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1 Abstract:

This thesis deals with the method and the extent to which Dynamic Power con-

sumption can be reduced by optimization done to the compiled code of RISC-V

ISA. The optimization in this method is done at post copilation level. This method

uses the RTL of the Target machine to decrease the dynamic power and so it is

machine dependent as opposed to machine independent compiler optimizations.

Though this thesis deals with the implementation of the method on RISC-V ISA,

it could very well be implemented on any other ISA.

2 Introduction:

Semiconductor technology is advancing every year, evolving and giving rise to

more compact, faster solutions. This is still best described by Moore's Law:

�the number of transistors per square inch, in a dense integrated circuit

will approximately double every two years�- Gordon Moore

With this rapid growth in technology, chip capacity has grown very fast and SOC(

System-On-Chip) has become very crucial to integrate hardware, applications and

software. Thus began the popularity of Embedded Systems in multimedia and

wireless applications. Most of these embedded solutions are portable.Hence reduc-

ing the energy dissipation without performance overhead has become a challenge.

Lesser Area and higher performance leads to high power dissipation. Power

management through techniques like Dynamic Voltage Scaling by Under-volting,
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Figure 1: CMOS Power Dissipation

or, Dynamic Frequency Scaling are ways to tackle the power issue but they come

short in terms of maintaining the performance. Thus, simply scaling voltage or

frequency to reduce power is insu�cient as the desired performance level cannot

be achieved. Hardware and software solutions that maintain performance while

reducing power consumption are required. This paper discusses a methodology

in this regard.

Power consumption in semiconductors can be divided into two categories in

Low Power design.Static dissipation, on one hand, is contributed by sub-threshold

conduction through OFF transistors and leakage through reverse-biased diodes.

Dynamic dissipation is due to charging and discharging of load capacitances and

short circuit current while both PMOS and NMOS networks are partially ON.

CMOS circuits are designed theoretically to not consume any power if their

inputs are not switching (or in the case of a latch, if there is no clock input. In

reality, all FET transistors leak current between the source and drain (if there is

a voltage potential across the source-drain) even if the gate voltage is in the o�

position. This current is called sub threshold current and used to be insigni�cant.

However, as devices have become smaller and smaller and operating voltages have

not scaled down with technology scaling (due to problems scaling the threshold

voltage), this sub threshold voltage is becoming an increasingly important com-

ponent of the total power of a chip.This becomes especially true in devices that
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have millions of these simultaneously leaky circuits, even if the device is not doing

anything. Early power managed devices (like microprocessors) were able to con-

trol power consumption in sleep modes by simply slowing or stopping the clock

(known as clock gating) but as static power consumption has increased, it has

become more important to consider techniques such as voltage islands on chips

where the voltage to large portions of a chip can be shut o� (or reduced) to reduce

the static leakage currents.

The dynamic power is the power associated with switching. Wires and inputs

to circuits (which are usually gate electrodes) can be modeled as capacitive loads

to the circuit. When the circuit has to switch from a high voltage to a low

voltage (or visa versa) then this capacitance has to be charged or discharged.

This takes a certain amount of energy and if you repeat this billions of times

every second, it becomes a continuous or AC power. There can also exist in

circuits an intermediate position where in the process of switching, there can

appear a direct path in the circuit between voltage and ground which can cause a

switching current that is resistive and therefore di�erent than the capacitive power

just described. This resistive current can be managed with non-overlapping clocks

in latch design, but this power may also be considered an dynamic power as it

only occurs when circuits are switching.In logic design, dynamic power increases

whenever logic toggles from 1 to 0 or 0 to 1. And we will be concentrating on

reducing this Dynamic Power as this is the major contributor for power dissipation

in CMOS systems.

3 Power Aware Compilation

Energy Aware systems, that is systems that try to control it's power consumptions

are common in today's system design. Every code designed for a speci�c set of

operations consume energy for its computation. Hence leads to the necessity to

optimize the code from an energy consumption perspective.There are two design

methodologies to reduce energy consumption in embedded computing systems

� Hardware Approach: This method involves checking leakage current in the

integrated circuits, designing alternatives that reduce heat dissipation namely

Register assisted techniques, Low Power cache, Partitioned Data Cache.
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Other techniques include Register spilling, Memory access due to cache

misses.

There are already fair amount of traditional optimizations built into compilers like

Instruction scheduling, Register Allocation, Loop optimizations etc. All these op-

timizations are independent of the target machine and hence would miss out on

better machine speci�c software optimizations. The methodology dealt with in

this thesis is a software optimization technique that avails the hardware speci�-

cations of the target.

� Software Approach: While hardware optimizations has been the primary fo-

cus of multitude of studies and are fairly advanced, software approaches to

optimizing power are relatively young. Progress in understanding the im-

pact of traditional compiler optimizations and developing new power-aware

compiler optimizations are important to overall system energy optimization.

Software has a signi�cant impact on the overall energy consumption being

the main determinant for activity on the processor core, interconnect and

memory system, which are, collectively, responsible for signi�cant percent-

age of total power dissipation. Despite this observation, to date, most of

the compiler techniques consider only delay and area as their main perfor-

mance metrics. With the growing demand for power-aware software, there is

an acute need for investigating energy-oriented compilation techniques and

their interaction and integration with performance-oriented compiler opti-

mizations.

3.1 Methodology:

In logic design, dynamic power increases whenever logic toggles from 1 to 0 or

0 to 1. Hence, we would be targeting on reduction of this Dynamic Power by

decreasing the total number of toggles in the processor during computation of the

code. The optimization would not be done at the compiler level, or on High Level

Language. Instead it is done at post-compilation level on the raw machine code

that is generated.

The object code generated after compilation is a set of instructions that are

speci�c to the architecture of the hardware. These instructions are part of the ISA
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upon which the hardware is designed. Given a code to be optimized, the order of

these set of instructions is not completely bound. The order of two instructions

can be changed as long as there is no dependency between them.

There are two types of dependencies between instructions that govern their

order of execution.They are Data dependency and Control dependency.

A data dependency is a situation in which a program statement or instruction

refers to the data of a preceding statement.Recklessly executing multiple instruc-

tions without considering related dependences may cause danger of getting wrong

results, namely hazards.Three cases exist:

1. Flow (data) dependence: This dependency occurs where an instruction refers

to a result that has not yet been calculated or retrieved. This can occur be-

cause even though an instruction is executed after a previous instruction, the

previous instruction has not been completely processed through the pipeline.

2. Anti-dependence: An anti-dependency, also known as write-after-read (WAR),

occurs when an instruction requires a value that is later updated.

3. Output dependence: An output dependency, also known as write-after-write

(WAW), occurs when the ordering of instructions will a�ect the �nal output

value of a variable.

Consider two instructions i and j, with i occurring before j. The possible data

dependencies are:

� RAW (read after write) - j tries to read a source before i writes it, so j

incorrectly gets the old value.

� WAW (write after write) - j tries to write an operand before it is written by

i. The writes end up being performed in the wrong order, leaving the value

written by i rather than the value written by j in the destination.

� WAR (write after read) - j tries to write a destination before it is read by i ,

so i incorrectly gets the new value.

Intuitively, there is control dependence between two statements S1 and S2 if

� S1 could be possibly executed before S2
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� The outcome of S1 execution will determine whether S2 will be executed.

After performing dependency analysis on this code, we will generate all the possi-

ble permutations of the program that are valid , that is they do not compromise

the integrity of the code. Each such permutation will be run on the RTL of the

hardware and the power consumption will be estimated based on the number of

toggles. The best among all these permutations would be chosen to be loaded into

the embedded processor which will execute the code many multiples of times, sav-

ing power enormously. Though this idea seems simple there are many intricacies

involved which will be further discussed as we go along. As it can be observed,

this methodology is neither bound by any ISA nor by any RTL. Given a way to

implement it on a speci�c ISA, it can be applied to any RTL of the ISA. But

for the sake of convenience this paper is limited to such analysis on the RISC-V

Architecture.

4 RISC-V ISA:

RISC-V is an open source implementation of a reduced instruction set comput-

ing (RISC) based instruction set architecture (ISA). An instruction set is not a

computer design, but a description of the bit-patterns of the instructions for a

computer. The ISA de�nes the boundary between the electronics and the soft-

ware. The ISA is one of the most important interfaces in a computer system.

Most ISAs are commercially protected by patents, preventing practical e�orts to

reproduce the computer systems. In contrast, RISC-V is open, permitting any

person or group to construct compatible computers, and use associated software.

RISC-V has 32 integer registers and can have 32 �oating-point registers. The

memory is addressed by 8-bit bytes. The instructions must be aligned to 32-bit

addresses. Register number 0 is a constant 0. The assembler uses register 0 as a

place-holder to make any of several human-readable instructions into one machine

instruction. The only instructions that access main memory are loads and stores.

All arithmetic and logic operations occur between registers. The instruction set

includes other features to increase a computer's speed, while reducing its cost and

power usage. These include placing most-signi�cant bits at a �xed location to

speed sign-extension, and a bit-arrangement designed to reduce the number of
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Figure 2: RISC-V base instruction formats showing immediate variants

Figure 3: JAL Instruction for RISC-V ISA

multiplexers in a CPU.

RISC-V intentionally lacks condition codes, and even lacks a carry bit.Instead

RISC-V builds comparison operations into its conditional-jumps.Use of compar-

isons may slightly increase its power usage in some applications. The lack of a

carry bit complicates multiple-precision arithmetic. RISC-V does not detect or

�ag most arithmetic errors, including over�ow, under�ow and divide by zero.RISC-

V also lacks the "count leading zero" and bit-�eld operations normally used to

speed software �oating-point in a pure-integer processor.

In the base ISA, there are four core instruction formats (R/I/S/U), as shown

in Figure. All are a �xed 32 bits in length and must be aligned on a four-byte

boundary in memory. An instruction address misaligned exception is generated

if the pc is not four-byte aligned on an instruction fetch.

Unconditional Jumps The jump and link (JAL) instruction uses the UJ-type

format, where the J-immediate encodes a signed o�set in multiples of 2 bytes.

The o�set is sign-extended and added to the pc to form the jump target address.

Jumps can therefore target a ±1 MiB range. JAL stores the address of the

instruction following the jump (pc+4) into register rd. The standard software

calling convention uses x1 as the return address register. Plain unconditional

jumps (assembler pseudo-op J) are encoded as a JAL with rd=x0.
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Figure 4: JALR Instruction for RISC-V ISA

Figure 5: Conditional Branch Instructions

The indirect jump instruction JALR (jump and link register) uses the I-type

encoding. The target address is obtained by adding the 12-bit signed I-immediate

to the register rs1, then setting the least-signi�cant bit of the result to zero. The

address of the instruction following the jump (pc+4) is written to register rd.

Register x0 can be used as the destination if the result is not required.

All branch instructions use the SB-type instruction format. The 12-bit B-

immediate encodes signed o�sets in multiples of 2, and is added to the current pc

to give the target address. The conditional branch range is ±4 KiB.

Branch instructions compare two registers. BEQ and BNE take the branch if

registers rs1 and rs2 are equal or unequal respectively. BLT and BLTU take the

branch if rs1 is less than rs2, using signed and unsigned comparison respectively.

BGE and BGEU take the branch if rs1 is greater than or equal to rs2, using

signed and unsigned comparison respectively. Note, BGT, BGTU, BLE, and

BLEU can be synthesized by reversing the operands to BLT, BLTU, BGE, and

BGEU, respectively.

Load and store instructions transfer a value between the registers and memory.

Loads are encoded in the I-type format and stores are S-type. The e�ective byte

address is obtained by adding register rs1 to the sign-extended 12-bit o�set. Loads
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Figure 6: Memory Instructions in RISC-V ISA

copy a value from memory to register rd. Stores copy the value in register rs2 to

memory.

The F (Floating Point) extension adds 32 �oating-point registers, f0�f31, each

32 bits wide, and a �oating-point control and status register fcsr, which contains

the operating mode and exception status of the �oating-point unit.The rest is

similar to that of the Integer base instructions.

4.1 RISC-Tool Chain :

The RISC-V toolchain is a standard GNU cross compiler tool-chain ported for

RISC-V. You will use riscv-gcc to compile, assemble, and link your source �les.

riscv-gcc behaves similarly to the standard gcc, except that it produces binaries

encoded in the RISC-V instruction set. These compiled binaries can be run on

spike, the RISC-V ISA simulator. They can also be used to generate a hexadecimal

list of machine code instructions that can be loaded into the instruction memory

of a simulated (or real) processor.

A cross compiler is used to generate the compiled code speci�c to the particular

ISA, as mentioned in the earlier sections. A cross compiler is a compiler capable of

creating executable code for a platform other than the one on which the computer

is running. �risc-v gcc� is the cross compiler tool used in this project to produce

the compiled code speci�c to RISC-V ISA.

The RISC-V ISA speci�cation de�nes the desired behavior of a RISC-V pro-

cessor. The RISC-V Rocket core, a micro-architecture developed by the Berkeley

Architecture group that implements the 32-bit instruction format of the RISCV64

ISA .
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Figure 7: RISC-V Tool Flow

VCS compiles Verilog source �les into a native binary that implements a sim-

ulation of the Verilog design. VCS can simulate both behavioral and RTL level

Verilog modules. In behavioral models, a module's functionality can be described

more easily by using higher levels of abstraction. In RTL descriptions, a module's

functionality is described at a level that can be mapped to a collection of registers

and gates.

4.2 Rocket Core :

Rocket core is used as the Target Machine for all the simulations. Rocket is a

6-stage single-issue in-order pipeline that executes the 64-bit scalar RISC-V ISA.

Rocket implements an MMU that supports page-based virtual memory and is

able to boot modern operating systems such as Linux. Rocket also has an op-

tional IEEE 754-2008-compliant FPU, which implements both single- and double-

precision �oating-point operations, including fused multiply-add. To instantiate

a Rocket core, Rocket chip generator found in the rocket-chip git repository is

used.

Rocket is an in-order, single-issue scalar processor that includes a six-stage

integer pipeline. It has a 31-entry, 64-bit register �le and uses a scoreboard

to detect data hazards involving instructions with multi-cycle latencies. The
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processor has both a user and a supervisor mode; an synchronous trap or external

(asynchronous) interrupt can trigger a transition from user to supervisor mode.

The Rocket core contains a fast L1 instruction cache and L1 data cache. In

Rocket, these caches communicate through a simple bus to a simulated DRAM

that acts as main memory for the system.

5 Algorithm :

The Algorithm optimizes the RISC-V Machine code that is generated after the

compilation of the source code from Fig7. After the optimization, the new code

retains it's functionality. This Algorithm is a step by step optimization of in-

dependent blocks of the machine code, where there is a linear transfer of pro-

gram control �ow between each block, called Basic Blocks. Each basic block goes

through a dependency analysis to generate a Directed Acyclic graph. This DAG

is then topologically sorted to get a level ordering. Maintaining this level order, a

rearrangement of this machine code (one basic block at a time) which generates
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a lower number of toggles, is then chosen with the help of simulations done on

the target processor. Hence the best way to describe this Algorithm is that it is

a Machine dependent Optimization.

5.1 Construction of Basic Blocks :

In the �rst stage of the Algorithm, the input machine code is converted into a set

of basic blocks. A basic block is a sequence of consecutive statements in which

control enters at the beginning and leaves at the end without halt or possibility

of branching except at the end. So, The code in a basic block has:

� One entry point, meaning no code within it is the destination of a jump

instruction anywhere in the program.

� One exit point, meaning only the last instruction can cause the program to

begin executing code in a di�erent basic block.

The input is in hex where each line has four instructions. It is the standard

format in which the rocket-chip simulation accepts the inputs. The basic blocks

are generated by �rst, identifying the leaders in the code. Leaders are instructions

which come under any of the following 3 categories :

� The �rst instruction is a leader.

� The target of a conditional or an unconditional branch/jump instruction is

a leader.

� The instruction that immediately follows a conditional or an unconditional

branch/jump instruction is a leader.

Then starting from a leader, the set of all following instructions until and not

including the next leader is the basic block corresponding to the starting leader.

For this each and every instruction is decoded and leaders are identi�ed.

Once all the basic blocks are generated, each line in the basic block corresponds

to one instruction in binary.

from the basic blocks generated a Flow Graph is constructed. A �ow graph

is a directed graph. The nodes in the �ow graph are Basic Blocks. There is an
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edge from B1 to B2 if and only if B2 immediately follows B1 in some execution

sequence. If B2 immediately follows B1 in program text there is a jump from B1

to B2.B1 is a predecessor of B2, B2 is a successor of B1.

The code to implement this part, for convenience in text formatting, is written

in Perl.

5.1.1 Implementation:

#!/usr/bin/perl

print "$ARGV[0]\n" ;

open(FH, "<$ARGV[0]") or die "Couldn't open file file.txt, $!";

open(FH1, ">block.hex") or die "Couldn't open file file.txt, $!";

while($line = <FH>){

chomp($line);

$temp1 = $line;

$temp1 =~ s/^[0-9,a-f]{16}//;

$temp_1=$temp1;

$temp_1 =~ s/^[0-9,a-f]{8}//;

$temp_2=$temp1;

$temp_2 =~ s/[0-9,a-f]{8}$//;

$temp2 = $line;

$temp2 =~ s/[0-9,a-f]{16}$//;

$temp_3=$temp2;

$temp_3 =~ s/^[0-9,a-f]{8}//;

$temp_4=$temp2;$temp_4 =~ s/[0-9,a-f]{8}$//;

$var1 = unpack('B*',pack('H*',$temp_1));

$var2 = unpack('B*',pack('H*',$temp_2));

$var3 = unpack('B*',pack('H*',$temp_3));

$var4 = unpack('B*',pack('H*',$temp_4));

print FH1 "$var1\n$var2\n$var3\n$var4\n"; }

close(FH);

close(FH1);

In this above lines of perl code the input �le is passed to the program as an

argument. This �le is in hex and has four risc-v instructions in each line. This

code reads each line separates them, then unpacks the hex code and packs them

into binary risc-v instructions each in one line in a �le �block.hex�.

$pc=1;

open(FH2, "<block.hex") or die "Couldn't open file file.txt, $!";

open(FH3, ">final.hex") or die "Couldn't open file file.txt, $!";
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while($var = <FH2>)

{

chomp($var);

if($var =~ /1100011$/ || $var =~ /1100111$/ || $var =~ /1101111$/)

{

push(@comm,$pc);

@abs=split('',$var);

if($var=~/1101111$/)

{

@imm=@abs[0,0,0,0,0,0,0,0,0,0,0,0,0,12,13,14,15,16,17,18,19,11,1,2,3,4,5,6,7,8,9,10];

$s_imm=join('',@imm);

$offset=bin2dec($s_imm);

if($offset != 0)

{

$lead = $offset/2 + $pc;

push(@leaders,$lead);

}

}

if($var=~/1100011$/)

{

@imm2=@abs[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,1,2,3,4,5,6,20,21,22,23];

$s_imm2=join('',@imm2);

$offset2=bin2dec($s_imm2);

if($offset2 != 0)

{

$lead2=$offset2/2+$pc;

push(@leaders,$lead2);

}

}

}

$pc=$pc+1;

}

sub bin2dec

{

@as=@_;

@ad=split('',$as[0]);

if($ad[0] eq '1')

{

$ab=4294967296-unpack("N", pack("B32", substr("0" x 32 . shift, -32)));

return -$ab;

}

else{return unpack("N", pack("B32", substr("0" x 32 . shift, -32)));}

}
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The above lines of code read each instruction and identi�es jump and branch

instructions using the op-code. Once these instructions are identi�ed, the target

of the jump or branch needs to be calculated . This is done using the o�set

stored in the variable of the same name, calculated from the immediate part of

these instructions stored in the array @imm. It is to be remembered that, the

immediate encodes a signed o�set in multiples of 2 bytes. But the pc variable

is just a counter and the original program counter, hence only half the o�set is

added to correct the issue. The o�set is sign-extended and added to the pc to form

the jump target address. The o�set is calculated in decimal using the bin2dec

subroutine.

@leaders=sort(@leaders);

@leaders=unique(@leaders);

my %array2_elements;

@array2_elements{ @comm } = ();

@leaders = grep ! exists $array2_elements{$_}, @leaders;

@origleaders=@leaders;

close(FH2);

sub unique

{

my %seen;

grep !$seen{$_}++, @_;

}

The pc value pointing to each leader is stored in the leaders array. This array

is sorted i-e the leader which is �rst executed is has lower index. This sorted array

may have redundant entries, and such redundancy is removed using the �unique�

sub routine.

open(FH4, "<block.hex") or die "Couldn't open file file.txt, $!";

$pc1=1;

while($var1 = <FH4>)

{

chomp($var1);

if($var1 =~ /1100011$/ || $var1 =~ /1100111$/ || $var1 =~ /1101111$/)

{

print FH3 "$var1\n\n";

}

elsif($pc1==$leaders[0])
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{

shift(@leaders);

print FH3 "****************\n$var1\n";#identifier for leaders of the basic

block.

}

else

{

print FH3 "$var1\n";

}

$pc1 = $pc1+1;

}

close(FH3);

close(FH4);

This part of the code takes the leaders and separates the basic blocks using

identi�ers so that the other programs can recognize them. The ��nal.hex� has the

modi�ed machine code with the basic blocks identi�ed.

5.2 DAG Generation for each basic block :

In the second part, a dependency analysis is to be done on each basic block.

Dependence analysis produces execution-order constraints between statements or

instructions. Broadly speaking, a statement S2 depends on S1 if S1 must be

executed before S2. If a computational problem can be divided into a number of

subtasks, the data dependencies between these subtasks are usually described by

means of a Directed Acyclic Graph (DAG).

A Directed Acyclic graph (DAG ), is a directed graph with no directed cycles.

That is, it is formed by a collection of vertices and directed edges, each edge

connecting one vertex to another, such that there is no way to start at some

vertex v and follow a sequence of edges that eventually loops back to v again

A DAG allows multiple parents for each node. Both a tree and a DAG have a

distinguished root. There are no cycles in the graph.

There are three possible data dependencies (RAR, RAW, WAW) that exist in

the basic block. These dependencies provide the constraints for constructing the

edges in the DAG. Each node in the DAG corresponds to an instruction in the

basic block and each edge in the DAG corresponds to a data dependency between

those two nodes. To check it there is an edge between any two nodes (instructions)
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the source and destination registers of the two instructions are checked to see if

there is one of the three dependencies. Data dependency check is done on all the

possible pair of nodes in the basic block to generate the DAG.

5.2.1 Implementation:

#! /usr/bin/python

def type_of_ins(temp):

opcode = temp[-7:]

if (opcode == "0110011") or (opcode == "0111011"):

return temp[-20:-15],temp[-25:-20],temp[-12:-7]

elif (opcode == "0000011") or (opcode == "0010011") or (opcode= "0011011") or

(opcode= "1100111") :

return temp[-20:-15],"",temp[-12:-7]

elif (opcode= "1100011") or (opcode= "0100011"):

return temp[-20:-15],temp[-25:-20],""

elif (opcode= "1101111") or (opcode= "1110011") or (opcode= "0110111") or

(opcode= "0010111"):

return "","",temp[-12:-7]

elif (opcode= "1010011"):

if (opcode=="0101100") or (opcode=="1100000") or (opcode=="1110000") or

(opcode=="1101000") or (opcode=="1111000"):

return temp[-20:-15],"",temp[-12:-7]

else:

return temp[-20:-15],temp[-25:-20],temp[-12:-7]

elif (opcode= "1110011"):

if(temp[-15:-12]=="001"):

return temp[-20:-15],"",temp[-12:-7]

else:

return "","",temp[-12:-7]

elif (opcode= "0001111") or (opcode= "0000000"):

return "","",""

else:
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print "Error. Instruction:",temp

sys.exit(1)

The above python function is de�ned to decode a RISC-V instruction that is

given to it as an input. It decodes the instruction and determines the source

registers and destination registers. There can be at most two source registers

and one destination register. Absence any one of these registers, the function

will return an empty string. The purpose for this function to help detect the

dependencies in a basic block.

os.system("./basicblocks.pl <path to input hex code>")

f1= open("final.hex","r")

l=f1.readlines()

l=l[2048:]

lll = []

w=0

lll.append([w])

for i in l:

if (i=='\n' or i=="****************\n"):

w=w+1

lll.append([w])

else:

lll[w].append(i)

f1.close()

The basic block script is called upon to generate basic blocks and the output

is stored in ��nal.hex� . The �rst 2048 instructions in the generated �le are null

instructions. During simulation of the rocket-chip the pc is set to start from

0X2000 , hence the �rst 512 lines of the input �le are always zero's . Since these

are of no consequence, these are omitted and rest are stored in the 'l' variable.

Then using the identi�ers, basic block are stored in the variable 'lll' which is a

list of lists in python. Each element of this list corresponds to a basic block. The

�rst elements of these sub-lists are the index numbers of the corresponding basic

blocks and all the remaining elements are the instructions present in those basic

blocks.

for q in range(w+1):
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d = []

for z in range(q):

for c in lll[z][1:]: d.append(c)

l = lll[q][1:-1]

k = len(l)

for j in range(k):

l[j]=l[j].strip()

n=0

dag=[]

while n<k:

dag.append([n])

n=n+1

for i in range(k):

temp1 = l[i]

src1a,src2a,desa = type_of_ins(temp1)

for j in range(i+1,k):

temp2 = l[j]

src1b,src2b,desb = type_of_ins(temp2)

if ((desa==src1b or desa==src2b) and desa is not "") or ((desb==src1a or

desb==src2a) and desb is not "") or (desa==desb and desa is not ""):

dag[i].append(j)

Each iteration of the main for loop corresponds to optimization of each ba-

sic block. The last instruction of the basic block is either a jump or a branch

statement, and hence it would not be rearranged.

All the instructions that are to be rearranged, are stored in 'l'. The DAG to

be generated is stored in list variable 'dag'. The dag variable is constructed in

the following manner:

� Each element is a list

� All the elements other than the �rst element in that sub-list corresponds to

the adjacency list of the �rst element of that list i-e there exists an edge

between the �rst element and each of the rest of the elements.

� The edge that exists is directed from the �rst element to the other elements.

The code takes all possible pairs of instruction in a basic block and checks for

dependencies using the 'type_of_ins' function and its output. The DAG is up-

dated whenever such dependency is detected. This dag is then further used for

generating the possible topological sorts.
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5.3 Level order sorting of DAG :

Every directed acyclic graph has a topological ordering, an ordering of the vertices

such that the starting node of every edge occurs earlier in the ordering than the

ending node of the edge. In general, this ordering is not unique, a DAG has a

unique topological ordering if and only if it has a directed path containing all the

vertices, in which case the ordering is the same as the order in which the vertices

appear in the path. So any two graphs representing the same partial order have

the same set of topological orders.

In the third part, the DAG that is generated is topologically sorted. A level

order sorting is performed on the DAG of each basic block one at a time. At each

level there can be many nodes. Suppose there are 'n' nodes at a particular level,

then there can be n! di�erent rearrangements, each having the same functionality.

It is to be noted that not all possible topological sorts are used. Simulating all

the possible arrangements on the target processor is too complex . Hence the aim

would be to generate a better solution than the best.

So we would reorder the DAG level wise, one level at a time .One of such

arrangement corresponds to least number of toggles , i-e the least amount of dy-

namic power consumption.That order would be retained as the algorithm traverses

through the DAG.

All the di�erent rearrangements in that level of the basic block are simulated

keeping the other basic blocks intact and the number of toggles (dynamic power)

consumed in each case can be observed through Value Change Dump (VCD).

Value change dump (VCD) is an ASCII-based format for dump �les generated

by EDA logic simulation tools. The VCD �le comprises a header section with

date, simulator, and timescale information, a variable de�nition section, and a

value change section. The number of lines in value change section in the VCD

�le determines the number of toggles in that particular simulation.Hence the

arrangement with the least number of lines the VCD �le would determine the

optimal solution.

One thing to note is before simulating each rearrangement, the format of the

input that is to be given to Rocket core should be changed to original format i.e.

four instructions per line in hex. The rearrangement with least power is the best
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case and we �x this order in this level. Then the same process is repeated for all

the further levels. Once all the levels are done, the best power optimized code

for the �rst basic block is generated and the original code of this basic block is

replaced with this code. Then the same process is repeated for all the other basic

blocks as well. When the last basic block is done, the best power optimized code

for all the basic blocks are got. Since all the initial basic block codes are replaced

with these power optimized codes, we get the �nal power optimized code for the

given input hex code. The second part and the third part of the algorithm is

written in python.

5.3.1 Implementation:

n=0

X = []

Y = []

bp = []

while(len(Y)<k):

X = []

for i in range(k):

temp = 0

for j in dag:

if ((dag.index(j) != i) and (i in j) and (dag.index(j) not in Y)):

temp = 1

break

if (temp==0 and (i not in Y)):

X.append(i)

permutations_of_X = list(itertools.permutations(X))

Y = Y + X

cnt = 0

vcd_list = []

jobs = []

bcd_list = Queue()

for i in permutations_of_X:

f2= open("input.hex","w")

for c in d: f2.writelines(c)

for wr in bp:

f2.write(l[wr]+'\n')

for p in i:

f2.write(l[p]+'\n')

for j in range(k):
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if(j not in Y):

f2.write(l[j]+'\n')

f2.write(lll[q][-1])

for v in range(q+1,w+1):

for e in lll[v][1:]: f2.writelines(e)

f2.close()

#Reformatting to four instructions in hex per line

fr = open("input.hex","r")

fw = open("inputv2"+str(cnt)+".hex","w")

l2=fr.readlines()

k2 = len(l2)

i2 = 0

for lol in range(512):

fw.write("00000000000000000000000000000000\n")

for line2 in l2:

line2 = line2.strip()

if(i2==0):

x2 = line2

i2 = 1

elif(i2==1):

x3 = line2

i2 = 2

elif(i2==2):

x4 = line2

i2 = 3

elif(i2==3):

x5 = line2

fw.write("{0:0>8x}".format(int(x5, 2)) + "{0:0>8x}".format(int(x4, 2))

+ "{0:0>8x}".format(int(x3, 2)) + "{0:0>8x}".format(int(x2, 2)) +

'\n')

i2 = 0

if(i2==1):

fw.write("{0:0>8x}".format(int("0", 2)) + "{0:0>8x}".format(int("0", 2))

+ "{0:0>8x}".format(int("0", 2)) + "{0:0>8x}".format(int(x2, 2)) +

'\n')

if(i2==2):

fw.write("{0:0>8x}".format(int("0", 2)) + "{0:0>8x}".format(int("0", 2))

+ "{0:0>8x}".format(int(x3, 2)) + "{0:0>8x}".format(int(x2, 2)) + '\n')

if(i2==3):

fw.write("{0:0>8x}".format(int("0", 2)) + "{0:0>8x}".format(int(x4, 2)) +

"{0:0>8x}".format(int(x3, 2)) + "{0:0>8x}".format(int(x2, 2)) + '\n')

fw.close()

fr.close()
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#Reformatting done

if(cnt == 9):

p = Process(target=run,args=(cnt,))

jobs.append(p)

cnt = -1

for xy in jobs:

xy.start()

#wait for prev 10 jobs to be done

for xy in jobs:

xy.join()

tcd = [bcd_list.get() for xy in jobs]

vcd_list= vcd_list + tcd

print "tcd_list = ",vcd_list

jobs = []

bcd_list = Queue()

else:

p = Process(target=run,args=(cnt,))

jobs.append(p)

cnt = cnt+1

xyz = xyz+1

if cnt!=10:

for xy in jobs:

xy.start()

for xy in jobs:

xy.join()

tcd = [bcd_list.get() for xy in jobs]

vcd_list= vcd_list + tcd

abc = 0

lowest = vcd_list[0]

l_i = 0

for count in vcd_list:

if(count<lowest):

lowest = count

l_i = abc

abc = abc + 1

#bp is updated

for stuff in permutations_of_X[l_i]:

bp.append(stuff)

bbp = []

g = 0; fl=1

for u in bp:

bbp.append(lll[q][fl+u])

g = g+1
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for ind in range(g): lll[q][fl+ind] = bbp[ind]

def run(count):

os.system("./simv-DefaultVLSIConfig-debug15 -q +ntb_random_seed_automatic

+dramsim +verbose +vcdfile=ss"+str(count)+".vcd +max-cycles=100000000

+loadmem=inputv2"+str(count)+".hex 2> sss"+str(count)+".out")

x = sum(1 for line in open("ss"+str(count)+".vcd"))

bcd_list.put(x)

In the code above, X is the list that has all the instructions which are in a

level that is going be optimized in this iteration. Once a level is optimized the

outward edges from instructions at this level are not considered as inward edges

for instructions of further levels. So the instructions in X don't have any inward

edges. To compute X, a loop is used which iterates over all instructions in a basic

block. Each instruction in the basic block is checked for any inward edges, and

those with none are added to X .

The �Y� is a list that contains the instructions in the levels that have been

optimized. After X is computed, the simulations corresponding to all possible

rearrangements in the current level are executed. All the instructions of the

preceding basic blocks are updated in list �d�. Similarly all the instructions of the

preceding levels in the current basic block are updated in list �bp�.

So, to run a simulation, �rstly all the instructions in �d� and then the in-

structions in �bp� are written into a �le. The rearrangement of the instructions

in current level, the remaining instructions in the current basic block, and the

instructions of successive basic blocks are written without change.

The format is changed from one instruction in binary per line to four in-

structions in hex per line and can now be run using simulator. All the di�erent

rearrangements of a current level are simulated and the VCD �les of each sim-

ulation are read. The VCD �le is used to calculate the number of toggles. The

one with least number of toggles is retained at that level for further simulations.

The variable �bp� is updated with this best possible rearrangement of the current

level.

The same process is repeated for all the levels iteratively. All the levels are

done when the length of list �Y� becomes equal to �k� i.e. length of basic block.

At that time �bp� has all the optimum rearrangements at all the levels i.e. best

possible order of instructions for the current basic block . After the completion
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of a basic block, the original order of instructions in that basic block in list �lll�

is replaced by optimized order of instructions.

5.4 Parallel Processing:

The python code also includes multi-threading and parallel processing. There are

multiple simulations that need to be executed, where each simulation is indepen-

dent of the other. Hence there is potential for parallelization. It is time consuming

to get the �nal power optimized code for large inputs of hex code. So, for that

reason, using multi-threading constructs in python to execute simulations in par-

allel which reduces the time taken to a great extent. Multiprocessing package

available in python can be used to implement this.

Depending on the application, two common approaches in parallel program-

ming are either to run code via threads or multiple processes, respectively. Once

"jobs" are submitted to di�erent threads, those jobs can be pictured as "sub-

tasks" of a single process and those threads will usually have access to the same

memory areas (i.e., shared memory). This approach can easily lead to con�icts

in case of improper synchronization, for example, if processes are writing to the

same memory location at the same time.A safer approach (although it comes with

an additional overhead due to the communication overhead between separate pro-

cesses) is to submit multiple processes to completely separate memory locations

(i.e., distributed memory): Every process will run completely independent from

each other.

Multiprocessing is a package that supports spawning processes using an API

similar to the threading module. The multiprocessing package o�ers both local

and remote concurrency, e�ectively side-stepping the Global Interpreter Lock by

using subprocesses instead of threads. Due to this, the multiprocessing module

allows the programmer to fully leverage multiple processors on a given machine.

The above code simulates 10 simulations in parallel. The variable 'cnt' counts

from 0 to 9, as jobs are added to start. Once count becomes 9 all the jobs are

started. The code waits till all the 10 jobs are completed. Each job takes up

a separate thread. The results of all the ten simulations are queued and are

stored in 'bcd_list' and �nally added to 'vcd_list'. Once all the permutations in

a particular level are completed, the least number of toggles is 'min(vcd_list)'.
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The run function is called for each permutation which calls the command for

simulation.

6 Output �le:

6.1 Veri�cation of functionality:

The �nal optimized code should have the same functionality as the original code.

The integrity of the code should not su�er due to the rearrangements. While

simulating the Rocket core, an output �le and VCD �le are generated. The

output �le contains a cycle-by-cycle dump of write-back stage of the pipeline.

To verify this, the destination registers of each instruction, updated at the

write-back stage are dumped into the output �le. The output �les of both the

optimized code and the original code are compared to verify the functionality. The

order of the destination register in both the �les need not be the same. Hence both

the �les are sorted, and compared line by line to verify the functionality. It is to

be noted that only valid write back stages are to be considered, that is whenever

the processor encounters a branch or a jump statement, all the instructions inside

the pipeline are cleared, hence such instructions executed in the write back stage

are not valid. To clearly distinguish the valid write back stage, register value is

only dumped when the write back is valid indicated by a boolean check bit.

os.system("sort original.out -o file1.out && sort optimized.out -o file2.out && comm

-3 file1.out file2.out >>file3.out")

difference = sum(1 for line in open('file3.out'))

if(difference>0):

print "difference = ",difference

sys.exit(1)

A sample of the output �le :

W[ r 2=0000000006db6db7 ] [ 1 ]

W[ r 2=0000006db6db7000 ] [ 1 ]

W[ r 1=0000000000008000] [1 ]

W[ r 2=0000000006db7000 ] [ 1 ]

W[ r 2=0000006db6db6db7 ] [ 1 ]

W[ r 3=6db6db6db6dbebb7 ] [ 1 ]

W[ r 2=0006db6db6db7000 ] [ 1 ]

W[ r 2=0006db6db6db6db7 ] [ 1 ]
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W[ r 2=6db6db6db6db7000 ] [ 1 ]

W[ r 1=0000000000007 e00 ] [ 1 ]

W[ r 3=0000000000001200] [1 ]

Sorting it would result in :

W[ r 1=0000000000007 e00 ] [ 1 ]

W[ r 1=0000000000008000] [1 ]

W[ r 2=0000000006db6db7 ] [ 1 ]

W[ r 2=0000000006db7000 ] [ 1 ]

W[ r 2=0000006db6db6db7 ] [ 1 ]

W[ r 2=0000006db6db7000 ] [ 1 ]

W[ r 2=0006db6db6db6db7 ] [ 1 ]

W[ r 2=0006db6db6db7000 ] [ 1 ]

W[ r 2=6db6db6db6db7000 ] [ 1 ]

W[ r 3=0000000000001200] [1 ]

W[ r 3=6db6db6db6dbebb7 ] [ 1 ]

6.2 Resolving JALR instruction:

In the indirect jump instruction JALR (jump and link register) the target address

is obtained by adding the 12-bit signed I-immediate to the register rs1, then

setting the least-signi�cant bit of the result to zero. The address of the instruction

following the jump (pc+4) is written to register rd.

Hence unless and until all the instructions preceding the JALR instruction are

executed the target address cannot be resolved. Since the target address need not

be evaluated at real time, this issue can be solved by running the simulation and

using the output �le.

The write back of each instruction along with the instruction , pc value, source

registers are dumped into the output �le. Using the value of rs1 at each of these

JALR instruction, the target address is evaluated. These target addresses are

now treated as leaders of a basic blocks and so, the the issue is resolved.

C0 : 263 [ 1 ] pc=[00000002068] W[ r 2=6db6db6db6db6db7 ] [ 1 ] R[ r 2=6db6db6db6db7000 ]

R[ r23 =0000000000001200] i n s t =[db710113 ] DASM( db710113 )

C0 : 264 [ 1 ] pc=[0000000206 c ] W[ r 3=6db6db6db6dbed77 ] [ 1 ] R[ r 1=0000000000007 f c0 ]

R[ r 2=6db6db6db6db6db7 ] i n s t =[022081b3 ] DASM(022081b3 )

C0 : 265 [ 1 ] pc=[00000002070] W[ r29 =0000000000001000] [1 ] R[ r 0=0000000000000000]

R[ r 0=0000000000000000] i n s t =[00001 eb7 ] DASM(00001 eb7 )

C0 : 266 [ 1 ] pc=[00000002074] W[ r29 =0000000000001240] [1 ] R[ r29 =0000000000001000]

R[ r 0=0000000000000000] i n s t =[240 e8e9b ] DASM(240 e8e9b )
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C0 : 267 [ 1 ] pc=[00000002078] W[ r28 =0000000000000021] [1 ] R[ r 0=0000000000000000]

R[ r 1=0000000000001200] i n s t =[02100 e13 ] DASM(02100 e13 )

C0 : 268 [ 0 ] pc=[00000002078] W[ r 3=0000000000001240] [1 ] R[ r 0=0000000000000000]

R[ r 1=0000000000001200] i n s t =[02100 e13 ] DASM(02100 e13 )

C0 : 269 [ 0 ] pc=[00000002078] W[ r 0=0000000000000021] [0 ] R[ r 0=0000000000000000]

R[ r 1=0000000000001200] i n s t =[02100 e13 ] DASM(02100 e13 )

C0 : 270 [ 0 ] pc=[00000002078] W[ r 0=0000000000000021] [0 ] R[ r 0=0000000000000000]

R[ r 1=0000000000001200] i n s t =[02100 e13 ] DASM(02100 e13 )

C0 : 271 [ 1 ] pc=[0000000207 c ] W[ r 0=0000000000000000] [0 ] R[ r 3=0000000000001240]

R[ r29 =0000000000001240] i n s t =[45d19c63 ] DASM(45 d19c63 )

7 Results of RTL Simulations :

S.No Toggles before optimization Toggles after optimization % decrease in no. of toggles

1. 1171827 1159129 1.08

2. 1218765 1197846 1.75

3. 1140663 1126999 1.20

4. 1135007 1122262 1.12

5. 1346098 1317770 2.10

6. 1113520 1099355 1.27

7. 1208503 1197454 0.90

8. 1143237 1121679 1.88

9. 1135629 1123117 1.10

10. 1135610 1122451 1.16

8 Need for Post- Synthesis Simulation:

The number of toggles observed through VCD �le is not an accurate way of

depicting the power consumption. For instance if there is a register of 8 bit width

and its value changes from 8'h00 to 8'h� then number of toggles is 8 but VCD

indicates only a change in value but not the exact number of toggles.

So, to get the exact number of toggles, the gate level Netlist needs to be syn-

thesized from the RTL of the processor. Netlist describes the interconnections

between di�erent modules with the hierarchy reduced to the transistor level. Ev-

ery interconnect, delay, leakage power and capacitances are modeled for the design

in the Netlist generated. Hence the accurate Power consumption in watts for ex-

ecuting the code on the processor can be found from the VCD generated by the

post synthesis simulation, using tools such as Prime Time. Hence more accurate

results can only be achieved by rearrangements guided by post synthesis simula-
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tion. During the post synthesis simulations, the number of simulation time would

increase and hence multiple simulations would not be possible for an entire basic

block. The best way to tackle this problem would be to execute two instructions

in a simulation and assign the number of toggles between them as weights to the

edges. Now the problem would be to construct a Hamiltonian path with the least

cost.

8.1 Hamiltonian Path and the Traveling Salesman Problem:

8.1.1 Hamiltonian Path:

In graph theory, a Hamiltonian path is a path in an undirected or directed graph

that passes through each node exactly once. A Hamiltonian cycle is a Hamiltonian

path that is a cycle. Determining whether such paths and cycles exist in graphs

is the Hamiltonian path problem, which is NP-complete. For directed graphs,

where each edge of a path or cycle can only be traced in a single direction i.e.,

the vertices are connected with arrows and the edges traced "tail-to-head".

Now consider in a particular level in a basic block there are three instructions

I1, I2and I3. Let there be (n1, n2), (n3, n4)and (n5, n6) toggles between each

instruction found by the post synthesis simulation of each pair of instructions in

both directions. Then the best possible arrangement is a Hamiltonian path with

the least cost associated with it. This solution boils down to a Traveling Salesman

Problem.

Any problem that shares these common elements:

� a traveler

� a set of sites

� a cost function for travel between pairs of sites

� a need to tour all the sites

� a desire to minimize the total cost of the tour

is known as a traveling salesman problem, or TSP.

There are two strategies for solving traveling salesman problem:
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� Exhaustive Search: Make a list of all possible Hamilton circuits. For each

circuit in the list, calculate the weight of the circuit. From all the circuits,

choose a circuit with least total weight. This is your optimal tour.

� Nearest Neighbour solution: Start from the home city. From there go to the

city that is the cheapest to get to. From each new city go to the next new

city that is cheapest to get to. When there are no more new cities to go to,

go back home.

The negative aspect of the brute-force algorithm is the amount of e�ort that goes

into implementing the algorithm, which is (roughly) proportional to the number

of Hamilton circuits in the graph.The brute-force, exhaustive search algorithm is

an algorithm for which the number of steps needed to carry it out grows dispro-

portionately with the size of the problem. The trouble with this algorithm is that

it can realistically be carried out only when the problem is small.

In the second heuristic the amount of computational e�ort required to imple-

ment the algorithm grows in some reasonable proportion with the size of the input

to the problem. The main problem with this algorithm is that it is not an optimal

algorithm. The relative error would decide the best approach.

9 Conclusion:

The RTL simulation results shows positive results. The full extent of power that

can be optimized, can be realized through the post synthesis evaluation. This

report discusses a novel idea with potential for further study and analysis.
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