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ABSTRACT

KEYWORDS: Mouse Brain Architecture; Watershed Segmentation; Concavity

analysis.

Mouse Brain Architecture Project aims to generate Brain-wide maps of neural connectivity in amouse.
To achieve this, the brain of the mouse is injected with viral tracers to stain the neural pathways, which

is then sectioned and scanned to generate a data set of stained images.

Biological quality control step ensures that a given brain image is scientifically significant. Tracer
volume, stained cell body count and intensity of the tracer are some of the factors considered to quantify
the quality of an image. Automation of this process is very essential considering the tedious nature
of manual technique and the size of the data set involved. Here focus is placed on the estimation
of injection volume and the count of stained cell bodies for images of fluorescent and histochemical

imaging techniques.

To estimate the stained cell body count, Image Segmentation techniques like Watershed Segmenta-
tion and Concavity point based Segmentation are employed. Concavity based method will be employed
finally because of its optimal performance in detecting the cells. For the volume estimation, Pixel Clas-
sification techniques are employed to segment out the injection site. Decision trees are found to be an
optimal method midway between crude thresholding and computationally intensive Support Vector

Machines.
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CHAPTER 1

INTRODUCTION

1.1 Mouse Brain Architecture Project

The Mouse Brain Architecture Project is an ongoing effort to assemble and integrate information about
connectivity in the mouse brain. The project aims to deliver the brain-wide maps of inter-regional
neuronal connectivity. These maps, will thus specify the input and output regions of major brain
region at a mesoscopic level of analysis. The importance of such a systematic effort to map neural

connectivity brain-wide, starting with the mouse, is elucidated in (Boland et al., 2009).

Viral tracers are used to determine the inputs and outputs of each brain region. The inputs and the
outputs of a brain region are identified by injecting it with viral tracers. The injected virus traces the
neural pathways connecting one brain region to the other. Once the tracer spread sufficiently, the extent
can be measured either by fluorescence (for dyes) or immunohistochemistry (for biological tracers).
To determine the outputs of the brain region (i.e the regions it projects to), it is injected with a small
amount of anterograde tracer, which is taken up by the neurons locally and transported down the axons
to the target regions. To determine the inputs to the same brain region, a retrograde tracer, which is
taken up by the axonal terminals and transported to neuronal cell bodies, is injected into the same

location.

Viral tracers like Adeno-associated virus (AAV) and Cholera Toxin B (CTB) are used in the project.
AAV tracers express in two types, green fluorescent protein and red fluorescent protein and is used for

anterograde tracing (NL and B\ 1998)).

1.1.1 Process Overview

Mice are screened to match specific age and weight requirements. Each selected animal then receives
injection of a neuronal tracer (classical or viral) into a predetermined brain region. After the incubation
period (tracer specific, but typically 3-21 days), the animal is perfused, and the brain is extracted and
frozen in a customized mold. The extracted brain is now sectioned, suitably stained, and each section

digitally imaged.



The 2-D images generated from various slices of the brain are then subsequently registered to a
common reference atlas. Each injection is placed in a different mouse and the resulting 3D image vol-
umes co-registered in order to obtain the connectivity atlas. The systematic grid of injections spanning

the brain is used to generate a brain wide connectivity map.

The images which are generated as mentioned before are stored in different formats such as lossless

JPEG2000, lossy JPEG2000, TIFF. The resolution of lossless JPEG2000 images is 18000 x 24000 px.

1.2 Quality Control Process

Biological quality control step ensures whether the given data set of images is scientifically significant.
This part of the process requires a holistic view of the entire set of brain images to make a decision
whether the given dataset is acceptable for further processing or not. The most common parameters
for such a judgement are the following

1. Tissue quality: In some cases, there are damages in tissues either in the process of extracting the
brain from the skull or in the freezing process. Such damages render the data set unacceptable.

2. Stain quality: This parameter indicates the quality of the stain i,e, its clarity in the images so as
to gather some useful information out of the images.

3. Tracer: This quality control ensures that the tracer flows properly in the brain without any
leakages.

4. Injection Precision: There are cases where the tracer was not injected in the correct portion of
the brain. In those cases the data gathered would be insignificant.

Currently in the Mouse Brain Architecture Project, the Quality Control is being done manually.
The aim of this project is to automate two of those features, Stain quality and Injection precision. For
the estimation of stain quality, we need to know the count of the stained cell bodies and the volume
of the tracer. For the injection precision, we need to know the coordinates of the injection. These two

problems will be tackled in this thesis.

1.3 Chapter layout

Chapter 2 describes the problem statement and states what needs to be achieved in the project. The

problem of cell body detection and volume estimation through Image Segmentation is described.



Chapters 3 and 4 deal with the problem of cell body detection through Image Segmentation. Chap-
ter 4 describes Watershed segmentation and its variant Marker-based Watershed Segmentation for
solving the problem. Watershed Segmentation results in over-segmentation whereas its variant fails
to detect few cells as foreground objects. To overcome these shortcomings the second technique, Con-
cave point analysis is proposed. Chapter 5 describes the Concavity-based Segmentation to achieve the

same goal.

Chapter 5 deals with the problem of tracer volume estimation and detection of injection site. Pixel
classification methods like SVM, Decision trees are employed to segment the tracer portion in each of

the images and thus volume is estimated.

Chapter 6 concludes the report with directions for future work.



CHAPTER 2

PROBLEM DESCRIPTION

In the previous chapter, a few features which indicate the quality of tracer are specified. Two of them
are chosen and are automated in this product. One of them is the volume of the injection site and the

other is the stained cell body count.

2.1 AAV tracer Images

AAV (Adeno-associated Virus) is a viral tracer which is obtained in two principle forms, green fluo-
rescent protein and red fluorescent protein. Example of such a tracer image is shown in (2.1)). The task

is to determine the volume of the injection site in a brain which is imaged by 256 such slices.

Figure 2.1: AAV tracer image

The second task is to determine the stained cell body count in such images. As the tracer is saturated
in the image, it needs to be filtered appropriately and segmented to determine the cell body count. The

unfiltered image is shown in (2.2) and the filtered image with cell bodies brought into focus are shown

in (2.3).
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Figure 2.2: Saturated AAV tracer

Figure 2.3: Filtered AAV tracer image with cell bodies visible

The main step in determining the cell body count is to isolate the cells by segmenting them from
the process fibres as shown in (2.3). Two methods are employed for this task which are described in
chapters 4 and 5.



2.2 CTB tracer Images

Cholera Toxin subunit B (CTB) is used for retrograde tracing. Example of such a tracer image is shown
in (4.10). The task is to find the injection area of all the slices in the same brain and collate them to

find the volume of the injection site.

Figure 2.4: CTB tracer image

Stained cell body count is extremely difficult to determine in the CTB images as the tracer is weak.

So this analysis is skipped for this image.



CHAPTER 3

WATERSHED SEGMENTATION

3.1 Introduction

The first task is to obtain the stained cell body count. To achieve this target, cells which are touching
process fibres need to be isolated by segmentation. Watershed Segmentation is widely used for the
problem of touching object segmentation. The principle of watershed algorithm to segment gray level
image was introduced by L. Vincent and P. Soille (Vincent and Soille, [1991). The mechanism of wa-
tershed assumes that the image is a topographic relief in which the gray level intensity corresponds to
the altitude, higher the intensity, higher the altitude. The watershed is a set of dams built to separate
different catchment basins, surfaces such that the water flows down from any point to the same mini-
mum. In watershed, water starts filling the catchment basins from their minima. The place where water
from two different minima merge, we build a dam to prevent the merging from happening. These set of

dams correspond to the watersheds of the image which are the lines that segment the touching objects.

Watershed segmentation often leads to over-segmentation. Several variants of watershed are pro-
posed to prevent this and some of them include merging of different catchment basins post watershed
while some include constrained filling of the water from specific points, instead of all minima. The
latter variant is called as Marker-based Watershed Segmentation. This method is employed in this

thesis.

3.2 Pre-Processing

The AAV tracer images are too heavily saturated to get the cell body information. So initial filtering is
done to bring the cell bodies into focus. A method of filtering prescribed in |Arce et al. (2013)) is fol-
lowed. The image is initially passed through a Gaussian filter and the filtered image is subtracted from

the original raw image to get the desired image. This final image has cell bodies clearly identifiable as

seen in (4.3b)



(a) Original image (b) Filtered image

Figure 3.1: Filtering of Image

The filtered image is then converted to gray scale as seen in (4.4a). Otsu thresholding is applied on
this gray scale image to give a binary image as seen in (4.4b]). The segmentation algorithm is applied

on the binary image.

(a) Grayscale image (b) Binary image

Figure 3.2: Gray to Binary Conversion

3.3 Watershed Segmentation

Plain watershed segmentation results in over-segmentation as shown in (3.3)).



Figure 3.3: Watershed Segmentation

3.4 Marker-based Watershed Segmentation

To prevent over segmentation a Marker-based Watershed SegmentationZhang and Jiang| (2011]) is im-
plemented. Segmentation using the watershed transform works better if we can mark foreground and
background objects. Markers for foreground and background are obtained from the morphological

operations like erosion and dilation. The Marker image obtained by eroding the binary image is shown

in (3.4).



Figure 3.4: Marker Image

The segmentation boundaries for marker based watershed segmentation can be seen in (3.6)

Figure 3.5: Segmentation Boundaries

The Marker-based watershed segmentation performed on a portion of the image is shown in (??).

10



Figure 3.6: Marker-based Watershed Segmentation

After segmentation, the next step is to determine which portions are cells by shape feature. The

darker portions in (??), are identified as process fibres and the lighter portions are identified as cells.

Figure 3.7: Segregated cells and process fibres using shape features

11



3.5 Results

Segmentation performed using the Marker image will output the segmented image shown in (3.8).

Figure 3.8: Marker-based Watershed Segmentation

Because of insufficient markers, cells are less populated in the segmented image compared to the
original image. Almost 40% of cells are not reported as cells. A new method to identify the appro-
priate markers is to be implemented. In this thesis, this method is forsaken and concavity analysis is

implemented to segment the cell bodies.

12



CHAPTER 4

SEGMENTATION BY CONCAVITY POINT ANALYSIS

4.1 Introduction

In this chapter, a new algorithm based on concave point analysis is described. The algorithm proceeds
by generation of concave points and then determines the split lines for segmentation, with the concave

points as the vertices for the segmentation of the object.

4.2 Literature Review

Segmentation using Concavity analysis has two stages. The first stage is detection of Concavity points
and the second stage is choosing appropriate line segments to split the clumped objects. Literature
survey is done to chose a suitable methods to detect the concave points in the contour of an object and

to split the clumped cells.

4.2.1 Finding the Concavity Points

The icut algorithm presented in (He ef al., [2015), describes a method of determining the concaveness
of each point on the contour of the clumped object and then a threshold is applied to these concaveness
values. In this paper a mask is applied at every contour point of a binary object. The number of pixels
common to the mask and the object at each contour point is its concaveness value. This technique has
been attempted but is unsuccessful as there are many redundant local concavities that came into focus
upon thresholding. A larger mask which would usually solve the problem could not be employed as

the fibres to be segmented are thin, elongated structures.

A method to trace a contour and identify all the points that make a concave angle with the adjacent
points is described in (Rafferty ef al., 2012). This is not particularly effective for the current problem
as the concave points which are at a greater depth from the convex hull but do not satisfy the angle

requirement are discarded and a few redundant points arose due to local concavities.



The paper, (Plissiti et al.,|2013)), calculates the concave points by first determining the convex hull
of the binary object. Then, for each line segment of the convex hull that does not belong to the global
boundary, the points of the boundary that have the largest distance from the convex hull are identified.

A variant of this method is employed in the current thesis.

Concave points are determined using a curvature metric assigned to each point in the contour of
the object in (Mouelhi ez al.,[2011). The curvature metric is expressed using Gaussian derivatives. The

initial concave points are determined by keeping the local minima of the curvature.

A more robust method for the detection of concave points is described in (LaTorre et al., 2013)). In
this paper three measures are used jointly to describe the concavity of a point. The three measures are
as follows: the area of the concave region which is between the yellow and the magenta lines as shown
in (5.1), the length of the green line, the ratio of the length of the magenta line to the corresponding

yellow line.

Figure 4.1: Concavity measure

In (Wang and Songl 2007), the medial axis of a binary object is found and the distance of every
contour point from the medial axis is determined. By thresholding this distance, the suitable concave
points can be found. This method cannot be employed as there are thin, elongated structures whose

distances from the medial axes are small but do not contain the concave points.

A method described in (Farhan and Yli-Harja, |2013) is found to be suitable for the purpose of this
problem. In this method, concavity depth at each point on the contour is found by a method described

later in section —- and then a threshold is applied to this value to find the concave points.

A variant of the method described in (Wang et al., 2011) is used in the thesis. In this paper clumps
are split into two equal parts by determining the bottleneck of the figure. The example of bottleneck is
shown in (??). For any couple of points given in the contour of the object, a metric is defined, which on
minimizing gives the split line for the figure. This method is effective but cannot be directly employed

as it splits the figure into just two parts. An iterative version of this algorithm was employed.

14



Figure 4.2: Bottleneck points

4.2.2 Determination of split lines for segmentation

The split lines in (Fan ef al., 2013)) are determined by using concave regions instead of concave points.
For every binary object there is, the object is subtracted from its convex hull to determine the concave
regions. The split lines connect two concave regions by joining the points from the two regions which
are at a minimum distance from each other. While this is an excellent method to split circular-like
objects, arbitrary shapes result in redundant concave regions and splitting according to concave regions

leads to over-segmentation.

A set of features namely Saliency, Concavity-concavity alignment, and Concavity-line alignment
are taken for all the concavity points in the list of candidate split lines in (?). A Split line is chosen
so that it as short as possible in addition to having concave enough regions at both of its ends. This is
ensured by Saliency by considering Concavity depth as well as the distance between the two concavity

points.

In (Wang and Song|, 2007), the best split line among the candidate lines that join the concave points
is found by employing certain constraints like distance between the vertices of a splitting line, the area

ratio of two parts resulting from the splitting, etc. The splitting process is proceeded iteratively.

Watershed segmentation is used in conjunction with concave points to determine the split lines for
segmentation in (Mouelhi et al.,2011). The split lines are first determined by watershed segmentation
which inevitably results in over-segmentation. Among these split lines those which have concave

points as their vertices are chosen.

The icut algorithm in (He et al., 2015)) uses the spatial information as well as concave contours to
fill up a weight matrix of a graph. A normalized cut is then performed to determine the split lines for

segmenting the clumped objects.

Ellipse fitting algorithm is employed in (Plissiti et al., 2013) instead of generating split lines for

better segmentation, please find our proposed offer below:
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on of overlapping cells. Ellipse fitting is not necessary for the purpose of this thesis as the main

aim of segmentation is to get the count of the cells by not necessarily retaining the shape.

In (Farhan and Yli-Harjal 2013), the split lines are identified by using a new technique called
Rectangular Window-based Concavity Point Pair Search. The algorithm an algorithm which finds the
minimum/maximum intensity splitting path using the directional vector associated with the concavity
point which guides the algorithm in the right direction by means of a window and prohibit it from

straying.

Concave vertex graph is employed in (Yang et al., [2008a)) to find the best split line. A graph is
formed with vertices as the concave points of the object’s contour and edges detected in the region of
touching cells. The segmentation is then treated as an optimal grouping of pixels, which can be solved

by recursively searching optimal shortest path in the concave vertex graph using Dijkstra algorithm.

4.3 Segmentation by Concavity analysis

In this method, split lines for the segmentation are formed by the detection of concave points in the

contour of the objects in the image. The steps followed in the process are described below.

4.3.1 Preprocessing

The AAV tracer images are too heavily saturated to get the cell body information. Initial filtering is
done to bring the cell bodies into focus. A method of filtering prescribed in |Arce et al. (2013)) is fol-
lowed. The image is initially passed through a Gaussian filter and the filtered image is subtracted from

the original raw image to get the desired image. This final image has cell bodies clearly identifiable as

seen in (4.3b))

16



(a) Original image (b) Filtered image

Figure 4.3: Filtering of Image

The filtered image is then converted to gray scale as seen in (4.4a). Otsu thresholding is applied on
this gray scale image to give a binary image as seen in (4.4b]). The segmentation algorithm is applied

on the binary image.

(a) Grayscale image (b) Binary image

Figure 4.4: Gray to Binary Conversion

4.3.2 Classification of objects based on shape

The objects in the binary image are classified based on shape into three categories.

1. Objects which are isolated cells
2. Objects which are cells but have process fibres attached to them

3. Objects which are process fibres

To realize this classification, different metrics are used.

17



4.3.3 Metric to identify cells

Isolated cells in the image can be identified by a measure of their compactnessYang et al. (2008D).

(Perimeter)? @1

Compactness =
Area

Circle, which is the most compact object has the compactness value of 47. The objects are identified

as isolated cells if their compactness value lies within 20% of that of circle.

4.3.4 Metric to identify process fibres

Process fibres are elongated objects. Elongation of an object can be measured by taking the aspect
ratio of the rotated minimal bounding boxYang et al. (2008b)) of the object. The vertices of the rotated

minimal bounding box can be seen in the (4.5).

Figure 4.5: Vertices of a Rotated Minimum Bounding Box of an object

The Aspect Ratio, i.e the ratio of the width of the Bounding box to its height, is a reliable metric.
But a few objects have very low Aspect Ratio but they are not be identified as process fibres. To deal
with such cases, a new metric has been proposed to measure the elongation, which takes into account

both Solidity Yang ef al.|(2008b) and Aspect Ratio of the object.

o Area of the object
Solidity = 4.2
OV = Area enclosed by its Convex Hull (4.2)

B " Solidity 4.3)
ongation = .
g Aspect Ratio of the Rotated Minimal Bounding Box

An object is identified as a process fibre if its elongation value is greater than 3. A sample process

fibre with its elongation value is shown in (4.6)).

18



. . Solidity
Figure 4.6: Aspoct Ratio of a sample process fibre

The binary image is thus split into three categories as shown in (4.7a)), & (@.8). The algorithm
proceeds iteratively segmenting out the image which has both cells and fibres (/,,,,1). Once new objects

are created by segmentation, they are added to either categories of cells (/) and fibres (/process)-

(a) Image with isolated cells, I ¢ (b) Image with isolated Process fibres, I,;ocess

Figure 4.7: Categorizing of Objects in the Image
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Figure 4.8: Image which contain clumps of cells and process fibres, 7,0,

4.3.5 Detection of Concave points

For the segmentation of clumps of cells or cells with process fibres attached to them, concave point
analysis is used. The concave points are determined based on the definition of concavity. The idea is
to take two contour points which are joined by a line. Taking too far off or close by points may cause
error in the detection of concave points. In this algorithm, the contour points are chosen such that they
are 15 pixels away from each other. If the entire line defined by these two contour points lies solely
within the object, the mid point of the contour defined by the two points is the point of convexity. On
the other hand if the entire line passes through the background, the mid point of the contour defined
by the two points is the point of concavity. In the latter case, the concaveness of the mid point of the

contour is determined by taking its distance from the mid point of the line defined by the two points.

20
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Ay

Figure 4.9: Detection of Point of Maximum Concavity

Consider a pixel on the contour of the object, A; in (4.9). Two points, Ay, A3 are chosen 7 pixels
away from it. The line A, A3, the green line, lies entirely in the background so the point A; is the point
of concavity. The distance of the point A; from the line A, Ajs, the red line, is a measure of concavity

at the point A;.

By using this technique, point of maximum concavity (i.e, the greatest depth) is found for every

object. Points of maximum concavity (shown as red circles) for few objects is shown in (4.11a)),

(@.124).

4.3.6 Detection of a Split line containing the Point of Maximum Concavity

Once the point of maximum concavity has been detected, the next step is to detect another point which
will help split the object into two parts. The other point is chosen such that the pair of points is a
bottleneck in the object. The example of a bottleneck is shown in the figure (4.10)In order to achieve,

a method described in Wang et al.|(2011) is implemented.

)

Figure 4.10: Bottleneck points

Let A, B be two different points on the contour of an object. We can define a cost function between

points A and B as
dist(A, B)
min{length(A, B), length(B, A)}

E (A, B) = (4.4)

21



where dist( A, B) represents the Euclidean distance between the points A and B, length(A, B) denotes
the clockwise length from point A to B on the boundary of the object. minlength(A, B), length(B, A)
represents the smaller value between the two lengths.

For any point of maximum concavity A, a point B* is found which minimizes the cost F.

(A, B*) = argrgm Es(A, B) 4.5)

The points of maximum concavity for a few objects are shown in (4.114a), (4.12a)) and the split points
determined by equation (5) are shown in (4.110b), (4.12b).

(a) Point of maximum concavity (b) A split point for the point of maximum concavity

Figure 4.11: Generation of a split point

(a) Point of maximum concavity (b) A split point for the point of maximum concavity

Figure 4.12: Generation of a split point

Now that the two split points for an object have been identified, the split line is determined passing

through these two points using Bresenham Line Algorithm as shown in (4.13b)).
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(a) Split points for objects (b) Split lines through Points of Maximum Concavity

Figure 4.13: Splitting of cells using split points

The algorithm is described in (I]). The algorithm proceeds segmenting the cells iteratively and the
newly segmented cells are classified according to shape into cells or process fibres. When there are no

more cells left to segment, the program ends with the segmented cells as the output.
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Algorithm 1: Segmentation by Concavity analysis

1 [F'ilt = Filter<[original) 5
2 BW = Binary(Ipy) ;

w

[ICelh IWOT‘]C) IProcess] = ShGPGClCLSSify(BW) 5
;// Classify the binary image into three categories based on the shape of the
objects

4 while num_of_objects(Iyork) > 0 do

; // Looping till all the objects in the Iy, are segmented and classified

into ICell and IProcess

5 C&ﬁs::7naxconcavepohus(hym%); // Calculates points of maximum concavity

6 Spts = splitpoints(Cpts); // Calculates split points for each of the concave
points

7 Iwawk_gq,::bresenhaln(C&ﬁs,Sjws); // Segments the objects based on split

and concave points

8 [[Cell_Newa IWork:_Newa IProcess_New] = Shap60la53ify(IWork_Seg) 5 // Classify the

objects in the newly segmented image into cells and process fibres

9 LCdl::]Cdl|ICdLNew§ // Adding newly identified cells into Igey

10 Iprocess = Iprocess | {Process News // BAdding newly identified Process fibres into
Iprocess

11 Iwork = Iwork — Icei_New — IProcess New // Updated Iworr image after the
segmentation

12 [Cell_Segmented = [Cell;

4.3.7 Results

The result of the segmentation can be seen in (.14). The original image and the image with the

discarded process fibres are shown in and (5.4D).

24



RO Y
Pavelstiog p oy

- 1016 |
,,_.‘ ¥ ,.,'.»‘.i
.

(a) Image to be Segmented (b) Image with isolated Process fibres, I,;ocess

Figure 4.15: Imaqe with Process fibres

Precision and Recall

One tracer image is annotated and is compared to the segmented image. The values are given in the

table below. As seen in the table, Precision is 95% and Recall is 87%.
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Measure Value
True Postives 480
False Positives 25
False Negatives 67
Precision 0.95
Recall 0.87
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CHAPTER 5

VOLUME ESTIMATION

5.1 Introduction

Each mouse brain is sliced into 256 sections and are imaged using fluorescent or histochemical tech-
niques depending upon the tracer employed. In order to determine the volume of the injection site, the
area of tracer in each of the 26 sections is to be determined. To achieve that, the tracer portion in the

image needs to be segmented.

AAV tracers uses fluorescent imaging technique and the tracer is manifested in three colors. AAV
tracer is present in two colors red and green, but the places where the two colors combine, yellow color
is observed. In CTB images, the tracer can be observed to be black in color. The next section describes

the segmentation methods used to achieve this.

5.2 Segmentation

Color image segmentation can be done using thresholding, but thresholding doesn’t take into account
the status of the neighbouring pixels. Since we are interested in the blob detection rather than scattered
tracer detection, thresholding requires a fair bit of post-processing. So pixel classification methods are

employed to segment the tracer part.

5.2.1 Support Vector Machines

The primary method employed is Support Vector machines (Wang and Wang, 2011). The steps in-
volved in the SVM are

1. Generation of training data set
2. Feature vector
e The R,G,B values of a pixel are 3 features

e The R,G,B values of a median filtered image are 3 features. This takes care of the effect of
the neighbourhood in deciding the pixel label



e It is a 6 feature vector

3. SVM

e For a 200 x 200 image, SVM with 4 classes and 6 features takes 70 s to run

e If we crop the rough area of the tracer, we have 2000 x 2000 image which is 100 times
bigger. Such an image takes almost 2 hours to run. SVM takes a lot of time but accurately

classifies pixels

e Other classifying methods are to be explored

Cropped image Red Portion Green portion

Yellow portion
(both red and green)

Figure 5.1: SVM segmentation of tracers

Because of the high computational complexity of SVM, this approach is rejected.

5.2.2 Decision trees

The sample cropped figure which is used for comparing SVM and decision trees (G.Smolinski and

G.Milanova, 2008) is shown in (5.2). The results of classifications for both SVM and decision trees

are shown in (5.3)).

Here SVM is chosen as the standard annotation for measuring the accuracy of the decision tree

classification. The accuracy is computed to be 95.4%.

Figure 5.2: Cropped image
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Classifier | Red portion

Green portion

Yellow portion

Decision
krees

SVM

Figure 5.3: Comparison between SVM and Decision trees

The same analysis applied for CTB tracer gives the following results

(a) CTB Image to be Segmented

Figure 5.4: CTB tracer segmentation
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5.3 Volume Estimation

To calculate the volume of the injection site, the areas of the tracer in all the images are stored in an
array. The injection coordinates of the injection site in the image are also noted to ensure that the areas
of the two consecutive slides in fact do overlap. The volume occupied by the two consecutive slides is

approximated by a conical frustum and is calculated by the formula,

h
V:<A1+A2+\/A1*A2)*§

Where A; and A, are areas between the consecutive slices and h is the distance between the two
slices which is 40pm. A pixel is supposed to be 5um in size so the area is taken to be 25(um)?. The

injection coordinates are noted down to evaluate the injection precision.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The problems of stained cell body count and volume of the tracer have been addressed in the thesis.
For the problem of the cell body staining, Concavity point based analysis is found to be optimal.
The algorithm proceeding in the iterative fashion using shape features of the objects segmented give
superior performance compared to its counterpart Watershed Segmentation. The precision and recall

obtained are 95% and 87%.

For the problem of Volume estimation, various methods of Pixel Classification are experimented
with. Support Vector Machines give the best results, but they are computationally expensive. Hence
the method is rejected. The one that came closest to SVM without the time complexity issues are

Decision trees. The accuracy of Decision trees is computed to be 95.4%.

The next step in this project, now that the optimal algorithm were found, is to further optimize the
code so that it could be incorporated in the project pipeline. The resolution of each image is 18000x
24000 px and the algorithm needs to work on such a large data set. This is still in process. The
proposed method to deal with such a high resolution image is as follows. The lossy JPEG2000 image
is to be subjected to thresholding methods to roughly identify the injection site. The relevant portion
is then cropped out and is passed to the algorithm to extract stained cell body count and the volume of

tracer.

The end goal is to develop a modular code which can be incorporated into the pipeline of the project

to facilitate the Quality Control process.
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