registers in a long logic path.
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requires additional pipeline registers and some logic around it to access RAM correctly.

40



CHAPTER 6

DESIGNING ACQUISITION ALGORITHM IN

SIMULINK FOR HDL CODE GENERATION

The acquisition algorithm is designed using HDL coder library blocks in Simulink. The

functional description of various blocks and subsystems in the design will be discussed in

this chapter. The model is veri�ed by running a simulation on the sample GPS signal

data. The design involves look-up tables, delay blocks, memory blocks, logical circuits

and arithmetic circuits etc. Mathematical operations like exponential carrier generation,

taking the reciprocal etc cannot be implemented directly. However the HDL coder library

is equipped with functional blocks which can carry out these operations either by look up

tables, CORDIC algorithm or Newton-Raphson etc implementations. Such implementations

are not included in the initial design(which is the �oating point design). However in the later

stages, these issues are taken care of along with the conversion of the �oating point model to

�xed-point model. The initial design need not be optimised in terms of timing and resources.

Optimisation aspects come to picture only when the design is fully HDL compatible. Area

and timing optimization can be performed depending upon the construction of the design in

order to reduce the resource utilization and increase the clock speed.

6.1 Floating Point Model : Functional Blocks and Sub-

systems

Data samples for acquisition are stored in a workspace variable as a time series and taken

into Simulink model using FromWorkspace block in Simulink library. Fig. 6.1 represents the

initial �oating-point design.
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6.1.1 Data Splitter

The purpose of this block is to provide two consecutive 1ms(in this case 2000 samples since

fs = 2MHz) received data as explained in section 3.5 for performing acquisition algo-

rithm. The sample GPS signal data in the workspace contains samples received for a long

time(>35sec). Therefore Data Splitter subsystem has designed to take only 2ms of data

into the Simulink model in order to perform the acquisition. The data is split into two, each

having data of 1ms duration and they are streamed parallely as shown in Fig. 6.2. Since

the same signal data has to be correlated with di�erent PRN codes and Doppler carriers, we

need to stream the same data repeatedly for each iteration. So Data Splitter block traps

this 2000 samples in a loop and streamed repeatedly as shown in Fig. 6.3. HDL counter,

deserializer , serializer, switch and memory etc are used to implement Data Splitter sub-

system.

Ts	inherited

enb count

HDL	Counter1

>	2000

Compare
To	Constant1

Data	in Data	Out

Acquisition	data

~=	0

CmpZ5

	>	0

Switch1

1

In1

1

Data1

3

Data2

Z-1

Delay1

Z-1999

Delay2

	>	0

Switch2

Memory1

Data	in Data	Out

Acquisition	data1

Memory2

~=	0 Compare
To	Zero

	>	0

Switch17

2

CountEnable

Figure 6.2: Construction of "Data Splitter" subsystem

Sample	time	=	1e-6*2000/4096
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Signal	Specification1
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Signal	Specification3
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Compare
To	Zero

Figure 6.3: Construction of "Acquisition data" subsystem of "Data Splitter"
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6.1.2 Correlator

Correlator block executes repeated correlation of various Doppler carrier removed data and

the C/A code corresponds to each PRN. Frequency bins of width 500Hz have been arbitrarily

chosen for locally generating Doppler carriers. It turns out that the Doppler shift in carrier

frequency rarely exceeds 5kHz. Hence total 21 carriers are generated locally in order to cover

±5kHz range. Fig. 6.4 shows the entire construction of the correlator block. The subsystem

shown in Fig. 6.5 is responsible for periodically generating all the required Doppler carriers.

C/A codes corresponds to each PRN is stored in a Look-up-Table in 'PRN code table'

subsystem as shown in Fig. 6.7. The subsystem 'PRN index' shown in Fig. 6.6 helps to

perform rotational shift of C/A codes and advance the correlation. The subsystem 'Block

Sum' as shown in Fig. 6.8 implement the dot product functionality required to conduct

correlation.

6.1.3 First Peak and Second Peak Finder

The block 'FirstPeakAndSecondPeak' �nds out the �rst peak and second peak along with

their indices(C/A code shifts) from each correlation output vector. It is done in two steps

as shown in Fig. 6.9 :

1. Initially, �nds out the �rst six peak points and their C/A code indices by subsystem
'Sorting in code phase' as shown in Fig. 6.10

2. Second peak is found out by avoiding peaks which fall in 'Exclude Range' by subsystem
'Choose Second Peak' as shown in Fig. 6.11.

The 'ExcludeRange' is two samples before and after the C/A code index corresponds to

the �rst peak point. This 'ExcludeRange' has come into picture due to over sampling of

C/A code. Therefore the second peak is chosen outside of 'ExcludeRange'.

6.1.4 Pick Max

The 'Pick Max' system helps to pull out the best correlation results corresponds to a PRN.

It passes the the informations like code phase, Doppler carrier shift, �rst peak and second

peak etc to the block 'Satellite Specs' corresponds to each PRN successively. The Simulink

construction of 'Pick Max' is shown in Fig. 6.12.
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Figure 6.4: Correlator subsystem
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Figure 6.10: Construction of 'Sorting in code phase' subsystem of the block 'FirstPeakAnd-
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Figure 6.11: Construction of 'Choose Second Peak' subsystem of the block 'FirstPeakAnd-
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6.1.5 Switch Control

The subsystem 'Switch Control' helps to identify the end of correlations corresponds to a

PRN so that the results from 'Pick Max' subsystem can be passed to 'Satellite Specs'. The

construction of 'Switch Control' is shown in Fig. 6.13.

6.1.6 Satellite Specs

The desire of this block is to sort correlation results corresponds to each PRN based on

peak1(�rst peak) by peak2(second peak) ratio. Then the best four PRNs(Satellites) are

chosen out of it. If peak1 by peak2 ratio of a satellite is above a predetermined threshold(In

this case, it is taken to be 2) then it is declared as a visible satellite to the user. The design

of 'Satellite Specs' system is shown in Fig. 6.14.

6.2 Results

A sample GPS signal data is used to test the design and the simulation results are veri�ed

with reference to the results of GNSS-SDR. GNSS-SDR is an open-source GNSS software

receiver freely available to the research community. More details on GNSS-SDR and its

installation is given in Appendix. ??. The simulation results are documented in Table. 6.1.

Channel Peak Ratio PRN Doppler Frequency Bin Code Phase
1 28 7.4504 1000 338
2 6 4.2549 500 1751
3 2 4.0474 2500 689
4 17 3.9556 -500 977

Table 6.1: Acquisition simulation results

6.3 Fixed Point Conversion of the Design

Prior to the HDL code generation, the �oating point model need to be converted to �xed

point. The �xed point model will have �xed word lengths for various blocks included in

the design. This will result in quantisation errors and in some cases saturation of included
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Figure 6.14: Construction of 'Satellite Specs' subsystem
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blocks for out of bound inputs. Much care need to be given to �xed point conversion as it

plays a major role in resource utilisation and accuracy of the results. HDL code generation

from the �xed point model is straight forward using the HDL work�ow advisor. Fixed point

conversion of the �oating point model can be done by the Fixed point designer as well as

manually adjusting the data types of Simulink blocks from properties.

6.3.1 Using Fixed Point Designer

Fixed point designer is equipped with the essential steps for converting the �oating point

model to �xed point. The tool initially derives the range information of the outputs of

various blocks by running a simulation over a pre- scribed data set. The range information

regarding external inputs need to be set manually. Once the range information of all the

blocks in the model are derived, �xed point designer further uses these informations for

estimating the required word length at the output of various blocks.

In the Fixed point Designer window pain there is provision to see if saturation occurs at

any point in the design due to out of bound inputs. The designer can manually set the

required word lengths according to the accuracy requirements. The quantisation errors may

accumulate over a certain path and result in erroneous outputs. The word lengths should

be increased in such cases to reduce the error. There is always a trade o� between word

length optimisation and accuracy of the output. The word length of various blocks should

be selected such that the quantisation errors lie within a speci�ed range.

The �xed point model of 'Block sum' is given in Fig. 6.15 with all the port data types

shown. Fixed point data types can be signed or unsigned. sfix refers to signed and ufix

refers to unsigned data types. sfix32_En24 means signed data type of word length 32 and

24 bits out of these 32 are used for representing decimal part. So the integer part has 8 bits

left and the range will be -128 to 127.

As discussed in chapter 5, certain mathematical operations such as tan−1 , division, com-

plex magnitude, exponential wave form generation etc can't be implemented in a single step

in FPGA. Even though the HDL coder library is equipped with blocks to carry out such

operations, these blocks may not be supported during the HDL code generation. Alter-

natively these operations can be implemented by Look up tables, CORDIC algorithm or

mathematical approximations and Simulink provides such blocks exclusively for HDL code
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CHAPTER 7

HDL CODE GENERATION AND VALIDATION

HDL code generation can be performed readily by the help of HDL workflow adviser once

the model is fully converted to �xed-point and all the blocks used in the design is HDL

compatible. In this project, the code generation and veri�cation are conducted on a Xilinx

Virtex-5 XUPVS-LX110T development board and the synthesis tool used is Xilinx ISE. For

advanced FPGA boards such as Virtex-7, Zynq-7000 the synthesis tool required is Xilinx

Vivado. By selecting the target work�ow as FPGA-in-the-Loop, the HDL veri�er allows

HDL co-simulation in which the output from the FPGA and the simulation output of corre-

sponding Simulink model can be observed simultaneously. A brief description of principles

pertaining to HDL code generation from model is depicted in section. 5.2

7.1 HDL Code Generation via HDL Work�ow Adviser

HDL work�ow adviser automates various steps required for programming Xilinx and Altera

FPGAs from Simulink/Matlab model. User can set the target work�ow, target FPGA

platform, synthesis tool and project folder etc as shown in Fig. 7.1. After con�guring the

target speci�c parameters, HDL coder performs checks for global settings, algebraic loops,

compatibility and sample time to verify that the design is synthesizable. Depending on

the design size, the RTL synthesis takes from a few seconds to a few minutes. The output

is human readable VHDL/VERILOG �les and all the blocks inside a top-level design are

synthesized into separate VHDL/VERILOG �les and are imported as components on the

top-level VHDL/VERILOG.

User can opt for generating traceability, resource utilization, critical path, optimization

reports and validation model via 'HDL coder properties' of the design under target(DUT)

along with RTL synthesis. Traceability report allows navigation between the code and

the corresponding Simulink blocks through hyperlinks. The timing and high level resource

utilisation reports can be used as a reference to design optimisation. The critical path of the



Figure 7.1: HDL work�ow adviser

design will be depicted using highlighted blocks which is useful for identifying the scope of

pipe-lining. Validation model is used for validating the functional behaviour of the generated

HDL code with the help of HDL Veri�er as explained in Section. 7.2.

HDL work�ow adviser proceeds for logic synthesis once the RTL synthesis is completed.

However, user can optimize the design in terms of area and speed by examining the RTL

synthesis reports, which has been discussed in Chapter. 8.

7.2 RTL Veri�cation Using Validation Model

Validation model enables simultaneous simulation of the Simulink model and corresponding

RTL generated. Which also provides a platform to analyse outputs of both model and the

error occurred through a scope. In this project, subsystem wise validation is carried out as

the simulation of the top-level design is time consuming.

The validation model corresponding to 'correlator' block is shown in Fig. 7.2. The out-

puts CorrOut1 and CorrOut2 are analysed through scopes shown in Fig. 7.3 and Fig. 7.4

respectively. The RTL model generated is veri�ed for its functional behaviour as the outputs

from both models exactly matches and the error continues to be zero. In this fashion RTL

model corresponds to every subsystems can be veri�ed for its functional behaviour using
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validation model.

Figure 7.2: Validation model generated corresponds to 'correlator' subsystem
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Figure 7.3: The output 'CorrOut1' from both Simulink and RTL model during simulation
of the validation model

Figure 7.4: The output 'CorrOut2' from both Simulink and RTL model during simulation
of the validation model
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CHAPTER 8

OPTIMIZATION AND SYNTHESIS OF THE HDL

CODE

Timing and area optimisation plays a key role in achieving faster clock rates and a concise

design that e�ectively �ts into the target FPGA device respectively. Traceability reports

can be used to �nd the high level resource utilisation and critical path in the current design.

Area optimisation is mainly done by reducing the word length of various blocks without

a�ecting the accuracy of results. Multiplexing can also be done for functionally-equivalent

Simulink blocks by enabling resource sharing so as to further optimize area. Timing opti-

misation is mainly done by fragmenting the critical path using delays and it is known as

pipelining. Via HDL block properties window pane user can set various optimize features like

DistributedPipelining, SharingFactor and StreamingFactor etc as shown in Fig. 8.1.

HDL coder will then automatically enable these optimization features for the subsystem

during the code generation.

Register usage can be reduced tremendously by allowing delays in the design to use

RAM by enabling UseRAM option in the HDL properties pane of the delay block as shown in

Fig. 8.2.

The optimised design of Acquisition Algorithm is shown in Fig. 8.3.

8.1 Critical Path Estimate and Resource Report

The critical path estimate for the unoptimized initial design was 103.978ns which is high-

lighted in Fig. 8.4. The critical path estimate after optimizing the design by pipe-lining

was reduced to 49.801ns which is highlighted in Fig. 8.5. The high level resource utilization

report for the unoptimized design and the optimized design is shown in Fig. 8.6 and Fig. 8.7

respectively.



Figure 8.1: HDL block properties

Figure 8.2: HDL Properties: Delay
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Figure 8.4: The critical path corresponds to unoptimized design
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Figure 8.5: The critical path corresponds to optimized design

65



Figure 8.6: High level resource utilization report of the unoptimized design

Figure 8.7: High level resource utilization report of the optimized design
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8.2 Logic Synthesis and Functional Veri�cation in FPGA

Environment

The logic synthesis and functional veri�cation of the design in FPGA in the Loop(FIL) con-

�guration is previously discussed in Section. 5.4. The optimized HDL code is synthesized

using Xilinx ISE on Xilinx XUPV5-LX110T Evaluation Platform via HDL Work�ow Ad-

viser. See Fig. 8.8. A Simulink model is generated during the synthesis which enables HDL

cosimulation in order to verify the functionality in FPGA platform with the help of HDL

Veri�erTM as shown in Fig. 8.9. The bit �le generated after the synthesis can be downloaded

to FPGA by double clicking on FIL block and then loading the bit �le as shown in Fig. 8.10.

Now HDL cosimulation can be performed by running the simulation. The output from the

FPGA and the simulation output of Simulink model can be seen simultaneously using scopes

provided in Simulink. The error between the two outputs is also shown in the scope and the

model can be veri�ed for correctness if the error is always zero. Once the functionality is

veri�ed, user can remove the Simulink counterpart and work only on FPGA counterpart in

order to have fast communication between FPGA and host computer as shown in Fig. 8.11.

Figure 8.8: HDL work�ow adviser
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Figure 8.9: HDL cosimulation using FIL con�guration by HDL Verifer

Figure 8.10: Programming the FPGA by loading the bit �le generated via JTAG conncetion
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Figure 8.11: Communication between host PC and FPGA in FIL
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CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

The FPGA prototype of the acquisition algorithm from Simulink model using HDL coder

was tested and veri�ed over Xilinx Virtex-5 XC5V-LX110T FPGA evaluation platform.

The veri�cation was done by FPGA in the Loop cosimulation model using HDL Veri�er.

Mathwork's HDL coder is an HLS tool for rapid prototyping of Xilinx and Altera FPGAs

from Simulink and MATLAB models. The FPGA design �ow starts from algorithms and

the SDR implementation of real time GPS L1 receiver was used as a reference to developing

the behavioural model of GPS receiver in Simulink by using functional blocks from HDl

Coder library alone. The behavioural model was implemented as �oating point and was

tested for correctness. The �oating point model was then converted to �xed point using the

Fixed Point Designer. The accuracy of �xed point model was veri�ed using simulations and

comparing the result with that of the �oating point model.

Synthesis constraints for the FPGA design are not set while developing the initial design.

Synthesis constraints depend on the resource limitations of the target FPGA device and clock

speed requirements. To make a design that works at high clock rate and �ts into the target

FPGA, It is required to carry out the timing and area optimisation over the initial design.

Timing optimisation is done by distributed pipelining, which is the process of introducing

delays appropriately in between the blocks in the critical path. Area optimisation is mainly

done by word length minimisation and resource sharing. The traceability reports of high

level resource utilisation and critical path information generated by HDL coder during HDL

code generation is used as a reference for timing and area optimisation.

The HDL code is generated after the model is converted to �xed point with the help of

HDL Work�ow Adviser. HDL Work�ow Adviser automatically performs a series of steps

and generate the HDL code, validation model, high level resource utilization report, critical

path estimation , traceability report and optimization report etc. Finally logic synthesis is



carried out and the bit �le is generated at the end of it. All of them can be accomplished

very quickly depending upon the size of the design with the help of HDL Work�ow Adviser.

Veri�cation of the generated HDL code can be done by HDL cosimulation model or FPGA

in the Loop co-simulation model with the help of HDL Veri�er.

In this project, FPGA in the Loop con�guration is used and it involves interfacing

Simulink with the FPGA board and running a simulation in loop by programming the FPGA

with the generated HDL code. The veri�cation process is accurate but time consuming due

to the delays incurred by interfacing of OS and I/O devices.

9.2 Future Works

In order to complete the implementation of GPS receiver in an FPGA, tracking and naviga-

tion data decoding algorithms are also to be implemented along with Acquisition. Tracking

algorithm has been implemented by another person in the group, hence the navigation data

decoding algorithm has to be implemented in future. Putting all of these three algorithms

and generating HDl code will be challenging as far as �tting it into a target FPGA is con-

cerned. It requires a lot of area and timing optimization as the design will be so large in

size.

Currently, the algorithm used for acquisition is "Serial Search" and it is very time con-

suming. So, developing an optimised design for "Parallel Search" will speed up the whole

system. But, implementing the parallel search in FPGA requires a lot of resources. Also

HDL Optimized FFT block supports only radix-2 algorithm, hence the sampling frequency

has to be radix-2( eg:2.048MHz,4096MHz,..). But achieving such a sample frequency using

USRP N210 is di�cult. Therefore, implementing acquisition in "Parallel Search" algorithm

will be challenging but it is essential for speed-up.

The SDR implementation of IRNSS(Indian Regional Navigation Satelliete System) re-

ceiver can be done by referring to the algorithms of its GPS counterpart since the basic

architecture of both systems are very much similar. Once the SDR of IRNSS is developed,

it can be further used a reference to make the Simulink model for HDL code generation.
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APPENDIX A

INTRODUCTION TO GNSS-SDR

GNSS-SDR is an open-source GNSS software receiver freely available to the research com-

munity. This project provides a common framework for GNSS signal processing which can

operate in a variety of computer platforms. This tool is intended to foster collaboration,

increase awareness, and reduce development costs in the �eld of GNSS receiver design and

customized use of GNSS signals.

A.1 Installing GNURadio and GNSS-SDR by Pybombs

Refer

• Install pybombs (python build overlay managed bundle system)

$ g i t c l one g i t : // github . com/pybombs/pybombs
$ cd pybombs
$ sudo . / pybombs i n s t a l l gnuradio
$ sudo . / pybombs i n s t a l l uhd
$ sudo . / pybombs i n s t a l l gnss−sdr

• You can also specify the version of gnuradio to install

$ g i t c l one g i t : // github . com/pybombs/pybombs
$ cd pybombs
$ g i t checkout gr−3.6
$ sudo . / pybombs i n s t a l l gnuradio

• After the install is �nished you can create an environment �le (located in $ pre-
�x/setup_env.sh) for your install by running

$ . / pybombs env

• Source this �le (replace $ pre�x with the pre�x of your recently �nished pybombs in-
stall) with

$ source $p r e f i x /setup_env . sh



A.2 Running GNSS-SDR

After install GnuRadio, UHD, GNSS-SDR and other dependencies, you can run GNSS-SDR

as follows:

• Check if the USRP is connected to the system by running the following command in
the terminal

$ uhd_find_devices

You should get output l i k e t h i s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− UHD Device 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Device Address :
type : usrp2
addr : 1 92 . 1 68 . 1 0 . 1
name : 6
s e r i a l : E8R28M9UP

• Go to gnss-sdr folder in the pybombs directory

$ cd pybombs/ s r c /gnss−sdr /

• In the conf directory, you can �nd the con�guration �les for various GNSS satellites
and front-end devices. The con�guration �les contains the settings for parameters like
sampling frequency, gain and other settings for processing the signal. For example,
gnss-sdr_GPS_L1_USRP_realtime.conf �le has settings for gnss-sdr to acquire GPS
L1 using USRP in realtime. Save the GPS signal received by gnss-sdr automatically
by modifying SignalSource.dump to true in the conf �le.

• Run gnss-sdr by

$ cd i n s t a l l
. / gnss−sdr −−c o n f i g_ f i l e = . . / conf /gnss−sdr_GPS_L1_USRP_realtime . conf

• After execution, the GPS signal will be saved in the folder data

• Modify the conf �le to print out more information like acquisition,telemetry and pvt
data

• To process gps data from a �le using gnss-sdr, run

$ . / gnss−sdr −−c o n f i g_ f i l e = . . / conf /mygnss . conf

.
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A.3 Experimenting with GNSS-SDR

• Read README.md �le in the gnss-sdr directory

• Download a sample signal 2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat here. The
*.conf �le is outdated, don't use it.

• Download the *.conf �le from the attachment in this mailing list

• Make the following changes in 2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.conf �le:
SignalSource.filename to the relative path of the download data

• Datatype of this �le is 2byte I/Q interleaved short integer. So size of each sample is
4bytes, 2byte for I + 2byte for Q . (Note if datatype used is gr_complex then we'll
have 32bit �oat I and Q).

• Sampling frequency = 4MHz

• File size = 1.6GB

• recorded time =100sec

• 1.6GB = 100sec x 4MHz x 4 bytes

• Run gnss-sdr by

$ cd i n s t a l l
. / gnss−sdr −−c o n f i g_ f i l e = . . / conf /
2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN. conf

• After processing, gnss-sdr outputs data processed at the acquisition, tracking and
navigation stage for the user. These outputs can be read using the matlab scripts at
/src/utils folder in the gnss-sdr directory
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APPENDIX B

INTERFACING USRP HARDWWARE WITH

MATLAB FOR GPS DATA RECEPTION

The digitized IQ samples of GPS received signal at USRP N210 hardware(which is connected

to GPS antenna) can be received by MATLAB as well. The sampling frequency and the

center frequency of the USRP need to be set according to the signal speci�cations. MAT-

LAB has the object SDRuReceiver which can con�gure the USRP and receive data samples

from it. MATLAB requires the support package USRP Radio to support the aforementioned

object and it can be easily installed using the support package installer. The hardware set

up required is given in Fig. B.1.

Figure B.1: Hardware set up for GPS signal reception



B.1 Con�guring the USRP

In order to communicate with the USRP, an object need to be created in MATLAB using

the function comm.SDruReceiver. There are many parameters for this object which need to

be speci�ed for proper communication with the USRP. In this project, USRP N210 is used

and sampling frequency is set as 2 MHz. The center frequency of the received signal is the

L1 frequency which is 1575.42 MHz. The following piece of MATLAB code gives the insights

about con�guring the USRP and taking the data samples to the system.

B.1.1 MATLAB Code

g l oba l dataOut

d f a c t o r =50;

frame=375000;

time=40; % 40 seconds o f data need to be aquired

rad io = comm. SDRuReceiver ( . . .

' Platform ' , 'N200/N210/USRP2' , . . .

' IPAddress ' , ' 1 9 2 . 1 6 8 . 1 0 . 1 ' , . . .

' CenterFrequencySource ' , ' property ' , . . .

' CenterFrequency ' , 1 .57542 e9 , . . . % 380 MHz to 4 .42 GHz

' Lo c a lO s c i l l a t o rO f f s e t ' , 4 0 0 0 , . . .

'Gain ' , 38 , . . . % 0−38 dB

' DecimationFactor ' , d fac tor , . . . % sampling f requency o f USRP

' SampleRate ' , 2e6 , . . . % N210 i s f i x ed at 100 MHz.

' OverrunOutputPort ' , true , . . . % I t need to be decimated −

' FrameLength ' , frame , . . . % to r equ i r ed value

'OutputDataType ' , ' s i n g l e ' , . . .

' EnableBurstMode ' , true , . . .

' NumFramesInBurst ' , c e i l (80∗2 e6/ frame )+6);
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rx_log = dsp . S igna lS ink ; % step ac c e s s o f ob j e c t "dsp . S igna lS ink "

% w i l l s t o r e the contents o f data in a −

% bu f f e r . This bu f f e r i s o f i n f i n i t e s i z e

% and can be acce s s ed as g iven

%%%%%%%%%%%%%%%%%%%% I n i t i a l data acqu i r i ng %%%%%%%%%%%%%%%%%%%%%%%

data=step ( rad io ) ;

s tep ( rx_log , data ) ;

pause ( 2 ) ; % wait f o r some time to get non zero va lue s

c l c ;

f p r i n t f ( ' Data a c q u i s i t i o n s tar ted , wait f o r 50 seconds . . . \ n ' ) ;

%%% Simulat ion−r e c e i v e data from usrp and s t o r e i t in a bu f f e r %%%

count=c e i l ( (100 e6/ d f a c t o r )∗ time/ frame ) ;

f o r counter = 1 : count

data=step ( rad io ) ; % one step execut ion r e c e i v e s almost 1 ms data

step ( rx_log , data ) ;

end

f p r i n t f ( ' \ n\nSaving acqu i red data . . . \ n ' ) ;

output=rx_log . Buf f e r ; % the captured s i g n a l ' data ' w i l l be s to r ed in

% a bu f f e r in the ob j e c t rx_log I n i t i a l va lues−

% in t h i s bu f f e r are t r a n s i e n t s (1 e5 samples ) .

% So sk ip these much number o f samples be f o r e −

% proc e s s i ng

%%%%%%%%%%%%%%% Save the acqu i red Data to a va r i ab l e %%%%%%%%%%%%%%%%
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sk ip=1e6 ;

dataOut=output ( sk ip +1:end ) . ' ;

dataOut=double ( dataOut ) ;

save capture output dataOut data ;

r e l e a s e ( rad io ) ;

c l e a r rad io ;

r e l e a s e ( rx_log ) ;

c l e a r rx_log ;

f p r i n t f ( ' \ n\n40 seconds o f data has been acqu i red . \ n ' ) ;

USRP is connected to the digital computer using Ethernet cable. The connection to

USRP can be checked using the following command.

> > >uhd_�nd_devices

You should get output like this

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− UHD Device 0 −−−−−−−−−−−−−−−−−−−−−−−−−

Device Address:

type: usrp2

addr: 192.168.10.1

name: 6

serial: E8R28M9UP
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