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ABSTRACT

KEYWORDS: MIMO Channel Estimation, Millimeter wave communication,

Low rank matrix completion, Compressive Sensing

In communication systems, channel estimation is necessary for reliable information
transfer between the transmitter(Tx) and receiver(Rx). For single stream communica-
tion systems or those operating at low SNR, it suffices to estimate the first singular
vectors of the channel matrix. In the recent times, millimeter wave systems have gained
prominence due to high data rates promised by them, and are to be used in 5G. We
consider a typical millimeter wave channel, which is of low rank and marginally com-
pressible in 2D DFT basis and describe algorithms to recover the channel matrix(first
singular vectors), using low rank matrix recovery and compressed sensing.

We provide theoretical guarantees on the channel capacity of such systems, as a function
of SNR, algorithm used and also incorporate the effect of quantization of beamforming

vectors.
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CHAPTER 1

INTRODUCTION

This project is aimed at developing algorithms for single stream millimeter wave chan-
nel estimation.As mm wave channels operate at high frequencies( 60GHz), the channel
matrix comprises of few components and is of low rank.This directs us to use the well

developed theories of low rank matrix recovery and compressed sensing(CS)).

As we need just the first singular vectors (left and right singular vectors corre-
sponding to maximum singular value) of the channel matrix for beamforming (assign-
ing weights to the antennas), we would like to focus on algorithms that estimate just
them. Typically any algorithm (low rank or CS) require r.f(n) measurements to es-
timate the matrix. So, we realize that there is no significant decrease in number of
measurements, when we estimate just the first singular vectors compared to the entire

matrix, for r = o(1)

An information theoretic viewpoint of CS is presented, which guarantees minimum
number of measurements required for a particular sensing basis. In literature, such

limits have been proved using the Restricted Isometry Property(RIP).

We describe some existing low rank matrix recovery methods like OptSpace, nu-
clear norm minimization and Rank 1 Matching pursuit; CS based methods like /; norm

minimization and Spectral Compressed Sensing.

Assuming that a given algorithm introduces an error £ in the estimate of the channel
matrix, we derive novel analytical bounds(weak- as they do not consider properties of
channel matrix) on the capacity of the mm wave system, as a function of power spent,
channel matrix and error properties(|| E|| .,|| £|,). These bounds are not specific to mm-
wave or low rank matrices and find applications in problems involving the projection of

a matrix on rank 1 approximation of the perturbed matrix.



1.1 Organisation of the thesis

e In Chapter 2, optimal power allocation using water filling, that insists on using
first singular vectors at low operating power is illustrated.

e In Chapter 3, the mm wave system model and channel matrix properties are de-
scribed.

o In Chapter 4, a background on recovery of compressible signals using CS is given,
along with an application to estimate carrier frequency offset in digital commu-
nication systems.

e In Chapter 5, existing low rank matrix recovery algorithms are discussed.

e In Chapter 6, the analytical bounds on projection of a matrix on rank 1 approxi-
mation of it’s perturbed matrix are derived.

e In Chapter 7, algorithms based on CS and low rank recovery are used to estimate
mm wave channel matrix and are compared with the capacity bounds derived in
Chapter 6.



CHAPTER 2

Motivation to estimate the first singular vectors of

MIMO Channel

Consider a MIMO communication system with /N, transmit antennas and N, receive
antennas, Let H € CV"*"t be a channel matrix of rank r, x € CV**! be the transmitted

CN,«><1

vector. The received vectory € is given by

y=Hx+n (2.1)

We assume n ~ CA (0, o1).
Let the singular value decomposition of H be H = UX V. We now transform the

system equation by defining X = Vx,y = Uy

y=Hx+n=UXVx+n

= y=Sx+U"n

Note that Un ~ CN (0, 021), as linear combination of gaussian r.v is gaussian,
E (U¥n) = U¥E (n) = 0 and cov (U#n) = U cov (n) U = UH 01U = o°1
So, y= XX +ny;ny, ~CN (0,0°1).
We have now converted Eq. into r parallel channels satisfying
Y; = 0;X; + (ny),, Vi € [1,7] at any given time instant(Note that i is across parallel
channels).Let P, = \ffl\z From information theory, the capacity of the above system

isC=>_log (1 4 il

[

).We maximize this capacity over { P, }}_,, subject to the
power constraint (", _, P, = P).
2

%

Maximizing the above function can also be visualized using the water-filling argument

Cover and Thomas| (2000) , illustrated in Fig. 2.1]

Let f(P)=>_,log | 1+ (P—’“) + A, P — P).

Observe that we use only the first component for 0 < P < ¢? (% - %) In the

2 1

above regime, we have X = V/f'x, as we spend all the power on one single compo-

nent.Similarly y = U{y, where U; and V; are the left and right singular vectors cor-
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Figure 2.1: Waterfilling for rank 4 channel

responding to the largest singular value (o). For this low power regime, we need to
estimate just (U;,V}) for precoding. This motivates us to look at the problem of esti-
mating the first singular vectors alone of the channel matrix. Note that for any P > 0,
we use the component corresponding to the first singular value. As power spent is

increased, we start using other components of the channel.

We may also be limited by the system’s design to use the first singular vectors alone,

as is the case for single-stream MIMO communication.



CHAPTER 3

Millimeter wave communication

3.1 System Model

Consider a single stream mmwave communication system uniform linear array (ULA)
of NV; number of antennas and /N, number of antennas at the transmitter(Tx) and re-
ceiver(Rx) respectively. Let w, € CN*! and w, € CV"*! be the beamforming vectors
applied to the Tx and Rx arrays respectively. Let « be the transmitted symbol and y be

the received symbol. Then,
Yy = \/ﬁwawtx +n, 3.1

where H is the channel matrix,p is the average received power and n is the measurement

noise, such that n ~ CN(0, 02).

From electromagnetic wave theory, we know that signals experience larger atten-
uation at higher frequencies. As millimeter wave frequencies are too high, in order
of 100GHz, large number of antenna elements are deployed at Tx and Rx to ensure
highly directive signal transmission and overcome the attenuation. However, due to
small size and closely packed antenna elements, we observe high correlation between
the responses of the antenna elements employed within the array. The channel matrix

H of such system is given by,

K
NN,
H=/— l;ﬁkarkaﬁ,, (3.2)

where K is the number of physical paths between the Tx and Rx. pj the complex

channel gain for the k' path, is modelled as i.i.d. 3, ~ CN (0, U%), and a; and a, are



the normalized antenna array responses at Tx and Rx respectively, given by,

—_

a, = (17wt ... edMemDewn T (3.3)

-3

a, = [1efr .. e Nr=Dewr T (3.4)

E

where w; = 27¢ sin(6;), w, = 274 sin(6,), d is the inter-element spacing in the ULA, A
is the carrier wavelength, 6, is the angle of departure at Tx and 6, is the angle of arrival
at Rx.

The channel capacity(C') of the system in [3.1]is given by

wH Hw
C' = (1-a)logs (1 + p‘r—zt‘
o
where « is the fraction of time for which training (estimating the beamforming vectors)

is done.

3.2 Channel Estimation under measurement constraints

From Eq. [3.1] we observe that the beamforming weights at the Tx and Rx have an
impact on the single stream gain, which needs to be maximized in order to maximize the
SNR and hence the capacity of the system.In mathematical terms, we aim to find w, and
w, such that |wf,{ Hwt‘ is maximum. From property of singular value decomposition,
|w/Hw, | < 01(H), where o1 (H) denotes the spectral norm of H. Equality holds iff w,
and w,. are equal to the right and left singular vectors of H respectively.

Thus, we seek an algorithm that estimates the first singular vectors of H alone, with
minimum number of measurements. In the following chapters, we describe algorithms
based on naive sensing, low rank matrix recovery and compressed sensing, that use
the properties of H to estimate the beamforming vectors.The system model imposes
a constraint that measurements of the channel matrix are of the form v, Huv,, where

CNrx1 vy € CNt*1, In other words, we are allowed to measure the projection of

V1 €
H on rank 1 channel matrices(of the form v,v,7). The underlying hardware imposes
another constraint on the magnitude of coordinates of vy and vy (i.e, |(v1);| > ¢,Vi €
{1,2, .., N, } and |[(vq);| > ¢,Vj € {1,2, .., N;}). The same conditions hold for beam

forming weights w,., w; and we may have to quantize them.

6



3.3 Properties of mmwave channel matrices

From Eq. we observe that H is a linear combination of rank 1 matrices, of the
form a,;all. From the property that rank(A + B) < rank(A) + rank(B), we can say
that H is a low rank matrix, with a maximum rank of K << N.One could use low rank

approximation techniques to recover H, from few measurements.

Consider a situation in which the w,’s and w,’s are integer multiples of %’Z and ]2\,—”

respectively. In that case H is sparse(with sparsity K) when expressed in the 2D fourier

. — — . 2rkm  ;27ln
baSIS({Bkl}Z:iVlrl__th);Bkl (m,n) = ﬁej N+ e’ N . One could use compressed
— L= tiVr

sensing to recover H, with a suitable matrix satisfying the measurement constraints and

the Restricted Isometry Property [{4.3.2] However, it is with zero probability that these

2rk 2wl

frequencies fall on the grid((Tr, Vt))’ as they are continuous random variables. We

look at the spectrum of H in 2D fourier basis for some general w;, w,. Let G € CNr>*Ne

be the 2D DFT of H.Note that the indices ¢ and b run from O to NV, — 1 and N, — 1

respectively.
N; N, , o
G(a,b) = Z Z H(m,n)e 5 ¢ 7™
n=1m=1

NtNT -2mam - 2mbn
T - —j2gpn
- K ZZZ@ (), , e’ N el

| X N N,
== b e m 1) =i R s (n1) =1 R
K =1 n=1 m=1
1 <N ‘ N Ne o
= Z e IWrigT It 3, (Z ej<w”'_Nr>m> <Z ¢’ (w“ Ny )")
K =1 m=1 n=1

1 K sin. ((NTwMQ 27ra)) sin ((Ntwt; 27rb))
_ —Jwri ,— Wi B ,5-¢(3,a,b)
= — e e Bie .
K- . (wm'— 2]\7;“) . (wti*QNLb)
=1 sin | —s— | sin | ~——5—~

where ¢(i,a,b) = <wm' - 2N7r—f) (%) + <wti - 2T7Ttb> (%)

We notice that G has dirichlet’s sincs in spatial domain, causing spectral leakages. The

same argument can be qualitatively explained as follows:-
Consider an discrete time 2D spatial signal ' = 3", g; A, (0,) A (6y,),

where A,(0,,), A,(8,,) are of infinite length with the same structure of a,;, a;;. [Note



that this F' is defined for the entire 2D space]. F' has a fourier transform which has
impulses(2D dirac delta) at those spatial frequencies in the fourier domain. The H in
our setup can be considered as a multiplication of F’ with a rectangular window of 1s in
(1,7)for 1 < < N, and 1 < j < Ny in spatial domain , which results in convolution
with dirac delta’s with dirichlet’s sinc(transform of rectangular window of 1s) in fourier
domain. This results in spectral leakage and the resultant is now sampled at frequencies
of the form( Zrm  2mk )m.kezin discrete fourier transform domain to obtain GG. So unless

Ngr ’ Nt

our spatial frequencies are of the form(%r—;, ?\/—WTb)a,bE z which is a zero probability event,

we have spectral leakage. The color coded plot of magnitude of G in Fig. [3.1]illustrates

spectral leakage.

Nevertheless H can be considered as low rank and marginally compressible. With

Color coded Magnitude spectrum of H [ CGA)‘E", rank(H)=4

70—

70

Figure 3.1: Color Coded Magnitude Spectrum of H € C4*%4 K — 4

these properties as a motivation, we give a background of compressed sensing and low

rank matrix completion in the following chapters.



CHAPTER 4

Compressed Sensing

In many applications, we deal with signals that are sparse when expressed in an ap-
propriate basis.Compressed sensing seeks to recover the sparsest solution X € CV
with minimum number of linear measurements(<< NN). Let the measured vector be
Y = AX, where A € CM*¥ is an appropriately chosen sensing matrix with M << N.
Note that as M << N, it is an underdetermined linear system and we cannot recover

X without any prior information(like sparsity or least squares solution etc).

4.1 Information Theory viewpoint of compressed-

sensing

Consider a digital signal x € D™, where D is a discrete set containing quantized lev-
els. A naive way(does not consider sparsity) to recover X, is to measure each and
every component(x;), by projecting x on the standard basis e;, resulting in n mea-
surements.Our goal is to recover x from minimum number of linear measurements(of
the form a’z), assuming that x is sparse(has very few non zero entries). Let D =
{1,2,., |D|} without loss of generality.

Let X € D" be a random signal constrained to be r sparse,x denote all possible sets
of r indices from n , and Ly € x be the locations of sparsity of X. Assuming no prior
information about X, other than sparsity,the entropy of X (H (X))is derived as follows.
H(X) = H(Lx,X)= H(Lx)+ H(X|Lx), where H(Y|X) denotes the entropy of
Y given X.We assume a uniform distribution over y where |x| = ("), so H(Lx) =
log> ("Cy).

H(X|Lx) = H (X1, X2, X3, ...Xu|Lx)

= Zi:P (Lx = 1) H(Xi,, Xiy, Xig,y oy X3, | Lx = 1)

J=t

=>_P(Lx =1) ( (X;|Lx = i) +]£[1(XZ|LX = i))



=Y P(Lx =1) (0—|— H(X |LX—Z)>
=Y P(Lx =1) H(X“,XW,XIS, vy X |Lx = 1)

=> P(Lx =1) ( >, H(Xy) ). (assuming X;s are independent of each other).

ikELX
= H(X|Lx) = ZP(LX =1) | .r.logs (|D]) = logs (| D]")
(assuming X is unilgormly distributed over D, for i € Lx).

So,H(X) = logs ("C,) 4 rlogs (|D]) = logy ("C,. |D|")

4.1.1 Dependence of measurement vectors a; on number of mea-

surements

Let Y = {Y;}},, be the measurements of the form a} X. For perfect recovery , there
must be no uncertainity in X given Y.(i.e.,H(X|Y) = 0).
H(X,Y)=H(X)+ H(Y|X)=H(X) (sinceY isa function of X, H(Y|X) = 0).
H(X,Y)=H(Y)+HX|Y)=H(). (Assuming perfect recovery).
= H(X)=H(Y)=HY)+ H(Y2|Y1) + H(Y3[Y2, Y1) + ... + H(Y|Y1Y2.. Y00 1)
(from chain rule).
As conditioning cannot increase entropy, we have H (Y,,|Y1Y5..Y,, 1) < H(Y,,) V. We
reorder the set {a;}", such that H(Y;) > H(Y;), Vi > 1.
= H(X)=HY)<mHY)
=m > (( )) We aim to choose a;’s such that H(Y}) is maximum in order to recover
with minimum number of measurements. It can be seen thata; = {1, |D|, |D|?,..,|D|V~1}
achieves minimum number of measurements(= 1). This is simply conversion of a num-
ber into a base | D| system. However, this is not a robust way of sensing as our measure-
ments would be highly sensitive to the noise in X . Intuitively, we can guess that the

robust sensing vector would have equal magnitudes in all positions.(i.e, | (a;); | = aVj.)

and this motivates us to look at sensing vectors with random 1s,-1s in 4.1.3

10



4.1.2 Example illustrating the dependency

Consider a 1 sparse(r = 1) binary digital signal X € {0,1}", then H(X) = loga(n).
Ifa; = (1,1,1,,..,1)", we have Y = Y7  X; = 1, with probability 1, as X is 1
sparse. Then H(Y;) =0,= m > oo

Now consider a measurement vector a; = (1,2,3,...,n)%, then Y] takes values from
the set {1, 2, 3, ..., n}, with non zero probabilities for each of them( assuming locations
of sparsity can occur anywhere with non zero probability). As dictionary of Y; has n
elements, H(Y7) < logs(n), = m > 1, which is true as we need just Y3, to find out X,

as X = ey, where e;, is a standard basis vector in R", with the i** entry as 1.

4.1.3 Minimum number of measurements when «; is chosen from

random sequence of 1s,-1s

For a general D, r and sensing vectors chosen from a sequence of random 1s,-1s, we
derive H(Y7).
Let S denote the set of indices where X; # 0; S; be the set of indices where X; # 0
and (a1); = 1,55 be the set of indices where X; # 0 and (a;); = —1.
As X is r sparse, we have Y1 = > (a1):X; = > X; — > Xi,

i€S €S i€Ss
Let |S1]| = n1; |Sa] = no, then | S| =ny +ny =1
The probability mass function (p.m.f) of each of these X;; ¢« € S is distributed over
D Now Z X; is a sum of n; random variables, whose p.m.f is distributed over inte-
gers in [;zels,lnl | D). Similarly the p.m.f of — X is distributed over [—ns | D[, —na].
Hence, the p.m.f of Y7 is over integers in [n4 1557212 |D|,nq | D] — ngl.
We can see that |Yi| = (ny +n2)(D — 1)+ 1 =rD —r + 1 and hence
HY1) <logy(|Y1]|) = loga(rD —r + 1).

For perfect recovery of the sparse digital signal, using random 1s,-1s as sensing vectors,

logz("Cr|D|")

we need m measurements, where m > 22"t
log2(rD—r+1)

11



4.2 Measurement basis

Let the signal X € CV be r sparse when expressed in an orthonormal basis 1/ ¥ i.e,
X = 96, where 0 is a sparse vector in CV.If we measure X in the basis 1 itself, it is
easy to see that we need N measurements to recover #( and hence X), as the location of
sparsity can be at any of the /V locations. Hence, in order to reduce measurements and
incorporate sparsity, we need to measure the signal in a maximally incoherent basis, as
it combines information from all the locations of 6. Let "> be an orthonormal basis.

The coherence ;1 between the basis 1 and ¢ is defined as,

1(é,v) = VN maz |(¢;,v)] (4.1)

1<j,k<N

Note that when ¢ = v, we have (¢, ) = v/N and when ¢ is maximally incoherent
with ¢, we have p = 1. So, 1 < pu < VN. Ttis interesting to point out that random
basis is largely incoherent with any fixed basis (Candes and Wakin| (2008), i.e, for a
fixed basis 1, if we construct ¢, by orthonormalizing n vectors sampled uniformly and
independently on the unit sphere, we get a coherence of \/W(n) , with very high
probability.

4.3 Recovery of Sparse signals

Let X be r sparse by itself (i.e, » = IV*Y) The least squares solution to the problem
min ||[Y — AX Hi, which is X = (A" A)_1 ARY | is not necessarily the sparsest one.
The goal of sparse signal processing mathematically translates to

min || X|], , subject toY = AX.

The above problem is NP hard, where [|.X ||, is the [y norm of X, which is the number
of non zero entries of X'.We observe that | X |7 — [|X||, as ¢ — 0, where || X||] =
(1Xa ] + [ Xa|* + [ X5]" + .. +|Xa|?). The locus of points satisfying || X||, = 1 for
q=10.5,1,2,n = 21is shown in {4.1]

From Fig. we could imagine that epigraph(in 3D) of || X||  is not convex when
q < 1, and thus || X{|, is non convex for ¢ < 1. Nevertheless, these functions(q < 1),

give the sparsest solution. For ¢ > 1, we easily observe (here ¢ = 2) that [ X[,

12
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Figure 4.1: Locus of | X||, = 1forg =0.5,1,2,n =2}

is convex, but minimization does not give the sparsest solution, unless the constraint
plane is normal to the vector joining origin and the true solution. Interestingly ¢ = 1

incorporates both convexity and sparsity to lead to the sparse solution.

4.3.1 [; norm minimization

Let X be the true signal, which is 7 sparse in ). We obtain M measurements of X as
Y = (X, ) Vk = 1,2,3,..M. Relaxing the NP hard problem, we obtain a convex
optimization problem

 subject to Y. = <z/15, ¢k> — A0, Vk=1,2,3 .M
1

minimize Hg
Let 6 be the solution to the above problem.The reconstructed solution (say X *) is given
by ¢6*. This optimization problem can be solved using subgradient descent method(as
{1 norm function is not differentiable).

In |Candes and Romberg (2007)), it is shown that the above optimization perfectly re-
covers X, with probability 1 — &, whenever M > C'u? (1, ¢) r.log (%), which reduces
number of measurements by orders compared to n measurements.However, this result
does not guarantee the recovery with noisy measurements.

Practical signals are not exactly sparse but approximately sparse. In addition, we also
have noisy measurements to be used for reconstruction. We seek a robust algorithm that

overcomes these non-idealities and still recovers the sparse signal.
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Consider the following optimization:-

mMMmH§ <e (4.2)

l2

subject to HY — Af)

l1

Y = (V1,Y,Ys,,, Yy )l and A = (A, As, A3, , , Ay)T. Let 0% be the solution to
above optimization. In /Candes et al.| (2006), a recovery guarantee, states the robustness
of above optimization to noise, which is

160 — 9*||l2 <y |I9—j;||12 + Cle, whenever 6y, < V2 — 1
where 6, denotes the k sparse approximation of #(formed by retaining the largest r val-

ues of ¢ and setting the others to 0) and 5, is the Rectricted Isometry Constant(defined
in ) of the matrix A. As ¢ is a unitary matrix, it preserves the norm under trans-

formation.
X — X",

Vi

where X" = 10, If X were exactly r sparse in ¢, we would have || X — X"[|, = 0. It

= [|X - X7, < Co + Cle 4.3)

is important to note that X" is not formed by setting the N — r smallest coefficients(in

magnitude) of X to zero.

4.3.2 Restricted Isometry Property

Since Y = A6, and 6 is r sparse, for unique solution to Eq. the null space of A
should not contain r sparse vectors. A tighter notion of this statement is incorporated
in the Restricted Isometry Property(RIP). The isometry constant (¢,.) of a matrix A is
defined in Candes and Tao (2005)) as the smallest number satisfying

(1—90,) ||x,,||l22 < ||Agcr||122 <(1+4,) ||9c7n||l22 ; where x, is an 7 sparse vector.
For stable recovery of an r sparse vector using A, we require that ds,. to be as small as
possible, as a smaller ds,. implies smaller perturbations in the observed vector Y = A6,

for given perturbation in the 7 sparse vector.

14



4.4 An Application of Compressed Sensing in Carrier

Frequency Offset Estimation

Consider a digital communication system using circular 8QAM as the constellation.
Let x,, and y,, be the transmitted and received symbols respectively. Let A f. Hz be the
carrier frequency offset(CFO) between the Tx and Rx. The complex baseband digital

communication model is now given by

yn = xnej(WEner)) _'_ wn

where w, = 2rAf.T, w, ~ iid CN(0,0?), T is the symbol time, ¢ is phase offset and
T, € S1USy, where S; U S, denote circular 8 QAM constellation with
Sy = {r,r.e’3, —r, re’T}; Sy = {Rei%, R/, Rt , Re/T Y for § = ¥3-L and

V2
r’4+ R?=1.

Q 0 s2(
@ siK

Figure 4.2: Circular §QAM

The CFO is generally estimated and corrected , before decoding the symbols. We
discuss two algorithms(A1,A2) based on the QPSK partitioning algorithm L1 et al.

(2014) and compressed sensing respectively.

15



4.4.1 Al-Generalized QPSK partitioning algorithm

Recently, Li et al., proposed a generalized QPSK partitioning algorithm L1 ez al.| (2014)
to estimate CFO. When applied to circular 8QAM, it classifies the received samples(y,,)

into classes(say c,c2), using a threshold parameter(\ < 1), such that

lnl| Z AR+ (1 =N =y

loall <ARF (1 =X)7r = yncoy

Observe that c; has those set of samples that likely came from S, and these are
relatively of higher SNR than those of ¢,, as R > r, with noise variance being the same.
This algorithm uses the samples of c; alone to estimate CFO and also has another least
squares parameter M, in LS-M. It defines a phase correlation metric ¢ (m) as,

6 (m) = arg (X 05" w (mn +m) gty (42)°)
where m = 1,2,3,--- , M Then

-

—
—_

~—
I

1 x 4w, + €1

<

N
[\

S~—
I

2 X 4w, + €9
------ (m0d2’n’)

¢ (M) = M x 4w, + ex

where ¢, is random error in ¢ (m) and

o 1 if yi € crandy; € ¢y
w (i, J) =
0 otherwise

As ¢ (i) € [0,27], estimating 4w, directly becomes difficult. So {¢ (i)}, is first
unwrapped to get {1 (i)}2,. Now, a least squares fit is done to obtain estimate of
4dw.(say 4w, ). For an LS-M algorithm, we get to estimate CFO( say «,) using a maxi-

mum window size of M samples.
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4.4.2 A2-Compressed Sensing Based CFO Estimation

We classify the received samples y,, as defined by [.4.1]into sets ¢; and c,, and use
only the samples from c¢; for estimation. Consider a signal z, = R*e/*". When z is
an infinite length sequence, the fourier transform of z has an impulse at 4w.. However,
due to a finite data record of size Ny.q,,s (number of transmitted symbols), the spectrum
is no longer a dirac delta, but a dirichlet’s sinc Oppenheim et al. (1989), due to spectrum
leakage caused by rectangular windowing, with the peak still at 4w..Further, we work
with noisy samples and get to measure the discrete fourier transform with a resolution

27
of .
Nyri

Notice that for the noiseless case z; = yf, Yy; € c¢; and we do not have access to z;

Vy; € c,. We make an assumption that {2, }*¢"* is compressible in the fourier basis

(as is the case for no noise and 4w, (%) € Z).For a general case, we aim to recover

3 samples ( the peak value and values to the left and right of the peak), so that we
may fit a dirichlet’s sinc and find the exact CFO. So, given that we have a compressible
signal(z) in fourier basis, we seek to have few measurements(say m) from incoherent
basis, to reconstruct it using compressed sensing. Discrete time impulses are maximally
incoherent with the discrete fourier basis and we have access to few(as |c1| < Nyans)
of them (samples of z;, Vi € c1.).

Let Y be the column of measurements.(For example if (ys, ys, y7, ..) € ¢1,

Y = (v5,95,95,..)7). Let B be the N, point IDFT matrix. and C' € R™*™ be defined

lth

as C'(k,l) = 1 for the k" measurement, symbol used, and 0 otherwise. Let Z be the

Ny s point discrete fourier transform of 2.We recover w, as follows:-
minimize ||Z|, subject to ||Y — CBZ||,, < €noise

After the above optimization, we find the location of peak of magnitude of Z and obtain
a coarse estimate of 4w,,(say w,) rounded off to a multiple of %

As a finer estimate of w, is required, we use quinn’s second estimator Quinn! (1994) that
interpolates the DFT using the samples around the peak, to get a finer estimate(w;) of
we. The quinn’s second estimate is found as follows:-

Let mg denote the DFT bin index at which |Z(w)| achieves the maximum.

mo = round(—wcé\:{” )

2
Let H, = Z( T )
Nip

17



The quinn’s estimator defines 3,,, 3,, k,, k, and A as,

ﬁmzRe(Hm“); dp = —Pm

Hmo ﬁm - 1
- ng—l—l . o /Bp
5p_Re<Hmo)’ dp_ﬁp_l
) 2
1 6 dz+1— =
k, = Zlog(Bdf; + Gdf) +1) — £log d )

o\ e1+/)

2 2
1 dr +1— 3
km = Z—Llog(?)dil +6d2, +1) — glog )
a2, +1+4/(3)
dm +d
A= % ke — ko

The estimated Carrier Frequency Offset(wy) is now given by,

We A
wp=—
=4 " 2N,

Experiment

The mean square error of the estimator was obtained for SNR in steps of 5dB in
[0,20]dB range,using 1000 Monte Carlo trials for w.=0.5, Ny.qns = 1024, A = 0.9,
M =1,4,8,16 for Al and m = 256 for A2. The results are shown in Fig[4.3]

It is to be noted that the set ¢; (in A1), has approximately 512 samples for an N =1024,(
as symbols are uniformly drawn from circular 8QAM). But, A2 recovers better than

Al, for just m = 256 samples.
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Mean Square Error of CFO (dB)

-10

MSE of CFO vs SNR

:
‘ —#— ALA=0.9,M=1
—8— ALA=0.9M=4
—®— ALA=09,M=8
—A— A1)=0.9,M=16

\ —¥— A2\ =0.9, m=256

Figure 4.3: Mean Square Error of CFO Vs SNR at w, = 0.5
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CHAPTER 5

Low Rank Matrix Completion

Low rank matrix recovery is a well known problem in the area of data analytics. One
interesting application is about predicting the tastes of consumers from a limited set of
ratings, using a large database (Netflix prize). Consider a matrix M™*™ of rank r. It
has r linearly independent rows/columns. In order to completely describe the matrix,
we need r of these columns(mr values) and components of each of the remaining n — r
columns along the basis set ((n — 7)r values). In total, we need mr + (n — r)r =
(m + n)r — r? values to completely describe M. These are also the number of degrees
of freedom of M. Note that for a full rank matrix(r = min(m, n)), we need mn values
(all entries). The low DoF for a low rank matrix forms the basis of low rank matrix
recovery from few measurements.

Let Q2 be the set of positions at which we sample M. Define a sampling operator P,
such that

Po(M) = M if (i,7) € Q

0 otherwise

The above measurements can also be interpreted as the projection of M on the standard
basis {eiegp}. Note that we need atleast one entry from each row or column to recon-
struct M .For the case when M is uniformly sampled, we need O(Nrlog(NN)) samples
to satisfy this criteria (N = max(m,n)), because of coupon collector effect Motwani
and Raghavan| (1995). If no entry is available in a row, we cannot reconstruct it ,as all

the scaled versions of the original row are possible solutions to it.

5.1 Nuclear Norm Minimization

The low rank recovery problem is mathematically posed as
minimize rank(X)  subject to Po(X) = Po(M) which is an NP-hard problem.

Analogous to /; norm minimization, we relax the above to nuclear norm minimization.



minimize || X||, subjectto Po(X) = Po(M)

where || X ||, is the sum of singular values of X.

Let {z;y”} be the measurement basis, which are of rank 1 (one of the measurement
constraints in mm-wave systems) and m, be the number of such measurements. Let
M = 3" ou;vf be the s.v.d of M.Analogous to definition of coherence metric in
compressed sensing, a geometrical coherence property () is defined as follows:-

= i maz | (ut! gyt = i mae [y

As the choice of x;’s and y;’s are independent, we split the above as,

— H, H,
= \/mmicjm |z, | \/ﬁﬂ}CJLZL’ vy, |

Let 1153 be the upper bound on the geometrical coherence.

= \/mn}cjpx |2, \/ﬁn%c]m: [vy;| < /BB/IB

Due to independence, we have n%cjzx }xf uz‘ < y/EE and mzc]m |le yj‘ < /EE.

When we choose the standard basis as measurement basis x; = e; and y; = ¢;, we have

lurll,, < VEZsllwell,, < /B2 Yk € [L,7].

Considering measurement noise level of 9, the optimization problem modifies to

minimize || X||, subjectto ||Po(X)— Po(M)||p <06

Let M be the solution to the above optimization. In /Candes and Plan (2010), a recovery
guarantee for the above optimization is derived. The result states that

Whenever m, > Cu’nrlog®(n); HM — MH <4,/ W&é + 26,
F

for some constant p > 0, with very high probability.

5.2 OptSpace

In Keshavan et al.| (2009)), an efficient algorithm to reconstruct a low rank matrix from

few noiseless observations was proposed. It requires O(Nrlog(N)) to exactly recon-

1

struct M € C"™*", with probability larger than 1 — <,

where N = min(m,n). The

algorithm is as follows:-

1. Trim the measured matrix P (/)

Set to 0 the columns of Py (M) having number of sampled entries larger than 29

n
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. Set to O the rows of P (M) having number of sampled entries larger than 49

.
Let the matrix thus obtained be M. It may appear that we loose information
on trimming. But, we use the trimmed samples later. After trimming, it was
observed that the underlying low rank structure becomes clear.

2. Rank r projection - -
We take the rank r projection of Mg.i.e, compute svd(Mg) and set the N — r
smallest singular values to 0. Let the resultant matrix be P, (M)

3. Mimimizing a function / over grassmann manifold to recover )/

2

Let F(X,Y) = minF(X, Y, ), where F(X, Y, 8) = 1 3 (Mij — (xSYH) ,j) .
rXT (i.5)eN ?

We first minimize the function w.r.t S and then minimize F(X,Y) w.r.t X, Y with

P.(Mq) = XoSyY! as the initial condition.

Note that Optspace is sensitive to input rank. Any underestimate or overestimate in

rank results in significant errors, as seen in [5.4]

5.3 Rank one matching pursuit

Recently Wang et. al proposed an algorithm called Rank 1 Matrix Pursuit Wang et al.

(2014), analogous to orthogonal matching pursuit for the vector case.
Data: P, (M) e

Initialization: Set X, =0,k = 1;
while ||R|| > €

do 1. Compute residue Ry = Py (M) — Xj_1.
Find (ug, vy) the top most left and right singular vectors of Ry.
Set A, = ukvf.

2. Compute the weights © using the least squares solution

o = (A"%) &Y

3. Set X =S8 ©FPy (A)and k « k+1

end

Result: Output reconstructed matrix M= Zle OFA;
Algorithm: Rank One Matching pursuit

Ay and Y are appropriately columnized versions of { P (A4;)}%_, and Py (M) re-
spectively.
The main idea behind this algorithm is to construct the basis set from rank 1 approxi-

mation of the residues, and then do a least squares fit to find the components along these
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matrices, with the known entries. i.e.,

. 2
0,4, - Y

5.4 Experiment

We consider a matrix 7" € R'99%100 with i.i.d entries from standard normal distribution

and take the rank 2 approximation of 7, called as M = P»(T'). For a given number
of measurements, we randomly sample the matrix until every row and every column
has atleast 1 sampled entry. We compare Nuclear norm minimization, Optspace with
rank input as 2, Optspace with rank input as 1 (as we finally aim to recover rank 1

approximation of mm-wave channels) and rank 1 matching pursuit.

Comparing performance of estimators for & = 0.22
2 T T T T :
rankone Optspace
fullrank Optspace
18— Nuclear norm min ||
rank one matching

14— -

[IM-Mest||/||M]|

12— —

0.8 -

Relative Error of first sing. vector

04— —

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of samples observed

Figure 5.1: Low rank matrix recovery algorithms
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CHAPTER 6

Bounds on Singular Vector Metric of General Matrices

Before looking at algorithms to estimate channel matrix, we study how the error in
estimate effects the performance of the system(capacity or equivalently |x” Hy|), where
2 and y are the beamforming weights assigned to the receive and transmit antennas
respectively.

Let H be a matrix of some size, and let £ be the perturbation in the matrix, such
that we observe M = H + E. Finding the projection of A on the normalized rank 1
approximation of estimated matrix is our concern. Define z,y to be the left and right

singular vectors of M respectively. The metric of interest in this article is ‘xH H y|. By

definition of svd, our metric is upper bounded by || H ||, the spectral norm of H, or the

maximum eigenvalue of H H'.

=" Hy| < [|H], (6.1)

We aim to find a lower bound for the metric, for a given error in the matrix E.
From matrix perturbation theory, it is known that the error in estimated singular values
is bounded, for bounded perturbations in matrix, but it is not the case with singular
vectors.

The following example illustrates the argument.

10 0 € 1 ¢
01 e 0 e 1

Observe that the singular values change from (1,1) to (1 + €, 1 — ¢).However,the left

singular vector changes from to \_/—% , for any € > 0. This result directs
0 1

us to look at perturbations in singular values rather than perturbation in singular vectors.



6.1 Lower Bound for |z” Hy|

6.1.1 Theorem

Given a matrix H, whose estimate M = H + FE,where F is the error matrix, with

o1 = [|Hlly, 01 = [|M]],, ¢ = [|E]| and &, = | E],

et y| > (LN 9" — 1 ) 62)
yI = 2(0’1+€1) '

where g = (07 — )" s fi =€+ \/HHH2 — ol +2¢(||H||, — o1) + € and
(@)t = max(0,a).
Note that ||.X'|| and ||.X ||,denote the frobenius norm and the spectral norm of the matrix

X respectively.

6.1.2 Proof

Let M be the rank 1 approximation of the estimated matrix M.
Define M, = M — M,

|H — M| = ||[H — M + M,,|| < HH = MH + HMM (by triangle inequality)

|H = Myl < €+ || Moy (6.3)
Let (01,09, . . , 0,),(01,02, . . , 0y,) be the singular values of H and M respectively.
By definition of || M, ||, we have
| M| = ZU%QZ (Ok — ok + o%)?
k=2 k=2

= ||M2n|| = \/22:2(‘779 —op)? + ZZ:2 204(0 — o) + ZZ:Q JI%

[Manll < | D Gk — 0%)> + > 20%|6% — 0| + Y _ o (6.4)

k=2 k=2 k=2
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From Mirsky’s theorem Stewart (1998), we have

> (G =) < |B|l = ¢ 6.5)
k=1
= ZZ:Q((fk - Uk)2 <€ — (U~1 — 01)2 < €2

Weyl’s theorem [Stewart (1998)) states that
on— il < |[B| =« (6.6)
2

Vk = 1,2,3,..,n Applying inequalities in Weyl’s and Mirsky’s theorem to Eql6.4] we
get
||M2,n|| S \/62 + 261 ZZZQ Ok + ZZ:Z 0']3

= M| < HIP = 07+ 260([H]], = 1) + 2 ©7)

where ||H ||* denotes the nuclear norm(sum of singular values) of H.

From Eq6.3]/6.7] we have

|H — M| < e+ \/||H||2 —o?+2(|H|, —01)+e=h (6.8)

Weyl’s theorem for the first singular value states, 0y — €; < 01 < 01 + €1

But, as 07 is a singular value, it is non negative, validating the following bound.
maz (0,01 —e1) < o1 <01+ € (6.9)
|H = M|” < 7

= [|H]]" + [0 = 28e(H, 20 < fF

2 2
13 I
2

= Re(H,o1z.y") >

2 ~ 2
= 01 Re (:cHHy) > HHH 4;(;12—,? > HH” ;rgQ_ff (using lower bound in Eq.
\ (D N ()
= |Re («" Hy)| > (Re («" Hy))" > %or 2 2o1deD)

(using upper bound in Eq. [6.9)
) +
 |a# | > |Re (2411y)]| > (U—>) ~ (B (suw
2
Hence proved. We denote B = HHQ‘(L#
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Bound- B,
Now by definition of svd, M, is orthogonal to M ,,.Thus,

2 2 2 2 9
R e et Y el Bt

Applying triangle inequality to M-H and H, we get
R e B L

From equation [6.106.11][6.9] we get

ST

HMz,n

where g = maz (0,01 — €)

From equation [6.3)/6.12] we get

2
-z ol -
We proceed in the same way as in [6.1.2] to obtain

||+~ 53
2(0‘1 + 61)

|2 Hy| > ( ) = (By)*(say)

Relaxed Bound-B;

(6.10)

6.11)

(6.12)

(6.13)

(6.14)

Assuming we know just the frobenius norm (¢€) of the error matrix and not the matrix

E or its spectral norm (1), we find a relaxed bound from B;. Since ¢; < ¢, the change

that we observe is in g,f and the denominator of the bound.

Define g; = maz(0,01 —¢) and f3 = € + \/HHH2 — o+ 2¢(||H

The relaxed inequality is now given by,

2 2 r2 +
2" Hy| > (HH! (;116) f3> = (B3)*(say)
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Relaxed Bound-5,

Again, assuming we know just the frobenius norm (¢) of the error matrix and not the
matrix F or its spectral norm (¢;), we find a relaxed bound from Bs. Since €; < ¢, the
change that we observe is in g,f and the denominator of the bound.

Define g; = maz(0,01 —€) and fy = € + \/(6 + HHH>2 — g2

The relaxed inequality is now given by,

H2 2 2 +
|:EHHy} > (” g(;i—le) f4> = (By)*(say) (6.16)

6.1.3 Sanity Check on Bounds

2 2
g, - W =1t p  [[H]| 4S8 IHIPei-f3 . g [HIPte s
1= 2(o14€1) 2 2(oc14€1) 3= 2(o14€) 4= 2(o1+¢€)

For the zero error case(EF = 0), ¢ = 0 and ¢; = 0.

= g=01 =01

=>f1=f2=f3=f4=\/HHH2—0%

Substituting above values in Eq.[6.2][6.14] [6.15] [6.16|we get By = By = By = By = 04

6.1.4 Bound for the case when H is a rank 1 matrix

The relaxed bounds Bs, B, are of significance most often, as one may just know the
frobenius norm of the error (¢). We evaluate the bounds B3 and By, for the case when
H is a rank one matrix and call them to be B and B} respectively. And assume that
€ < o1. Then g; = 07 — e and HHH = 0.

= f3 =€+ /o€ fi = 2e. Substituting || H

, g1, f3, fain Eq.we get

-3 V
B?}:Jl.(al E) —262.( 7 >
o1 +e€ o1 +e€

Bl o) — € 3z [ (/e
:0' . J—
4 ! o1+ € 2 \oj+e

28



6.1.5 Effect of quantization of beam forming vectors on bounds

Let x, y be the closest vectors to x, y chosen from the quantized set,

such that ||z — Z|| < q13]|ly — 7|| < g2.Letus model T = = + e1,§ = y + es.
Consider |#" Hj|.

|Z7Hj| = |(z + e1)"H(y + e2)| = |2 Hy + ef! Hy + 2" Hey, + e He,

}fHHg\ > ‘a:HHy‘ }el Hy‘ |33HH62‘ — |€{{H62‘

[#H3| > By |(Hoew")| ~ |(H.aell)] ~ [(H.eref)

We use Fan’s inequality Borwein and Lewis|(2010), which is [(A, B)| < || A|l, || B]].-

Note that 2 and y are vectors of norm 1 and || H ||, = o1;

lexy™ ||, = llexll,, = a1
|zed||, = llezll,, = a2

leed ||, = llexll, llezll,, = qr1a2;
Then,

|Z7HG| > By — o1(q1 + @2 + (1¢2)

6.1.6 Effect of Rank of H on Bounds

Consider the bound B;. The same effect can be explained for other bounds too. For By,
we have the following:-

|H ~ M| < fi = e+ JIHI* —0F + 26, (||, —01) + ¢

We know that for a rank r Matrix, oy > H—\I}H

fi < et JIHIP = VL 4o, (1)), - L) 4 €2

From Cauchy Schwartz Inequality, we get || H||, < /7 || H].
fu< et JIHIP — T 4 oe (v [H - 170 1 e
:q+¢wWaﬁ»m«ﬁ—meué:mm>

Since » < N, it can be seen that af < a{v . Thus a higher rank condition increases

the upper bound on f;. If f; increases, B; decreases and therefore bound B; performs
poorer for higher rank matrices.The effect of f; was found to be significant than o; in
the denominator of 57, using simulations.

The above argument can be inferred from Fig. [6.I((b) and Fig. [6.2(b) with same proper-
ties of noise matrix. We make a handwaving argument(only in this part) to consider the

matrix(/{) with A = 0.1 as an approximately rank 1 matrix, in order to understand low
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rank effects.

6.1.7 Experiment

Let X € C'%*12 be a random matrix with i.i.d entries chosen from the standard com-
plex normal distribution. We take H to be the low rank (in this experiment rank(H) =
4) approximation of X and define a parameter A such that o; < Aoy V j > 1. In our
experiment we choose 0y = 03 = 04 = Aoy, with A < 1, and then normalize H, such
that | H|| = 1.

We take a noise matrix (F € C'?8*!2%) with i.i.d entries from the standard complex
normal distribution,scale it such that HEH = ¢, and add it to H.

The first singular vectors z,y of M = H + E were found, and the normalized metric

HH . . . .
[ 11y] was evaluated. We compare this true normalized value of metric with that of the
normalized bounds %,%,f—f and f—f for discrete values of ¢ € [0, 1]. The normalized

metric, normalized bounds were averaged for 100 realizations of H,E for each ¢ to ob-
tain the plot in Fig. Fig.[6.2|for A = 1 and A\ = 0.1, for random noise and random
noise with modified singular values(i.e,setting all the singular values to be the same, the

randomness comes into play in singular vectors).

We observe that our bounds By, B, perform better for noise matrices with uniformly
spread singular values, as seen from the expression.(Since f is smallest, when the max-
imum singular value of E is least, with all others constant).

In the second part of the experiment, we consider a millimeter wave channel matrix(H €
C128x128) of rank 4, and evaluate the true normalized metric and normalized bounds, as

done earlier.

6.1.8 Conclusion

It can be observed that our bound goes to zero, for some ¢,, and is negative for € > ¢,,
making it insignificant for € > €,. Another observation is that €, increases from about
0.1(for A = 1), to about 0.25(for A = 0.1), increasing the range of validity for lower .
Eventually we approach the bound for the rank 1 matrix case, when A = 0. As expected

By > Bs3,B; > By in the valid range of ¢, as Bs and B, are relaxations of B; and B,
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Comparison of Bounds for =1, random matrix, random error matrix(uniformly spread singular values)
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Figure 6.1: (a)\ = 1, Random Matrix, Uniformly spread singular values(E);
(b)A = 1,Random Matrix, Random £

respectively.

It can be seen that the normalized metric is close to 1(maximum). This is because of
the choice of the matrices H,E. There is a possibility for /;, the rank 1 approximation
of H, to be i.i.d gaussian entries with zero mean (Since linear combination of gaussian
random variables is also a gaussian r.v). And as E has 1.1.d zero mean gaussian entries,
E [(H1, X)] = 0, making E approximately orthogonal to H;. Thus, addition of E to H
does not effect the first singular vectors by a significant amount. It is not the case for
any general E (Eg- the true normalized metric took 0.1 for ¢ = 1 when entries of E,H
come from U[0, 1]).We experiment on low rank matrices as our focus is on mm wave
channel matrices.

Note that we derived deterministic bounds. Our proof does not account for the proper-
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Figure 6.2: (a)A = 0.1, Random Matrix, Uniformly spread singular values(F);
(b)A = 0.1,Random Matrix, Random F

ties of E and H, and thus our bounds may be weak for particular realizations.
The observation that true value is close to 1, for mm-wave channel matrix and AWGN
model, justifies MIMO operation in the low SNR regime, for AWGN measurement

model.
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Comparison of bounds for mm-wave,unconstrained random noise
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Figure 6.3: (a)Millimeter Wave Channel Matrix, Uniformly spread singular values(E);
(b)Millimeter Wave Channel Matrix, Random £
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CHAPTER 7

Channel Estimation Algorithms

7.1 Naive Algorithm

The simplest way to measure the first singular vectors of H is to measure each and
every entry of H using the standard canonical basis set {eiejT}ij and then compute the
singular value decomposition of the observed matrix to find them. We need a total of
N, N; measurements for estimation using this method, which does not make use of the
properties of H.
Let X € CV*Nt be a noise matrix such that X;; ~ CA(0, 1). The reconstructed matrix
M is given as,

M=H+ LX

\/,5

Sampling using the standard basis does not satisfy the measurement constraints. How-
ever, the same model holds even if we sense using 2D DFT basis (which satisfies mea-
surement constraints). As i.i.d complex WGN transforms to i.i.d complex WGN under
any unitary transformation(2D DFT in this case). Similar argument was made in chap-
ter 2.
We identify the error matrix £ = \/LEX, probabilistically bound € = ||E||. and ¢, =
| E||,, and then find a lower bound on the expected capacity using Eq.

7.1.1 Tail bound on ¢

Let Y;; = |X;;|%. Then Y;; ~ x?(2), since X;; ~ CAN(0,1). Here x*(2) denotes the
chi-square distribution with parameter 2, which is the number of degrees of freedom for

standard complex gaussian random variable.

1 1 1

2 2 2

E=—|X5 ==Y X ==Yy,
P r P y ’ P i !



ZYu
Consider NPEN = Nt ~ = Z(say). Now, Z is the sample mean of N, N, i.i.d chi-square

distributed random variables.

= 7 ~ Gamma(a = NyN,;0 =

NtN )

For a t; > 0, we compute P(e > ¢;) as follows:-

Ple > t)) = P(e® > t%),sincee > 0and t; > 0

X3 2 t2
:>P(€Zt1):P<H ||F> P ):P(Z>L)

NN, — NN, - NN,

t2 2
—1-F, (L;NtN-—)

where F(z; a; b) is the c.d.f of Gamma(a; b).

:>P(6§tl):FZ<NNaNtNraNtNT)
Ple<ty - 3 L(28Y (7.1)
= A i\ 2 '

The above c.d.f can also be seen as a complementary c.d.f of a poisson random variable

with parameter = P ie,if Z, ~ Poisson ( > then P(e < t1) = P(Z; > N¢N,.).

7.1.2 Tail bound on ¢;

Using a theorem in Tropp| (2015), the tail bound on ¢€; can be easily derived. It states as

follows:-

Theorem on tail bound of Spectral norm

Consider a finite sequence By of fixed complex matrices with dimension N, x N, and
let v be a finite sequence of independent real standard normal variables. Let W be a

matrix such that W = )", 7, By, then

P, 2 0) < s + ) eap 510 (2)

where v (W) = max{HE [WWH] 9

E [WHW] H2} = max{sz BkB,ﬂ

emeT}mn. Note that Bj; has only one non zero entry

2 )

Choose By € {ﬁemeT J

n /2p
which may either be \/127 ‘F The elements of the set { By }:~."" span CN*Ne over
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a real field.With these initializations, we identify the error £ defined previously as V.
Now, 3o, By Bf! = 55 2N,V and 35, B By, = o5 2N, IV,

= (k) = %max{Nt, N, }.

We compute the tail probability for €; as follows:-

Pler <t2) = 1= Pley = t2) = 1 = P(|E]l, > t2)
From the bound in we have

2

—pt
P(eyr <t3) > 1— (N, + N;) exp (%) (7.3)

where v, = max{Ny, N, }.

7.1.3 Joint Probability on ¢,¢;

We obtain a bound on P(e < t1,e; <ty) = Ple <t1Ne < to)
Ple<tj,e; <ty) =P(e<t))+ Pley <t3) — Ple <ty Ue < ty)

:>P(€St1761StQ)ZP(€§t1)+P(€1Stg)—]_;SiHCCP<€§t1U€§t2)Sl.

; +
Ple <t.ep < ty) > —od L (oY N, + N, —5 7.4
(e<ti,ea<ty) > |e Z g\l — (N, + N;) exp S0, (7.4)

7.1.4 Lower Bound on the Expected Channel Capacity E[C]

Let x, y be the first singular vectors of the estimated channel matrix M. The channel

capacity C is then given by,
C =logy (1 +p |mHHy|2>

For each of the bounds B;" derived in Section C > logs (1 + pB; 2) , with proba-
bility 1, as the bounds are deterministic.

Notice that B;" is a non increasing function of € and ¢; for given H.

Ife <tyand e; < ty, B (H,¢,¢1) > B (H,t1,ts).

For the matrix M, we have C > logs (1 +p (B;" (H,e, 61))2) > logo (1 + p (B (H,t1, tg))2),
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whenever € < ¢; and €; < t,, which holds with probability P(e < t1,¢; < o).

So, for a given ¢1,t5 > 0, and considering B7", we can state the following-

4\ 2
IH|* + G — F}
c>1 14
= L0g2 p(( 2(01+t2)

2 2\ ¢ 2 +
with probability p > (e—‘? S o s (%) — (N, + N}) eap (;—t)>

where G = ma:p((),al — tg);Fl = tl + \/HHH2 — O'% + 2t2(||H

N —O'1> +t%

Therefore the expected channel capacity can be bounded as follows-

ettt o 1 2 2\ T H|2+ 62— F2\T\?
B> [em 7 Y = <Q> — (Ny + Ny) exp (J) doga |14 p ((””71> )
i=NeNy 8\ 2 2ve 2 (o1 + t2)

pt2 oo 1 [ 2\7 - AN H|2 + 62 - F2\ T\’
E[C] > maz ||e” 2 > = <p71> — (Nr + N¢) exp <72> -loga 1+P<<HH+71> ) (7.5)
ty,to iy i\ 2 2ve 2 (o1 + t2)

7.1.5 Capacity Bound using B3

From Eq. we notice that B3 does not depend on €, allowing us to get a simplified
bound as follows:-

Consider a t; > 0, such that ¢ < ¢;. From Eq. we have Bf (H,¢) > Bf (H,t,),
as By is a non increasing function of e.

So, C > logs (1 +p(BF (H, e))2> > logs (1 +p(BF (H, tl))2>,with probability

P(e < t;).From Eq. and we bound the expected capacity E[C] as

g &1 p2! P+ ez — 2\ "\’
> —— L (P _ 1 — '3
s> ( 525 (5) ) (1o ((M50555) )
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which is true V¢; > 0 and where G; = max (0,01 — t1);

Fy=ty+\J|[H|]" = 03 + 20, (|| ]|, - 01) + . leading to,

i 1 12 ' ||H||2+G2—F2 i
o Z Pti 1 3
> —_ - +
E[C] n”%?x ¢ (i_—NN il ( 2 ) ) .log2 : g (( 2<61 6) ) )

(7.6)

7.1.6 Plot of Capacity and bounds

We consider mm-wave matrices (H € C'0*10) of rank 2 and measurement model as
in and plot the maximum capacity(assuming perfect knowledge of H)); observed

capacity(maximum achievable capacity,with M as the measured matrix) and the bounds

on expected capacity from Eq.[7.5|and as function of p(dB) in

Naive Algorithm Comparison of Observed Capacity with Analytical Bounds

30 T T T

T
Analytical E(C) with B1
Analytical E(C) with B,

——— Maximum Achievable Capacity|
25 Observed Capacity

20— —

Capacity (bps/Hz)
=
5}
T
|

0 10 20 30 40 50 60
p (dB)

Figure 7.1: Capacity of mmwave system using naive algorithm for beamforming

7.2 Nuclear norm minimization

As H is a low rank matrix (of rank utmost r), we could use nuclear norm minimiza-
tion (the best of low rank completion algorithms as seen in to recover H. This
requires O(nrlog®(n)) measurements to recover H. The following Fig. [7.2|is the mag-

nitude spectrum of reconstructed matrix with 200 measurements and illustrates the poor
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recovery of H € C%*%4 rank(H) = 4. It needs to be compared with the original spec-

trum, in Fig. 3.1} Let x, y be the left and right singular vectors corresponding to the

Magnitude Spectrum of Recovered Matrix-Nuclear norm imization with 200

70

Figure 7.2: Color Coded Magnitude Spectrum of Recovered matrix using Nuclear norm
min. with 200 measurements

spectral norm of the reconstructed matrix. It was observed that ‘:CH Hy‘ = 0.18904,
where o0, is the spectral norm of the original matrix. It is of no surprise that low rank
matrix completion algorithms perform poorer than compressed sensng algorithms, as

the later uses additional information that the signal is marginally sparse in DFT basis.

7.3 [; norm minimization

As H is marginally compressible in the DFT basis, we use compressed sensing to re-
cover H in an incoherent basis. Assuming /V; and /N, to be some powers of 2, we use

the discrete fourier basis to represent H as,

H= ZNT_l Nt_ Or1 B

2nk . _ 1\ 27k 27l No—1 2nl
where Bkl = [1 ejN __.ej(NT 1) Nr]T [1 63 Ny ]( t— )N ]

\/Nt
Let our measurements be Y; = (H,z;y7) = z#Hy;, V1 < i < m, where {z;y/}

denote the set of rank 1 sensing matrices. Let © denote the lexicographically ordered

version of {6, },1_,. We solve the following optimization:-
f {0} 1. We solve the following optimizat

2
minimize |©], subjectto <<H ziyl) — Zé’kl (B, x,yf[>> < €.

tyi

Note that the inner product of z;y” with {Bkl}k 111 can be easily computed , because
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it is the 2D DFT of z;y.

The following Fig. is the magnitude spectrum of reconstructed matrix with 200
measurements and is close to the original spectrum of H € C%*%4 rank(H) = 4 in
Fig.

If x, y are the left and right singular vectors corresponding to the spectral norm of the

reconstructed matrix(say H.g). For the realization in Fig. ]xH Hy‘ = 0.948704,

b IB-Heu

was close to
(H]|

where o is the spectral norm of the original matrix, even thoug
1. This is expected because spectral leakage makes the signal non sparse and we re-
cover largest components which significantly contribute to the largest singular vectors.

We could identify the actual frequencies by performing root music along a row and col-

2D FFT of estimated matrix before sinc interpolation(Error —5.13%)

70

Figure 7.3: Color Coded Magnitude Spectrum of Recovered matrix using /; norm min.
with 200 measurements

umn and matching these frequencies as described in [7.4.2] and then performing a least
squares fit(also described in [7.4.2)) to get a finer estimate of matrix H, whose magnitude
spectrum is plotted in For the above realization ]xH Hy‘ increased from 0.94870

to 0.96890; after refinement.

40



2D FFT of estimated matrix after sinc interpolation (Error — 3.11%)

70

Figure 7.4: Color Coded Magnitude Spectrum of Refined matrix using /; norm min.,
root music with 200 measurements

7.3.1 Experiment

We consider the same H and take 200 measurements for different values of p(dB). The
plots in Fig. [7.5] show the recovery by /; norm minimization for off the grid frequen-
cies and on the grid frequencies, along with the deterministic bounds of capacity using

Bi, By, Bs, By, and includes the training factor (1 — «).

7.3.2 Capacity Bounds for /; norm optimization

It is to be noticed that € and ¢; for the bounds were obtained from the error matrix,
difference between original and recovered matrix).

If a completely analytical bound is desired, then we have to use the /; norm recovery
guarantee in which becomes ||H — Hey - < 01% + C€noise

As the above gives a bound on € = || E|| ., we can use only Bs.

|H — Hg || - is the approximation error by picking the K largest coefficients of H,
which may all be concentrated around a single frequency component if it is large com-

pared to all the others. Hence,
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1, norm minimization, H 64x64-rank 4
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Figure 7.5: (a)Comparison of capacity for off the grid frequencies ;
(b)Comparison of capacity for on the grid frequencies

HH - HKHF S ”H - H/KHF = HZk Cre (ka,wyk) - Zk Cﬁce (w;’k’wz//k>”F’

I /I _ 2m Nyrewr
where ¢}, = ciby, and w), = fotround ( ).

HZk (cke (ka’wyk) — cpbre (w;‘k’w;k)) HF
= HZk Ck (e (wa%vak) — bee (wi/ﬂk7w?/4k)) HF

< Zk ’Ck| ||e (wzmwyk) — bye (wlxk’w;k) HF
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< Zk ’Ck| \/He (wu’vmwyk)H; + |bk|2 He (w;k,w;k)Hi -2 |b/€’ ‘<€ (ka’wyk) )€ (w;k,wék)ﬂ

2 2|b
< fex] \/1+ b — 2l

(g et (! o)
Let (XN e/ m5)™) = Dy, (o, — )

m=0 Tk

and ( ZHN;BI el (n—wy)n) = p N: (wy, —w!, )., where Dy denotes the dirichlet’s ker-

Uk
nel.

L G T LN G
VNN, )

To obtain a worst case bound, the above is maximized when |b;| =

As we estimate frequencies to a resolution of %, we have

[H—Hg || <ZCkJ1_
&

7.4 Spectral Compressed Sensing for Matrices

The spectral leakage issue in /; norm minimization can be overcome by using a param-
eterised model for compressed sensing. Recently M.F.Duarte developed spectral com-
pressed sensing ,a method to compressively recover a signal x € CV*!, which is a sum
of complex sinusoids, whose frequencies are not necessarily multiples of % using
O(rlog(n)) measurements. Note that increasing the FFT resolution, gives a sparser rep-
resentation of x, but increases the coherence between the DFT frame and measurement
basis. Several greedy algorithms are investigated in |Duarte and Baraniuk| (2013) and it
is shown that SIHT(Spectral Iterative Hard Thresholding) with root music performs the
best. We extend the above algorithm to matrices, which are marginally compressible in
the 2D DFT basis., and compressively estimate H € CV*Nt Let h € CN-Vex1 be the

lexicographically ordered version of H.

7.4.1 SIHT via rootmusic

Iterative hard thresholding is a greedy algorithm in compressed sensing. As we deal

with spectrally sparse matrices, we perform SIHT, using root music as follows:-
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Data: CSMatriz ® € C™*NeNr ‘measurements y=®h e
Initialization: Set )/(\0 =0,r=y,i1=0;

while ||ry|| > €

do | X, + RootMusic (matriz(x; + @"r), K)

2.r+y—®x;andi < i+ 1

end

Result: Output reconstructed matrix 5(\1
Algorithm: SIHT via root music

Note that X; is the vectorized version of X;.

7.4.2 Root Music algorithm

During SIHT, we need to accurately estimate the K largest frequency components. Us-

ing a DFT would limit our resolution to % So, we use root music algorithm.

Define I' = [e(wy,, wy, ) €(Way, Wy,) - - - €(wy, , wy, )], Where

_ 1 e 2jws. G(Np—Dwe 1T Gwy: 2wy, F(Nt—1)wy,
e(wxi,wyi)—\/mvecﬁle mi @wn el (Ne=Dwai |7 ] edwni @2 eI (NimDey ] )

Leta = [ayay...ax] , X be the lexicographically ordered version of X € CNr*Ne,

having K spatial frequency components.(x = vec(X)).Notice that x = T'a is a valid
model with w,,’s and w,,’s equal to the true value and the noisy model is given by,
x=Ta+n;n~CN(0,0%]).
with autocorrelation matrix Ry = E [x.x"] = TA’TH + o021
where A = diag (a).As K < N;N, and the frequencies are distinct , rank(FA*TH) =
K and it has K positive eigenvalues(say {:\;}nKzl), with others being zero.
Let {)\,} )" be the eigenvalues of Ry, we then have

N, + o2, n<K

o2 K <n < NN,

n?

Let GG be a matrix containing eigenvectors of Ry corresponding to the N; NV, — K small-

n

est eigenvalues. This implies
AK+1 0

R, G = G ' = 02G = T'A’THG + o2G Tt then follows that

0 A NN,
' G = 0 and the frequencies {(w,,,w,,)}:*, are the only solutions to
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e(wy,w2) TGGH e(wy,wy) = 0.

The root music algorithm searches for the roots of the polynomial p¥ (21, 22)GGHp(z1, 20)

for 21,20 € C, |21| = 1, |22 = 1, where p(z1, 22) = vec <[1 2 22 z{VT_I}T (12023 .. zévt_l})
It involves solving a polynomial of two variables of high degree, so we split this into

two independent 1D problems as follows:-

1. Compute frequency components along any column(say first column of X) to get

{wwi ilil
2. Compute frequency components along any row(say first row of X ) to get {w,, }1*,

3. Form a pairing matrix(P of size K x K), with

Py = \ (1 edom e2n;_edNr—Dem " X [1 edom e2ien | ea(NimD ] H\

4. Pick the index where the pairing matrix takes maximum( say at (i, jo)). Declare
the frequency pair as (w., ,w,; ). Set the it row and j¢" column to 0 and call the
new matrix as P. Repeat this step until we get K pairs.

With the paired frequencies we obtain I', while a can be found out by performing a
least squares fit to X.
a= (T7T) 7 Ty
It was observed in simulations that this pairing works well when frequencies are widely
separated. It is not the case for mm-wave systems as frequencies follow the arc sine
pdf, and are closely concentrated. Nevertheless, this method of pairing frequencies is
useful when the such a constraint is relaxed.
We could compressively sense the channel matrix along a row say 1st row [ receiver
fixes it’s gain as ej(doesn’t satisfy mmwave constraint) and transmitter uses CS vec-
tors] using SCS and obtain the frequencies of channel matrix along a row using CS.
Similarly we do the same for column sensing. Consider single component of the chan-
nel matrix of the form H' (m, n) = ¢ e/“=mei«vm,
Sensing it along a column gives us w,, as the frequency and ¢;e“ as the spectrum value
at that frequency. Similarly along a column we get w, and c;e/“~.
For multiple frequencies(say K) we get K such pairs along rows and columns respec-
tively. We need to combine them correctly. We cannot use the algorithm previously
described as we do not know the 2D DFT of H apriori. So, for each pair (w;, ¢;e7“7)
we compute the complex number c;e/“7.e7*i. Assuming the frequency components are
distinguishable(in terms of ¢, and w,, +w;, ), we match those frequencies that have min-
imum error between their computed complex number. Fig. Fig. illustrate

this procedure for compressive estimation of H € C'128%128 of rank 3.
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