
 i

POSITIONING ALGORITHM FOR CELLULAR

NETWORKS USING TIME DIFFERENCE OF

ARRIVAL

 SUBMITTED TO IITM

A Dual Degree Project Report

submitted by

ALEKHYA TUMMA

EE11B060

for the award of the degree

of

DUAL DEGREE IN ELECTRICAL ENGINEERING

(With specialization in Communications)

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

 ii

MAY 2016

THESIS CERTIFICATE

This is to certify that the thesis titled POSITIONING ALGORITHM FOR CELLULAR

NETWORKS USING TIME DIFFERENCE OF ARRIVAL, submitted by Alekhya

Tumma (EE11B060), to the Indian Institute of Technology Madras, Chennai for the award

of the degree of Dual Degree in Electrical Engineering with specialization in

Communications, is a bona fide record of the research work done by him under our

supervision. The contents of this thesis, in full or in parts, have not been submitted to any

other Institute or University for the award of any degree or diploma.

Prof. 1

Dr. Arun Pachai Kannu

Assistant Professor

Dept. of Electrical Engineering Place: Chennai

IIT-Madras, 600 036

Date: 20th May 2016

 iii

ABSTRACT

Locating the position of a mobile user with a high degree of accuracy is a research interest

that holds the key to a breakthrough in many service challenges faced by operators in the

wireless communication world. The benefits of success in this field ranges from value

added services and efficient advertising to crime detection and fighting. Many technologies

have been developed which made use of different algorithms to provide answers to these

challenges but with varying degrees of accuracy, operational challenges, ease of

deployment and cost of installation. Mobile position estimation technologies use

techniques such as Time Difference of Arrival (TDOA), Angle of Arrival (AOA), Time of

Arrival (TOA), Received Signal Strength (RSS) indication, GPS systems, and Cell ID. The

interest of this research is to investigate the performance of positioning algorithms in

wireless cellular networks based on time difference of arrival (TDOA) measurements

provided by the base stations. The localization process of the mobile station results in a

non-linear least squares estimation problem which cannot be solved analytically.

Therefore, we use iterative algorithms to determine an estimate of the mobile station

position. The well-known Gauss-Newton method fails to converge for certain geometric

constellations, and thus, it is not suitable for a general solution in cellular networks.

Another algorithm is the steepest descent method which has a slow convergence in the final

iteration steps. Levenberg-Marquardt method acts more like a gradient-descent method

when the parameters are far from their optimal value, and acts more like the Gauss-Newton

method when the parameters are close to their optimal value. Hence, we apply the

Levenberg-Marquardt algorithm as a new approach in the cellular network localization

framework. We show that this method meets the best trade-off between accuracy and

computational complexity.

 iv

ACKNOWLEDGMENTS

I owe my gratitude to all those people who have made this dissertation possible and

because of whom my project experience has been one that I will cherish forever.

My deepest gratitude is to my mentor, Prof. Dr. Arun Pachai Kannu. I have been

amazingly fortunate to have mentor who gave me the freedom to explore on my own and

at the same time the guidance to recover when my steps faltered. This taught me how to

question thoughts and express ideas. His patience and support helped me overcome many

crisis situations and finish this dissertation. Above all, I would like to thank my parents,

friends who were always there supporting and encouraging me, which help me in

completion of this project. Last but not the least; I thank God Almighty for making

everything possible.

 v

TABLE OF CONTENTS

Chapter Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER I: Introduction .. 1

CHAPTER II: Background and Literature Review .. 4

Positioning Algorithms ... 9

Steepest Descent algorithm ... 10

Gauss Newton algorithm... 11

CHAPTER III: Levenberg-Marquardt algorithm in solving nonlinear least square

problem ... 14

CHAPTER IV: RESULTS .. 19

CHAPTER V: CONCLUSION... 23

REFERENCES ... 24

Appendix A ... 25

 vi

LIST OF TABLES

Table Page

Table 1: Pseudo code of Levenberg-Marquardt algorithm ... 18

 vii

LIST OF FIGURES

Figure Page

Figure 1: Layout of a cellular network for localization if mobile station 2

Figure 2: Basic elements of a wireless positioning system 2

Figure 3: Location of the cell with the serving base station (in blue) is estimated 4

Figure 4: Angle of Arrival Technique 5

Figure 5: Triangulation technique for Time of Arrival 6

Figure 6: Time Difference of Arrival Technique 7

Figure 7: Root mean square error vs standard deviation of noise 20

Figure 8: Root mean square error vs number of base stations 21

Figure 9: Root mean square error vs number of iterations 22

 1

CHAPTER I: Introduction

 With the astonishing growth of wireless technologies, the requirement of

providing universal location services by wireless technologies is growing. Positioning in

wireless networks became very important in recent years and services and applications

based on accurate knowledge of the location of the Mobile Station (MS) will play a

fundamental role in future wireless systems. In addition to vehicle navigation, fraud

detection, resource management, automated billing, it is stated by the Federal

Communications Commission (FCC) that all wireless service providers have to deliver the

location of all Enhanced 911 (E911) callers with specified accuracy. The process of

obtaining a terminal’s location by exploiting wireless network infrastructure and utilizing

wireless communication technologies is called wireless positioning. Mobile station

location usually implies the coordinates of the Mobile station that may be in two or three

dimensions, and usually includes information such as the latitude and longitude of where

it is located. Such information is made available by measuring some properties of the radio

signals transmitted or received by the cellular phone. Mobile Station localization using

Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System

(GPS) deliver very accurate position information only under good environmental

conditions and consume high power.

 Therefore, exploiting already available resources of the cellular networks gained

interest. Generally the Time of Arrival (ToA), Time Difference of Arrival (TDoA),

Received Signal Strength (RSS) and Angle of Arrival (AoA) obtained from the Base

Stations (BS) are the parameters used in the process of localization or positioning. Using

these metrics the whole problem of positioning turns into a minimization problem where

the minimum of a cost function gives the accurate position of the mobile station.

 2

 Figure 1: Layout of a cellular network for localization if mobile station

 Figure 2: Basic elements of a wireless positioning system

 To cope with the resulting non-linear estimation problem where no analytical

solution is possible, the iterative methods such as Gauss-Newton (GN) and the Steepest

Descent (SD) method are used as standard solutions. The well-known Gauss-Newton

method fails to converge for certain geometric constellations, and thus, it is not suitable for

a general solution in cellular networks. Steepest descent method has a slow convergence

in the final iteration steps. Levenberg-Marquardt method acts more like a gradient-descent

 3

method when the parameters are far from their optimal value, and acts more like the Gauss-

Newton method when the parameters are close to their optimal value. Hence, we apply the

Levenberg-Marquardt algorithm as a new approach in the cellular network localization

framework. This method meets the best trade-off between accuracy and computational

complexity. Therefore, the iterative Levenberg-Marquardt (LM) algorithm is implemented

in the context of positioning in cellular networks using Time Difference of Arrival as the

metric. The variation in accuracy of estimating the mobile station position with respect to

increase in the number of base stations, different noise powers and the robustness of the

algorithm is analyzed.

 4

CHAPTER II: Background and Literature Review

Positioning of a mobile station can be achieved considering already available information

from the cellular network such as Cell ID, Angle of Arrival (AoA), Received Signal

Strength (RSS), Time of Arrival (ToA) and Time Difference of Arrival (TDoA).

The positioning techniques using these parameters can be categorized into two groups:

 Signal Strength and network parameter based techniques

 This technique uses Cell ID and Received Signal Strength (RSS) as parameters.

a. Cell ID

 Positioning algorithms using Cell ID as the metric to estimate the location

of the mobile station converts the ID of the cell of the base station to which

the mobile station is connected to a geographic position. This the most

primitive way of localization. These algorithms can only estimate the position

of the cell where the base station to which the mobile station is registered.

Accuracy of the estimate depends on the cell size, cell type and range of the

serving base station.

 Figure 3: Location of the cell with the serving base station (in blue) is estimated

b. Received Signal Strength (RSS)

 The distance between the base station and mobile station is calculated

based on the signal power transmitted by the base station, its location and the

type of channel through which it is transmitted.

 5

 Triangulation or Trilateration

 This technique uses concepts of trigonometry and geometry to estimate the

position. Hence, it uses Angle of Arrival, Time of Arrival and Time Difference of

Arrival as the metrics.

a. Angle of Arrival

 These methods are also referred to as Direction of Arrival methods. Angle

of Arrival method uses multi array antennas to estimate the direction of

arrival of the signal. Therefore, one AoA measurement give the coordinate of

the mobile station along one axis in an n dimensional space. Hence, using

multi array antennas gives a complete estimate of the mobile station position.

Angle of Arrival method gives high accuracy only under the condition of lie

of sight. Decrease in accuracy is observed in areas with high level of

scattering.

 Figure 4: Angle of Arrival Technique

b. Time of Arrival

 In Time of Arrival method the time taken by the signal from the mobile

station to arrive at different base stations is observed. As time of arrival at a

base station is the distance between the base station and mobile station scaled

by the speed of the signal or light, the distance between base station and

mobile station can be considered equal to the time of arrival. The position of

the mobile station can be estimated by finding the point of intersection of

 6

circles considering these distances as the radius and base stations as the

centers of the circles.

 Time of Arrival technique is widely used but for this technique to give

accurate results all the base stations and the mobile station should be

synchronized in time which is difficult to achieve in practical cellular

network. Using difference in Time of Arrivals eliminates the problem of time

synchronization. Hence, Time Difference of Arrival gained popularity and is

more efficient.

 Figure 5: Triangulation technique for Time of Arrival

c. Time Difference of Arrival

 In Time Difference of Arrival method one particular base station is

considered as the reference base station and all the differences in time of

arrivals of the signals received at the base stations are computed with respect

to the reference base station. The information about the locations of all the

base stations is available. This eliminates the problem of time

synchronization experienced in Time of Arrival technique. Therefore, each

time difference of arrival represents a hyperbolic curve on which the mobile

station resides. Intersection of these hyperbolic curves gives the position of

 7

the mobile station. As we are considering difference in the time of arrivals a

minimum number of three base stations are necessary to find the mobile

station location.

 Figure 6: Time Difference of Arrival Technique

Advantages of using Time Difference of Arrivals

1. Eliminates the problem of time synchronization between base stations and

mobile stations which is present when only Time of Arrivals are

considered.

2. If a major reflector affects the signal components going to all the

receivers, the timing error may get cancelled or reduced in the time

difference operation.

3. All changes take place only at the infrastructure level.

Using TDoA measurements to find the location of mobile station:

 Consider a cellular network with cell radius R with time synchronized base stations.

The mobile station is located at X.

 X = [x , y]T

 8

Nbs be the number of base stations nearest to the mobile station. Let the positions of the

base stations be denoted by Xv where𝑣 ∈ {1,2, … . . 𝑁𝐵𝑆}.

 Xv = [xv , yv]
T

The distance between each base station and mobile station is given by rv

 𝑟𝑣 = ||𝑋𝑣 − 𝑋|| = √(𝑥𝑣 − 𝑥)2 + (𝑦𝑣 − 𝑦)2 ---------------------- (1)

Considering BS1 as the reference base station and the distances and TDoAs as

equivalent, the time difference of arrival for vth base station be dv,1

 𝑑𝑣,1(𝑋) = (𝑟𝑣(𝑋) − 𝑟1(𝑋))

 = √(𝑥𝑣 − 𝑥)2 + (𝑦𝑣 − 𝑦)2 − √(𝑥1 − 𝑥)2 + (𝑦1 − 𝑦)2 ---------------------- (2)

As BS1 is the reference base station we get NBS – 1 independent equations for the time

difference of arrivals.

 𝑑(𝑋) = [𝑑2,1(𝑋), 𝑑3,1(𝑋),………𝑑𝑁𝐵𝑆,1(𝑋)]𝑇 ---------------------- (3)

The corresponding observed TDoAs information obtained from the cellular network is

represented by the matrix‘d’.

 𝑑 = [𝑑2,1, 𝑑3,1, ………𝑑𝑁𝐵𝑆,1]
𝑇 ---------------------- (4)

 𝑑 = 𝑑(𝑋) + 𝑛 ---------------------- (5)

Where 𝑛 = [𝑛2,1, 𝑛3,1 ………𝑛𝑁𝐵𝑆,1]
𝑇 is the zero mean Additive White Gaussian Noise

(AWGN) with covariance matrix

 ∑ =𝑛 𝐸{𝑛𝑛𝑇} = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ---------------------- (6)

 (Since the mean is zero)

 9

Positioning Algorithms

 The algorithms considered for positioning of wireless mobile station using time

difference of arrivals result in a nonlinear square equations which require iterative

methods to find the location of the mobile station. With the system model of TDoA

described and applying weighted nonlinear least square approach the cost function to be

minimized for the estimation of the location of mobile station is

 𝜀(𝑋) = (𝑑 − 𝑑(𝑋))
𝑇
∑ 𝑛

−1
(𝑑 − 𝑑(𝑋)) ---------------------- (7)

 = 𝑑𝑇 ∑ 𝑛
−1

𝑑 − 2𝑑𝑇 ∑ 𝑛
−1

𝑑(𝑋) + 𝑑(𝑋)𝑇 ∑ 𝑛
−1

𝑑(𝑋)

With respect to X yielding

 X = argmin x ε (X) ---------------------- (8)

In the general case, there exists no closed-form solution to the non-linear two-

dimensional optimization problem given by the above equation, and hence, iterative

approaches that are necessary in solving are

1. Gauss Newton algorithm

2. Steepest Descent algorithm

3. Levenberg-Marquardt algorithm

All methods for non-linear optimization are iterative: From a starting point X0 the method

produces a series of vectors X1, X2, …..which converges to X*, a local minimizer for the

given function. Most methods have measures which enforce the descending condition

 F(XK+1) < F(XK)

This prevents convergence to a maximizer and also makes it less probable that we

converge towards a saddle point. If the given function has several minimizers the result

will depend on the starting point X0. Which of the minimum value is found is not known

and hence, the minimum value found is not necessarily the minimum value closest to X0.

In many cases the method produces vectors which converge towards the minimum in two

clearly different stages. When X0 is far from the solution the method should produce

iterates which move steadily towards X*. In this “global stage” of the iteration we are

satisfied if the errors do not increase except in the very first steps, ie

 ||𝑒𝐾+1(𝑋)|| < ||𝑒𝐾(𝑋)|| For K > Kmax ---------------------- (9)

 10

 Where 𝑒𝐾(𝑋) = 𝑋𝐾 − 𝑋∗

In the final stage of the iteration where 𝑋𝐾 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑟 𝑡𝑜 𝑋∗ faster convergence of the

algorithm is desired.

Steepest Descent algorithm

 The steepest descent method is a general minimization method which updates

parameter values in the direction opposite to the gradient of the objective function. It is

recognized as a highly convergent algorithm for finding the minimum of simple objective

functions. For problems with thousands of parameters, gradient descent methods are

sometimes the only viable method.

The minimum of function is where the gradient of the function goes to zero. The gradient

of the cost function derived from the TDoA is

 ∇𝜀(𝑋) = ∇ ((𝑑 − 𝑑(𝑋))
𝑇
∑ 𝑛

−1
(𝑑 − 𝑑(𝑋)))

 = −(𝑑 − 𝑑(𝑋))
𝑇
∑ 𝑛

−1
(∇𝑑(𝑋))

 = −(𝑑 − 𝑑(𝑋))
𝑇
∑ 𝑛

−1
𝐽 ---------------------- (10)

 Where J = ∇ d(X)

 𝐽 =

[

𝑥−𝑥2

𝑟2
−

𝑥−𝑥1

𝑟1

𝑦−𝑦2

𝑟2
−

𝑦−𝑦1

𝑟1
𝑥−𝑥3

𝑟3
−

𝑥−𝑥1

𝑟1

𝑦−𝑦3

𝑟3
−

𝑦−𝑦1

𝑟1
𝑥−𝑥4

𝑟4
−

𝑥−𝑥1

𝑟1

𝑦−𝑦4

𝑟4
−

𝑦−𝑦1

𝑟1
.
.
.
.

𝑥−𝑥𝑛

𝑟𝑛
−

𝑥−𝑥1

𝑟1

𝑦−𝑦𝑛

𝑟𝑛
−

𝑦−𝑦1

𝑟1]

 ---------------------- (11)

The Jacobian matrix J represents the sensitivity of 𝜀(𝑋) to the parameters in X. Based on

this descent direction and considering a step size of ‘µ’ the perturbation ‘h’ that moves

the parameters of X in the steepest descent direction is

 ℎ = µ(∇𝜀(𝑋)) Where µ>0

 = −µ(𝑑 − 𝑑(𝑋))
𝑇
∑ 𝑛

−1
𝐽

 11

Therefore the value of X in the next iteration is given by

 𝑋𝐾+1 = 𝑋𝐾 − µ(𝑑 − 𝑑(𝑋))
𝑇
∑ 𝑛

−1
𝐽 ---------------------- (12)

The easiest way to find a step size is to choose a constant µ for all iteration steps. The

optimum step size for an iteration K is given by optimum line search algorithms which

use nonlinear one dimensional optimization.

 𝜇𝐾 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜇𝜀(𝑋𝐾+1) ---------------------- (13)

Drawbacks of Steepest Descent method

 High computational effort in evaluating the step size µ using nonlinear one

dimensional optimization.

 Slow convergence in the final iteration steps of the algorithm.

 Due to the slow convergence in the final iteration steps there is a possibility to

run out of local minima.

 The curvature of the error surface may not be the same in all directions. For

example, if there is a long and narrow valley in the error surface, the component

of the gradient in the direction that points along the base of the valley is very

small while the component along the valley walls is large. This results in motion

more in the direction of the walls even though we have to move a long distance

along the base and small distance along the walls. This is called the “Error

valley problem”

Gauss Newton algorithm

 Like the steepest descent algorithm, Gauss Newton algorithm also uses the weighted

nonlinear least square model of the cost function obtained using TDoAs. The whole basis

of Gauss Newton algorithm is using the Taylor series expansion to linearize the TDoA

vector obtained in equation (3).

Applying the Taylor series expansion to the vector d(X) we get

 𝑑(𝑋 + ℎ) = 𝑑(𝑋) + ∇𝑑(𝑋)(ℎ) ---------------------- (14)

 = 𝑑(𝑋) + J(ℎ) Where J=∇𝑑(𝑋)

Substituting the above expression for d(X) in equation (7)

 12

𝜀(𝑋 + ℎ) = 𝑑𝑇 ∑ 𝑛
−1

𝑑 + 𝑑(𝑋)𝑇 ∑ 𝑛
−1

𝑑(𝑋) − 2𝑑𝑇 ∑ 𝑛
−1

𝑑(𝑋) ---------------------- (15)

 −2(𝑑 − 𝑑(𝑋))
𝑇
∑ 𝑛

−1
𝐽ℎ + ℎ𝑇𝐽𝑇 ∑ 𝑛

−1
𝐽ℎ

This shows that the cost function is quadratic in terms of the perturbation h. The

perturbation h that minimizes the cost function is obtained by equating the gradient of the

cost function to zero.

 ∂ε/ ∂h = 0

 𝐿′(ℎ) =
𝜕𝜀(𝑋+ℎ)

𝜕ℎ
= −2(𝑑 − 𝑑(𝑋))

𝑇
∑ 𝑛

−1
𝐽 + 2ℎ𝑇𝐽𝑇 ∑ 𝑛

−1
𝐽 = 0

 The gradient and Hessian of L (h) are

 𝐿′(ℎ) = 𝐽𝑇 ∑ 𝑛
−1

(𝑑 − 𝑑(𝑋)) And 𝐿′′(ℎ) = 𝐽𝑇 ∑ 𝑛
−1

𝐽

We can see that the Hessian matrix is independent of h. It is symmetric and if J has full

rank, that is the columns are linearly independent then the Hessian is also positive

definite. This implies that the cost function 𝜀(𝑋) has a unique minimum value which can

be found by solving

 [𝐽𝑇 ∑ 𝑛
−1

𝐽]ℎ = 𝐽𝑇 ∑ 𝑛
−1

(𝑑 − 𝑑(𝑋))

 ℎ = [𝐽𝑇 ∑ 𝑛
−1

𝐽]
−1

(𝐽𝑇 ∑ 𝑛
−1

(𝑑 − 𝑑(𝑋))) ---------------------- (16)

Therefore, the value of X in the next iteration is given by

 𝑋𝐾+1 = 𝑋𝐾 + 𝛼[𝐽𝑇 ∑ 𝑛
−1

𝐽]
−1

(𝐽𝑇 ∑ 𝑛
−1

(𝑑 − 𝑑(𝑋))) ---------------------- (17)

 = 𝑋𝐾 + 𝛼𝐴𝐾
−1𝑔𝐾

In classical Gauss Newton method α = 1 in all steps. The method with line search can be

shown to have guaranteed convergence provided that

a. 𝜀(𝑋) < 𝜀(𝑋0) is bounded.

b. The jacobian matrix J(X) has full rank in all steps.

Disadvantages of Gauss Newton algorithm

 The Gauss Newton algorithm provides higher convergence rates and higher

accuracy only for initial values close to the actual mobile station position.

 13

 For poor initial values and bad geometric conditions the algorithm results in a

rank-deficient, and thus, non-invertible matrix AK for certain constellations of MS

and BSs. In this case the algorithm diverges

From the algorithms described above it is observed that the Steepest Descent and Gauss

Newton algorithms are complementary to each other. In the cases where Steepest Descent

method has slow convergence, Gauss Newton method can be used. To cope up with the

disadvantages of Gauss Newton algorithm and Steepest Descent algorithm that is

robustness and slow convergence Levenberg-Marquardt algorithm which is a blend of

both Gauss Newton and Steepest Descent is used. The following section describes the

implementation of Levenberg-Marquardt algorithm.

 14

CHAPTER III: Levenberg-Marquardt algorithm in solving
nonlinear least square problem

 The Levenberg-Marquardt algorithm is an iterative technique that locates the

minimum of a multivariate function that is expressed as the sum of squares of nonlinear

real valued functions. It has become a standard technique to solve nonlinear least square

problems. The well-known Gauss-Newton method fails to converge for certain geometric

constellations, and thus, it is not suitable for a general solution in cellular networks.

Steepest descent method has a slow convergence in the final iteration steps. Levenberg-

Marquardt method is a blend of both Steepest Descent and Gauss Newton which acts

more like a gradient-descent method when the parameters are far from their optimal

value, and acts more like the Gauss-Newton method when the parameters are close to

their optimal value. Hence, we apply the Levenberg-Marquardt algorithm as a new

approach in the cellular network localization framework. This method meets the best

trade-off between accuracy and computational complexity. Therefore, the iterative

Levenberg-Marquardt (LM) algorithm is implemented in the context of positioning in

cellular networks using Time Difference of Arrival as the metric. Levenberg-Marquardt

algorithm is also called “Damped Gauss Newton algorithm” as the basis of it is to

modify the correction term in the Gauss Newton algorithm.

 The correction term in the Gauss Newton algorithm is given by

 ℎ = [𝐽𝑇 ∑ 𝑛
−1

𝐽]
−1

(𝐽𝑇 ∑ 𝑛
−1

(𝑑 − 𝑑(𝑋)))

Where [𝐽𝑇 ∑ 𝑛
−1

𝐽]

 is the Hessian matrix i.e. the double derivative of the cost function

𝜀(𝑋).

Levenberg-Marquardt algorithm updates this correction term by adding a damping

parameter “λ” such that the algorithm is a blend of both Steepest Descent and Gauss

Newton algorithms. Therefore, the update rule proposed by Levenberg-Marquardt is

 ℎ = [𝐽𝑇 ∑ 𝑛
−1

𝐽 + 𝜆𝐼]
−1

(𝐽𝑇 ∑ 𝑛
−1

(𝑑 − 𝑑(𝑋))) ---------------------- (18)

 15

Where I is the Identity matrix.

From the analysis of Gauss Newton method, the convergence of Taylor series expansion

and the convergence speed directly depends on the choice of the Mobile station’s initial

coordinates. This iterative method must start with an initial guess which is in the

condition of close to the true solution to avoid local minima. Selection of such a starting

point is not simple in practice. To solve this problem, steepest decent method with the

properties of fast convergence at the initial iteration and small computation complexity is

applied at the first several iterations to get the correct mobile station coordinates.

Therefore, Levenberg-Marquardt algorithm assumes a high value for ‘λ’ initially for it to

follow the Steepest Descent method and then on iteration changes the value of ‘λ’ such

that the algorithm behaves like Gauss Newton when the coordinates are close to the

actual value.

The damping parameter ‘λ’ has several effects:

 For all λ>0 the coefficient matrix is positive definite, and this ensures that h is a

descent direction.

 For larger values of λ we get

 ℎ =
1

λ
((𝐽𝑇 ∑ 𝑛

−1
(𝑑 − 𝑑(𝑋))))

i.e. a short step in the Steepest Descent direction. This is good if the current iterate

is far from the solution.

 If λ is very small then the perturbation h is equal to that in the Gauss Newton

algorithm which is a good step in the final stages of iteration when X is close to

the actual solution X*. If

 𝜀(𝑋∗) = 0 or very small then the algorithm almost as quadratic

convergence.

Hence, the damping parameter influences both the direction and size of the step, and this

leads us to a method without specific line search as in the case of Gauss Newton. The

choice of initial λ value should be related to the size of the Hessian matrix

 16

 A =𝐽𝑇 ∑ 𝑛
−1

𝐽, e.g. by letting

 λ0 = 𝜏.𝑚𝑎𝑥𝑖{𝐴𝑖𝑖
0 } ---------------------- (19)

Where 𝜏 is chosen by the user.

During iteration the size of λ can be updated as described below. The updating is

controlled by the gain ratio or the gain in error ratio

 𝜌 = (𝜀(𝑋) − 𝜀(𝑋 + ℎ))/(𝐿(0) − 𝐿(ℎ)) ---------------------- (20)

Where the denominator is the gain predicted by

 𝜀(𝑋 + ℎ) = 𝐿(ℎ) = 𝜀(𝑋) − 2(𝑑 − 𝑑(𝑋))
𝑇
∑ 𝑛

−1
𝐽ℎ + ℎ𝑇𝐽𝑇 ∑ 𝑛

−1
𝐽ℎ

Therefore,

 𝐿(0) − 𝐿(ℎ) = (𝑑 − 𝑑(𝑋))
𝑇
∑ 𝑛

−1
𝐽ℎ + (

1

2
) ℎ𝑇𝐽𝑇 ∑ 𝑛

−1
𝐽ℎ

 = 2ℎ𝑇(𝜆ℎ + 𝐽𝑇 ∑ 𝑛
−1

(𝑑 − 𝑑(𝑋))) ---------------------- (21)

A large value of 𝜌 indicates that L (h) is a good approximation to 𝜀(𝑋 + ℎ) and λ is

decreased by a factor so that the next Levenberg-Marquardt step is closer to the Gauss

Newton step. If 𝜌 is small then L(h) is a poor approximation and we should increase λ

with the two fold aim of getting closer to the Steepest Descent direction and reducing the

step length. In this way, LM can defensively navigate a region of the parameter space in

which the model is highly nonlinear. This algorithm is adaptive as it can control its own

damping factor.

The algorithm terminates when at least one of the following conditions is met:

 When the magnitude of the gradient of the cost function is very small or drops

below a threshold.

 The relative change in the magnitude of h drops below a threshold or

 When maximum number of iterations is reached.

 17

The above algorithm has the disadvantage that if the value of λ is large, the calculated

Hessian matrix is not used at all. We can derive some advantage out of the second

derivative even in such cases by scaling each component of the gradient according to the

curvature. This should result in larger movement along the directions where the gradient

is smaller so that the classic “error valley” problem does not occur any more. This crucial

insight was provided by Marquardt. He replaced the identity matrix with the diagonal of

the Hessian resulting in the Levenberg-Marquardt update rule. Therefore, the final update

rule in Levenberg-Marquardt algorithm is given by

 ℎ = [𝐽𝑇 ∑ 𝑛
−1

𝐽 + 𝜆 𝐽𝑇 ∑ 𝑛
−1

𝐽]
−1

(𝐽𝑇 ∑ 𝑛
−1

(𝑑 − 𝑑(𝑋))) ---------------------- (22)

It is to be noted that while the LM method is in no way optimal but is just a heuristic, it

works extremely well in practice. The only flaw is its need for matrix inversion as part of

the update. Even though the inverse is usually implemented using clever pseudo-inverse

methods such as singular value decomposition, the cost of the update becomes

prohibitive after the model size increases to a few thousand parameters. For moderately

sized models (of a few hundred parameters) however, this method is much faster than

say, steepest descent method. The Levenberg-Marquardt algorithm provides fast

convergence and is very robust against inaccurate initial values unlike Gauss Newton

method. The Levenberg-Marquardt algorithm is summarized below.

 18

LEVENBERG-MARQUARDT ALGORITHM

 ALGORITHM

1. K = 0

2. 𝑉𝐾 = 2

3. 𝐴𝐾 = 𝐽𝑇(𝑋𝐾)∑
𝑛

−1
𝐽(𝑋𝐾)

4. 𝑔𝐾 = 𝐽𝑇(𝑋𝐾)∑ 𝑛
−1

(𝑑 − 𝑑(𝑋𝐾))

5. λ𝐾 = 𝜏.𝑚𝑎𝑥𝑖{𝐴𝑖𝑖
𝐾}

6. Repeat

7. ℎ𝐾 = (𝐴𝐾 + λ𝐾𝐴𝐾)−1𝑔𝐾

8. 𝑋𝐾+1 = 𝑋𝐾 + ℎ𝐾

9. 𝜌𝐾 = (𝜀(𝑋𝐾) − 𝜀(𝑋𝐾+1))/(ℎ𝐾
𝑇(𝜆𝐾ℎ𝐾 + 𝑔𝐾))

10. 𝑖𝑓 𝜌𝐾 > 0 𝑡ℎ𝑒𝑛

 𝐴𝐾+1 = 𝐽𝑇(𝑋𝐾+1)∑
𝑛

−1
𝐽(𝑋𝐾+1)

 𝑔𝐾+1 = 𝐽𝑇(𝑋𝐾+1)∑ 𝑛
−1

(𝑑 − 𝑑(𝑋𝐾+1))

 𝜆𝐾+1 = 𝜆𝐾max {(
1

3
) , 1 − (2𝜌𝐾 − 1)3}

 𝑉𝐾+1 = 2

Else

 𝜆𝐾+1 = 𝜆𝐾𝑉𝐾

 𝑉𝐾+1 = 2𝑉𝐾

11. End if

12. K=K+1

13. Until convergence

 Table 1: Pseudo code of Levenberg-Marquardt algorithm

 19

CHAPTER IV: RESULTS

The above algorithm is tested in a 1000km x 1000km grid divided into square cells of

100km x 100 km each with base stations located at the center of the cells. A minimum of

3 base stations are required to find the exact location of the mobile station as we need at

least two Time Difference of Arrivals to estimate the position of the mobile station. It is

assumed that the noise power is constant for all the involved links from base stations to the

mobile stations with

 ∑ 𝑛

= 𝜎𝑛
2𝐼𝑁𝐵𝑆−1

 Where 𝜎𝑛
 is the standard deviation of the noise

The locations of the base stations are provided to the algorithm and the corresponding time

difference of arrivals are calculated considering first base station as the reference base

station. The maximum number of iterations required is 400.

 The root mean square error of the estimate is computed using

 𝑅𝑀𝑆𝐸 = √𝐸{||𝑋 − 𝑋′||} ---------------------- (23)

Where 𝑋′ is the estimate providing after 400 iteration steps.

Error in estimate vs Standard Deviation of noise:

 Increasing standard deviation of noise results in increase of error in the estimate.

The error considered is the Root mean square error where the error is averaged over 1000

different noise values having the same noise power. Therefore, the root mean square error

vs variation curve is a monotonically increasing curve. The following figure represents the

relation between root mean square error and standard deviation of noise.

 20

 Figure 7: Root mean square error vs standard deviation of noise

Error in estimate vs Number of base stations serving the mobile station:

 Increasing the number of base stations serving the mobile station increases

the accuracy with which the position is estimated. This is because we have more

information about the mobile position compared to earlier case where there are less number

of base stations. Hence, root mean square error vs number of base stations serving the

mobile station is a monotonically decreasing curve. The following result is obtained by

varying the number of base stations from 3 to 13. The error obtained for particular number

of base stations is averaged over 1000 noise realizations with a standard deviation of 0.3

 21

 Figure 8: Root mean square error vs number of base stations

Error in estimate vs Number of iterations taken by the algorithm:

 With increase in number of iterations the accuracy of the estimate of the position

of mobile station increases. After a particular number of iterations the estimate value

remains the same despite the increase in number of iterations. This is the final position

estimated by the algorithm. As the accuracy of the estimate increases with increase in

number of iterations the root mean square error vs number of iterations graph is a

monotonically decreasing curve. The following result depicts this relation.

 22

 Figure 9: Root mean square error vs number of iterations

 23

CHAPTER V: CONCLUSION

 In this report, the performance of mobile station positioning in cellular

networks using Time Difference of Arrival measurements is investigated. The standard

Gauss Newton algorithm diverges for inaccurate initial values and the Steepest Descent

method has a poor convergence behavior in the final iteration steps. To avoid these

drawbacks, the Levenberg-Marquardt algorithm is proposed as a new approach in the

positioning framework. Simulation results show that this method is suitable to estimate the

mobile station location with high accuracy and low complexity. The results also show how

the accuracy in the estimate changes with different parameters such as standard deviation

of noise, number of base stations serving the mobile station and number of iterations

involved.

 24

REFERENCES

1. Christian Mensing and Simon Plass, POSITIONING ALGORITHMS FOR
CELLULAR NETWORKS USING TDOA, German Aerospace Center
(DLR), Institute of Communications and Navigation.

2. Eneh Joy Nnenna, Orah Harris Onyekachi, Department of Electronics and
Computer Engineering, Nnamdi Azikiwe University Awka. “Mobile
Positioning Techniques in GSM Cellular Networks: A Comparative
Performance Analysis”.

3. http://www.ltu.se/cms_fs/1.51590!/nonlinear_least_squares.pdf

4. http://www.ananth.in/Notes_files/lmtut.pdf

5. D. Marquardt, “An Algorithm for Least Squares Estimation on Nonlinear
Parameters,” SIAM Journal on Applied Mathematics, vol. 11, pp. 431–441,
1963.

6. K. Levenberg, “A Method for the Solution of Certain Problems in Least
Squares,” Quarterly of Applied Mathematics, vol. 2, pp. 164–168, 1944.

http://www.ltu.se/cms_fs/1.51590!/nonlinear_least_squares.pdf
http://www.ananth.in/Notes_files/lmtut.pdf

 25

Appendix A

The following code gives the steps in the implementation of the algorithm. This code

checks how the RMSE changes with different standard deviations of noise.

clear all
clc

fileID = fopen('position.txt','r') %file containing the positions of the BS

A = fscanf(fileID,'%f %f',[2 inf]); %matrix used to save the positions of BS

fclose(fileID);
A= A';
p=size(A); % gives the number of base stations
j=1;
fileID = fopen('tdoa.txt','r'); % file containing the actual TDoA values
B = fscanf(fileID,'%f'); % matrix used to save TDoA values
fclose(fileID);

I= zeros(2,2);
for i=1:2
 for j=1:2
 if(i==j)
 I(i,j)=1;
 end
 end
end

var = 0;
a=10;
s = zeros(1,a);
v = zeros(1,a);
N = zeros(p(1,1)-1,1);

for l=1:a
var = var+0.009; % incrementing the variance of noise by

0.009
cov= zeros(p(1,1)-1,p(1,1)-1); % covariance matrix of noise
for i=1:p(1,1)-1
 for j=1:p(1,1)-1
 if(i==j)
 cov(i,j)= var;
 end
 end
end
C=inv(cov);
s1 = zeros(1,500);
for m=1:1000
for j=1:(p(1,1)-1)
 g(j,1) = normrnd(0,sqrt(var)); % AWGN generated randomly
 N(j,1)=B(j,1)+g(j,1) ;
end

 26

x=100; y=100; % initial position of the mobile station
M(1,1)=100;
M(2,1)=100;
count =1;
K = 2;
t=5;
for i=1:(p(1,1)-1)
 d(i,1)= -((sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2)-sqrt((x-A(1,1))^2+(y-

A(1,2))^2))-N(i,1)) ;
 J(i,1)= -(((x-A(i+1,1))/sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2))-((x-

A(1,1))/sqrt((x-A(1,1))^2+(y-A(1,2))^2))); % jacobian matrix
 J(i,2)= -(((y-A(i+1,2))/sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2))-((y-

A(1,2))/sqrt((x-A(1,1))^2+(y-A(1,2))^2)));
end
e = d'*C*d; %cost function to be minimized
gradf = -J'*C*d; % gradient of cost function
dgradf = J'*C*J; % Hessian matrix
max = dgradf(1,1) ;
for i=1:2
 for j=1:2
 if((i==j)&&(dgradf(i,j)>max))
 max=dgradf(i,j);
 end
 end
end
max;
lambda =t*(max); % initial value of update parameter
for count = 1:500
 h = (inv(dgradf+lambda*(dgradf*I))*gradf);
 M = M+h;
 x=M(1,1);
 y=M(2,1);
for i=1:(p(1,1)-1)
 d(i,1)= -((sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2)-sqrt((x-A(1,1))^2+(y-

A(1,2))^2))-N(i,1));
 J(i,1)= -(((x-A(i+1,1))/sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2))-((x-

A(1,1))/sqrt((x-A(1,1))^2+(y-A(1,2))^2)));
 J(i,2)= -(((y-A(i+1,2))/sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2))-((y-

A(1,2))/sqrt((x-A(1,1))^2+(y-A(1,2))^2)));
end
enew =d'*C*d;
r = (e-enew)/(2*h'*(lambda*h + gradf)); % error
e=enew;
if(r >= 0)
 gradf = -J'*C*d;
 dgradf = J'*C*J;
 q = 1-(2*r-1)^3;
 if(q > 1/3)
 lambda = lambda*q;
 else
 lambda = lambda*(1/3);
 end
 K=2;
else
 lambda = lambda*K;
 K = 2*K;

 27

end
if(lambda<1e-7)
 lambda = 1e-7;
else if(lambda>1e7)
 lambda = 1e7;
 end
end
count;
lambda;
s1(1,count) = ((x-50)^2)+((y-300)^2);
end
s1(1,m) = ((x-50)^2)+((y-300)^2);
%df(:,m+100*(l-1))= d;
end
g=1;
for g=1:m
 s(1,l)=s(1,l)+s1(1,g);
end
s(1,l)=sqrt(s(1,l)/m); % calculating the RMSE
v(1,l)= sqrt(var);
end
s;
plot(v,s,'-o'); %plot for RMSE vs standard deviation of noise

The following code gives how the RMSE changes with increase in number of base stations.

The implementation of the LM algorithm part is same above.

clear all
clc
fileID = fopen('position.txt','r'); %Text file containing the

positions of the BS
A = fscanf(fileID,'%f %f',[2 inf]); % matrix used to save the

positions of BS
fclose(fileID);
A= A';
p=size(A); % gives the number of base

stations
j=1;
fileID = fopen('tdoa.txt','r'); % file containing the actual TDoA

values
B = fscanf(fileID,'%f'); % matrix used to save TDoA values
a=size(B); % gives the number of TDoA

measurements
fclose(fileID);
I= zeros(2,2);

 28

for i=1:2
 for j=1:2
 if(i==j)
 I(i,j)=1;
 end
 end
end
var = 0;
var = var+0.09;

n=10; %number of base stations
w=1000;
g1= zeros(n+3,w);
N = zeros(a(1,1),1);
for i=1:n+3
 for j=1:w
 g1(i,j) = normrnd(0,sqrt(var)); % AWGN generated randomly
 end
end
s = zeros(1,n+1);
bas = zeros(1,n+1);
for l=0:n
if(l>0)
A(p(1,1)+l,1)= (1000)*rand(1,1); %positions of extra BS generated

randomly
A(p(1,1)+l,2)= (1000)*rand(1,1);
B(a(1,1)+l,1)= (sqrt((50-A(p(1,1)+l,1))^2+(300-A(p(1,1)+l,2))^2)-

sqrt((50-A(1,1))^2+(300-A(1,2))^2));
end
cov= zeros(p(1,1)-1+l,p(1,1)-1+l); % covariance matrix of noise
for i=1:p(1,1)-1+l
 for j=1:p(1,1)-1+l
 if(i==j)
 cov(i,j)= var;
 end
 end
end
C=inv(cov);
s1 = zeros(1,w);
for m=1:w
for j=1:(p(1,1)-1+l)
 N(j,1)= B(j,1)+ g1(j,m);
end
x=100; y=100; %initial value
M(1,1)=100;
M(2,1)=100;
count =1;
K = 2;
t=5;
for i=1:(p(1,1)-1+l)
 d(i,1)= -((sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2)-sqrt((x-

A(1,1))^2+(y-A(1,2))^2))-N(i,1));
 J(i,1)= -(((x-A(i+1,1))/sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2))-

((x-A(1,1))/sqrt((x-A(1,1))^2+(y-A(1,2))^2)));
 J(i,2)= -(((y-A(i+1,2))/sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2))-

((y-A(1,2))/sqrt((x-A(1,1))^2+(y-A(1,2))^2)));

 29

end
e = d'*C*d; %cost function to be minimized
gradf = -J'*C*d; % gradient of cost function
dgradf = J'*C*J; % Hessian matrix
max = dgradf(1,1) ;
for i=1:2
 for j=1:2
 if((i==j)&&(dgradf(i,j)>max))
 max=dgradf(i,j);
 end
 end
end
max;
lambda =t*(max); % initial value of update parameter
for count = 1:500
 h = (inv(dgradf+lambda*(I))*gradf);
 M = M+h;
 x=M(1,1);
 y=M(2,1);
for i=1:(p(1,1)-1+l)
 d(i,1)= -((sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2)-sqrt((x-

A(1,1))^2+(y-A(1,2))^2))-N(i,1));
 J(i,1)= -(((x-A(i+1,1))/sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2))-

((x-A(1,1))/sqrt((x-A(1,1))^2+(y-A(1,2))^2)));
 J(i,2)= -(((y-A(i+1,2))/sqrt((x-A(i+1,1))^2+(y-A(i+1,2))^2))-

((y-A(1,2))/sqrt((x-A(1,1))^2+(y-A(1,2))^2)));
end
enew =d'*C*d;
r = (e-enew)/(2*h'*(lambda*h + gradf)); % error
e=enew;
if(r >= 0)
 gradf = -J'*C*d;
 dgradf = J'*C*J;
 q = 1-(2*r-1)^3;
 if(q > 1/3)
 lambda = lambda*q;
 else
 lambda = lambda*(1/3);
 end
 K=2;
else
 lambda = lambda*K;
 K = 2*K;
end
if(lambda<1e-10)
 lambda = 1e-10;
else if(lambda>1e10)
 lambda = 1e10;
 end
end
count;
lambda;
end
s1(1,m) = (((x-50)^2)+((y-300)^2));
for u=1:a(1,1)+l
df(u,m+(p(1,1)+l-3)*100)= d(u,1);

 30

end
end
for g=1:m
 s(1,p(1,1)+l+1-3)=s(1,p(1,1)+l+1-3)+s1(1,g);
end
s(1,p(1,1)+l-3+1)=sqrt(s(1,p(1,1)+l+1-3)/m); % calculating the RMSE
bas(1,p(1,1)+l-3+1)= p(1,1)+l;
end
 s;
 bas;
 lambda;
 s1;
 plot(bas,s,'-o'); %plot for RMSE vs no.of BS

