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ABSTRACT

KEYWORDS: Transfer Learning, Deep Learning, Reinforcement Learning, Com-

mon Representation Learning, Multimodal Learning

Transfer learning plays a very crucial role in intelligence. There are two main parts to

it. One, the ability to transfer knowledge between different modalities and the other, the

ability to transfer knowledge from previously learnt tasks and use it in a new task.

One way to address the former, is to learn common representations for multiple

views of data. Typically, such common representations are learned using a parallel cor-

pus between the two views (say, 1M images and their English captions). In this work,

we address a real-world scenario where no direct parallel data is available between two

views of interest (say, V1 and V2) but parallel data is available between each of these

views and a pivot view (V3). We propose a model for learning a common representation

for V1, V2 and V3 using only the parallel data available between V1V3 and V2V3. The

proposed model is generic and even works when there are n views of interest and only

one pivot view which acts as a bridge between them. There are two specific downstream

applications that we focus on (i) transfer learning between languages L1,L2,...,Ln using

a pivot language L and (ii) cross modal access between images and a language L1 using

a pivot language L2. Our model achieves state-of-the-art performance in multilingual

document classification on the publicly available multilingual TED corpus and promis-

ing results in multilingual multimodal retrieval on a new dataset created and released as

a part of this work.

The latter, i.e, the ability to transfer knowledge from learnt source tasks to a new

target task can be very useful in speeding up the learning process of an agent. This has

been receiving a lot of attention, but the application of transfer poses two serious chal-

lenges which have not been adequately addressed in the past. First, the agent should be

able to avoid negative transfer, which happens when the transfer hampers or slows down

the learning instead of speeding it up. Secondly, the agent should be able to do selective

transfer, which is the ability to select and transfer from different and multiple source
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tasks for different parts of the state space of the target task. We propose ADAAPT: A

Deep Architecture for Adaptive Policy Transfer, which addresses these challenges. We

test ADAAPT using two different instantiations: One as ADAAPTive REINFORCE

algorithm for direct policy search and another as ADAAPTive Actor-Critic where the

actor uses ADAAPT. Empirical evaluations on simulated domains show that ADAAPT

can be effectively used for policy transfer from multiple source MDPs sharing the same

state and action space.
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Chapter 1

Overview

Many tasks which humans perform easily and excellently, such as image recognition,

speech recognition and language understanding, are found to be tough for machines.

This is partly because, we do not fully understand how we perform these tasks and

hence find it tough to make machines perform them. There is also an important differ-

ence in the way, we humans do these tasks and most present day machines do them.

Even while performing any of the individual tasks, which might be a new task and

involve a particular modality (such as, text), we humans use the valuable knowledge

from many other modalities (such as audio, video and images) and many other previ-

ously performed or learnt tasks seamlessly. This makes our learning faster and better.

This requires the following abilities. Firstly, the ability to combine the knowledge from

different modalities. Then, we also need to transfer knowledge between these differ-

ent modalities, as different modalities might have different information. One way of

achieving this is to learn common representation for data from different modalities.

While performing tasks which involve decision making, we also use the knowledge of

other previously learnt tasks, instead of learning the new task from scratch.

Recently, there has been a lot of interest in learning common representations for

different views of the data. These views could be different modalities, like images

and their captions or different languages, like the documents in different languages.

Typically these representations are learnt, when there is parallel data available between

all the views. A more general and real world scenario is when there is no parallel data

available between all the views, but there is parallel data between these views and a pivot

view. For example, we could have “image and its English captions” and “English and

its parallel French documents”. We do not have any “image and French captions”. Can

we learn a common representation between image, English and French captions? We

propose Bridge Correlational Neural Networks, that can learn common representations

for the different views in such scenarios. Apart from the fact that transfer between the

various views is possible, once we build the common representations, there is another

type of transfer happening here. The pivot view (English in the above example) acts



as a bridge and transfers knowledge between the non-pivot views (Image and French

captions). We evaluate our model on two tasks, one on the cross language document

classification across 11 languages with English as the pivot language and the other

on the cross modal retrieval task, where we retrieve image given French (or German)

captions and vice versa when the training data only has image-English and English-

French (or German) parallel data.

Coming to the part of transferring between tasks, the agent can converge faster and

to a better policy, if it can transfer its knowledge from the learnt source tasks to the

new current, target task. This has a few serious challenges that have not been dealt with

adequately. First is the problem of negative transfer, which happens when the transfer

from the source tasks degrades the performance of the agent in the target task. This

problem has restricted the application of many previously proposed transfer learning

techniques to restricted scenarios. Second is the ability to perform selective transfer.

This is the ability to transfer from multiple different source tasks for different parts

of the state space of the target task. We propose ADAAPT: A Deep Architecture for

Adaptive Policy Transfer from multiple sources. This architecture has a neural network

based attention mechanism which, during the occurrence of negative transfer uses a

modifiable randomly initialised policy, thus avoiding negative transfer. It also has the

ability to use policies from different and multiple source tasks at the granularity of state,

thus performing selective transfer. We evaluate this model on a well designed set of grid

world problem and verified the different capabilities proposed.

The rest of the thesis is organised as follows. In chapter 2, we will look at Bridge

Correlational Neural Networks for learning representation for multilingual and multi-

modal data. In chapter 3, we look at ADAAPT architecture for transfer learning, avoid-

ing negative transfer and performing selective transfer. Chapter 4 concludes the thesis

by giving a summary of the work done and discussing possible future works.
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Chapter 2

Bridge Correlational Neural Networks for Multilingual

Multimodal Representation Learning

2.1 Introduction

The proliferation of multilingual and multimodal content online has ensured that mul-

tiple views of the same data exist. For example, it is common to find the same arti-

cle published in multiple languages online in multilingual news articles, multilingual

wikipedia articles, etc. Such multiple views can even belong to different modalities.

For example, images and their textual descriptions are two views of the same entity.

Similarly, audio, video and subtitles of a movie are multiple views of the same entity.

Learning common representations for such multiple views of data will help in sev-

eral downstream applications. For example, learning a common representation for audio

and subtitles could help in generating subtitles from a given audio. Similarly, learning

a common representation for images and their textual descriptions could help in finding

images which match a given textual description. Further, such common representations

can also facilitate transfer learning between views. For example, a document classifier

trained on one language (view) can be used to classify documents in another language

by representing documents of both languages in a common subspace.

Existing approaches to common representation learning Ngiam et al. (2011); Kle-

mentiev et al. (2012); Chandar et al. (2013, 2014); Andrew et al. (2013); Wang et al.

(2015) except Hermann and Blunsom (2014b) typically require parallel data between all

views. However, in many real-world scenarios such parallel data may not be available.

For example, while there are many publicly available datasets containing images and

their corresponding English captions, it is very hard to find datasets containing images

and their corresponding captions in Russian, Dutch, Hindi, Urdu, etc. In this work, we

are interested in addressing such scenarios. More specifically, we consider scenarios

where we have n different views but parallel data is only available between each of



these views, and a pivot view. In particular, there is no parallel data available between

the non-pivot views. For example, consider the case where the two views of interest

are images and French captions. Suppose, there is no direct parallel data between these

two views but parallel data is available between (i) images and English captions and

(ii) English and French texts. We propose to use English as a pivot view and learn a

common representation for English text, French text and images.

To this end, we propose Bridge Correlational Neural Networks (Bridge CorrNets)

which learn aligned representations across multiple views using a pivot view. We build

on the work of Chandar et al. (2016) but unlike their model, which only addresses

scenarios where direct parallel data is available between two views, our model can

work for n(≥2) views even when no parallel data is available between all of them.

Our model only requires parallel data between each of these n views and a pivot view.

During training, our model maximizes the correlation between the representations of

the pivot view and each of the n views. Intuitively, the pivot view ensures that similar

entities across different views get mapped close to each other since the model would

learn to map each of them close to the corresponding entity in the pivot view. Pivot

view in essence acts as a bridge, and transfers knowledge across the non-pivot views.

We evaluate our approach using two downstream applications. First, we employ

our model to facilitate transfer learning between multiple languages using English as

the pivot language. For this, we do an extensive evaluation using 110 source-target

language pairs and clearly show that we outperform the current state-of-the art approach

Hermann and Blunsom (2014b). Second, we employ our model to enable cross modal

access between images and French/German captions using English as the pivot view.

For this, we created a test dataset consisting of images and their captions in French and

German in addition to the English captions which were publicly available. To the best

of our knowledge, this task of retrieving images given French/German captions (and

vice versa) without direct parallel training data between them has not been addressed

in the past. Even on this task we report promising results. Code and data used can be

downloaded from http://sarathchandar.in/bridge-corrnet.
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2.2 Related Work

Canonical Correlation Analysis (CCA) and its variants Hotelling (1936); Vinod (1976);

Nielsen et al. (1998); Cruz-Cano and Lee (2014); Akaho (2001) are the most commonly

used methods for learning a common representation for two views. However, most

of these models generally work with two views only. Even though there are multi-

view generalizations of CCA Tenenhaus and Tenenhaus (2011); Luo et al. (2015), their

computational complexity makes them unsuitable for larger data sizes.

Another class of algorithms for multiview learning is based on Neural Networks.

One of the earliest neural network based model for learning common representations

was proposed in Hsieh (2000). Recently, there has been a renewed interest in this field

and several neural network based models have been proposed. For example, Multi-

modal Autoencoder Ngiam et al. (2011), Deep Canonically Correlated Autoencoder

Wang et al. (2015), Deep CCA Andrew et al. (2013) and Correlational Neural Net-

works (CorrNet) Chandar et al. (2016). CorrNet performs better than most of the above

mentioned methods and we build on their work as discussed in the next section.

One of the tasks that we address in this work is multilingual representation learning

where the aim is to learn aligned representations for words across languages. Some

notable neural network based approaches here include the works of Klementiev et al.

(2012); Zou et al. (2013); Mikolov et al. (2013); Hermann and Blunsom (2014b,a);

Chandar et al. (2014); Soyer et al. (2015); Gouws et al. (2015). However, except for

Hermann and Blunsom (2014a,b), none of these other works handle the case when

parallel data is not available between all languages. Our model addresses this issue and

outperforms the model of HermannK2014.

The task of cross modal access between images and text addressed in this work

comes under MultiModal Representation Learning where each view belongs to a dif-

ferent modality. ngiam11 proposed an autoencoder based solution to learning common

representation for audio and video. JMLRv15srivastava14b extended this idea to RBMs

and learned common representations for image and text. Other solutions for image/text

representation learning include Zheng et al. (2014a,b); Socher et al. (2014). All these

approaches require parallel data between the two views and do not address multimodal,

multilingual learning in situations where parallel data is available only between differ-
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ent views and a pivot view.

In the past, pivot/bridge languages have been used to facilitate MT (for example,

Wu and Wang (2007); Cohn and Lapata (2007); Utiyama and Isahara (2007); Nakov

and Ng (2009)), transitive CLIR Ballesteros (2000); Lehtokangas et al. (2008), translit-

eration and transliteration mining Khapra et al. (2010a); Kumaran et al. (2010); Khapra

et al. (2010b); Zhang et al. (2011). None of these works use neural networks but it is

important to mention them here because they use the concept of a pivot language (view)

which is central to our work.

2.3 Bridge Correlational Neural Network

In this section, we describe Bridge CorrNet which is an extension of the CorrNet model

proposed by Chandar et al. (2016). They address the problem of learning common

representations between two views when parallel data is available between them. We

propose an extension to their model which simultaneously learns a common represen-

tation for M views when parallel data is available only between one pivot view and the

remaining M − 1 views.

Let these views be denoted by V1, V2, ..., VM and let d1, d2, ..., dM be their respective

dimensionalities. Let the training data be Z = {zi}Ni=1 where each training instance

contains only two views, i.e., zi = (vij, v
i
M) where j ∈ {1, 2, ..,M−1} and M is a pivot

view. To be more clear, the training data contains N1 instances for which (vi1, v
i
M) are

available, N2 instances for which (vi2, v
i
M) are available and so on till NM−1 instances

for which (viM−1, v
i
M) are available (such that N1 +N2 + ...+NM−1 = N ). We denote

each of these disjoint pairwise training sets by Z1 , Z2 to Z
M−1

such that Z is the union

of all these sets.

As an illustration consider the case when English, French and German texts are

the three views of interest with English as the pivot view. As training data, we have

N1 instances containing English and their corresponding French texts and N2 instances

containing English and their corresponding German texts. We are then interested in

learning a common representation for English, French and German even though we do

not have any training instance containing French and their corresponding German texts.

7



Figure 2.1: Bridge Correlational Neural Network. The views are English, French and
German with English being the pivot view.

Bridge CorrNet uses an encoder-decoder architecture with a correlation based reg-

ularizer to achieve this. It contains one encoder-decoder pair for each of the M views.

For each view Vj , we have,

hVj(vj) = f(Wjvj + b) (2.1)

where f is any non-linear function such as sigmoid or tanh, Wj ∈ Rk×dj is the encoder

matrix for view Vj , b ∈ Rk is the common bias shared by all the encoders. We also

compute a hidden representation for the concatenated training instance z = (vj, vM)

using the following encoder function:

hZ(z) = f(Wjvj +W
M
v
M

+ b) (2.2)

In the remainder of this thesis, whenever we drop the subscript for the encoder, then the

encoder is determined by its argument. For example h(vj) means hVj(vj), h(z) means

hZ(z) and so on.

Our model also has a decoder corresponding to each view as follows:

g
Vj

(h) = p(W ′
jh+ cj) (2.3)

where p can be any activation function, W ′
j ∈ Rdj×k is the decoder matrix for view Vj ,

cj ∈ Rdj is the decoder bias for view Vj . We also define g(h) as simply the concatena-
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tion of [g
Vj

(h), g
VM

(h)].

In effect, h
Vj

(.) encodes the input vj into a hidden representation h and then g
Vj

(.)

tries to decode/reconstruct vj from this hidden representation h. Note that h can be

computed using h(vj) or h(vM). The decoder can then be trained to decode/reconstruct

both vj and vM given a hidden representation computed using any one of them. More

formally, we train Bridge CorrNet by minimizing the following objective function:

JZ(θ) =
N∑
i=1

L(zi, g(h(zi))) +

N∑
i=1

L(zi, g(h(vil(i))))

+
N∑
i=1

L(zi, g(h(vi
M
)))− λ corr(h(Vl(i)), h(VM )) (2.4)

where l(i) = j if zi ∈ Z
j

and the correlation term corr is defined as follows:

corr =

∑N
i=1(h(x

i)− h(X))(h(yi)− h(Y ))√∑N
i=1(h(x

i)− h(X))2
∑N

i=1(h(y
i)− h(Y ))2

(2.5)

Note that g(h(zi)) is the reconstruction of the input zi after passing through the encoder

and decoder. L is a loss function which captures the error in this reconstruction, λ is

the scaling parameter to scale the last term with respect to the remaining terms, h(X)

is the mean vector for the hidden representations of the first view and h(Y ) is the mean

vector for the hidden representations of the second view.

We now explain the intuition behind each term in the objective function. The first

term captures the error in reconstructing the concatenated input zi from itself. The

second term captures the error in reconstructing both views given the non-pivot view,

vil(i). The third term captures the error in reconstructing both views given the pivot

view, vi
M

. Minimizing the second and third terms ensures that both the views can be

predicted from any one view. Finally, the correlation term ensures that the network

learns correlated common representations for all views.

Our model can be viewed as a generalization of the two-view CorrNet model pro-

posed in Chandar et al. (2016). By learning joint representations for multiple views

using disjoint training sets Z1 , Z2 to Z
M−1

it eliminates the need for nC2 pair-wise par-

allel datasets between all views of interest. The pivot view acts as a bridge and ensures

that similar entities across different views get mapped close to each other since all of

them would be close to the corresponding entity in the pivot view.

9



Note that unlike the objective function of CorrNet Chandar et al. (2016), the objec-

tive function of Equation 2.4, is a dynamic objective function which changes with each

training instance. In other words, l(i) ∈ {1, 2, ..,M−1} varies for each i ∈ {1, 2, .., N}.

For efficient implementation, we construct mini-batches where each mini-batch will

come from only one of the sets Z1 to Z
M−1

. We randomly shuffle these mini-batches

and use corresponding objective function for each mini-batch.

Algorithm 1: Train Bridge CorrNet
Input: Number of views M , training sets Z1 , Z2 to Z

M−1
, λ, mini-batch size k.

Output: Learned parameters

Initialize the encoder/decoder for each view.
for each epoch do

while not seen all examples do
Randomly sample i ∈ {1, 2, ...,M − 1}.
Sample random mini-batch from Zi.
Use the mini-batch and compute gradient for equation (4).
Update the parameters.

end
end

As a side note, we would like to mention that in addition to Z1 , Z2 to Z
M−1

as

defined earlier, if additional parallel data is available between some of the non-pivot

views then the objective function can be suitably modified to use this parallel data to

further improve the learning. However, this is not the focus of this work and we leave

this as a possible future work.
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2.4 Datasets

In this section, we describe the two datasets that we used for our experiments.

2.4.1 Multlingual TED corpus

HermannK2014 provide a multilingual corpus based on the TED corpus for IWSLT

2013 Cettolo et al. (2012). It contains English transcriptions of several talks from the

TED conference and their translations in multiple languages. We use the parallel data

between English and other languages for training Bridge Corrnet (English, thus, acts as

the pivot langauge). HermannK2014 also propose a multlingual document classifica-

tion task using this corpus. The idea is to use the keywords associated with each talk

(document) as class labels and then train a classifier to predict these classes. There are

one or more such keywords associated with each talk but only the 15 most frequent

keywords across all documents are considered as class labels. We used the same pre-

processed splits1 as provided by Hermann and Blunsom (2014b). The training corpus

consists of a total of 12,078 parallel documents distributed across 12 language pairs.

2.4.2 Multilingual Image Caption dataset

The MSCOCO dataset2 contains images and their English captions. On an average

there are 5 captions per image. The standard train/valid/test splits for this dataset are

also available online. However, the reference captions for the images in the test split are

not provided. Since we need such reference captions for evaluations, we create a new

train/valid/test of this dataset. Specifically, we take 80K images from the standard train

split and 40K images from the standard valid split. We then randomly split the merged

120K images into train(118K), validation (1K) and test set (1K).

We then create a multilingual version of the test data by collecting French and Ger-

man translations for all the 5 captions for each image in the test set. We use crowd-

sourcing to do this. We used the CrowdFlower platform and solicited one French and

one German translation for each of the 5000 captions using native speakers. We got

1http://www.clg.ox.ac.uk/tedcorpus
2http://mscoco.org/dataset/
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each translation verified by 3 annotators. We restricted the geographical location of

annotators based on the target language. We found that roughly 70% of the French

translations and 60% of the German translations were marked as correct by a majority

of the verifiers. On further inspection with the help of in-house annotators, we found

that the errors were mainly syntactic and the content words are translated correctly in

most of the cases. Since none of the approaches described in this work rely on syntax,

we decided to use all the 5000 translations as test data. This multilingual image cap-

tion test data (MIC test data) will be made publicly available3 and will hopefully assist

further research in this area.

2.5 Experiment 1: Transfer learning using a pivot lan-

guage

From the TED corpus described earlier, we consider English transcriptions and their

translations in 11 languages, viz., Arabic, German, Spanish, French, Italian, Dutch,

Polish, Portuguese (Brazilian), Roman, Russian and Turkish. Following the setup of

HermannK2014, we consider the task of cross language learning between each of the
11C2 non-English language pairs. The task is to classify documents in a language when

no labeled training data is available in this language but training data is available in

another language. This involves the following steps:

1. Train classifier: Consider one language as the source language and the remaining

10 languages as target languages. Train a document classifier using the labeled data

of the source language, where each training document is represented using the hidden

representation computed using a trained Bridge Corrnet model. As in Hermann and

Blunsom (2014b) we used an averaged perceptron trained for 10 epochs as the classifier

for all our experiments. The train split provided by Hermann and Blunsom (2014b) is

used for training.

2. Cross language classification: For every target language, compute a hidden repre-

sentation for every document in its test set using Bridge CorrNet. Now use the classifier

trained in the previous step to classify this document. The test split provided by Her-

3http://sarathchandar.in/bridge-corrnet
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Language |V | Langauge |V |
Arabic 60326 Dutch 31213
English 42897 Polish 55983
German 37096 Pt-Br 33548
Spanish 35345 Rom’n 43968
French 34146 Russian 50734
Italian 37961 Turkish 58697

Table 2.1: The size of the vocabulary used for each language.

Training
Language

Test Language
Arabic German Spanish French Italian Dutch Polish Pt-Br Rom’n Russian Turkish

Arabic 0.662 0.654 0.645 0.663 0.654 0.626 0.628 0.630 0.607 0.644
German 0.920 0.544 0.505 0.654 0.672 0.631 0.507 0.583 0.537 0.597
Spanish 0.666 0.465 0.547 0.512 0.501 0.537 0.518 0.573 0.463 0.434
French 0.761 0.585 0.679 0.681 0.646 0.671 0.650 0.675 0.613 0.578
Italian 0.701 0.421 0.456 0.457 0.530 0.442 0.491 0.390 0.402 0.499
Dutch 0.847 0.370 0.511 0.472 0.600 0.536 0.489 0.458 0.470 0.516
Polish 0.533 0.387 0.556 0.535 0.536 0.454 0.446 0.521 0.473 0.413
Pt-Br 0.609 0.502 0.572 0.553 0.548 0.535 0.545 0.557 0.451 0.463
Rom’n 0.573 0.460 0.559 0.530 0.521 0.484 0.475 0.485 0.486 0.458
Russian 0.755 0.460 0.537 0.437 0.567 0.499 0.550 0.478 0.475 0.484
Turkish 0.950 0.373 0.480 0.452 0.542 0.544 0.585 0.297 0.512 0.412

Table 2.2: F1-scores for TED corpus document classification results when training and
testing on two languages that do not share any parallel data. We train a
Bridge CorrNet model on all en-L2 language pairs together, and then use the
resulting embeddings to train document classifiers in each language. These
classifiers are subsequently used to classify data from all other languages.

mann and Blunsom (2014b) is used for testing.

2.5.1 Training and tuning Bridge Corrnet

For the above process to work, we first need to train Bridge Corrnet so that it can then

be used for computing a common hidden representation for documents in different lan-

guages. For training Bridge CorrNet, we treat English as the pivot language (view)

and construct parallel training sets Z1 to Z11 . Every instance in Z1 contains the En-

glish and Arabic view of the same talk (document). Similarly, every instance in Z2

contains the English and German view of the same talk (document) and so on. For

every language, we first construct a vocabulary containing all words appearing more

than 5 times in the corpus (all talks) of that language. We then use this vocabulary to

construct a bag-of-words representation for each document. The size of the vocabulary

(|V |) for different languages varied from 31213 to 60326 words. To be more clear,

v1 = varabic ∈ R|V |arabic , v2 = vgerman ∈ R|V |german and so on.

We train our model for 10 epochs using the above training dataZ = {Z1 ,Z2 , ...,Z11}.

We use hidden representations of size D = 128, as in Hermann and Blunsom (2014b).
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Training
Language

Test Language
Arabic German Spanish French Italian Dutch Polish Pt-Br Rom’n Russian Turkish

Arabic 0.378 0.436 0.432 0.444 0.438 0.389 0.425 0.42 0.446 0.397
German 0.368 0.474 0.46 0.464 0.44 0.375 0.417 0.447 0.458 0.443
Spanish 0.353 0.355 0.42 0.439 0.435 0.415 0.39 0.424 0.427 0.382
French 0.383 0.366 0.487 0.474 0.429 0.403 0.418 0.458 0.415 0.398
Italian 0.398 0.405 0.461 0.466 0.393 0.339 0.347 0.376 0.382 0.352
Dutch 0.377 0.354 0.463 0.464 0.46 0.405 0.386 0.415 0.407 0.395
Polish 0.359 0.386 0.449 0.444 0.43 0.441 0.401 0.434 0.398 0.408
Pt-Br 0.391 0.392 0.476 0.447 0.486 0.458 0.403 0.457 0.431 0.431
Rom’n 0.416 0.32 0.473 0.476 0.46 0.434 0.416 0.433 0.444 0.402
Russian 0.372 0.352 0.492 0.427 0.438 0.452 0.43 0.419 0.441 0.447
Turkish 0.376 0.352 0.479 0.433 0.427 0.423 0.439 0.367 0.434 0.411

Table 2.3: F1-scores for TED corpus document classification results when training and
testing on two languages that do not share any parallel data. Same procedure
as Table 2.2, but with DOC/ADD model in Hermann and Blunsom (2014b).

Setting Languages
Arabic German Spanish French Italian Dutch Polish Pt-Br Rom’n Russian Turkish

Raw Data NB 0.469 0.471 0.526 0.532 0.524 0.522 0.415 0.465 0.509 0.465 0.513
DOC/ADD (Single) 0.422 0.429 0.394 0.481 0.458 0.252 0.385 0.363 0.431 0.471 0.435
DOC/BI (Single) 0.432 0.362 0.336 0.444 0.469 0.197 0.414 0.395 0.445 0.436 0.428
DOC/ADD (Joint) 0.371 0.386 0.472 0.451 0.398 0.439 0.304 0.394 0.453 0.402 0.441
DOC/BI (Joint) 0.329 0.358 0.472 0.454 0.399 0.409 0.340 0.431 0.379 0.395 0.435
Bridge CorrNet 0.266 0.456 0.535 0.529 0.551 0.565 0.478 0.535 0.490 0.447 0.477

Table 2.4: : F1-scores on the TED corpus document classification task when training
and evaluating on the same language. Results other than Bridge CorrNet are
taken from Hermann and Blunsom (2014b).

Further, we used stochastic gradient descent with mini-batches of size 20. Each mini-

batch contains data from only one of the Z
i
s. We get a stochastic estimate for the

correlation term in the objective function using this mini-batch. The hyperparameter λ

was tuned to each task using a training/validation split for the source language and using

the performance on the validation set of an averaged perceptron trained on the training

set (notice that this corresponds to a monolingual classification experiment, since the

general assumption is that no labeled data is available in the target language).

2.5.2 Results

Before presenting the results for our cross language classification experiment, we would

first like to give a qualitative feel for the representations learned using Bridge CorrNet.

For this, we randomly select a few English words and find their nearest neighbors in

different languages based on the representations learned using Bridge CorrNet. These

English words and their neighbors are shown in Table 2.5 2.6. In almost all the cases the

nearest neighbors of the English words turn out to be their exact translations or highly

semantically related words. Also, we observed that the representations of translation
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English
word

Languages
Spanish French Italian Dutch Polish

market

mercado marché mercato markt mercado
market market market arbeidsmarkt lançadas
place boursier vendita marktonderzoek mercados
comercializan marketer azionario marktaandeel timbuktu

oil

petróleo pétrole petrolio olie petróleo
aceite l’huile olio olieprijs óleo
petroleros d’huile l’olio olieprijzen azeite
crudo pétrolières dell’olio olieramp derramamento

home

casa maison casa thuis casa
hogar foyer tramandare huis lar
casas domicile dimora woning casas
hogares rentre casetta thuisblijven lares

history

historia l’histoire storia geschiedenis história
historial d’histoire qualcuno wereldgeschiedenis histórico
contado histoire dell’umanità history historia
participó historique popolo historie britannica

Table 2.5: English words and their nearest neighbours in different languages (based on
Euclidean distance).

English
word

Languages
Pt-Br Rom’n Russian Turkish

market

rynku piaţă рынок pazar
rynek piaţă рынка piyasa
giełdzie piaţa рынке pazara
targ piata рыночные pazarın

oil

ropy petrol нефти petrol
ropa petrolul нефть petrolün
ropę petrolului нефтью petrolü
oleju ulei масло petrolden

home

domu acasă домой eve
dom acasa дома evde
domem casă дом ev
domach casa доме evine

history

historii istoria истории tarih
historię istorie историю tarihin
historia istoriei история tarihi
dziejach poveste историей tarihinde

Table 2.6: English words and their nearest neighbours in different languages (based on
Euclidean distance).
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pairs in non-English languages (say, French and German) are also transitively close to

each other due to the pivot language.

We now present the results of our cross language classification task in Table 2.2.

Each row corresponds to a source language and each column corresponds to a target

language. We report the average F1-scores over all the 15 classes. We compare our

results with the best results reported in Hermann and Blunsom (2014b) (see Table 2.3).

Out of the 110 experiments, our model outperforms the model of Hermann and Blunsom

(2014b) in 107 experiments. This suggests that our model efficiently exploits the pivot

language to facilitate cross language learning between other languages.

Finally, we present the results for a monolingual classification task in Table 2.4.

The idea here is to see if learning common representations for multiple views can also

help in improving the performance of a task involving only one view. HermannK2014

argue that a Naive Bayes (NB) classifier trained using a bag-of-words representation

of the documents is a very strong baseline. In fact, a classifier trained on document

representations learned using their model does not beat a NB classifier for the task of

monolingual classification. Rows 2 to 5 in Table 2.4 show the different settings tried by

them (we refer the reader to Hermann and Blunsom (2014b) for a detailed description

of these settings). On the other hand our model is able to beat NB for 5/11 languages.

Further, for 4 other languages (German, French, Romanian, Russian) its performance is

only marginally poor than that of NB.

2.6 Experiment 2: Cross modal access using a pivot lan-

guage

In this experiment, we are interested in retrieving images given their captions in French

(or German) and vice versa. However, for training we do not have any parallel data con-

taining images and their French (or German) captions. Instead, we have the following

datasets: (i) a dataset Z1 containing images and their English captions and (ii) a dataset

Z2 containing English and their parallel French (or German) documents. ForZ1 , we use

the training split of MSCOCO dataset which contains 118K images and their English

captions (see Section 2.4.2). For Z2 , we use the English-French (or German) parallel
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documents from the train split of the TED corpus (see Section 2.4.1). We use English

as the pivot language and train Bridge Corrnet using Z = {Z1 ,Z2} to learn common

representations for images, English text and French (or German) text. For text, we use

bag-of-words representation and for image, we use the 4096 (fc6) representation got

from a pretrained ConvNet (BVLC Reference CaffeNet Jia et al. (2014)). We learn

hidden representations of size D = 200 by training Bridge Corrnet for 20 epochs using

stochastic gradient descent with mini-batches of size 20. Each mini-batch contains data

from only one of the Z
i
s.

For the task of retrieving captions given an image, we consider the 1000 images

in our test set (see section 2.4.2) as queries. The 5000 French (or German) captions

corresponding to these images (5 per image) are considered as documents. The task is

then to retrieve the relevant captions for each image. We represent all the captions and

images in the common space as computed using Bridge Corrnet. For a given query, we

rank all the captions based on the Euclidean distance between the representation of the

image and the caption. For the task of retrieving images given a caption, we simply

reverse the role of the captions and images. In other words, each of the 5000 captions

is treated as a query and the 1000 images are treated as documents. λ was tuned to

each task using a training/validation split. For the task of retrieving French/German

captions given an image, λ was tuned using the performance on the validation set for

retrieving French (or German) sentences for a given English sentence. For the other

task, λ was tuned using the performance on the validation set for retrieving images,

given English captions. We do not use any image-French/German parallel data for

tuning the hyperparameters.

We use recall@k as the performance metric and compare the following methods in

Table 2.7:

1. En-Image CorrNet: This is the CorrNet model trained using only Z1 as defined

earlier in this section. The task is to retrieve English captions for a given image (or vice

versa). This gives us an idea about the performance we could expect if direct parallel

data is available between images and their captions in some language. We used the

publicly available implementation of CorrNet provided by Chandar et al. (2016).

2. Bridge CorrNet: This is the Bridge CorrNet model trained using Z1 and Z2 as

defined earlier in this section. The task is to retrieve French (or German) captions for a
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given image (or vice versa).

I To C C To I
Model Captions Recall@5 Recall@10 Recall@50 Recall@5 Recall@10 Recall@50
En-Image CorrNet English 0.118 0.190 0.456 0.091 0.168 0.532
Bridge MAE French 0.008 0.017 0.069 0.007 0.013 0.063
2-CorrNet French 0.018 0.024 0.085 0.027 0.055 0.205
Bridge CorrNet French 0.072 0.135 0.335 0.032 0.060 0.235
CorrNet+MT French 0.101 0.163 0.414 0.069 0.127 0.416
Bridge MAE German 0.005 0.009 0.053 0.006 0.013 0.058
2-CorrNet German 0.009 0.013 0.071 0.012 0.023 0.098
Bridge CorrNet German 0.063 0.105 0.298 0.027 0.049 0.183
CorrNet+MT German 0.084 0.163 0.420 0.061 0.107 0.343
Random 0.006 0.009 0.044 0.005 0.009 0.050

Table 2.7: Performance of different models for image to caption (I to C) and caption to
image (C to I) retrieval

3. Bridge MAE: The Multimodal Autoencoder (MAE) proposed by Ngiam et al.

(2011) was the only competing model which was easily extendable to the bridge case.

We train their model using Z1 and Z2 to minimize a suitably modified objective func-

tion. We then use the representations learned to retrieve French (or German) captions

for a given image (or vice versa).

4. 2-CorrNet: Here, we train two individual CorrNets using Z1 and Z2 respectively.

For the task of retrieving images given a French (or German) caption we first find its

nearest English caption using the Fr-En (or De-En) CorrNet. We then use this English

caption to retrieve images using the En-Image CorrNet. Similarly, for retrieving cap-

tions given an image we use the En-Image CorrNet followed by the En-Fr (or En-De)

CorrNet.

5. CorrNet + MT: Here, we train an En-Image CorrNet using Z1 and an Fr/De-En MT

system4 using Z2 . For the task of retrieving images given a French (or German) caption

we translate the caption to English using the MT system. We then use this English

caption to retrieve images using the En-Image CorrNet. For retrieving captions given

images, we first translate all the 5000 French (or Germam) captions to English. We

then embed these English translations (documents) and images (queries) in the common

space computed using Image-En CorrNet and do a retrieval as explained earlier.

6. Random: A random image is returned for the given caption (and vice versa).

From Table 2.7, we observe that CorrNet + MT is a very strong competitor and

gives the best results. The main reason for this is that over the years MT has matured

enough for language pairs such as Fr-En and De-En and it can generate almost perfect
4http://www.statmt.org/moses/
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1. Zwei Pferde stehen auf einem sandigen Strand nahe dem Ocean.
(Two horses standing on a sandy beach near the ocean.)
2. grasende Pferde auf einer trockenen Weide bei einem Flughafen.
(Horses grazing in a dry pasture by an airport.)
3. ein Elefant , Wasser aufseinen Rückend sprühend , in einem staubigen Bereich neben einem Baum.
(A elephant spraying water on its back in a dirt area next to tree .)
4. ein braunes pferd ißt hohes gras neben einem behälter mit wasser.
(Brown horses eating tall grass beside a body of water .)
5. vier Pferde grasen auf ein Feld mit braunem gras.
(Four horses are grazing through a field of brown grass.)

1. Ein Teller mit Essen wie Sandwich , Chips , Suppe und einer Gurke.
(Plate of food including a sandwich , chips , soup and a pickle.)
2. Teller , gefüllt mit sortierten Früchten und Gemüse und einigem Fleisch.
(Plates filled with assorted fruits and veggies and some meat.)
3. Ein Tisch mit einer Schüssel Salat und einem Teller Pizza.
(a Table with a bowl of salad and plate with a cooked pizza .)
4. Ein Teller mit Essen besteht aus Brokkoli und Rindfleisch.
(A plate of food consists of broccoli and beef.)
5. Eine Platte mit Fleisch und grünem Gemüse gemixt mit Sauce.
(A plate with meat and green veggies mixed with sauce.)

1. un bus de la conduite en ville dans une rue entourée par de grands immeubles.
(A city bus driving down a street surrounded by tall buildings.)
2. un bus de conduire dans une rue dans une ville avec des bâtiments de grande hauteur.
(A bus driving down a street in a city with very tall buildings.)
3. bus de conduire dans une rue de ville surpeuplée.
(Double - decker bus driving down a crowded city street.)
4. le bus conduit à travers la ville sur une rue animée.
(The bus drives through the city on a busy street.)
5. un grand bus coloré est arrêté dans une rue de la ville.
(A big , colorful bus is stopped on a city street.)

1. Un homme portant une batte de baseball à deux mains lors d’un jeu de balle professionnel.
(A man holding a baseball bat with two hands at a professional ball game.)
2. un joueur de tennis balance une raquette à une balle.
(A tennis player swinging a racket t a ball.)
3. un garçon qui est de frapper une balle avec une batte de baseball.
(A boy that is hitting a ball with a baseball bat.)
4. une équipe de joueurs de baseball jouant un jeu de base-ball.
(A team of baseball players playing a game of baseball.)
5. un garçon se prépare à frapper une balle de tennis avec une raquette.
(A boy prepares to hit a tennis ball with a racquet.)

Table 2.8: Images and their top-5 nearest captions based on representations learned us-
ing Bridge CorrNet. First two examples show German captions and the last
two examples show French captions. English translations are given in paren-
thesis.

translations for short sentences (such as captions). In fact, the results for this method

are almost comparable to what we could have hoped for if we had direct parallel data

between Fr-Images and De-Images (as approximated by the first row in the table which

reports cross-modal retrieval results between En-Images using direct parallel data be-

tween them for training). However, we would like to argue that learning a joint embed-

ding for multiple views instead of having multiple pairwise systems is a more elegant

solution and definitely merits further attention. Further, a “translation system” may not

be available when we are dealing with modalities other than text (for example, there are

no audio-to-video translation systems). In such cases, BridgeCorrNet could still be em-

ployed. In this context, the performance of BridgeCorrNet is definitely promising and
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Speisen und Getränke auf einem
Tisch mit einer Frau essen im Hintergrund.
(Food and beverages set on a table with
a woman eating in the background .)

ein Foto von einem Laptop auf einem
Bett mit einem Fernseher im Hintergrund.
(A photo of a laptop on a bed with a tv
in the background .)

un homme debout à côté de aa groupe de vaches.
(A man standing next to a group of cows.)

personnes portant du matériel
de ski en se tenant debout dans la neige.
(People wearing ski equipment while
standing in snow.)

Table 2.9: French and German queries and their top-5 nearest images based on repre-
sentations learned using Bridge CorrNet. First two queries are in German
and the last two queries are French. English translations are given in paren-
thesis.

shows that a model which jointly learns representations for multiple views can perform

better than methods which learn pair-wise common representations (2-CorrNet).

2.6.1 Qualitative Analysis

To get a qualitative feel for our model’s performance, refer Table 2.8 and 2.9. The

first row in Table 2.8 shows an image and its top-5 nearest German captions (based on

Euclidean distance between their common representations). As per our parallel image

caption test set, only the second and fourth caption actually correspond to this image.

However, we observe that the first and fifth caption are also semantically very related

to the image. Both these captions talk about horses, grass or water body (ocean), etc.

Similarly the last row in Table 2.8 shows an image and its top-5 nearest French captions.

None of these captions actually correspond to the image as per our parallel image cap-

tion test set. However, clearly the first, third and fourth caption are semantically very

relevant to this image. Even the remaining two captions capture related concepts. We

can make a similar observation from Table 2.9 where most of the top-5 retrieved images

do not correspond to the French/German caption but they are semantically very similar.

It is indeed impressive that the model is able to capture such cross modal semantics be-

tween images and French/German even without any direct parallel data between them.
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Chapter 3

ADAAPT: A Deep Architecture for Adaptive Policy

Transfer from Multiple Sources

3.1 Introduction

One of the goals of Artificial Intelligence (AI) is to build autonomous agents that can

learn and adapt to new environments. Reinforcement Learning (RL) is a key technique

for achieving such adaptability. RL looks at the problem of intelligent decision making

as one of stochastic sequential control Sutton and Barto (1998). The goal of RL algo-

rithms is to learn an optimal policy for choosing actions that maximises some notion of

long term performance. One of the chief drawbacks of RL is that learning on new tasks

from the scratch takes a long time since the agent initially performs random exploration

to discover details of the task. Much of the research in RL has been focused on cutting

down this initial exploration. One of the key idea used is that of transfer learning.

Transfer is by no means limited to RL. The notion of transfer is to use knowledge

gained from solving related instances of a problem (source tasks) to solve a new instance

(target task) better - either in terms of speeding up the learning process or in terms of

achieving a better solution, among other performance measures. When applied to RL,

transfer could be accomplished in many ways (see Taylor and Stone (2009, 2011) for

a very good survey of the field). One could think of transferring the value function

from a source task and use that as the initial estimate of the value function in the target

task to cut down on the initial exploration Sorg and Singh (2009). Another method to

achieve transfer is to reuse policies derived in the source task(s) in the target task. This

can take one of two forms - (i) the derived policies can be used as initial explorative

trajectories Atkeson and Schaal (1997); Niekum et al. (2013) in the target task, thereby

cutting down on random exploration; and (ii) the derived policy could be used to define

macro actions which may then be used by the agent in solving the target task Mannor

et al. (2004); Brunskill and Li (2014). Also, the knowledge of the domain’s model

parameters from the source tasks to the target task can be transferred. Such an approach



assumes that the model of the target task is sufficiently close to the source task and prior

knowledge of the model allows the agent to eliminate frivolous exploration.

While transfer in RL has been much explored, there are two crucial issues that have

not received much attention. The first is negative transfer - when transfer from a source

task degrades the performance of the agent on the target task. This is widely recognised

as a serious problem in the transfer learning literature. In the context of RL too this

severely limits the applicability of transfer to cases when some measure of relatedness

between source and target tasks can be guaranteed. One work that explicitly addresses

the question of negative transfer is that of Brunskill and Li (2014) where they assume

that they have access to source tasks to sufficiently cover the space of problems from

which the target task is drawn. Further the safe exploration that they use as part of the

learning process ensures no negative transfer happens. In our work, we take a more

general approach. We maintain a copy of the policy that is learned from scratch on the

target task. If there is evidence of negative transfer happening, we will fall back to this

base policy.

The second problem with transfer is that of identifying an appropriate source task to

transfer from. This is especially problematic, if we are trying to transfer whole solutions

or value functions to the target task. One way of mitigating this is to learn macro

actions and transfer policy fragments - the learning agent decides if policy fragments

are appropriate in the target task. Another way of approaching this, is to select different

and multiple source tasks to transfer from at different points in the target task. We call

this selective transfer. In fact ours is the first work that explicitly looks at blending

policies from different source tasks for transfer to a single target task and for different

parts of its state space. Earlier, multiple task transfer settings have either formulated it

as a multi-task learning problem, or one of selecting a specific source task for a given

target task. In our framework the agent can pick and choose portions of policies from

different and multiple source tasks while solving a single target task. This allows us to

treat all the prior policies as a partial basis from which the target policy is created.

In this work we propose ADAAPT, A Deep Architecture for Adaptive Policy Trans-

fer, a transfer learning framework that avoids negative transfer while performing selec-

tive transfer from multiple source tasks. One key difficulty in selective transfer is that

learning a selection function that blends the different policies together is a very chal-
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lenging problem. One of the distinguishing features of our approach is the use of a deep

neural network that leverages ideas from recent work on learning attention Bahdanau

et al. (2014) to learn complex selection functions without worrying about representa-

tion issues a priori. Deep neural architecture also enables ADAAPT’s deployment in

large domains. Since our approach needs an explicit representation of the policies of

the source tasks, we present the approach using specific choices for the reinforcement

learning architecture (REINFORCE, Actor-Critic Williams (1992); Konda and Tsitsik-

lis (2000)), for ease of exposition. The ideas presented here extend to other architectures

as well.

The main features of ADAAPT are:

1. It avoids negative transfer as is empirically demonstrated by transferring from
carefully constructed bad initial policies.

2. It achieves selective policy transfer from multiple source tasks to a target task.

3. It uses a deep neural network architecture that enables the learning of the selective
transfer in a natural way, and enables the deployment of the architecture in large
domains.

3.2 Related Work

As mentioned earlier, transfer learning approaches could deal with transferring repre-

sentations, policies or value functions. For example, Banerjee and Stone (2007) de-

scribe a method for transferring value functions by constructing a Game tree. Similarly,

Sorg and Singh (2009) explores the idea of transferring the value function from a source

task and use that as the initial estimate of the value function in the target task to cut down

on the initial exploration. Another method to achieve transfer is to reuse policies de-

rived in the source task(s) in the target task. Probabilistic Policy Reuse as discussed

in Fernández and Veloso (2006) provides a useful way for transferring policies. This

method maintains a library of policies and selects a policy based on a similarity metric,

or a random policy, or a max-policy from the knowledge obtained. The policy selection

happens a priori to each episode.

Atkeson and Schaal (1997); Niekum et al. (2013) propose a method to use the

learned source policies as initial explorative trajectories in the target task instead of

relying solely on random exploration. Lazaric and Restelli (2011) addresses the issue
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of negative transfer in transferring samples for a related task in a multi-task setting.

Representation transfer is done using Proto Value Functions as discussed in Ferguson

and Mahadevan (2006). Konidaris et al. (2012) discusses the idea of exploiting shared

common features across related tasks. They learn a shaping function that can be used in

later tasks. Also, Cesa-Bianchi et al. (2006) proposes a bandit algorithm that minimizes

the regret, in a partial monitoring setting. This setting though is remotely connected to

ours, the feedback that the network receives is similar to the expression the bandit set-

ting receives in Cesa-Bianchi et al. (2006). The work Talvitie and Singh (2007) tries

to find the promising policy from a set of candidate policies that are generated using

different action mapping to a single solved task. On the other hand we make use of

more than one source tasks to selectively transfer policies at the granularity of state.

In contrast to previous work, our work explicitly focuses on the ability to selectively

transfer, using multiple source tasks while avoiding negative transfer. We define these

two challenges in the next section and then propose a model to address them.

3.3 Challenges of Transfer Learning addressed in this

work

Negative Transfer

Consider a performance measure ρ, as discussed in Taylor and Stone (2009), where ρ

could be, for example, jump start (the initial performance of the agent in the target task)

or time to threshold (time to reach a predefined performance level). Let πWT be a policy

learnt from scratch in the target without any transfer and πT be a policy learnt in the

target using transfer from source tasks. If following πT gives a performance, measured

by ρ, worse than that got through following πWT , then we say it is a negative transfer.

Selective Transfer

Let there be N policies, π1, π2, . . . , πN . When the agent learns to solve a new target

task, it should be able to learn policies of the form, π(s) = f(π1(s), . . . , πN(s)) ∀ s ∈

S, the set of all states in an MDP.
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3.4 Proposed Model

We propose a model for policy transfer from multiple source MDPs with the same struc-

ture, and different model parameters. Let there be N policies, π1, π2, . . . , πN derived

from solving N prior tasks. When the agent learns to solve a new target task, the agent

learns policies of the form π(s) = f(π1(s), . . . , πN(s), πR(s)) where s ∈ S represents

the state and πR is a policy learnt from scratch on the target task. The policies used

are stochastic. In this work, we assume that f is implemented as a convex combina-

tion of the policies (action probabilities) and is given by f(π1(s), . . . , πN(s), πR(s)) =∑N
i=1wi,sπi(s) + wN+1,sπR(s), where

∑N+1
i=1 wi,s = 1 and wi,s ∈ [0, 1]. π is the pol-

icy that the agent follows. Figure 3.1 shows the architecture diagram of the proposed

model. The key component of the model is the central network which learns the weights

(wi,s, i ∈ 1, 2, . . . , N + 1) to be assigned to the different policies. We refer to this net-

work as the attention network. The weights allow the network to selectively accept or

reject the policies of other source tasks depending on the input state. This ability allows

the model to achieve both its stated goals, viz., (i) avoid negative transfer from policy

πi(s) by setting wi,s to a very low value and (ii) selectively transfer the knowledge from

the source tasks for certain states by setting weights of those tasks to high values for

those states.

Depending on the feedback obtained from the environment upon following π, the

attention network’s parameters are updated to improve performance. Even though the

agent follows the policy π, we update the parameters of the network that produces πR,

the randomly initialised policy network, as if the action taken by the agent was based

only on πR. The networks which produce the polices of the source tasks, π1, . . . , πN

remain fixed.

Alternately, we could also update the parameters of the networks that produce

π1, . . . , πN . However, doing so has two major drawbacks. First, if we update the pa-

rameters of all the source networks, there could be a significant amount of unlearning

in the source networks before the attention network identifies the utility of the source

tasks for the target task. This could result in a weaker transfer than actually possible.

Secondly, since the number of parameters of the model would increase linearly with

the number of source tasks, it could lead to problems when we have a large number of

source tasks. We verified this empirically and hence for all experiments reported we
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Figure 3.1: ADAAPT. The doted arrows represent the path of back propagation.

only update the parameters of the network that produces πR and the attention network

which produces wi.

If there is a source task whose policy πj is useful for the target task in some parts

of its state space, then over time, πR would start replicating that source task policy πj

in those parts of the state spaces. Note that the agent could follow πj even before πR

attains its replication in the corresponding parts of the state space. Since the attention

is soft, our model has the flexibility to combine multiple source task policies. After

the learning is done, πR alone can be used as the policy of the target task for future

endeavors. When the attention network’s weight for the policy πR is high, the mixture

policy is dominated by πR, and the behavior is nearly on-policy. In the other case, πR

undergoes off-policy learning. Empirically, we observe that πR converges.

Following the recent success of Deep Neural Networks in a variety of Machine

Learning tasks we made a design choice to use deep neural networks in our model

(and hence the name ADAAPT). This should potentially allow the model to work even

for large, complex Reinforcement Learning problems. Using deep neural networks that

leverages ideas from recent work on learning attention allows the agent to learn complex

selection functions, without worrying about representation issues a priori.
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3.4.1 Instantiations of ADAAPT

ADAAPT is a generic framework that can be used alongside any algorithm that has an

explicit representation of the policy. Here we describe two instantiations of ADAAPT,

one for direct policy search using REINFORCE algorithm and another in the Actor-

Critic setup.

ADAAPTive REINFORCE

REINFORCE algorithms Williams (1992) can be used for direct policy search by mak-

ing weight adjustments in a direction that lies along the gradient of the expected re-

inforcement. In ADAAPTive REINFORCE, ADAAPT is used directly to do policy

search, and its parameters are updated using REINFORCE. Let ψ represent the atten-

tion network. ψ outputs w and is parameterised by u. The update of u is given by,

∆u = αu(r − b)
∂
∑L

t=1 log(π(st, at))

∂u
(3.1)

u← u+ ∆u (3.2)

where, αu is a non-negative factor, r is the current reinforcement, which is the return

at the end of an episode in our case, b is the reinforcement baseline, L is the total number

of steps in the episode, at is the action taken at step t from state s following π and

π(s, at) is the probability of taking action at in state s as given by π. Note that π is the

policy the agent follows.

Let φ represent the randomly initialised policy network, which is learnt from scratch

for the target task. φ outputs πR, and is parameterised by v. The update for v is given

by,

∆v = αv(r − b)
∂
∑L

t=1 log(πR(st, at))

∂v
(3.3)

v ← v + ∆v (3.4)

where, αv is a non-negative factor, at is the action taken by the agent at step t from
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state s following π, and πR(s, at) is the probability of action at given by πR. As men-

tioned earlier, though the agent follows π, the parameters of the network representing

πR are updated as if the action was taken by following πR.

ADAAPTive Actor-Critic

Actor-Critic methods Konda and Tsitsiklis (2000) are Temporal Difference (TD) meth-

ods that have two separate components, viz., an actor and a critic. The actor proposes

a policy whereas the critic estimates the value function of the policy and criticizes the

policy of the actor. The updates to the actor happens through TD-error which is the one

step estimation error that helps in reinforcing an agent’s behaviour. This TD-error is a

scalar value and is referred to as the critic.

Figure 3.2: ADAAPTive Actor-Critic

ADAAPTive Actor-Critic is an Actor-Critic model, where the actor uses ADAAPT.

We have a deep adaptive actor which utilises the knowledge of the learned source task

while avoiding negative transfer and performing selective transfer wherever appropriate.

The critic here learns the state values from scratch. In other words, the actor is aware

of all the previous learnt tasks and tries to use that knowledge for its benefit. The critic

evaluates this selection as well as the action solely depending on the target task (i.e., it

does not care about the source tasks).

Let st be the state the agent is at time step t. st+1 is the state the agent reaches with

a reward of rt+1 upon taking action at at time step t from state s following the policy π.

Let V (s) represent the value of state s. Then, the update equations for parameters u of
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the attention network ψ and the parameters v of the randomly initialised policy’s (πR’s)

network φ are as follows.

δt = rt+1 + γV (st+1)− V (st) (3.5)

where, γ is the discount factor.

∆u = αuδt

∂ log π(st,at)
∂u∣∣∣∂ log π(st,at)∂u

∣∣∣ (3.6)

u← u+ ∆u (3.7)

where, αu is a non-negative factor and π(st, at) is the probability of taking action at

from state st given by the policy π.

∆v = αvδt

∂ log πR(st,at)
∂v∣∣∣∂ log πR(st,at)
∂v

∣∣∣ (3.8)

v ← v + ∆v (3.9)

where, αv is a non-negative factor, πR(st, at) is the probability of taking action at from

state st given by the policy πR.

3.5 Experiments and Discussion

We evaluate the performance of ADAAPT using two simulated worlds, viz., chain world

and puddle world as described below. One main motivation of these experiments is to

test the consistency of results with the algorithm motivation. While the presence of a

deep architecture, allows for the usage of the algorithm for high dimensional, complex

domains and large number of domains, the goals of these experiments are not to evaluate

them.

Chain world: Figure 3.3 shows the chain world where the goal of the agent is to go

from one point in the chain (starting state) to another point (goal state) in the least

number of steps. At each state the agent can choose to either move one position to the

left or to the right. After reaching the goal state the agent gets a reward that is inversely
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proportional to the number of steps taken to reach the goal.

Puddle worlds: Figure 3.4 shows the discrete version of the standard puddle world

that is widely used in Reinforcement Learning literature. In this world, the goal of the

agent is to go from a specified start position to the goal position, maximising its return.

At each state the agent can choose one of these four actions: move one position to the

north, south, east or west. With 0.9 probability the agent moves in the chosen direction

and with 0.1 probability it moves in a random direction irrespective of its choice of

action. On reaching the goal state, the agent gets a reward of +10. On reaching other

parts of the grid the agent gets different penalties as mentioned in the legend of Figure

3.4. Figures 3.5 to 3.8 show different variants of the puddle world which we constructed

to evaluate different features of ADAAPT as described below.

3.5.1 Experiment 1: Ability to avoid negative transfer

We first consider the case when only one learned source task is available such that it can

hamper the learning process of the new target task. We refer to such a source task as an

unfavorable source task. In such a scenario, the attention network shown in Figure 3.1

should learn to assign a very low weight to the action probabilities output by the policy

network of this unfavorable source task. We now define an experiment using the puddle

world from Figure 3.4 to show that ADAAPT indeed does so. The target task in our

experiment is to maximize the return in reaching the goal state G1 starting from any

one of the states S1, S2, S3, S4. We artificially construct an unfavorable source task

by first learning to solve the above task and then negating the weights of the topmost

layer of the actor network. Given such an unfavorable task, Figure 3.9 compares the

performance of the following methods:

• R: In this case, there is no learned source task and the new task simply starts with
a randomly initialized actor network and learns the weights of this network over
time/episodes from scratch.

• B: In this case, the new task simply starts with the actor network learned for the
unfavorable task and adjusts the weights of this network over time/episodes.

• ADAAPT_RB: In this case, the actor uses ADAAPT. Specifically, it is provided a
randomly initialized policy network as well as the policy network of the unfavor-
able task.
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Figure 3.3: Chain World

Figure 3.4: Puddle World 1

Figure 3.5: Puddle World 2 Figure 3.6: Puddle World 3

Figure 3.7: Puddle World 4 Figure 3.8: Puddle World 5
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Figure 3.9: Avoiding negative transfer
Figure 3.10: Transferring from a favorable

task

Figure 3.11: Transferring from
multiple similar source tasks

Figure 3.12: Transferring from multiple
different source tasks

As is evident from Figure 3.9, ADAAPT does not get hampered by the unfavorable

source task. It learns to ignore the unfavorable task and does as good as the case when

such an unfavorable source task is not available and only a randomly initialized network

is available (R).

3.5.2 Experiment 2: Ability to transfer from a favorable source

task

Now, consider the case when a favorable source task is available that can help the learn-

ing process of the target task. In such a scenario, the attention network shown in Figure

3.1 should learn to assign high weights to the action probabilities output by the pol-

icy network of this favorable source task. To show that ADAAPT indeed does so, we

use the same target task as used in Experiment 1. We artificially construct a favor-

able source task simply by learning to solve the target task and using the learned actor

network. Figure 3.10 compares the following methods:
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• R: This is same as described in Experiment 1.

• G: Here, the target task simply starts with the actor network learned for the favor-
able task and adjusts the weights of this network over time/episodes if needed.

• ADAAPT_RG: Here, the actor uses ADAAPT. Specifically, it is provided a ran-
domly initialized policy network as well as the policy network of the favorable
task.

• ADAAPT_RGB: Here again, ADAAPT is used but in addition to the randomly
initialized policy network and the trained policy network of a favorable task, the
trained policy network of an unfavorable source task is also available.

As is evident from Figure 3.10, when a favorable source task is available, ADAAPT

is able to exploit it and improve the learning speed of the new task. Further, ADAAPT is

not affected by the presence of an unfavorable task (as the performance of ADAAPT_RGB

and ADAAPT_RG are almost the same).

3.5.3 Experiment 3: Ability to selectively transfer from multiple

source tasks

In this section, we consider the case when multiple partially favorable source tasks are

available such that each of them can assist the learning process for different parts of

the state space of the target task. We illustrate this first using the simple chain world

shown in (Fig. 3.3). Consider that the target task LT is to start in A or B with uniform

probability and reach C in the least number of steps. Now, consider that two learned

source tasks, viz., L1 and L2, are available. L1 is the source task where the agent has

learned to reach the left end (A) starting from the right end (B). In contrast, L2 is the

source task where the agent has learned to reach the right end (B) starting from the left

end (A). Intuitively, it should be clear that the target task should benefit from the policies

learnt for tasks L1 and L2. We learn the task LT using ADAAPTive REINFORCE

with the following policies (i) policies learned for L1 (i) policies learned for L2, and

(iii) a randomly initialized policy network. Figure 3.13 shows the weights given by the

attention network to the different source policies for different parts of the state space

at the end of learning. We observe that the attention network has learned to ignore L1,

and L2 for the left, and right half of the state space of the target task, respectively. As

the randomly initialised actor network becomes the good policy over time, it has a high

weight throughout the state space of the target task.
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Figure 3.13: The weights (in the range of [0, 1]) given by the attention network to dif-
ferent policy networks for different parts of the state space at the end of
learning.

We repeat the same experiment in a relatively more complex puddle world shown

in Figure 3.5. In this case, L1 is the task of moving from S1 to G1, and L2 is the task

of moving from S2 to G1. In the target task LT , the agent has to learn to move to G1

starting from either S1 or S2 chosen with uniform probability. We learn the task LT

using ADAAPTive Actor-Critic method, where the following are available (i) learned

policy networks for L1 (ii) learned policy network for L2 and (iii) a randomly initialized

policy network. Figure 3.11 compares the performance of the following methods.

• R: This is same as described in Experiment 1.

• ADAAPT_L1RR: In this case, ADAAPT is provided two randomly initialized
policy networks as well as the learned actor network of L1.

• ADAAPT_L2RR: In this case, ADAAPT is provided two randomly initialized
policy networks as well as the learned actor network of L2.

• ADAAPT_L1L2R: In this case, ADAAPT is provided one randomly initialized
policy network as well as the learned actor networks of both L1 and L2.

We use two random networks in ADAAPT_L1RR ADAAPT_L2RR so that the num-

ber of parameters in this setup are comparable to ADAAPT_L1L2R. We observe that

ADAAPT_L1L2R is able to perform better than the other configurations. It is able to

exploit the policies learned for L1, and L2 and performs better than R.

Finally, we move to an even more challenging task involving three variants of the

puddle world. Specifically, L1 is the task shown in Figure 3.6, L2 is the task shown

in Figure 3.7 and LT is the task shown in Figure 3.8. In all these worlds, the agent

can start from either S1, S2, S3 or S4 with uniform probability and has to reach the

goal state G1. The position and shape of the puddles as well as the position of the goal

state G1 are different in each of the three worlds. Figure 3.12 compares the following

methods:
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• R: This is same as described in Experiment 1.

• ADAAPT_L1L2R: In this case, ADAAPT is provided one randomly initialized
actor network as well as the learned actor networks of both L1 and L2.

Despite clear differences between the source tasks and the target task, ADAAPT

does meaningful transfer.
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Chapter 4

CONCLUSION AND FUTURE WORK

We have proposed Bridge Correlational Neural Networks which can learn common

representations for multiple views even when parallel data is available only between

these views and a pivot view. Our method performs better than the existing state of

the art approaches on the cross language classification task and gives very promising

results on the cross modal access task. We also release a new multilingual image caption

benchmark (MIC benchmark) which will help in further research in this field1.

We then presented a deep neural network architecture for transfer learning that

avoids negative transfer while enabling selective transfer from multiple source tasks.

We empirically evaluate the performance of the proposed model using a variety of sim-

ulated worlds and show that it indeed achieves its stated goals. While in this work we

focused on transfer between tasks that share the same state and action spaces, the use

of deep networks opens up the possibility of going beyond this setting. For example,

a deep neural network can be used to learn common representations Wernsdorfer and

Schmid (2014) for multiple tasks thereby enabling transfer between related tasks that

could possibly have different state and action parameterisation. Further, the use of deep

networks provide a straightforward way of applying these ideas in a continuous do-

main. Over all we believe that ADAAPT is a novel way to approach transfer learning

that opens up many new avenues of research in this area.

In future, we would like to work on the problem of video completion using the

textual description of image, where the goal is to complete a video, given the textual

description of the image that the video should reach to. The model would combine re-

current network based video completion architectures and Bridge Correlational Neural

Network based common representation learning architectures.

Transfer Learning and Multimodal learning, we feel, when explored, could improve

our understanding of intelligence and hence intelligence itself to new levels. We want to

1Details about the MIC benchmark and performance of various state-of-the-art models will be main-
tained at http://sarathchandar.in/bridge-corrnet

http://sarathchandar.in/bridge-corrnet


come up with a unified model which could do transfer learning and multimodal learning.

As an outline, we feel, the model should be such that the encoding part of the model

has different paths for different modalities, which allows different types of processing

on different modalities or views. Once we get the higher level abstract knowledge from

the various modalities, they should be effectively combined. During the process of

using this knowledge and performing various tasks, the model should be able to use

this combined knowledge as well as the knowledge of the previous learnt tasks from

memory seamlessly. Various tasks, involving different types of outputs and signals

should have different paths branching from the common path. Building such a model,

which is effective, could be challenging, and involve solving several sub problems, like

the ones that we have tried to solve in this work. It could have a lot of new applications

and could also improve the performance of systems in many applications, for example

in the areas of vision, NLP and robotics.
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