
Channel Estimation in millimeter wave communication

systems

A Project Report

submitted by

NITIN JONATHAN MYERS

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2016



THESIS CERTIFICATE

This is to certify that the thesis titled Channel Estimation in millimeter wave commu-

nication systems submitted by NITIN JONATHAN MYERS to the Indian Institute of

Technology, Madras, for the award of the degree of Dual Degree, is a bona fide record

of the research work carried out by him under my supervision. The contents of this

thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Dr. Arun Pachai Kannu

Place: Chennai (Research Guide)

Date: 4th May, 2016 Asst. Professor

Dept. of Electrical Engg.

IIT Madras

Chennai - 600 036.



ACKNOWLEDGEMENTS

I am grateful to Dr. Arun Pachai Kannu for his support and guidance throughout the

project. I would like to thank him for introducing me to new research topics and en-

couraging me to pursue a career in research.

I express my gratitude to all my teachers for preparing me with fundamentals and

sharpening my insight. I would like to thank Manoj for all the discussions we had on

this topic.,

I am indebted to my parents and my sister for their unconditional love, support and

guidance. I dedicate this thesis to them.

ii



ABSTRACT

KEYWORDS: MIMO Channel Estimation, Millimeter wave communication,

Low rank matrix completion, Compressive Sensing

In communication systems, channel estimation is necessary for reliable information

transfer between the transmitter(Tx) and receiver(Rx). For single stream communica-

tion systems or those operating at low SNR, it suffices to estimate the first singular

vectors of the channel matrix. In the recent times, millimeter wave systems have gained

prominence due to high data rates promised by them, and are to be used in 5G. We

consider a typical millimeter wave channel, which is of low rank and marginally com-

pressible in 2D DFT basis and describe algorithms to recover the channel matrix(first

singular vectors), using low rank matrix recovery and compressed sensing.

We provide theoretical guarantees on the channel capacity of such systems, as a function

of SNR, algorithm used and also incorporate the effect of quantization of beamforming

vectors.
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CHAPTER 1

INTRODUCTION

This project is aimed at developing algorithms for single stream millimeter wave chan-

nel estimation.As mm wave channels operate at high frequencies( 60GHz), the channel

matrix comprises of few components and is of low rank.This directs us to use the well

developed theories of low rank matrix recovery and compressed sensing(CS)).

As we need just the first singular vectors (left and right singular vectors corre-

sponding to maximum singular value) of the channel matrix for beamforming (assign-

ing weights to the antennas), we would like to focus on algorithms that estimate just

them. Typically any algorithm (low rank or CS) require r.f(n) measurements to es-

timate the matrix. So, we realize that there is no significant decrease in number of

measurements, when we estimate just the first singular vectors compared to the entire

matrix, for r = o(1)

An information theoretic viewpoint of CS is presented, which guarantees minimum

number of measurements required for a particular sensing basis. In literature, such

limits have been proved using the Restricted Isometry Property(RIP).

We describe some existing low rank matrix recovery methods like OptSpace, nu-

clear norm minimization and Rank 1 Matching pursuit; CS based methods like l1 norm

minimization and Spectral Compressed Sensing.

Assuming that a given algorithm introduces an errorE in the estimate of the channel

matrix, we derive novel analytical bounds(weak- as they do not consider properties of

channel matrix) on the capacity of the mm wave system, as a function of power spent,

channel matrix and error properties(‖E‖F ,‖E‖2). These bounds are not specific to mm-

wave or low rank matrices and find applications in problems involving the projection of

a matrix on rank 1 approximation of the perturbed matrix.



1.1 Organisation of the thesis

• In Chapter 2, optimal power allocation using water filling, that insists on using
first singular vectors at low operating power is illustrated.

• In Chapter 3, the mm wave system model and channel matrix properties are de-
scribed.

• In Chapter 4, a background on recovery of compressible signals using CS is given,
along with an application to estimate carrier frequency offset in digital commu-
nication systems.

• In Chapter 5, existing low rank matrix recovery algorithms are discussed.

• In Chapter 6, the analytical bounds on projection of a matrix on rank 1 approxi-
mation of it’s perturbed matrix are derived.

• In Chapter 7, algorithms based on CS and low rank recovery are used to estimate
mm wave channel matrix and are compared with the capacity bounds derived in
Chapter 6.
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CHAPTER 2

Motivation to estimate the first singular vectors of

MIMO Channel

Consider a MIMO communication system with Nt transmit antennas and Nr receive

antennas, Let H ∈ CNr×Nt be a channel matrix of rank r, x ∈ CNt×1 be the transmitted

vector. The received vector y ∈ CNr×1 is given by

y = Hx + n (2.1)

We assume n ∼ CN (0, σ2I).

Let the singular value decomposition of H be H = UΣV H . We now transform the

system equation by defining x̃ = V Hx, ỹ = UHy

y = Hx + n = UΣV Hx + n

⇒ ỹ = Σx̃ + UHn

Note that UHn ∼ CN (0, σ2I), as linear combination of gaussian r.v is gaussian,

E
(
UHn

)
= UHE (n) = 0 and cov

(
UHn

)
= UHcov (n)U = UHσ2IU = σ2I

So, ỹ = Σx̃ + n2 ; n2 ∼ CN (0, σ2I).

We have now converted Eq. 2.1 into r parallel channels satisfying

ỹi = σix̃i + (n2)i, ∀i ∈ [1, r] at any given time instant(Note that i is across parallel

channels).Let Pi = |x̃i|2. From information theory, the capacity of the above system

is C =
∑r

k=1 log
(

1 +
σ2
kPk
σ2

)
.We maximize this capacity over {Pk}rk=1, subject to the

power constraint (
∑r

k=1 Pk = P ).

Let f(P ) =
∑r

k=1 log

1 + Pk(
σ2

σ2
k

)
+ λ (

∑r
k=1 Pk − P ).

Maximizing the above function can also be visualized using the water-filling argument

Cover and Thomas (2006) , illustrated in Fig. 2.1.

Observe that we use only the first component for 0 ≤ P ≤ σ2
(

1
σ2
2
− 1

σ2
1

)
. In the

above regime, we have x̃ = V H
1 x, as we spend all the power on one single compo-

nent.Similarly ỹ = UH
1 y, where U1 and V1 are the left and right singular vectors cor-
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Figure 2.1: Waterfilling for rank 4 channel

responding to the largest singular value (σ1). For this low power regime, we need to

estimate just (U1,V1) for precoding. This motivates us to look at the problem of esti-

mating the first singular vectors alone of the channel matrix. Note that for any P > 0,

we use the component corresponding to the first singular value. As power spent is

increased, we start using other components of the channel.

We may also be limited by the system’s design to use the first singular vectors alone,

as is the case for single-stream MIMO communication.
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CHAPTER 3

Millimeter wave communication

3.1 System Model

Consider a single stream mmwave communication system uniform linear array (ULA)

of Nt number of antennas and Nr number of antennas at the transmitter(Tx) and re-

ceiver(Rx) respectively. Let wt ∈ CNt×1 and wr ∈ CNr×1 be the beamforming vectors

applied to the Tx and Rx arrays respectively. Let x be the transmitted symbol and y be

the received symbol. Then,

y =
√
ρwH

r Hwtx+ n, (3.1)

where H is the channel matrix,ρ is the average received power and n is the measurement

noise, such that n ∼ CN (0, σ2).

From electromagnetic wave theory, we know that signals experience larger atten-

uation at higher frequencies. As millimeter wave frequencies are too high, in order

of 100GHz, large number of antenna elements are deployed at Tx and Rx to ensure

highly directive signal transmission and overcome the attenuation. However, due to

small size and closely packed antenna elements, we observe high correlation between

the responses of the antenna elements employed within the array. The channel matrix

H of such system is given by,

H =

√
NtNr

K

K∑
k=1

βkarkaTtk, (3.2)

where K is the number of physical paths between the Tx and Rx. βk the complex

channel gain for the kth path, is modelled as i.i.d. βk ∼ CN (0, σ2
β), and at and ar are



the normalized antenna array responses at Tx and Rx respectively, given by,

at =
1√
Nt

[1 ejωt ... ej(Nt−1)ωt ]T , (3.3)

ar =
1√
Nr

[1 ejωr ... ej(Nr−1)ωr ]T , (3.4)

where ωt = 2π d
λ

sin(θt), ωr = 2π d
λ

sin(θr), d is the inter-element spacing in the ULA, λ

is the carrier wavelength, θt is the angle of departure at Tx and θr is the angle of arrival

at Rx.

The channel capacity(C) of the system in 3.1 is given by

C = (1− α)log2

(
1 +

ρ
∣∣wH

r Hwt

∣∣
σ2

)

where α is the fraction of time for which training (estimating the beamforming vectors)

is done.

3.2 Channel Estimation under measurement constraints

From Eq. 3.1, we observe that the beamforming weights at the Tx and Rx have an

impact on the single stream gain, which needs to be maximized in order to maximize the

SNR and hence the capacity of the system.In mathematical terms, we aim to find wt and

wr such that
∣∣wH

r Hwt

∣∣ is maximum. From property of singular value decomposition,∣∣wH
r Hwt

∣∣ ≤ σ1(H), where σ1(H) denotes the spectral norm of H. Equality holds iff wt

and wr are equal to the right and left singular vectors of H respectively.

Thus, we seek an algorithm that estimates the first singular vectors of H alone, with

minimum number of measurements. In the following chapters, we describe algorithms

based on naive sensing, low rank matrix recovery and compressed sensing, that use

the properties of H to estimate the beamforming vectors.The system model imposes

a constraint that measurements of the channel matrix are of the form v1
HHv2, where

v1 ∈ CNr×1, v2 ∈ CNt×1. In other words, we are allowed to measure the projection of

H on rank 1 channel matrices(of the form v1v2
H). The underlying hardware imposes

another constraint on the magnitude of coordinates of v1 and v2 (i.e, |(v1)i| > g,∀i ∈

{1, 2, . . , Nr} and |(v2)j| > g,∀j ∈ {1, 2, . . , Nt}). The same conditions hold for beam

forming weights wr,wt and we may have to quantize them.

6



3.3 Properties of mmwave channel matrices

From Eq. 3.2, we observe that H is a linear combination of rank 1 matrices, of the

form arkaHtk. From the property that rank(A+B) ≤ rank(A) + rank(B), we can say

that H is a low rank matrix, with a maximum rank of K << N .One could use low rank

approximation techniques to recover H, from few measurements.

Consider a situation in which the ωt’s and ωr’s are integer multiples of 2π
Nt

and 2π
Nr

respectively. In that case H is sparse(with sparsity K) when expressed in the 2D fourier

basis({Bkl}k=Nrl=Nt
k=1,l=1 );Bkl (m,n) = 1√

NtNr
ej

2πkm
Nr e

j 2πln
Nt . One could use compressed

sensing to recover H, with a suitable matrix satisfying the measurement constraints and

the Restricted Isometry Property 4.3.2. However, it is with zero probability that these

frequencies fall on the grid((2πk
Nr
, 2πl
Nt

)), as they are continuous random variables. We

look at the spectrum of H in 2D fourier basis for some general ωt, ωr. Let G ∈ CNr×Nt

be the 2D DFT of H.Note that the indices a and b run from 0 to Nr − 1 and Nt − 1

respectively.

G(a, b) =
Nt∑
n=1

Nr∑
m=1

H(m,n)e−j
2πam
Nr e

−j 2πbn
Nt

=

√
NtNr

K

Nt∑
n=1

Nr∑
m=1

K∑
i=1

βi
(
ariaTti

)
m,n

e−j
2πam
Nr e

−j 2πbn
Nt

=
1√
K

K∑
i=1

βi

Nt∑
n=1

Nr∑
m=1

ejωri(m−1)e−j
2πam
Nr ejωti(n−1)e

−j 2πbn
Nt

=
1√
K

K∑
i=1

e−jωrie−jωtiβi

(
Nr∑
m=1

ej(ωri−
2πa
Nr

)m

)(
Nt∑
n=1

e
j
(
ωti− 2πb

Nt

)
n

)

=
1√
K

K∑
i=1

e−jωrie−jωtiβie
j.φ(i,a,b)

sin
(

(Nrωri−2πa)
2

)
sin

(
(ωri− 2πa

Nr
)

2

) .
sin
(

(Ntωti−2πb)
2

)
sin

((
ωti− 2πb

Nt

)
2

)

where φ(i, a, b) =
(
ωri − 2πa

Nr

) (
Nr+1

2

)
+
(
ωti − 2πb

Nt

) (
Nt+1

2

)
.

We notice that G has dirichlet’s sincs in spatial domain, causing spectral leakages. The

same argument can be qualitatively explained as follows:-

Consider an discrete time 2D spatial signal F =
∑r

i=1 giAx(θxi)A
∗
y(θyi),

where Ax(θxi), Ay(θyi) are of infinite length with the same structure of ari, ati. [Note

7



that this F is defined for the entire 2D space]. F has a fourier transform which has

impulses(2D dirac delta) at those spatial frequencies in the fourier domain. The H in

our setup can be considered as a multiplication of F with a rectangular window of 1s in

(i, j)for 1 ≤ i ≤ Nr and 1 ≤ j ≤ NT in spatial domain , which results in convolution

with dirac delta’s with dirichlet’s sinc(transform of rectangular window of 1s) in fourier

domain. This results in spectral leakage and the resultant is now sampled at frequencies

of the form(2πm
NR

, 2πk
NT

)m,k∈Z in discrete fourier transform domain to obtain G. So unless

our spatial frequencies are of the form(2πa
NR
, 2πb
NT

)a,b∈Z which is a zero probability event,

we have spectral leakage. The color coded plot of magnitude of G in Fig. 3.1 illustrates

spectral leakage.

Nevertheless H can be considered as low rank and marginally compressible. With

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70
Color coded Magnitude spectrum of H ∈  C64x64, rank(H)=4

i

j

Figure 3.1: Color Coded Magnitude Spectrum of H ∈ C64×64, K = 4

these properties as a motivation, we give a background of compressed sensing and low

rank matrix completion in the following chapters.
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CHAPTER 4

Compressed Sensing

In many applications, we deal with signals that are sparse when expressed in an ap-

propriate basis.Compressed sensing seeks to recover the sparsest solution X ∈ CN

with minimum number of linear measurements(<< N ). Let the measured vector be

Y = AX , where A ∈ CM×N is an appropriately chosen sensing matrix with M << N .

Note that as M << N , it is an underdetermined linear system and we cannot recover

X without any prior information(like sparsity or least squares solution etc).

4.1 Information Theory viewpoint of compressed-

sensing

Consider a digital signal x ∈ Dn, where D is a discrete set containing quantized lev-

els. A naive way(does not consider sparsity) to recover x, is to measure each and

every component(xi), by projecting x on the standard basis ei, resulting in n mea-

surements.Our goal is to recover x from minimum number of linear measurements(of

the form aTx), assuming that x is sparse(has very few non zero entries). Let D =

{1, 2, . , |D|} without loss of generality.

Let X ∈ Dn be a random signal constrained to be r sparse,χ denote all possible sets

of r indices from n , and LX ∈ χ be the locations of sparsity of X. Assuming no prior

information about X , other than sparsity,the entropy of X (H(X))is derived as follows.

H(X) = H(LX , X) = H(LX) + H(X|LX), where H(Y |X) denotes the entropy of

Y given X .We assume a uniform distribution over χ where |χ| =
(
n
r

)
, so H(LX) =

log2 (nCr).

H(X|LX) = H (X1, X2, X3, ...Xn|LX)

=
∑
i
P (LX = i)H(Xi1 , Xi2 , Xi3 , ..., Xir |LX = i)

=
∑
i
P (LX = i)

(
H
j=iC

(Xj |LX = i) + H
j=i

(Xj |LX = i)

)



=
∑
i
P (LX = i)

(
0 + H

j=i
(Xj |LX = i)

)
=
∑
i
P (LX = i)H(Xi1 , Xi2 , Xi3 , ..., Xir |LX = i)

=
∑
i
P (LX = i)

( ∑
ik∈LX

H (Xik)

)
. (assuming Xis are independent of each other).

⇒ H (X|LX) =

(∑
i

P (LX = i)

)
.r.log2 (|D|) = log2 (|D|r)

(assuming Xi is uniformly distributed over D, for i ∈ LX).

So,H(X) = log2 (nCr) + rlog2 (|D|) = log2 (nCr |D|r)

4.1.1 Dependence of measurement vectors ai on number of mea-

surements

Let Y = {Yi}Mi=1, be the measurements of the form aTi X . For perfect recovery , there

must be no uncertainity in X given Y .(i.e.,H(X|Y ) = 0).

H(X, Y ) = H(X) +H(Y |X) = H(X) (since Y is a function of X , H(Y |X) = 0).

H(X, Y ) = H(Y ) +H(X|Y ) = H(Y ). (Assuming perfect recovery).

⇒ H(X) = H(Y ) = H(Y1) +H(Y2|Y1) +H(Y3|Y2, Y 1) + ...+H(Ym|Y1Y2..Ym−1)

. (from chain rule).

As conditioning cannot increase entropy, we have H(Ym|Y1Y2..Ym−1) ≤ H(Ym) ∀. We

reorder the set {ai}mi=1 such that H(Y1) ≥ H(Yi), ∀i ≥ 1.

⇒ H(X) = H(Y ) ≤ mH(Y1)

⇒ m ≥ H(X)
H(Y1)

. We aim to choose ai’s such that H(Y1) is maximum in order to recover

with minimum number of measurements. It can be seen that a1 = {1, |D|, |D|2, . . , |D|N−1}

achieves minimum number of measurements(= 1). This is simply conversion of a num-

ber into a base |D| system. However, this is not a robust way of sensing as our measure-

ments would be highly sensitive to the noise in XN . Intuitively, we can guess that the

robust sensing vector would have equal magnitudes in all positions.(i.e, | (ai)j | = a ∀j.)

and this motivates us to look at sensing vectors with random 1s,-1s in 4.1.3.

10



4.1.2 Example illustrating the dependency

Consider a 1 sparse(r = 1) binary digital signal X ∈ {0, 1}n, then H(X) = log2(n).

If a1 = (1, 1, 1, , ..., 1)T , we have Y =
∑n

i=1Xi = 1, with probability 1, as X is 1

sparse. Then H(Y1) = 0,⇒ m ≥ ∞

Now consider a measurement vector a1 = (1, 2, 3, ..., n)T , then Y1 takes values from

the set {1, 2, 3, ..., n}, with non zero probabilities for each of them( assuming locations

of sparsity can occur anywhere with non zero probability). As dictionary of Y1 has n

elements, H(Y1) ≤ log2(n),⇒ m ≥ 1, which is true as we need just Y1, to find out X ,

as X = e
Y1

, where ei, is a standard basis vector in Rn, with the ith entry as 1.

4.1.3 Minimum number of measurements when ai is chosen from

random sequence of 1s,-1s

For a general D, r and sensing vectors chosen from a sequence of random 1s,-1s, we

derive H(Y1).

Let S denote the set of indices where Xi 6= 0; S1 be the set of indices where Xi 6= 0

and (a1)i = 1;S2 be the set of indices where Xi 6= 0 and (a1)i = −1.

As X is r sparse, we have Y1 =
∑
i∈S

(a1)iXi =
∑
i∈S1

Xi −
∑
i∈S2

Xi,

Let |S1| = n1; |S2| = n2, then |S| = n1 + n2 = r.

The probability mass function (p.m.f) of each of these Xi; i ∈ S is distributed over

D.Now
∑
i∈S1

Xi is a sum of n1 random variables, whose p.m.f is distributed over inte-

gers in [n1, n1 |D|]. Similarly the p.m.f of −
∑
i∈S2

Xi is distributed over [−n2 |D| ,−n2].

Hence, the p.m.f of Y1 is over integers in [n1 − n2 |D| , n1 |D| − n2].

We can see that |Y1| = (n1 + n2)(D − 1) + 1 = rD − r + 1 and hence

H(Y1) ≤ log2(|Y1|) = log2(rD − r + 1).

For perfect recovery of the sparse digital signal, using random 1s,-1s as sensing vectors,

we need m measurements, where m ≥ log2(nCr|D|r)
log2(rD−r+1)

.

11



4.2 Measurement basis

Let the signal X ∈ CN be r sparse when expressed in an orthonormal basis ψN×N ,i.e,

X = ψθ, where θ is a sparse vector in CN .If we measure X in the basis ψ itself, it is

easy to see that we need N measurements to recover θ( and hence X), as the location of

sparsity can be at any of the N locations. Hence, in order to reduce measurements and

incorporate sparsity, we need to measure the signal in a maximally incoherent basis, as

it combines information from all the locations of θ. Let φN×N be an orthonormal basis.

The coherence µ between the basis ψ and φ is defined as,

µ(φ, ψ) =
√
N max

1≤j,k≤N
|〈φj, ψk〉| (4.1)

Note that when φ = ψ, we have µ(φ, ψ) =
√
N and when φ is maximally incoherent

with ψ, we have µ = 1. So, 1 ≤ µ ≤
√
N . It is interesting to point out that random

basis is largely incoherent with any fixed basis Candes and Wakin (2008), i.e, for a

fixed basis ψ, if we construct φ, by orthonormalizing n vectors sampled uniformly and

independently on the unit sphere, we get a coherence of
√

2log(n), with very high

probability.

4.3 Recovery of Sparse signals

Let X be r sparse by itself (i.e, ψ = IN×N ).The least squares solution to the problem

min ‖Y − AX‖2
l2

, which is X̃ =
(
AHA

)−1
AHY , is not necessarily the sparsest one.

The goal of sparse signal processing mathematically translates to

min ‖X‖l0 , subject to Y = AX .

The above problem is NP hard, where ‖X‖l0 is the l0 norm of X , which is the number

of non zero entries of X .We observe that ‖X‖qq → ‖X‖l0 as q → 0, where ‖X‖qq =

(|X1|q + |X2|q + |X3|q + . . + |Xn|q). The locus of points satisfying ‖X‖q = 1 for

q = 0.5, 1, 2, n = 2 is shown in 4.1

From Fig. 4.1, we could imagine that epigraph(in 3D) of ‖X‖q is not convex when

q < 1, and thus ‖X‖q is non convex for q < 1. Nevertheless, these functions(q < 1),

give the sparsest solution. For q > 1, we easily observe (here q = 2) that ‖X‖q

12



Figure 4.1: Locus of ‖X‖q = 1 for q = 0.5, 1, 2, n = 2 ;

is convex, but minimization does not give the sparsest solution, unless the constraint

plane is normal to the vector joining origin and the true solution. Interestingly q = 1

incorporates both convexity and sparsity to lead to the sparse solution.

4.3.1 l1 norm minimization

Let X be the true signal, which is r sparse in ψ. We obtain M measurements of X as

Yk = 〈X,φk〉 ∀k = 1, 2, 3, ..M . Relaxing the NP hard problem, we obtain a convex

optimization problem

minimize
∥∥∥θ̃∥∥∥

l1
subject to Yk =

〈
ψθ̃, φk

〉
= Akθ̃, ∀k = 1, 2, 3, ..M

Let θ∗ be the solution to the above problem.The reconstructed solution (sayX∗) is given

by ψθ∗. This optimization problem can be solved using subgradient descent method(as

l1 norm function is not differentiable).

In Candes and Romberg (2007), it is shown that the above optimization perfectly re-

covers X , with probability 1− δ, whenever M ≥ Cµ2 (ψ, φ) r.log
(
n
δ

)
, which reduces

number of measurements by orders compared to n measurements.However, this result

does not guarantee the recovery with noisy measurements.

Practical signals are not exactly sparse but approximately sparse. In addition, we also

have noisy measurements to be used for reconstruction. We seek a robust algorithm that

overcomes these non-idealities and still recovers the sparse signal.

13



Consider the following optimization:-

minimize
∥∥∥θ̃∥∥∥

l1
subject to

∥∥∥Y − Aθ̃∥∥∥
l2
≤ ε (4.2)

Y = (Y1, Y2, Y3, , , YM)T and A = (A1, A2, A3, , , AM)T . Let θ∗ be the solution to

above optimization. In Candes et al. (2006), a recovery guarantee, states the robustness

of above optimization to noise, which is

‖θ − θ∗‖l2 ≤ C0
‖θ−θr‖l2√

r
+ C1ε, whenever δ2r <

√
2− 1

where θr denotes the k sparse approximation of θ(formed by retaining the largest r val-

ues of θ and setting the others to 0) and δ2r is the Rectricted Isometry Constant(defined

in 4.3.2 ) of the matrix A. As ψ is a unitary matrix, it preserves the norm under trans-

formation.

⇒ ‖X −X∗‖l2 ≤ C0

‖X −Xr‖l2√
k

+ C1ε (4.3)

where Xr = ψθr.If X were exactly r sparse in ψ, we would have ‖X −Xr‖l2 = 0. It

is important to note that Xr is not formed by setting the N − r smallest coefficients(in

magnitude) of X to zero.

4.3.2 Restricted Isometry Property

Since Y = Aθ, and θ is r sparse, for unique solution to Eq. 4.2, the null space of A

should not contain r sparse vectors. A tighter notion of this statement is incorporated

in the Restricted Isometry Property(RIP). The isometry constant (δr) of a matrix A is

defined in Candes and Tao (2005) as the smallest number satisfying

(1− δr) ‖xr‖2
l2
≤ ‖Axr‖2

l2
≤ (1 + δr) ‖xr‖2

l2
; where xr is an r sparse vector.

For stable recovery of an r sparse vector using A, we require that δ2r to be as small as

possible, as a smaller δ2r implies smaller perturbations in the observed vector Y = Aθ,

for given perturbation in the r sparse vector.
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4.4 An Application of Compressed Sensing in Carrier

Frequency Offset Estimation

Consider a digital communication system using circular 8QAM as the constellation.

Let xn and yn be the transmitted and received symbols respectively. Let ∆fe Hz be the

carrier frequency offset(CFO) between the Tx and Rx. The complex baseband digital

communication model is now given by

yn = xne
j(ωen+φ) + wn

where ωe = 2π∆feT , wn ∼ iid CN (0, σ2), T is the symbol time, φ is phase offset and

xn ∈ S1 ∪ S2 , where S1 ∪ S2 denote circular 8 QAM constellation with

S1 = {r, r.ej π2 , −r, rej 3π2 };S2 = {Rej π4 , Rej 3π4 , Rej 5π4 , Rej 7π4 },for r
R

=
√

3−1√
2

and

r2 +R2 = 1.

I

 Q

 

 
S2(k)
S1(k)

Figure 4.2: Circular 8QAM

The CFO is generally estimated and corrected , before decoding the symbols. We

discuss two algorithms(A1,A2) based on the QPSK partitioning algorithm Li et al.

(2014) and compressed sensing respectively.

15



4.4.1 A1-Generalized QPSK partitioning algorithm

Recently, Li et al., proposed a generalized QPSK partitioning algorithm Li et al. (2014)

to estimate CFO. When applied to circular 8QAM, it classifies the received samples(yn)

into classes(say c1,c2), using a threshold parameter(λ < 1), such that

 ||yn|| ≥ λR + (1− λ) r ⇒ yn ∈ c1

||yn|| < λR + (1− λ) r ⇒ yn ∈ c2

Observe that c1 has those set of samples that likely came from S2 and these are

relatively of higher SNR than those of c2, asR ≥ r, with noise variance being the same.

This algorithm uses the samples of c1 alone to estimate CFO and also has another least

squares parameter M, in LS-M. It defines a phase correlation metric φ (m) as,

φ (m) = arg
(∑N−M

n=1 w (n, n+m) y4
n+m (y4

n)
∗
)

where m = 1, 2, 3, · · · ,M Then



φ (1) = 1× 4ωe + ε1

φ (2) = 2× 4ωe + ε2

· · · · · · (mod2π)

φ (M) = M × 4ωe + εM

where εm is random error in φ (m) and

w (i, j) =

 1 if yi ∈ c1 and yj ∈ c1

0 otherwise

As φ (i) ∈ [0, 2π] , estimating 4ωe directly becomes difficult. So {φ (i)}Mi=1 is first

unwrapped to get {ψ (i)}Mi=1. Now, a least squares fit is done to obtain estimate of

4ωe(say 4ω̂a). For an LS-M algorithm, we get to estimate CFO( say ω̂a) using a maxi-

mum window size of M samples.
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4.4.2 A2-Compressed Sensing Based CFO Estimation

We classify the received samples yn as defined by 4.4.1 into sets c1 and c2, and use

only the samples from c1 for estimation. Consider a signal zn = R4ej4ωen. When z is

an infinite length sequence, the fourier transform of z has an impulse at 4ωe. However,

due to a finite data record of size Ntrans (number of transmitted symbols), the spectrum

is no longer a dirac delta, but a dirichlet’s sinc Oppenheim et al. (1989), due to spectrum

leakage caused by rectangular windowing, with the peak still at 4ωe.Further, we work

with noisy samples and get to measure the discrete fourier transform with a resolution

of 2π
Nfft

.

Notice that for the noiseless case zi = y4
i , ∀yi ∈ c1 and we do not have access to zi

∀yi ∈ c2. We make an assumption that {zn}Ntransn=1 is compressible in the fourier basis

(as is the case for no noise and 4ωe

(
Nfft
2π

)
∈ Z).For a general case, we aim to recover

3 samples ( the peak value and values to the left and right of the peak), so that we

may fit a dirichlet’s sinc and find the exact CFO. So, given that we have a compressible

signal(z) in fourier basis, we seek to have few measurements(say m) from incoherent

basis, to reconstruct it using compressed sensing. Discrete time impulses are maximally

incoherent with the discrete fourier basis and we have access to few(as |c1| < Ntrans)

of them (samples of zi, ∀i ∈ c1.).

Let Y be the column of measurements.(For example if (y2, y5, y7, ..) ∈ c1,

Y = (y4
2, y

4
5, y

4
7, ..)

T ). Let B be the Nfft point IDFT matrix. and C ∈ Rm×n be defined

as C(k, l) = 1 for the kth measurement, lth symbol used, and 0 otherwise. Let Z be the

Nfft point discrete fourier transform of z.We recover ωe as follows:-

minimize ‖Z‖l1 subject to ‖Y − CBZ‖l2 ≤ εnoise

After the above optimization, we find the location of peak of magnitude of Z and obtain

a coarse estimate of 4ωe,(say ωc) rounded off to a multiple of 2π
Nfft

.

As a finer estimate of ωe is required, we use quinn’s second estimator Quinn (1994) that

interpolates the DFT using the samples around the peak, to get a finer estimate(ωf ) of

ωe. The quinn’s second estimate is found as follows:-

Let m0 denote the DFT bin index at which |Z(ω)| achieves the maximum.

m0 = round(
ωcNfft

2π
)

Let Hl = Z

(
2πl

Nfft

)
17



The quinn’s estimator defines βm, βp, km, kp and ∆ as,

βm = Re

(
Hm0−1

Hm0

)
; dm =

−βm
βm − 1

βp = Re

(
Hm0+1

Hm0

)
; dp =

βp
βp − 1

kp =
1

4
log(3d4

p + 6d2
p + 1)−

√
6

24
log

d2
p + 1−

√(
2
3

)
d2
p + 1 +

√(
2
3

)


km =
1

4
log(3d4

m + 6d2
m + 1)−

√
6

24
log

d2
m + 1−

√(
2
3

)
d2
m + 1 +

√(
2
3

)


∆ =
dm + dp

2
+ kp − km

The estimated Carrier Frequency Offset(ωf ) is now given by,

ωf =
ωc
4

+
π∆

2Nfft

Experiment

The mean square error of the estimator was obtained for SNR in steps of 5dB in

[0, 20]dB range,using 1000 Monte Carlo trials for ωe=0.5, Ntrans = 1024, λ = 0.9,

M = 1, 4, 8, 16 for A1 and m = 256 for A2. The results are shown in Fig.4.3.

It is to be noted that the set c1 (in A1), has approximately 512 samples for an N =1024,(

as symbols are uniformly drawn from circular 8QAM). But, A2 recovers better than

A1, for just m = 256 samples.
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CHAPTER 5

Low Rank Matrix Completion

Low rank matrix recovery is a well known problem in the area of data analytics. One

interesting application is about predicting the tastes of consumers from a limited set of

ratings, using a large database (Netflix prize). Consider a matrix Mm×n of rank r. It

has r linearly independent rows/columns. In order to completely describe the matrix,

we need r of these columns(mr values) and components of each of the remaining n− r

columns along the basis set ((n − r)r values). In total, we need mr + (n − r)r =

(m+ n)r − r2 values to completely describe M . These are also the number of degrees

of freedom of M . Note that for a full rank matrix(r = min(m,n)), we need mn values

(all entries). The low DoF for a low rank matrix forms the basis of low rank matrix

recovery from few measurements.

Let Ω be the set of positions at which we sample M . Define a sampling operator PΩ

such that

PΩ(M) =

 Mij if (i, j) ∈ Ω

0 otherwise

The above measurements can also be interpreted as the projection of M on the standard

basis {eieTj }. Note that we need atleast one entry from each row or column to recon-

struct M .For the case when M is uniformly sampled, we need O(Nrlog(N)) samples

to satisfy this criteria (N = max(m,n)), because of coupon collector effect Motwani

and Raghavan (1995). If no entry is available in a row, we cannot reconstruct it ,as all

the scaled versions of the original row are possible solutions to it.

5.1 Nuclear Norm Minimization

The low rank recovery problem is mathematically posed as

minimize rank(X) subject to PΩ(X) = PΩ(M) which is an NP-hard problem.

Analogous to l1 norm minimization, we relax the above to nuclear norm minimization.



minimize ‖X‖∗ subject to PΩ(X) = PΩ(M)

where ‖X‖∗ is the sum of singular values of X.

Let {xiyHi } be the measurement basis, which are of rank 1 (one of the measurement

constraints in mm-wave systems) and ms be the number of such measurements. Let

M =
∑r

i=1 σiuiv
H
i be the s.v.d of M .Analogous to definition of coherence metric in

compressed sensing, a geometrical coherence property (µ) is defined as follows:-

µ =
√
mnmax

i,j

∣∣〈uivHi , xjyHj 〉∣∣ =
√
mnmax

i,j

∣∣xHj uivHi yj∣∣
As the choice of xi’s and yi’s are independent, we split the above as,

µ =
√
mmax

i,j

∣∣xHj ui∣∣√nmax
i,j

∣∣vHi yj∣∣
Let µB be the upper bound on the geometrical coherence.

⇒
√
mmax

i,j

∣∣xHj ui∣∣√nmax
i,j

∣∣vHi yj∣∣ ≤ √µB.√µB
Due to independence, we have max

i,j

∣∣xHj ui∣∣ ≤√µB
m

and max
i,j

∣∣vHi yj∣∣ ≤√µB
m

.

When we choose the standard basis as measurement basis xi = ei and yj = ej , we have

‖uk‖l∞ ≤
√

µB
m

;‖vk‖l∞ ≤
√

µB
n
∀k ∈ [1, r].

Considering measurement noise level of δ, the optimization problem modifies to

minimize ‖X‖∗ subject to ‖PΩ(X)− PΩ(M)‖F < δ

Let M̂ be the solution to the above optimization. In Candes and Plan (2010), a recovery

guarantee for the above optimization is derived. The result states that

Whenever ms ≥ Cµ2nrlog6(n);
∥∥∥M − M̂∥∥∥

F
≤ 4
√

(2+p)min(n1,n2)
p

δ + 2δ,

for some constant p > 0 , with very high probability.

5.2 OptSpace

In Keshavan et al. (2009), an efficient algorithm to reconstruct a low rank matrix from

few noiseless observations was proposed. It requires O(Nrlog(N)) to exactly recon-

struct M ∈ Cm×n, with probability larger than 1 − 1
N3 , where N = min(m,n). The

algorithm is as follows:-

1. Trim the measured matrix PΩ(M)

Set to 0 the columns of PΩ(M) having number of sampled entries larger than 2|Ω|
n
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. Set to 0 the rows of PΩ(M) having number of sampled entries larger than 2|Ω|
m

.
Let the matrix thus obtained be M̃Ω. It may appear that we loose information
on trimming. But, we use the trimmed samples later. After trimming, it was
observed that the underlying low rank structure becomes clear.

2. Rank r projection
We take the rank r projection of M̃Ω.i.e, compute svd(M̃Ω) and set the N − r

smallest singular values to 0. Let the resultant matrix be Pr(M̃Ω)

3. Mimimizing a function F over grassmann manifold to recover M
LetF(X, Y ) = min

Sr×r
F(X, Y, S), whereF(X, Y, S) = 1

2

∑
(i,j)∈Ω

(
Mij −

(
XSY H

)
ij

)2

.

We first minimize the function w.r.t S and then minimizeF(X, Y ) w.r.tX, Y with
Pr(M̃Ω) = X0S0Y

H
0 as the initial condition.

Note that Optspace is sensitive to input rank. Any underestimate or overestimate in

rank results in significant errors, as seen in 5.4.

5.3 Rank one matching pursuit

Recently Wang et. al proposed an algorithm called Rank 1 Matrix Pursuit Wang et al.

(2014), analogous to orthogonal matching pursuit for the vector case.
Data: PΩ (M) , ε

Initialization: Set X0 = 0, k = 1;

while ‖Rk‖ > ε

do 1. Compute residue Rk = PΩ (M)−Xk−1.
Find (uk, vk) the top most left and right singular vectors of Rk.
Set Ak = ukv

H
k .

2. Compute the weights Θk using the least squares solution

Θk =
(
Ak

H
Ak

)−1

Ak.Y

3. Set Xk =
∑k

i=1 Θk
iPΩ (Ai) and k ← k + 1

end

Result: Output reconstructed matrix M̂ =
∑k

i=1 Θk
iAi

Algorithm: Rank One Matching pursuit

Ak and Y are appropriately columnized versions of {PΩ (Ai)}ki=1 and PΩ (M) re-

spectively.

The main idea behind this algorithm is to construct the basis set from rank 1 approxi-

mation of the residues, and then do a least squares fit to find the components along these
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matrices, with the known entries. i.e.,

min
Θ∈Ck

∥∥∥∥∥
k∑
i=1

ΘiAi − Y

∥∥∥∥∥
2

Ω

5.4 Experiment

We consider a matrix T ∈ R100×100, with i.i.d entries from standard normal distribution

and take the rank 2 approximation of T , called as M = P2(T ). For a given number

of measurements, we randomly sample the matrix until every row and every column

has atleast 1 sampled entry. We compare Nuclear norm minimization, Optspace with

rank input as 2, Optspace with rank input as 1 (as we finally aim to recover rank 1

approximation of mm-wave channels) and rank 1 matching pursuit.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fraction of samples observed

R
el

at
iv

e 
E

rr
or

 o
f f

irs
t s

in
g.

 v
ec

to
r 

=
 ||

M
−

M
es

t||
/||

M
||

Comparing performance of estimators for σ2

σ1
= 0.22

 

 
rankone Optspace
fullrank Optspace
Nuclear norm min
rank one matching

Figure 5.1: Low rank matrix recovery algorithms
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CHAPTER 6

Bounds on Singular Vector Metric of General Matrices

Before looking at algorithms to estimate channel matrix, we study how the error in

estimate effects the performance of the system(capacity or equivalently |xHHy|), where

x and y are the beamforming weights assigned to the receive and transmit antennas

respectively.

Let H be a matrix of some size, and let E be the perturbation in the matrix, such

that we observe M = H + E. Finding the projection of H on the normalized rank 1

approximation of estimated matrix is our concern. Define x, y to be the left and right

singular vectors of M respectively. The metric of interest in this article is
∣∣xHHy∣∣. By

definition of svd, our metric is upper bounded by ‖H‖2, the spectral norm of H, or the

maximum eigenvalue of HHH .

∣∣xHHy∣∣ ≤ ‖H‖2 (6.1)

We aim to find a lower bound for the metric, for a given error in the matrix E.

From matrix perturbation theory, it is known that the error in estimated singular values

is bounded, for bounded perturbations in matrix, but it is not the case with singular

vectors.

The following example illustrates the argument.

Let B =

 1 0

0 1

E =

 0 ε

ε 0

B = A+ E =

 1 ε

ε 1


Observe that the singular values change from (1, 1) to (1 + ε, 1− ε).However,the left

singular vector changes from

 1

0

 to −1√
2

 1

1

, for any ε > 0. This result directs

us to look at perturbations in singular values rather than perturbation in singular vectors.



6.1 Lower Bound for
∣∣xHHy∣∣

6.1.1 Theorem

Given a matrix H , whose estimate M = H + E,where E is the error matrix, with

σ1 = ‖H‖2 , σ̃1 = ‖M‖2 , ε = ‖E‖ and ε1 = ‖E‖2

∣∣xHHy∣∣ ≥ (‖H‖2 + g2 − f 2
1

2 (σ1 + ε1)

)+

(6.2)

where g = (σ1 − ε1)+ ; f1 = ε+
√∥∥H∥∥2 − σ2

1 + 2ε1(
∥∥H∥∥∗ − σ1) + ε2 and

(a)+ = max(0, a).

Note that ‖X‖ and ‖X‖2denote the frobenius norm and the spectral norm of the matrix

X respectively.

6.1.2 Proof

Let M1 be the rank 1 approximation of the estimated matrix M.

Define M2,n = M −M1

‖H −M1‖ = ‖H −M +M2,n‖ ≤
∥∥∥H −M∥∥∥+

∥∥∥M2,n

∥∥∥ (by triangle inequality)

‖H −M1‖ ≤ ε+
∥∥∥M2,n

∥∥∥ (6.3)

Let (σ1,σ2, . . , σn),(σ̃1,σ̃2, . . , σ̃n) be the singular values of H and M respectively.

By definition of ‖M2,n

∥∥, we have

‖M2,n‖ =

√√√√ n∑
k=2

σ̃k
2 =

√√√√ n∑
k=2

(σ̃k − σk + σk)2

⇒ ‖M2,n‖ =
√∑n

k=2(σ̃k − σk)2 +
∑n

k=2 2σk(σ̃k − σk) +
∑n

k=2 σ
2
k

‖M2,n‖ ≤

√√√√ n∑
k=2

(σ̃k − σk)2 +
n∑
k=2

2σk
∣∣σ̃k − σk∣∣+

n∑
k=2

σ2
k (6.4)
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From Mirsky’s theorem Stewart (1998), we have

n∑
k=1

(σ̃k − σk)2 ≤
∥∥E∥∥2

F
= ε2 (6.5)

⇒
∑n

k=2(σ̃k − σk)2 ≤ ε2 − (σ̃1 − σ1)2 ≤ ε2

Weyl’s theorem Stewart (1998) states that

|σk − σ̃k| ≤
∥∥∥E∥∥∥

2
= ε1 (6.6)

∀k = 1, 2, 3,..,n Applying inequalities in Weyl’s and Mirsky’s theorem to Eq.6.4, we

get

‖M2,n‖ ≤
√
ε2 + 2ε1

∑n
k=2 σk +

∑n
k=2 σ

2
k

⇒
∥∥M2,n

∥∥ ≤√∥∥H∥∥2 − σ2
1 + 2ε1(

∥∥H∥∥∗ − σ1) + ε2 (6.7)

where
∥∥H∥∥∗ denotes the nuclear norm(sum of singular values) of H.

From Eq.6.3,6.7, we have

‖H −M1‖ ≤ ε+

√∥∥H∥∥2 − σ2
1 + 2ε1(

∥∥H∥∥∗ − σ1) + ε2 = f1 (6.8)

Weyl’s theorem for the first singular value states, σ1 − ε1 ≤ σ̃1 ≤ σ1 + ε1

But, as σ̃1 is a singular value, it is non negative, validating the following bound.

max(0, σ1 − ε1) ≤ σ̃1 ≤ σ1 + ε1 (6.9)

‖H −M1‖2 ≤ f 2
1

⇒
∥∥H∥∥2

+
∥∥M1

∥∥2 − 2Re
〈
H,M1

〉
≤ f 2

1

⇒ Re
〈
H, σ̃1x.y

H
〉
≥
∥∥H∥∥2

+

∥∥M1

∥∥2

−f21
2

⇒ σ̃1Re
(
xHHy

)
≥
∥∥H∥∥2

+σ̃1
2−f21

2
≥
∥∥H∥∥2

+g2−f21
2

(using lower bound in Eq. 6.9)

⇒
∣∣Re (xHHy)∣∣ ≥ (Re (xHHy))+ ≥

(∥∥H∥∥2

+g2−f21

)+

2σ̃1
≥

(∥∥H∥∥2

+g2−f21

)+

2(σ1+ε1)

. (using upper bound in Eq. 6.9)

⇒
∣∣xHHy∣∣ ≥ ∣∣Re (xHHy)∣∣ ≥ (∥∥H∥∥2

+g2−f21
2(σ1+ε1)

)+

= (B1)+(say)

Hence proved. We denote B1 =

∥∥H∥∥2

+g2−f21
2(σ1+ε1)

.
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Bound-B2

Now by definition of svd,M1 is orthogonal to M2,n.Thus,

∥∥∥M2,n

∥∥∥2

=
∥∥∥M∥∥∥2

−
∥∥∥M1

∥∥∥2

=
∥∥∥M∥∥∥2

− σ̃1
2 (6.10)

Applying triangle inequality to M-H and H, we get

∥∥∥M∥∥∥ = ‖M −H +H
∥∥∥ ≤ ∥∥∥M −H∥∥∥+

∥∥∥H∥∥∥ = ε+H (6.11)

From equation 6.10,6.11,6.9, we get

∥∥∥M2,n

∥∥∥ ≤√(ε+
∥∥∥H∥∥∥)2

− g2 (6.12)

where g = max(0, σ1 − ε1)

From equation 6.3,6.12, we get

‖H −M1‖ ≤ ε+

√(
ε+

∥∥∥H∥∥∥)2

− g2 = f2 (6.13)

We proceed in the same way as in 6.1.2, to obtain

∣∣xHHy∣∣ ≥ (∥∥H∥∥2
+ g2 − f 2

2

2(σ1 + ε1)

)+

= (B2)+(say) (6.14)

Relaxed Bound-B3

Assuming we know just the frobenius norm (ε) of the error matrix and not the matrix

E or its spectral norm (ε1), we find a relaxed bound from B1. Since ε1 ≤ ε, the change

that we observe is in g,f and the denominator of the bound.

Define g1 = max(0, σ1 − ε) and f3 = ε+
√∥∥H∥∥2 − σ2

1 + 2ε(
∥∥H∥∥∗ − σ1) + ε2.

The relaxed inequality is now given by,

∣∣xHHy∣∣ ≥ (‖H‖2 + g2
1 − f 2

3

2 (σ1 + ε)

)+

= (B3)+(say) (6.15)
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Relaxed Bound-B4

Again, assuming we know just the frobenius norm (ε) of the error matrix and not the

matrix E or its spectral norm (ε1), we find a relaxed bound from B2. Since ε1 ≤ ε, the

change that we observe is in g,f and the denominator of the bound.

Define g1 = max(0, σ1 − ε) and f4 = ε+

√(
ε+

∥∥∥H∥∥∥)2

− g2
1 .

The relaxed inequality is now given by,

∣∣xHHy∣∣ ≥ (‖H‖2 + g2
1 − f 2

4

2 (σ1 + ε)

)+

= (B4)+(say) (6.16)

6.1.3 Sanity Check on Bounds

B1 =

∥∥H∥∥2

+g2−f21
2(σ1+ε1)

;B2 =

∥∥H∥∥2

+g2−f22
2(σ1+ε1)

; B3 =
‖H‖2+g21−f23

2(σ1+ε)
; B4 =

‖H‖2+g21−f24
2(σ1+ε)

For the zero error case(E = 0), ε = 0 and ε1 = 0.

⇒ g = g1 = σ1

⇒ f1 = f2 = f3 = f4 =
√∥∥H∥∥2 − σ2

1

Substituting above values in Eq. 6.2, 6.14, 6.15, 6.16 we get B1 = B2 = B3 = B4 = σ1

6.1.4 Bound for the case when H is a rank 1 matrix

The relaxed bounds B3, B4 are of significance most often, as one may just know the

frobenius norm of the error (ε). We evaluate the bounds B3 and B4, for the case when

H is a rank one matrix and call them to be B1
3 and B1

4 respectively. And assume that

ε ≤ σ1. Then g1 = σ1 − ε and
∥∥H∥∥ = σ1.

⇒ f3 = ε+
√

4σ1ε; f4 = 2ε. Substituting
∥∥H∥∥, g1, f3, f4 in Eq. 6.15, 6.16 we get

B1
3 = σ1.

(
σ1 − 3ε

σ1 + ε

)
− 2ε

3
2 .

( √
σ1

σ1 + ε

)

B1
4 = σ1.

(
σ1 − ε
σ1 + ε

)
− 3ε

3
2

2

( √
ε

σ1 + ε

)
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6.1.5 Effect of quantization of beam forming vectors on bounds

Let x̃, ỹ be the closest vectors to x, y chosen from the quantized set,

such that ‖x− x̃‖ ≤ q1;‖y − ỹ‖ ≤ q2.Let us model x̃ = x+ e1,ỹ = y + e2.

Consider
∣∣x̃HHỹ∣∣.∣∣x̃HHỹ∣∣ =
∣∣(x+ e1)HH(y + e2)

∣∣ =
∣∣xHHy + eH1 Hy + xHHe2 + eH1 He2

∣∣∣∣x̃HHỹ∣∣ ≥ ∣∣xHHy∣∣− ∣∣eH1 Hy∣∣− ∣∣xHHe2

∣∣− ∣∣eH1 He2

∣∣∣∣x̃HHỹ∣∣ ≥ B1 −
∣∣〈H, e1y

H
〉∣∣− ∣∣〈H, xeH2 〉∣∣− ∣∣〈H, e1e

H
2

〉∣∣
We use Fan’s inequality Borwein and Lewis (2010), which is |〈A,B〉| ≤ ‖A‖2 ‖B‖∗.

Note that x and y are vectors of norm 1 and ‖H‖2 = σ1;∥∥e1y
H
∥∥
∗ = ‖e1‖l2 = q1.;∥∥xeH2 ∥∥∗ = ‖e2‖l2 = q2;∥∥e1e

H
2

∥∥
∗ = ‖e1‖l2 ‖e2‖l2 = q1q2;

Then, ∣∣x̃HHỹ∣∣ ≥ B1 − σ1(q1 + q2 + q1q2)

6.1.6 Effect of Rank of H on Bounds

Consider the bound B1. The same effect can be explained for other bounds too. For B1,

we have the following:-

‖H −M1‖ ≤ f1 = ε+
√
‖H‖2 − σ2

1 + 2ε1(‖H‖∗ − σ1) + ε2

We know that for a rank r Matrix, σ1 ≥ ‖H‖√
r

.

f1 ≤ ε+
√
‖H‖2 − ‖H‖

2

r
+ 2ε1(‖H‖∗ −

‖H‖√
r

) + ε2

From Cauchy Schwartz Inequality, we get ‖H‖∗ ≤
√
r ‖H‖.

f1 ≤ ε+
√
‖H‖2 − ‖H‖

2

r
+ 2ε1(

√
r ‖H‖ − ‖H‖√

r
) + ε2

= ε+
√
‖H‖2 (1− 1

r
) + 2ε1(

√
r − 1√

r
) ‖H‖+ ε2 = ar1(say)

Since r ≤ N , it can be seen that ar1 ≤ aN1 . Thus a higher rank condition increases

the upper bound on f1. If f1 increases, B1 decreases and therefore bound B1 performs

poorer for higher rank matrices.The effect of f1 was found to be significant than σ1 in

the denominator of B1, using simulations.

The above argument can be inferred from Fig. 6.1(b) and Fig. 6.2(b) with same proper-

ties of noise matrix. We make a handwaving argument(only in this part) to consider the

matrix(H) with λ = 0.1 as an approximately rank 1 matrix, in order to understand low
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rank effects.

6.1.7 Experiment

Let X ∈ C128×128 be a random matrix with i.i.d entries chosen from the standard com-

plex normal distribution. We take H to be the low rank (in this experiment rank(H) =

4) approximation of X and define a parameter λ such that σj ≤ λσ1 ∀ j > 1. In our

experiment we choose σ2 = σ3 = σ4 = λσ1, with λ ≤ 1, and then normalize H, such

that
∥∥H∥∥ = 1.

We take a noise matrix (E ∈ C128×128), with i.i.d entries from the standard complex

normal distribution,scale it such that
∥∥E∥∥ = ε, and add it to H.

The first singular vectors x,y of M = H + E were found, and the normalized metric
|xHHy|
σ1

was evaluated. We compare this true normalized value of metric with that of the

normalized bounds B1

σ1
,B2

σ1
,B3

σ1
and B4

σ1
for discrete values of ε ∈ [0, 1]. The normalized

metric, normalized bounds were averaged for 100 realizations of H,E for each ε to ob-

tain the plot in Fig. 6.1, Fig. 6.2 for λ = 1 and λ = 0.1, for random noise and random

noise with modified singular values(i.e,setting all the singular values to be the same, the

randomness comes into play in singular vectors).

We observe that our boundsB1, B2 perform better for noise matrices with uniformly

spread singular values, as seen from the expression.(Since f is smallest, when the max-

imum singular value of E is least, with all others constant).

In the second part of the experiment, we consider a millimeter wave channel matrix(H ∈

C128×128), of rank 4, and evaluate the true normalized metric and normalized bounds, as

done earlier.

6.1.8 Conclusion

It can be observed that our bound goes to zero, for some εo, and is negative for ε > εo,

making it insignificant for ε > εo. Another observation is that εo increases from about

0.1(for λ = 1), to about 0.25(for λ = 0.1), increasing the range of validity for lower λ.

Eventually we approach the bound for the rank 1 matrix case, when λ = 0. As expected

B1 ≥ B3,B2 ≥ B4 in the valid range of ε, as B3 and B4 are relaxations of B1 and B2
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Figure 6.1: (a)λ = 1, Random Matrix, Uniformly spread singular values(E);
(b)λ = 1,Random Matrix, Random E

respectively.

It can be seen that the normalized metric is close to 1(maximum). This is because of

the choice of the matrices H,E. There is a possibility for H1, the rank 1 approximation

of H, to be i.i.d gaussian entries with zero mean (Since linear combination of gaussian

random variables is also a gaussian r.v). And as E has i.i.d zero mean gaussian entries,

E [〈H1, X〉] = 0, making E approximately orthogonal to H1. Thus, addition of E to H

does not effect the first singular vectors by a significant amount. It is not the case for

any general E (Eg- the true normalized metric took 0.1 for ε = 1 when entries of E,H

come from U [0, 1]).We experiment on low rank matrices as our focus is on mm wave

channel matrices.

Note that we derived deterministic bounds. Our proof does not account for the proper-
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Figure 6.2: (a)λ = 0.1, Random Matrix, Uniformly spread singular values(E);
(b)λ = 0.1,Random Matrix, Random E

ties of E and H, and thus our bounds may be weak for particular realizations.

The observation that true value is close to 1, for mm-wave channel matrix and AWGN

model, justifies MIMO operation in the low SNR regime, for AWGN measurement

model.
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Figure 6.3: (a)Millimeter Wave Channel Matrix, Uniformly spread singular values(E);
(b)Millimeter Wave Channel Matrix, Random E
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CHAPTER 7

Channel Estimation Algorithms

7.1 Naive Algorithm

The simplest way to measure the first singular vectors of H is to measure each and

every entry of H using the standard canonical basis set {eieTj }ij and then compute the

singular value decomposition of the observed matrix to find them. We need a total of

NrNt measurements for estimation using this method, which does not make use of the

properties of H.

Let X ∈ CNr×Nt be a noise matrix such that Xij ∼ CN (0, 1). The reconstructed matrix

M is given as,

M = H +
1
√
ρ

X

Sampling using the standard basis does not satisfy the measurement constraints. How-

ever, the same model holds even if we sense using 2D DFT basis (which satisfies mea-

surement constraints). As i.i.d complex WGN transforms to i.i.d complex WGN under

any unitary transformation(2D DFT in this case). Similar argument was made in chap-

ter 2.

We identify the error matrix E = 1√
ρ
X, probabilistically bound ε = ‖E‖F and ε1 =

‖E‖2, and then find a lower bound on the expected capacity using Eq. 6.2.

7.1.1 Tail bound on ε

Let Yij = |Xij|2. Then Yij ∼ χ2(2), since Xij ∼ CN (0, 1). Here χ2(2) denotes the

chi-square distribution with parameter 2, which is the number of degrees of freedom for

standard complex gaussian random variable.

ε2 =
1

ρ
‖X‖2

F =
1

ρ

∑
ij

|Xij|2 =
1

ρ

∑
ij

Yij



Consider ρε2

NtNr
=

∑
i,j
Yij

NtNr
= Z(say). Now, Z is the sample mean of NtNr i.i.d chi-square

distributed random variables.

⇒ Z ∼ Gamma(α = NtNr; θ = 2
NtNr

).

For a t1 ≥ 0, we compute P (ε ≥ t1) as follows:-

P (ε ≥ t1) = P (ε2 ≥ t21), since ε ≥ 0 and t1 ≥ 0

⇒ P (ε ≥ t1) = P

(
‖X‖2

F

NtNr

≥ ρt21
NtNr

)
= P

(
Z ≥ ρt21

NtNr

)
. = 1− FZ

(
ρt21
NtNr

;NtNr;
2

NtNr

)

where Fz(z; a; b) is the c.d.f of Gamma(a; b).

⇒ P (ε ≤ t1) = FZ

(
ρt21
NtNr

;NtNr;
2

NtNr

)
.

P (ε ≤ t1) = e−
ρt21
2

∞∑
i=NtNr

1

i!

(
ρt21
2

)i
(7.1)

The above c.d.f can also be seen as a complementary c.d.f of a poisson random variable

with parameter ρt21
2

. i.e, if Z1 ∼ Poisson
(
ρt21
2

)
, then P (ε ≤ t1) = P (Z1 ≥ NtNr).

7.1.2 Tail bound on ε1

Using a theorem in Tropp (2015), the tail bound on ε1 can be easily derived. It states as

follows:-

Theorem on tail bound of Spectral norm

Consider a finite sequence Bk of fixed complex matrices with dimension Nr ×Nt, and

let γk be a finite sequence of independent real standard normal variables. Let W be a

matrix such that W =
∑

k γkBk, then

P (‖W‖2 ≥ a) ≤ (d1 + d2) exp

(
−a2

2v (W )

)
(7.2)

where v (W ) = max{
∥∥E [WWH

]∥∥
2
,
∥∥E [WHW

]∥∥
2
} = max{

∥∥∑
k BkB

H
k

∥∥
2
,
∥∥∑

k B
H
k Bk

∥∥
2
}

Choose Bk ∈ { 1√
2ρ
eme

T
n ,

j√
2ρ
eme

T
n}m,n. Note that Bk has only one non zero entry

which may either be 1√
2ρ

or
√
−1√
2ρ

. The elements of the set {Bk}2NtNr
k=1 span CNr×Nt over
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a real field.With these initializations, we identify the error E defined previously as W .

Now,
∑

k BkB
H
k = 1

2ρ
.2NtINr×Nr and

∑
k B

H
k Bk = 1

2ρ
.2NrINt×Nt .

⇒ v (E) = 1
ρ
max{Nt, Nr}.

We compute the tail probability for ε1 as follows:-

P (ε1 ≤ t2) = 1− P (ε1 ≥ t2) = 1− P (‖E‖2 ≥ t2)

From the bound in 7.2, we have

P (ε1 ≤ t2) ≥ 1− (Nr +Nt) exp

(
−ρt22
2ve

)
(7.3)

where ve = max{Nt, Nr}.

7.1.3 Joint Probability on ε,ε1

We obtain a bound on P (ε ≤ t1, ε1 ≤ t2) = P (ε ≤ t1 ∩ ε1 ≤ t2)

P (ε ≤ t1, ε1 ≤ t2) = P (ε ≤ t1) + P (ε1 ≤ t2)− P (ε ≤ t1 ∪ ε ≤ t2)

⇒ P (ε ≤ t1, ε1 ≤ t2) ≥ P (ε ≤ t1) + P (ε1 ≤ t2)− 1; since P (ε ≤ t1 ∪ ε ≤ t2) ≤ 1.

P (ε ≤ t1, ε1 ≤ t2) ≥

(
e−

ρt21
2

∞∑
i=NtNr

1

i!

(
ρt21
2

)i
− (Nr +Nt) exp

(
−t22
2ve

))+

(7.4)

7.1.4 Lower Bound on the Expected Channel Capacity E[C]

Let x, y be the first singular vectors of the estimated channel matrix M. The channel

capacity C is then given by,

C = log2

(
1 + ρ

∣∣xHHy
∣∣2)

For each of the bounds B+
i derived in Section 6.1, C ≥ log2

(
1 + ρB+

i
2
)

, with proba-

bility 1, as the bounds are deterministic.

Notice that B+
i is a non increasing function of ε and ε1 for given H .

If ε ≤ t1 and ε1 ≤ t2, B+
i (H, ε, ε1) ≥ B+

i (H, t1, t2).

For the matrixM , we haveC ≥ log2

(
1 + ρ

(
B+
i (H, ε, ε1)

)2) ≥ log2

(
1 + ρ

(
B+
i (H, t1, t2)

)2),
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whenever ε ≤ t1 and ε1 ≤ t2, which holds with probability P (ε ≤ t1, ε1 ≤ t2).

So, for a given t1, t2 ≥ 0, and considering B+
1 , we can state the following-

C ≥ log2

1 + ρ

((
‖H‖2 +G2 − F 2

1

2 (σ1 + t2)

)+)2


with probability p ≥
(
e−

ρt21
2

∑∞
i=NtNr

1
i!

(
ρt21
2

)i
− (Nr +Nt) exp

(
−t22
2ve

))+

.

where G = max(0, σ1 − t2);F1 = t1 +
√∥∥H∥∥2 − σ2

1 + 2t2(
∥∥H∥∥∗ − σ1) + t21.

Therefore the expected channel capacity can be bounded as follows-

E[C] ≥

e− ρt212 ∞∑
i=NtNr

1

i!

(
ρt21

2

)i
− (Nr +Nt) exp

(
−t22
2ve

)+

.log2

1 + ρ

((
‖H‖2 +G2 − F2

1

2 (σ1 + t2)

)+)2


for all t1 ≥ 0,t2 ≥ 0, and hence

E[C] ≥ max
t1,t2

e− ρt212 ∞∑
i=NtNr

1

i!

(
ρt21

2

)i
− (Nr +Nt) exp

(
−t22
2ve

)+

.log2

1 + ρ

((
‖H‖2 +G2 − F2

1

2 (σ1 + t2)

)+)2
 (7.5)

7.1.5 Capacity Bound using B3

From Eq. 6.15, we notice that B3 does not depend on ε1, allowing us to get a simplified

bound as follows:-

Consider a t1 ≥ 0, such that ε ≤ t1. From Eq. 6.15, we have B+
3 (H, ε) ≥ B+

3 (H, t1),

as B+
3 is a non increasing function of ε.

So, C ≥ log2

(
1 + ρ

(
B+

3 (H, ε)
)2) ≥ log2

(
1 + ρ

(
B+

3 (H, t1)
)2),with probability

P (ε ≤ t1).From Eq. 6.15 and 7.1, we bound the expected capacity E[C] as

E[C] ≥ e−
ρt21
2

(
∞∑

i=NtNr

1

i!

(
ρt21
2

)i)
.log2

1 + ρ

((
‖H‖2 +G2

1 − F 2
3

2 (σ1 + ε)

)+)2

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which is true ∀t1 ≥ 0 and where G1 = max(0, σ1 − t1);

F3 = t1 +
√∥∥H∥∥2 − σ2

1 + 2t1(
∥∥H∥∥∗ − σ1) + t21, leading to,

E[C] ≥ max
t1

e− ρt212 ( ∞∑
i=NtNr

1

i!

(
ρt21
2

)i)
.log2

1 + ρ

((
‖H‖2 +G2

1 − F 2
3

2 (σ1 + ε)

)+)2


(7.6)

7.1.6 Plot of Capacity and bounds

We consider mm-wave matrices (H ∈ C16×16) of rank 2 and measurement model as

in 7.1 and plot the maximum capacity(assuming perfect knowledge of H)); observed

capacity(maximum achievable capacity,with M as the measured matrix) and the bounds

on expected capacity from Eq. 7.5 and 7.6, as function of ρ(dB) in 7.1.
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Figure 7.1: Capacity of mmwave system using naive algorithm for beamforming

7.2 Nuclear norm minimization

As H is a low rank matrix (of rank utmost r), we could use nuclear norm minimiza-

tion (the best of low rank completion algorithms as seen in 5.4) to recover H . This

requires O(nrlog6(n)) measurements to recover H. The following Fig. 7.2 is the mag-

nitude spectrum of reconstructed matrix with 200 measurements and illustrates the poor
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recovery of H ∈ C64×64, rank(H) = 4. It needs to be compared with the original spec-

trum, in Fig. 3.1. Let x, y be the left and right singular vectors corresponding to the
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Figure 7.2: Color Coded Magnitude Spectrum of Recovered matrix using Nuclear norm
min. with 200 measurements

spectral norm of the reconstructed matrix. It was observed that
∣∣xHHy

∣∣ = 0.189σ1,

where σ1 is the spectral norm of the original matrix. It is of no surprise that low rank

matrix completion algorithms perform poorer than compressed sensng algorithms, as

the later uses additional information that the signal is marginally sparse in DFT basis.

7.3 l1 norm minimization

As H is marginally compressible in the DFT basis, we use compressed sensing to re-

cover H in an incoherent basis. Assuming Nt and Nr to be some powers of 2, we use

the discrete fourier basis to represent H as,

H =
∑Nr−1

k=0

∑Nt−1
l=0 θklBkl

where Bkl = 1√
NtNr

[1 ej
2πk
Nr ... ej(Nr−1) 2πk

Nr ]T .[1 e
j 2πl
Nt ... e

j(Nt−1) 2πl
Nt ]

Let our measurements be Yi =
〈
H, xiyHi

〉
= xHi Hyi, ∀1 ≤ i ≤ ms where {xiyHi }

denote the set of rank 1 sensing matrices. Let Θ denote the lexicographically ordered

version of {θkl}Nt,Ntk=1,l=1. We solve the following optimization:-

minimize ‖Θ‖l1 subject to
∑ms

i=1

(〈
H, xiyHi

〉
−
∑
k,l

θkl
〈
Bkl, xiy

H
i

〉)2

< ε.

Note that the inner product of xiyHi with {Bkl}Nt,Ntk=1,l=1 can be easily computed , because
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it is the 2D DFT of xiyHi .

The following Fig. 7.3 is the magnitude spectrum of reconstructed matrix with 200

measurements and is close to the original spectrum of H ∈ C64×64, rank(H) = 4 in

Fig. 3.1.

If x, y are the left and right singular vectors corresponding to the spectral norm of the

reconstructed matrix(sayHest). For the realization in Fig. 3.1, 7.3,
∣∣xHHy

∣∣ = 0.9487σ1,

where σ1 is the spectral norm of the original matrix, even though ‖H-Hest‖
‖H‖ was close to

1. This is expected because spectral leakage makes the signal non sparse and we re-

cover largest components which significantly contribute to the largest singular vectors.

We could identify the actual frequencies by performing root music along a row and col-
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Figure 7.3: Color Coded Magnitude Spectrum of Recovered matrix using l1 norm min.
with 200 measurements

umn and matching these frequencies as described in 7.4.2, and then performing a least

squares fit(also described in 7.4.2) to get a finer estimate of matrix H, whose magnitude

spectrum is plotted in 7.4. For the above realization
∣∣xHHy

∣∣ increased from 0.9487σ1

to 0.9689σ1 after refinement.
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Figure 7.4: Color Coded Magnitude Spectrum of Refined matrix using l1 norm min.,
root music with 200 measurements

7.3.1 Experiment

We consider the same H and take 200 measurements for different values of ρ(dB). The

plots in Fig. 7.5 show the recovery by l1 norm minimization for off the grid frequen-

cies and on the grid frequencies, along with the deterministic bounds of capacity using

B1, B2, B3, B4, and includes the training factor (1− α).

7.3.2 Capacity Bounds for l1 norm optimization

It is to be noticed that ε and ε1 for the bounds were obtained from the error matrix,

difference between original and recovered matrix).

If a completely analytical bound is desired, then we have to use the l1 norm recovery

guarantee in 4.3, which becomes ‖H−Hest‖F ≤ C1
‖H−HK‖F√

K
+ C2εnoise

As the above gives a bound on ε = ‖E‖F , we can use only B3.

‖H−HK‖F is the approximation error by picking the K largest coefficients of H ,

which may all be concentrated around a single frequency component if it is large com-

pared to all the others. Hence,
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‖H−HK‖F ≤
∥∥∥H−H

′

K

∥∥∥
F

=
∥∥∑

k cke (ωxk , ωyk)−
∑

k c
′
ke
(
ω′xk , ω

′
yk

)∥∥
F

,

where c′k = ckbk and ω′k = 2π
Nfft

round
(
Nfft.ωk

2π

)
.

∥∥∑
k

(
cke (ωxk , ωyk)− ckbke

(
ω′xk , ω

′
yk

))∥∥
F

=
∥∥∑

k ck
(
e (ωxk , ωyk)− bke

(
ω′xk , ω

′
yk

))∥∥
F

≤
∑

k |ck|
∥∥e (ωxk , ωyk)− bke

(
ω′xk , ω

′
yk

)∥∥
F
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≤
∑

k |ck|
√
‖e (ωxk , ωyk)‖

2
F + |bk|2

∥∥e (ω′xk , ω′yk)∥∥2

F
− 2 |bk|

∣∣〈e (ωxk , ωyk) , e
(
ω′xk , ω

′
yk

)〉∣∣
≤
∑

k |ck|
√

1 + |bk|2 − 2|bk|√
NtNr

∣∣∣(∑Nr−1
m=0 ej(ωxk−ω

′
xk

)m
)(∑Nt−1

n=0 ej(ωyk−ω
′
yk

)n
)∣∣∣.

Let
(∑Nr−1

m=0 ej(ωxk−ω
′
xk

)m
)

= DNr

(
ωxk − ω′xk

)
and

( ∑Nt−1
n=0 ej(ωyk−ω

′
yk

)n
)

= DNt

(
ωyk − ω′yk

)
., whereDN denotes the dirichlet’s ker-

nel.

To obtain a worst case bound, the above is maximized when |bk| =
DNr(ωxk−ω′xk)DNt(ωyk−ω

′
yk

)√
NtNr

.

As we estimate frequencies to a resolution of 2π
Nfft

, we have

‖H− HK‖F ≤
∑
k

|ck|

√√√√√√√1−

∣∣∣∣∣∣∣∣
DNr

(
π

Nfft

)
DNt

(
π

Nfft

)
√
NtNr

∣∣∣∣∣∣∣∣
2

=

√√√√√√√1−

∣∣∣∣∣∣∣∣
DNr

(
π

Nfft

)
DNt

(
π

Nfft

)
√
NtNr

∣∣∣∣∣∣∣∣
2∑
k

|ck|

7.4 Spectral Compressed Sensing for Matrices

The spectral leakage issue in l1 norm minimization can be overcome by using a param-

eterised model for compressed sensing. Recently M.F.Duarte developed spectral com-

pressed sensing ,a method to compressively recover a signal x ∈ CN×1, which is a sum

of complex sinusoids, whose frequencies are not necessarily multiples of 2π
Nfft

, using

O(rlog(n)) measurements. Note that increasing the FFT resolution, gives a sparser rep-

resentation of x, but increases the coherence between the DFT frame and measurement

basis. Several greedy algorithms are investigated in Duarte and Baraniuk (2013) and it

is shown that SIHT(Spectral Iterative Hard Thresholding) with root music performs the

best. We extend the above algorithm to matrices, which are marginally compressible in

the 2D DFT basis., and compressively estimate H ∈ CNr×Nt . Let h ∈ CNrNt×1 be the

lexicographically ordered version of H.

7.4.1 SIHT via rootmusic

Iterative hard thresholding is a greedy algorithm in compressed sensing. As we deal

with spectrally sparse matrices, we perform SIHT, using root music as follows:-
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Data: CSMatrix Φ ∈ Cms×NtNr ,measurements y = Φh, ε

Initialization: Set X̂0 = 0, r = y, i = 0;

while ‖rk‖ > ε

do 1. X̂i+1 ← RootMusic
(
matrix(x̂i + ΦHr), K

)
2. r← y− Φx̂i and i← i+ 1

end

Result: Output reconstructed matrix X̂i

Algorithm: SIHT via root music

Note that x̂i is the vectorized version of X̂i.

7.4.2 Root Music algorithm

During SIHT, we need to accurately estimate the K largest frequency components. Us-

ing a DFT would limit our resolution to 2π
Nfft

. So, we use root music algorithm.

Define Γ = [e(ωx1 , ωy1) e(ωx2 , ωy2) . . . e(ωxk , ωyk)],where

e(ωxi , ωyi) = 1√
NtNr

vec
([

1 ejωxi e2jωxi . . . ej(Nr−1)ωxi
]T [

1 ejωyi e2jωyi . . . ej(Nt−1)ωyi
])

.

Let a = [a1 a2 . . . aK ]T , x be the lexicographically ordered version of X ∈ CNr×Nt ,

having K spatial frequency components.(x = vec(X)).Notice that x = Γa is a valid

model with ωxi’s and ωyi’s equal to the true value and the noisy model is given by,

x = Γa + n; n ∼ CN (0, σ2I).

with autocorrelation matrix Rxx = E
[
x.xH

]
= ΓA2ΓH + σ2

nI

where A = diag (a).As K < NtNr and the frequencies are distinct , rank(ΓA2ΓH) =

K and it has K positive eigenvalues(say {λ̃n}Kn=1), with others being zero.

Let {λn}NtNrn=1 be the eigenvalues of Rxx, we then have

λn =

 λ̃n + σ2
n, n ≤ K

σ2
n, K < n ≤ NtNr

LetG be a matrix containing eigenvectors of Rxx corresponding to theNtNr−K small-

est eigenvalues. This implies

RxxG = G


λK+1 0

.

.

0 λNtNr

 = σ2G = ΓA2ΓHG + σ2G It then follows that

ΓHG = 0 and the frequencies {(ωxi , ωyi)}Ki=1 are the only solutions to
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e(ω1, ω2)HGGHe(ω1, ω2) = 0.

The root music algorithm searches for the roots of the polynomial pH(z1, z2)GG
Hp(z1, z2)

for z1, z2 ∈ C, |z1| = 1, |z2| = 1, where p(z1, z2) = vec
([

1 z1 z
2
1 . . z

Nr−1
1

]T [
1 z2 z

2
2 . . z

Nt−1
2

])
It involves solving a polynomial of two variables of high degree, so we split this into

two independent 1D problems as follows:-

1. Compute frequency components along any column(say first column of X) to get
{ωxi}Ki=1

2. Compute frequency components along any row(say first row of X ) to get {ωyi}Ki=1

3. Form a pairing matrix(P of size K ×K), with
Pij =

∣∣∣[1 ejωxi e2jωxi . . . ej(Nr−1)ωxi
]∗
X
[
1 ejωyi e2jωyi . . . ej(Nt−1)ωyi

]H∣∣∣.
4. Pick the index where the pairing matrix takes maximum( say at (i0, j0)). Declare

the frequency pair as (ωxi0 , ωyj0 ). Set the ith0 row and jth0 column to 0 and call the
new matrix as P. Repeat this step until we get K pairs.

With the paired frequencies we obtain Γ, while a can be found out by performing a

least squares fit to x.

a =
(
ΓHΓ

)−1
ΓHx

It was observed in simulations that this pairing works well when frequencies are widely

separated. It is not the case for mm-wave systems as frequencies follow the arc sine

pdf, and are closely concentrated. Nevertheless, this method of pairing frequencies is

useful when the such a constraint is relaxed.

We could compressively sense the channel matrix along a row say 1st row [ receiver

fixes it’s gain as e1(doesn’t satisfy mmwave constraint) and transmitter uses CS vec-

tors] using SCS and obtain the frequencies of channel matrix along a row using CS.

Similarly we do the same for column sensing. Consider single component of the chan-

nel matrix of the form H1(m,n) = c1e
jωxmejωyn.

Sensing it along a column gives us ωx as the frequency and c1e
jωy as the spectrum value

at that frequency. Similarly along a column we get ωy and c1e
jωx .

For multiple frequencies(say K) we get K such pairs along rows and columns respec-

tively. We need to combine them correctly. We cannot use the algorithm previously

described as we do not know the 2D DFT of H apriori. So, for each pair (ωi, cjejωj )

we compute the complex number cjejωj .ejωi . Assuming the frequency components are

distinguishable(in terms of ck and ωxk+ωyk), we match those frequencies that have min-

imum error between their computed complex number. Fig. 7.6, 7.7, Fig. 7.8 illustrate

this procedure for compressive estimation of H ∈ C128×128 of rank 3.
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