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ABSTRACT

Self-force has been a widely studied yet not fully understood phenomenon in Physics. From the first
example of self-force, that is the motion of a point electric charge in its own electromagnetic field,
it has been a mostly unexplained and controversial subject. In this project, we study the notion of
self-force of a point electric charge in flat spacetime and arrive at Lorentz-Dirac equation. We go on
to study some controversies and their resolutions in the case of uniformly accelerating point electric
charge. We then develop new mathematical tools called bi-tensors which are useful in extending the
notion of self-force to curved spacetime. Finally, we discuss the motion of a point scalar charge in the
presence of its own field, and we make a note on the presence of tail term which does not appear in

flat spacetime and is entirely a manifestation of curvature of spacetime.
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Chapter 1

Introduction to self-force

1.1 Introduction to self-force - various theories

The self-force of a charged particle has been a topic of great debate in the theoretical physics community.
On one hand, it leads to infinite self-energies for point particles. On the other hand, it is necessary
to incorporate it to explain various phenomenon observed in nature such as radiation reaction. Here
we give a small introduction to the theory of self-force and discuss two historical theories which have
been suggested to explain this phenomenon without facing difficulties.

The self-force of a charged particle, which is defined as the force experienced by a charged particle

due to its own electromagnetic field, is given by

Frep = gt = oo . i (1.1.1)

Here, a is the radius of the particle and « and - are some constants which depend on the distribution
of charge assumed for the particle - for example, spherically distributed charge with uniform charge
density. Notice that the second term doesn’t depend on the charge distribution. For a point par-
ticle, when we take the limit a — 0, we immediately see that the first term goes to infinity, which
is the main problem here, the infinite self-energy. The second term is the experimentally observed
radiation reaction and remains the same for any charge distribution assumed as an approximation for
the particle. This term is very much needed and can not be neglected by any theory where as the
first term is the problematic one. All other terms go to zero and cause no problem. Hence, we need a
theory which gets rid of the first term while retaining the second one. In this introduction, we discuss

two such theories which try to achieve this. Most of the results in this section have been referred from

[1]-

1.1.1 Absorber Theory

Dirac had an ingenious idea to get the required force with minimum changes except for an arbitrary

assumption. He considered the advanced version of the self-force,

2 2e2 .. ea....
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Notice the sign change in the second term. Now he considered half the difference of Fe; and Fq,.
That is
Fe o (B Fo) = 2% 4 (1.1.3)
2 3c3
We can immediately observe the simplicity of the idea. Dirac proposed that the point particles,
here electrons, not only interact with the retarded potentials but also with their advanced counterparts,
and he assumed that the interaction is half the difference between retarded and advanced potentials.
Though this yields the result we need, it is based on an arbitrary assumption without any physical
basis. But Feynman and Wheeler explained the physical nature of this idea in their absorber theory.
Their idea is that any charged particle does not interact with itself electromagnetically, it can only
interact with other charged particles with both advanced and retarded fields. Let an electron generate
a field at time ¢ which reaches another particle at a distance r at time ¢’ = ¢ 4+ Z. This particle, apart
from reflecting the wave back which is the usual retarded wave, sends an advanced wave which reaches
the electron at the time t” =’ — L = ¢. Notice the minus sign because the advanced wave travels into

the past. Hence, this combination of advanced and retarded waves results in the radiation reaction.

1.1.2 Bopp’s non-linear theory

It has been known for a long time that the root of the problem of self-force is in the factor % in the

definition of 4-petential which comes from the Green’s function. The 4-potential is given by,

1 u(t — T a2
Au(t,©) /‘7“( - ) (1.1.4)

where = |Z — 2/|. Bopp modified the above formula to

A T) = —— / Jult —

= e @) f(r).d3a (1.1.5)

o3

For the theory to be relativistically invariant, we demand that,

1

Al 2) = freo

/ Jilt = =) () (1.1.6)
where 52 = c2(t — t')2 — r2, is the relativistically invariant spacetime interval between source and field
points. The form of the function, F(s?), ensures that the results are relativistically invariant. Now we
are free to choose the function F'. We only assume that it is very small everywhere except near s = 0.
This assumption implies that F is significant for only those values of s which satisfy s?> < a? for some
small a, which is not to be confused with the radius of the particle defined in the previous subsection.
What this means is that only particles which are almost light-like separated are affected by the force
whereas, in the Maxwell’s case, particles which are exactly light-like separated are affected by the force.
Suppose that we are very far away from the source such that r > a, then the effect of the field is felt

only by the particles within the time interval

2
At=t-t~l+ (1.1.7)
C

2rc
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Since a < r, we get

At=t—t %g (1.1.8)

Thus, we come back to Maxwell’s description as long as we are far away from the source, in the
sense that we get back the retarded solutions of Maxwell’s equation, which have support only on the
light cone of the source - that is the interactions travel at the speed of light. In fact, if we integrate
over t' between t' + At, during which most of the contribution of F' comes, and if we assume F to be

a constant, say K, over this interval, we get,

K 2 i(t — f’ Wy}
At @) = =2 /7“( o) gy (1.1.9)

(& r

which is exactly similar to (1.1.4). Comparing these equations, it is easy to see that,

1
K= Treoca? (1.1.10)
Hence, this theory is a good classical theory for point particles. It predicts a finite self energy for
a point particle and includes radiation reaction. Like all other theories which include self force, this
theory is valid only as long as classical electrodynamics is considered. As soon as quantum effects are

considered, the problems come back.

1.2 Course of the report

In this introduction, we have explained what a self-force is and how classical theory of electromagnetism
fails to explain self-force of a point particle. We have mentioned two historical theories which tried
to address this problem; one which avoided the concept of self-force altogether, and another which
assumed a different, non-linear form for 4-potential in contrast to Maxwell’s equations.

In the following chapters, we shall be discussing self-force in detail using modern notation. Chapter
2 deals with the notion of self-force in flat spacetime, which yields the well known Lorentz-Dirac
equation. We derive the Green’s functions associated with d’Alembertian wave equation and equation
of motion of a point electric charge from scratch. We discuss two approaches to arrive at the same
equation of motion.

Then we move on to chapter 3 in which we study the consequences and controversies involving self-
force. Especially, this discussion is focused on the issue of radiation reaction of a uniformly accelerating
particle as seen by two observers - one who is an inertial observer and another who is accelerating along
with the particle. We resolve some apparent paradoxes concerning conservation of energy and principle
of equivalence.

In chapter 4, we introduce and define the concept of bi-tensors. This is a new mathematical which
is very useful to make sense of physical quantities which are defined with respect to two non-local
points, for example, Green’s functions. As we know, tensors are locally defined objects in curved
spacetime and hence, cannot be used to describe such non-local objects. The technology of bi-tensors
makes this task very easy. We use this concept to compute the Green’s functions of covariant scalar

wave equation. Before doing this, we also define covariant Taylor expansion. All these computations
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are valid in a region called normal convez region of a point, which will be defined in due course.

Chapter 5 deals with two different coordinate systems, namely, Fermi-normal coordinates and
retarded coordinates. First we define the tetrad, then the coordinates and then we get expressions for
tetrad in terms of small displacements in coordinates. We then find the metric near the worldline of
the particle which is itself an object worth studying, though not in present report. Then we move
on to coordinate transformations between these coordinates and finish the chapter with the relations
between tetrad of the two coordinate systems.

In the final chapter, we collect all the results and arrive at the equation of motion of a scalar charge
influenced by its own field. We quote the equation of motion obtained for a point electric charge and

compare the two equations with Lorentz-Dirac equation.



Chapter 2

Lorentz-Dirac equation in flat spacetime

2.1 Equations - of motion and of electrodynamics

The fundamental equations which form the foundation for later work are the Maxwell’s equations of
Electrodynamics and Lorentz force law, which is essentially the equation of motion of particles in
electromagnetic field. In this section we derive both the equations from the action principle. The

action for a particle in electromagnetic field is given by,

L
167

We can observe that the above equation has three separate terms. The first term, Sgjs, has a

S = Sem + Sint + Sparticle = — F.sFoPdtz + /Aajo‘d% - m/dr (2.1.1)

pure electromagnetic origin. The third term, Spqrticie, is the well known action for a particle of mass
m. The second term, Sy, is the interaction term; it connects the interaction between matter and

electromagnetic field. Here all the symbols have their usual meanings,

Foag =  0OuAg— 054, (2.1.2)
— Fag= —Fa (2.1.3)

and for a point particle of charge ¢ we have,

J%(x) :q/ua(T)(S(az — z)dt (2.1.4)
where, z%(7) is the trajectory of the particle and u®(1) = dzziT(T) is the four-velocity of the particle.
Now we derive the fundamental equations from the action principle. Throughout this report, we use

the Minkowski metric defined as, .8 = diag(—1,1,1,1).
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2.1.1 Maxwell’s dynamical equations

The action has two independent quantities which can be varied to get equations of motion. To get

Maxwell’s dynamical equations we vary the action, S, with respect to the four potential, A,,.

68 08 5Sm oS article
_ E]\/[+ t+ particl

=0 2.1.5
0A,  0A, dA, 0A, ( )
Since Sparticie does not depend on A,
5Spa7'ticle
——— =90 2.1.6
54y (@) (2.16)

The electromagnetic term gives

5SEM 1) 1 / B g4, 1
- [ FyFe
3A,(z) 6A,L< Tor | Fost™rde
1

= EaaFUM(‘T) (217)

Similarly the interaction term gives

dSint _ 0 o 341
6Au(x) B 0A, </Aa] a a:)
= j"(z)

(2.1.8)
Now substituting (2.1.6), (2.1.7) and (2.1.8) into (2.1.5), we get the following equations,
Lo, Fon(z) 4 i (z) 40 =0
4
— FH7 = 4mjt (2.1.9)

These are the two Maxwell’s dynamic equations which contain source. The other two equations

are actually Jacobi identities,

F 4+ P, 4+ % =0 (2.1.10)

which follow from the antisymmetric property of F*3 given in (2.1.3). These equations, as can be
seen, do not contain any source terms and are not dynamical equations. They constrain the possible

solutions of the Maxwell’s dynamic solutions.

2.1.2 Lorentz force law

The Lorentz force is in fact the equation of motion of particle in the presence of an electromagnetic

field. To get the equation of motion, we vary the action, S, with respect to the trajectory of the
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particle, z#(7).

0S _ 5SEM T 5Sznt + 5Sparticle

o2 =0 2.1.11
dzH dzH dzH dzH ( )
Consider the individual terms one by one. First,
0SEM
S (2.1.12)

because the electromagnetic field does not explicitly depend on the trajectory of the particle.
Now, consider the interaction term. Here, we should note that a variation in worldline induces a

change in A, (x). With this in mind, we get

5(3% T ok ( Aaj ad4”3>
[l
= qu®Fo,(2) (2.1.13)

Here, integration by parts has been used between fifth line and sixth line. Now, consider the particle

term,

5Sparticle o 1) /
san(r) e (‘m/ ‘”)

=may (2.1.14)

Substituting the above results - (2.1.12), (2.1.13) and (2.1.14) - into the equation (2.1.11), we get

the following equations of motion,

0+ qu®Fou(z) + ma, =0

= may, = qFa(2)u” (2.1.15)

The last equation is the Lorentz force law. We can observe that the force is evaluated at z(7) which
is the trajectory of the particle. But F®? has a singularity at this point - in fact, on the whole worldline
of the particle - because the force is due to the field of the particle itself. What we tried to do was to
calculate the force, generated by the particle, acting on itself. Hence, (2.1.15) does not make sense.

More care should be taken in calculating the self-force of a point particle.

2.2 Green’s functions in flat spacetime

The problem with the Lorentz force above is that there is a singularity on the world line. The singularity

has its origin in the 4-potential generated by the particle which in turn depends on the Green’s function.
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Ultimately the singularity comes from the Green’s function. First, we need to know what the Green’s
functions in this case are and how they affect the theory. Here, we derive the Green’s function for the
d’Alembertian, [.

2.2.1 Derivation

We start with the following equations,

(2.1.2) and (2.1.9) = OA* = 4xj* (2.2.1)

Hence, the Green’s function for the d’Alembertian, [, satisfies the differential equation

OG(z,2") = 4wd(z — 2') (2.2.2)
= ia—Q—VQ G(z,2') = 4né(x — 2’)
290 z,x') =4nd(x — x

Let the Fourier transform of G(z,2’) be G(k,z') - here the Fourier transform is with respect to
but not 2. We know that z = (ct, &), similarly k = (£, k). Let k.o = kta, = (wt — k.Z). The Fourier

c’

transform and its inverse are given by

- 1 4
Gk,2') = i /ezk'xG(x,x’)d4:L’ (2.2.3)
1 o
G(x,2') = @) / e meG(k, 2 )d k (2.2.4)
We also know that,
1 , /
S(z—2') = @) / e~ tk@=) A (2.2.5)
Substituting (2.2.4) and (2.2.5) in the equation (2.2.2), we get
2 ik.x’ 2 ik.x’
~ N [—c e [ e
iy = (1) ST () 029
Substituting this back into (2.2.4), we get
1 —c2 efik.(zfx) .
Glo.) = i < . )/w2_62k2d K (22.7)
1 _2 oilk (F—3")—w(t—t")] .
— ( : )/ ' (2258)

1 _2 / il (F—7) —w(t—1)] " 229)
(2m)2 \ « (w— ck)(w + ck)
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where k£ = ]E\, it is not to be confused with the four wave vector, k#. Conventionally, the w
integration is done first. Contour integration followed by application of Residue theorem is the best way
to find the integral with respect to w because the integration path, which is from w = —o0 to w = 400,
includes the poles w = £ck. In contour integration we treat w as a complex variable and integrate
over a contour in its complex plane. Let w = wg + iwy, where wr and wy are real and imaginary parts
respectively. There are two possible contours for integration: one above the real axis and the other

below. The integrand then has the factor ewr(t=t)

which converges only when the exponent is negative.
Hence, among the possible contours, those which lie entirely in the upper half-plane must have ¢ < t/
and those which lie entirely in the lower half-plane must have t > t/. We consider two contours: one
contour which is the real axis plus a semi circle of radius r — oo in the upper half-plane and another
which is the real axis plus a semi circle of radius r — oo in the lower half-plane.

Even after choosing a contour, as the real axis passes through two poles we need a way to get
around them. These paths around the poles, called as indentations, are semicircles of radius ¢ — 0.
There are four possibilities to go around the two poles: both up, both down, one up and one down and
vice versa. Out of these four possibilities the last two are of no concern in this derivation. The first
two are the most important ones which give two different solutions for the Green’s functions; they are
retarded and advanced Green’s functions for the first and second cases respectively. We derive both the
functions separately.

The integration itself is straight forward once a contour with appropriate indentations are fixed.

The only additional calculations are the Residues of the poles. They are

6ick(t—t/)

_ _ 92.2.1
Ry ook at w ck ( 0)
Ry = o (2.2.11)
2T ok adw=c -

Using the above residues, for the case of both the indentations above the poles (denoted by + sign

near the integral symbol), we get

—iw(t—t') 2mi (_Zsm[Ck(t_t/)]> t >t ie., upper semicircle
55 ( . k)( k)d4k - ; (22.12)
+wock)lwte 0 t < t'ie., lower semicircle
or using Heauviside step function, we can write the above integral as
—iw(t—t’) —i sin[ck(t — t/)]
e isinfc
d*k = (2mi i
ﬁ (w—ck)(w + ck) (2mi) ( ck o )
27 . ’ /
=7 sinfck(t — ¢ )]O(t —t) (2.2.13)

Similarly, for both indentations below the poles (denoted by — sign near the integral symbol), the
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integral is given by

e—iw(t—t") d4k_—27r, Kt — {0 — ¢ -
yg_(w—ck:)(w-i—ck;) ~ ok sin[ck(t — ¢ )]0t — 1) (2.2.14)

The appearance of © functions in the above integrals suggests a notion of causality. But calcu-
lating these integrals is only one part in the total integration. There is also an integration over total
momentum space which is essentially the inverse Fourier transform from momentum space to position
space. This integration can be done using spherical coordinates for momentum space. We can choose
the k,-axis to be along any direction because the integral is invariant under rotations. To simplify the
integration, choose k,-axis along the vector ¥ — 2. The integration for both advanced and retarded

Green’s functions is similar. The advanced Green’s function has the following form

_ 00 T 2m R . ! I
G_(z,2) = 5 K2 sin Odkdfdgeii—a'| coso SLCK(E — £ )O( — 1)
27 Jo Jo Jo k

Let R = |¥ — 17\ After doing the integration over ¢, which is trivial, we get

G_(z,2') = % /0 /0 k sin Odkdfe* s sin[ck(t' — t)]O(t —t)

The integral over 6, which is also easy to do, yields

G (m2) =S / ke o PR Gnlek(¥ — )0 — 1)
; R

T
2¢ [°

=7 dksin (kR) sin[ck(t' — t)]©(t' — t)

The integral over k requires a few steps to get to the final answer. The first one is to write product

of sines as a sum of cosines

oo

G- (w,a) = = / dk {cos (k [R — (' — £)]) — cos (k [R+ c(t’' — )])} O — 1)
T Jo

Since cosine is an even function in k, this integral can be replaced with another integral from

k = —oo to k = oo by multiplying a factor of half. Also, sine is an odd function and hence, can

be added to the corresponding cosine terms without changing the value of the integral. Then the

combination of cosine and sine functions can be replaced by e’**. The final integrals are

G_(x, l’/) — 27:R / dk {eik[Rfc(t’ft)} _ eik[RJrc(t’ft)]} @(t/ —1)

c
=% [6(R—c(t' —t)) = 0(R+c(t' —t)] O — 1)
Since R > 0 and © ensures that t' > ¢ the second d-function is always 0 and the only contribution

comes from the first J-function. Hence, finally, the advanced Green’s function is
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G (,2') = 3R~ et ~ 1)) = %5 <t’ - Fj 4 t]) (2.2.15)

After a similar analysis for the indentations above the poles, we get the retarded Green’s function

/ C / 1 / R
_ S — |t == 2.2.1
Gi(z,2') = RS(R—I—c(t t)) R(S (t [t c]) ( 6)
This completes the derivation of Green’s functions for d’Alembertian which are useful in the case

of electrodynamics.

2.2.2 Discussion

The form of the Green’s functions agrees with the names advanced and retarded. Take the case of re-
tarded Green’s function which is easy to visualize. Clearly, the function is 0 for ¢ > ' but there is much
more to it. The Green’s function is non zero only at t = t’+§. This means that the effect of source at 2’
which radiates a wave at t’ is felt at the field point, 7, at ¢, that is after a delay of % where R is the dis-
tance between source and field points. The effect doesn’t take any more or any less time but exactly %.
Even in the case of advanced Green’s functions, the wave reaches the field point % seconds in advance.
This implies that the interaction travels ezactly at a speed of light both into the past and into the fu-
ture. This further implies that the Green’s functions have support only on the light cone of the source.
That is the electromagnetic waves radiated from the source at any instant can reach only to those
points which can be reached by a light wave radiated by the source at that same instant.

One more important aspect of the above Green’s functions, which is relevant to the discussion in
the previous section, is the appearance of R in the denominator. This implies a singularity at R = 0
(both field and source points coincide). This means the 4-potential and hence, electromagnetic fields
are singular on the world line of the source particle. This can not be avoided and this is the reason
why the calculations of self-force using Lorentz force law in the previous section yielded meaningless
results.

We have derived all the Maxwell’s equations and Lorentz force in flat spacetime. We have argued
why the Lorentz force law does not make sense when applied to calculate self-force of a point particle.
We have derived the Green’s functions and argued that the singularity in the Green’s function is the
main reason for infinite self-force of a point particle. In the next section, We will extend the Lorentz
force law to Lorentz-Dirac force equation. We will also introduce radiation reaction which can not be

avoided in any theory explaining self-force.

2.3 Slowly moving (non-relativistic) point charges

From the advanced and retarded Green’s functions calculated in the previous subsection, we get the
following expression for electromagnetic 4-potential, A%(x).

ey _ = 2
Ag@,f):/J = el@ =T 7) s, (2.3.1)

— —»,‘

r—X
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where

+1 for retarded solution
€ =
—1 for advanced solution

2.3.1 Far zone

In the far zone, we have |Z| > |#/|. Let r = |Z|. Then we have
‘a‘:’—f/’ :r—fz-f/—l-O(r*l)

Now expanding j¢ in Taylor series around w =t — er, we obtain

OOGA 131 .
Zﬁ xalj( />

=0

ja(tfer

Substituting this expression into (2.3.1), we get a multipole expansion for 4-potential

S o
A?(taw:Zl./ )L . 7) b
- E:el & / (- &) (w, &) d*a' (2.3.2)
1! duw! ’ e

To the leading order, the scalar potential is given by

r®. (t,7) = /p (w,Z) 3z’ + e% /p (w, @) (R -T) a3z’

d
w

=q+ten-p (2.3.3)

where ¢ = [ pd32’ and p = [ p#’d®z’ and the overdot denotes differentiation with respect to w.

Similarly, the vector potential is given by

rAl(t,7) = /ji (w, @) d3z’
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But, by Gauss’s theorem, we know that

[V (x’ij‘) B! —0
— [V (@)t (V)@ =0
— it e (-g8)] @ =0
= [t = di / pa' da’
— [ jd3’ =P

Substituting this back into previous equation we get

rA, (t,7) =p (2.3.4)

rBe = —ei X p (2.3.5)
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To the leading order in r, the electric field is then given by
rE. =7 (n : ﬁ) - (2.3.6)

It can be observed that
E.=eB. xn (2.3.7)
That is the electric and magnetic fields are perpendicular to each other and are perpendicular to
direction of propagation n. Hence, these are transverse electromagnetic waves. For € = +1, the waves
are outgoing and hence, energy is removed by these waves from the source. For e = —1, the waves are
incoming and hence, energy is provided by these waves to the source.

The Poynting vector, S , is given by

N 1 = =
S.=—F, x B,
4 x

- 47:r2 Q;%’QSHF (9)> n (2.3.8)

where 6 is the angle between the vectors n and ﬁ

The rate of energy flowing out of a sphere of radius r is given by
dE 5 -
— = [ S-dA
dw /

T 2T € 12
_ / / . <’ﬁ’ sin? (9)) r2 sin (8) dOd
0 Jo m

:/ 2#% ‘;5"251113 (0) do

0
L2 [T
. ‘5‘ / sin® () dé
2 0
2 1.2
=e— |P| 2.3.9
€3 1P (2.3.9)
Thus, we can confirm that energy flux is outward for € = 4+1 and inward for ¢ = —1. For a point

charge, since p' = ¢Z, we have % = 6%(]20,2, where a is the acceleration of the point charge. This is

Larmor formula.
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2.3.2 Near zone

Near the source, we have |¥ — #'| < t. Hence, expanding j* in Taylor series about ¢, treating |Z — &|

as a small quantity, we get

0 .,
12 (1)

ja(t—e T

I

=0

Substituting this into (2.3.1), we obtain

o= (220 G2 o (1,7)]

|7 — 7|

Zyatl/r l ' a(7£/)d3$,

lodd

10 =1 .o a/ /
:[Zuaﬂ/\f—ﬂll (t, & d3]—f[
(2.3.10)

It can be observed that the first sum is independent of € and is same irrespective of radiation at infinity.
Hence it is not responsible for radiation reaction. On the other hand, the second sum changes sign

with € and hence, corresponds to radiation reaction force. This can be looked at in another way. The

first sum can be written as & (A%, + A2, ), the coloumb part, and the second sum as 1 (A%, — A, ).
Hence, the radiation reaction potential is given by
a0 = Y az) = -0 0 [y ey s

lodd

The leading term for scalar potential comes from [ = 3 because [ = 1 term vanishes by virtue of

charge conservation.

3
o, (t,7) = —%% p(t,7) |7 -7 &P

The leading term for vector potential comes from [ = 1.
1 - 0 = =1\ 33,/
Ar,«(t,av):—a ](t,x)dac

In the special case of a point charge, we have p (t,7) = ¢0 (7 — Z(t)) and j (¢, @) = q06 (& — Z(¢)).
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The scalar potential is

__gj 2 S o o
T 20 +2(E -9 (-a)
——% [477 6—2(3?—5)-a+2176]
:%(f—Z)-&—qﬁ-ﬁ (2.3.12)

Similarly, the vector potential is given by

Tl = d_
Ay (8, %) = —4 0
= —qd (2.3.13)

The magnetic field associated with this radiation reaction potential is then given by
By (6,7) =V x Ay =0 (2.3.14)

Similarly, the electric field is given by

= Zqd (2.3.15)

Finally, the radiation reaction force is given by

_ o _ 2 .-
Frr =q (Err + U X Brr) = §q26 (2316>

The rate of work done by this force is given by

. 27d
25 S _ 4| d o 2
¢a-v 3[dt(av) \al]

Averaging over time and assuming that motion is either periodic or unaccelerated at early and late

times, the first term in the above expression vanishes and we get

<W> - —§q2 1) (2.3.17)
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This quantity is negative and is exactly equal in magnitude to the rate of energy radiated by the point

charge given by Larmor formula. Hence, there is an energy balance on average.

2.4 Covariant form of Lorentz-Dirac equation

In this section, the covariant form of Lorentz-Dirac equation is derived. We start with the light-cone
mapping. In this subsection we define several quantities which will be useful in the derivation that

follows. The definitions and results in this subsection can be found in [2].

2.4.1 Light-cone mapping

For the retarded wave, the trajectory, z® (7), of the particle intersects the light cone of the field point,

%, on the past cone.
1
o(x,u) = 3llap (% — 2% (u)) ({Eﬂ — 2P (u)) =0 (2.4.1)
From the above equation, we can get u (), the proper time of the particle when z (7) intersects the
past light cone. We shall call u as the retarded time.

We shall also need an invariant measure of distance between x and z (u). The scalar quantity

r (@) = ~iap (¢ — 2 (u)) o7 (u) (2.4.2)

satisfies the required property. We can confirm the same by observing that in momentarily comoving
Lorentz frame, r =t — 2% (u), and since the speed of light is assumed to be unity, it is also the spatial
separation between x and z (u). Hence, r (x) may be referred to as retarded distance.
Now we define a new vector, k% (x), in the direction of % — 2® (u), which is a null vector.
(% — 2% (u))

K () = (2.4.3)

It can be easily observed that the vector k% (z) satisfies

kE* () ko (x) = 0 and £ (z) uq (u) = —1 (2.4.4)

where the second equation provides convenient normalization for the rescaled null vector.
It is easy to see that a change in x results in a change in u, unless that change is along the null
geodesic linking  and z. Let the field point be displaced to a new point x 4+ dz. The corresponding

intersection point is z (u + 0u). Using 2.4.1, we can obtain a relation between du and dx.

o(z+dz,u+ou) —o(zr,u) =do(x,u) =0
= ug = —kg (2.4.5)

The above relation simplifies the process of differentiation of a function f (x) with implicit reference

to u. Now a function f (z) = F (z,u) can be differentiated with respect to x and the dependence on
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u can be removed using the relation (2.4.1). That is, we have
o5 _ (0PN, ou (0F
oz \ Oz° v O \Ou),

() )

This is the differentiation rule under light-cone mapping.

Using the above rule we can find that

o o Or g Or
GT Y Py “Ou
= —uq + ko (1 + rag) (2.4.7)

where a; = agk:ﬁ . Here, it is understood that all worldline quantities such as u® and a® are to be

evaluated at 7 = u. From (2.4.7), using the relations in (2.4.4), we obtain
k%o = —k%uq + k%% (rap +1) =1 (2.4.8)

Another example of differentiation, using the rule (2.4.6), which will be useful in subsequent sec-

Ok, Ok,
Fap = <axﬁ>u e <au>x

1
=~ (lag + katug + kgua — kakp) — arkaks (2.4.9)

tions, is

From the above equation it is clear that

1 1
ko gk = - (naﬁkﬁ + kokPug + kP kguo — k:ak5kﬁ> — agkokgk® = ~(ka = ka+0-0)=0=0

(2.4.10)
which is the geodesic equation of null vector. We also have
0s  k® “k 1 4 2 2
kaa:a+u°‘+u“—kak“<ak+>:——0= (2.4.11)
’ r r r roor r

2.4.2 Electromagnetic Field of a relativistic point charge

The current density of a relativistic point charge is given by

j< (x’) = q/uo‘ (1)6 (w’ -z (T)) dr
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The elctromagnetic 4-potential is given by

= q/G6 (x,z)u™ (1)dr (2.4.12)
For the retarded wave, we know that the Green’s function is given by

0 (22— (t— |7 2))

|7 = 7]

Gret (1,2) = =06 (t — zo) (o)

Substituting this result in (2.4.12) gives

A% (2) =g / dru® (1) 0 (t - 2°) 5 (o)

= q/dTuo‘ (1)© (t -2 3T = Tlo—)

ol
Z ‘ ET? ‘O':O
u® (u)
= 24.13
- () ( )
From the above equation we get
by |t —7s
Aty (@) =a |22 o (7]
[—kgan  uq
=q|—,— — 2 (tus+ksrax + kp)
_ g | a0~ htatn | uats — u‘ykﬂ (2.4.14)
i r r
Using this relation, the electromagnetic field tensor is given by
Fop () = Ap.a = Aap
2q 2q
= - (a[akﬁm + aku[akﬁ]) + ﬁu[akm (2.4.15)

The first term is the radiative part, which depends on the acceleration of the point charge, and the
second term, the Coloumb part, which does not depend on acceleration of the particle, falls off more
rapidly than radiative part and hence, is also called bound part.

After a lengthy algebra, using the equations derived in subsection 2.4.1, it can be shown that
Faﬁ =0 (2.4.16)

away from the world line. These are the vacuum Maxwell’s equations.
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We can now calculate electromagnetic field’s stress-energy tensor, T, 35, given by

1 1
T = — {FQ“F/Z - 4gaﬁF‘“’ij} (2.4.17)

em:4ﬂ_

Using the expression for F*# in (2.4.15) in the above definition gives

5 L a2 ket L (e (@B) _ pocgh (o) _ pags 4 1

[03% _ (0% (0% (0% (0% (0% (0%

T = | i (o — af) ok }4—[27”13(& B+ ag (R — k% ))]J{W <2u B — ok o+
(2.4.18)

In the above expression, the first term is referred to as radiative component, Tf;ﬁd, and the second and

third terms combined is referred to as bound or Coloumb component, Tgfi. Therefore

2
B q 2 2
T = [4717”2 (a — ak) ko‘k’ﬂ

and
ap

2 2
o q a8 a.B a1.8 q a1.pB arp n

Note that a? = a®a,. The above decomposition into radiative and bound parts is meaningful because

each component is conserved separately, that is

BsT0 =0, Tl =0 (r#0) (2.4.19)

r

These equations can be confirmed easily after a lengthy algebra using the equations derived in section
2.1. The motivation behind the name radiative is that it scales as »~2 and is proportional to k*k”.
2.4.3 Radiation-Reaction force

After doing calculation similar to that of the retarded 4-potential, we get the advanced 4-potential

u® (v)

Tadv (:E)

07

adv (LU) =4q

(2.4.20)

where v () is the proper time of the particle when z (7) intersects the future light cone. We shall call

v as the advanced time. Similar to 7 (z), reg, () is the advanced distance given by
Tado (T) = —7ap [2% (v) — 2] uP (v) (2.4.21)

Before going further, we need to express all the advanced quantities in terms of retarded quantities
like . This is helpful because our point of interest is the behaviour of the field very close to the
world-line. Also, for such close points, since r is small, we can express AT = v — u and 744, () as a

Taylor expansion in powers of r. It can be noticed that A7 and r are of the same order of smallness.
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We have

2% (v) = 2% (u) + aZ;fT)

1 0% (1)

24 o7t

1 9%z (1) 9 1 932 (1)
T=u ATt 5 or? T=u AT 8 or? T=u
AT+ 0 (A7'5)

T=u

1 1 1
=2 +u"AT + §aaAT2 + EQQATS + ﬂdQAT4 +0 (A7'5)

A73

in which the terms on the right hand side are evaluated at the retarded time, u.

Substituting this in the relation o (z,z (v)) = 0, and using o (z, z (u)) = 0, gives the following

o (x,z(v)) =0
1

= 2A7 — I +rap) A2 = "BAT — L [a® +rdi] ATT+ 0 (AT%) =0

where ar = a%k,, and dp = d%,,.
Assume that
AT = ag+ a1 + asr® + asr® + O (7“4)

Substituting this into the previous relation and equating coefficients of different powers of r to 0, we

get

apg = 0

a)p = 2

as — —QCLk

a®> 2
=2(a2 - — — 2§

as (a 3 3ak>

Hence,
2 a® 2 2 3
AT =2r {1 —agr + <ak —3 3%) r? 40 (r )} (2.4.22)

We substitute (2.4.22) into the expansion of z® (v), and also into a similar expansion of u® (v),

1 1
u® (v) = u® 4+ aAT + §éLO‘A7'2 + 6&QA73 +0 (AT4)

and then we substitute the above expansions into (2.4.21),

Tadv (37) = Tagp [Za (U) - xa] U,B (U)

=7+ ; (a® + ax) r* + O (r*) (2.4.23)

Similarly we can express u® (v) in terms of powers of r, we get

u® (v) = u® + 2a°r + 2 [a* — apa®]r* + O (r?) (2.4.24)
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The advanced 4-potential is obtained by substituting (2.4.23) and (2.4.24) into (2.4.20)

u® (v)
Tadv (-7;)

a 1
=25 1200 + 29 [da —ana® =5 (0 ) “] r+0 () (24.25)
.

adv () = ¢

The radiation-reaction potential is given by

A% (@) = 5 A5 ) — A2y, (@)

(a2 + ay) uo‘] r+ 0 (7“2) (2.4.26)

Wl

= —qga® —q [aa —apa® —

here, we consider only terms of order less than 2 because the higher order terms, after differentiation,
give rise to terms which become 0 on the world-line.
After a lengthy but straight-forward algebra using relations derived in section 2.1, on the world-line,

where % = 2% or equivalently r = 0, we get

q . .
Zﬂ (2) = guaag + qaqug

and hence,

o (2) = AFla (2) — Ay5 (2)

2
= —34(aaus — agua) (2.4.27)

The radiation reaction force is given by

Ffy = qFSP (2) ug
2
= —ngug (a"‘uﬁ — dﬁuo‘)

2
=3 ¢ (aa + azuo‘)
or equivalently

2
FS = §q2 (6% + uug) a” (2.4.28)

The equation of motion of the charged particle is therefore

2, .
ma*=Fo, + Fr =Fo, + 34 (50‘5 + u®ug) abl (2.4.29)
This is in fact the Lorentz-Dirac equation. Thus, the half-retarded minus half-advanced potential is
indeed responsible for the radiation reaction because it gives correct covariant form of Lorentz-Dirac
equation.

Define Qa5 = ajqug), then

. ) 1. )
Qaop = aug = 3 (Goug — Gpuq)
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Therefore, the radiation-reaction field becomes
oy 4 .
;76 (2) = _quaB

2.5 Discussion

We can verify that the covariant form of radiation-reaction force indeed gives the correct expression
for the force on slowly moving particles derived in the first section. For slowly moving particles we
know that u® =~ (1,0,0,0), which then implies

O = qu (6% + ulug) a° = qu (a°-a°) =0
and
o= qu (0' + u'ug) a” = §q2 (a' —0) = qudi
- ﬁrr = %qzé

which is the radiation reaction force on slowly moving charged particle.

The correct form of Lorentz-Dirac equation also confirms that the radiation reaction force is indeed
due to the half the difference of retarded and advanced potentials.

In this part, we have derived the radiation-reaction force in both non-relativistic and relativistic
cases. We have compared the equations in both the cases and proved that Lorentz-Dirac equation
reduces to the former case in the non-relativistic limit. The next step is literature survey of radiation

reaction in the case of a uniformly accelerating charge and its consequences.
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Literature survey

3.1 Rohrlich’s papers

This paper addresses a few questions about the applicability and consequences of self-force and radia-
tion reaction in the special case of a uniformly accelerating charged particle. The questions raised are

as follows:

1. There have been claims that uniformly accelerated charges do not radiate. But, from the radiation

rate formula, it is widely known that accelerated charges do radiate. Is this formula always true?

2. Maxwell’s equations are known to be conformal invariant. Conformal transformations is a more
general class of transformations of which Lorentz transformations is only a subgroup. Conformal
group also consists of transformation from an inertial frame to a uniformly accelerated frame.
Since there is no radiation by a uniformly moving charge, by conformal invariance, it is thought
that the charge does not radiate even in uniformly accelerated frames. If the charge does radiate

where does the argument of conformal invariance breakdown?

3. The radiation reaction of a uniformly accelerating charge is zero. Does this imply that the charge
does not radiate? If the charge does radiate, and since the radiation reaction force is zero, where

does it get the necessary energy from? Does this radiation violate conservation of energy?

4. In case of gravitation, do neutral and charged particles, which are identical in every other as-
pect, undergo same motion in presence of a uniform gravitational field? If the charged particle
does radiate, this can be used as a test to differentiate gravity-free regions from regions with

gravitational fields. Does this violate principle of equivalence?

We discuss the problems stated above in detail and develop answers to all the questions raised.

3.1.1 Fields of a uniformly accelerating charge

The electromagnetic fields at (¢,7) of a uniformly accelerating charge at (¢/,7"), with the magnitude of

acceleration 1, are given by (Ref [3])

24
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Ef =0=H} =HP (3.1.1)
EB = —4eq? (o” + t?;pz -2

Ef = 860(2%

Hf = 860z2§§L

-

where £ = [(a2 + 12— p? — z2)2 + 4a2p2] z, Here, we have used cylindrical coordinates p, ¢, z. These
fields were derived by Born (and hence the superscript B), who assumed that they held everywhere in
the spacetime. But Schott pointed out that the equations held only in that region of spacetime where

z 4+t > 0. This condition is a consequence of causality. The actual condition for causality requires
t—t'=R=|F—7]>0.

Since the charge undergoes hyperbolic motion, we have, z/ = v/a2 + 2. Now, requiring that R > 0
implies that z +¢ > 0. Hence, the Schott solution is equivalent to Born solution except for the
restriction to the spacetime region, z +t > 0.

As an aside, Bondi and Gold gave modifies expressions for the fields which extended their applica-
bility to entire spacetime region. The expressions remain the same for the region z + ¢t > 0 and zero
for z +¢ < 0. The fields attain infinite values on the region z + ¢ = 0 because these fields have been
emitted by charges moving at the speed of light at ¢t = —oo. The final expressions which satisfies all

these qualifications are as follows

Ey=0=H,=H, (3.1.2)
2 2 2 2
+12+p? -
E, = —4ea? (@ ggp ‘ ).9 (z+1)
_ 2Pz 2ep

Hy = 8ea2§§.9 (z+1) — [)22?;2.5(2 1)

These fields satisfy Maxwell’s equations everywhere and contain the causality condition within them.

It is easy to see that the complete hyperbolic motion of the particle is invariant under Lorentz
transformations. This implies that the fields have same form (form invariant) in all inertial frames. This
form invariance is a consequence of conformal invariance of Born solution. But the causality condition
restricts the symmetry of the solution of Maxwell’s field equations to Lorentz transformations. In other
words, Born solution is a sum of advanced and retarded fields which is conformal invariant but Schott
solution is restricted to retarded fields which is invariant under only a subgroup of full conformal group,

namely Lorentz group. Hence, conformal invariance is not a physical symmetry of the solution and
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any physical arguments based on conformal invariance do not yield sensible conclusions. This answers

the second of the questions raised above.

3.1.2 Radiation rate of uniformly accelerating charge

The intensity of radiation emitted at time ¢’ in the (space-like) direction n* which is orthogonal to the

velocity of the charge at that time v* (7) is given by
I =T"v,mn, (3.1.3)

where 7 is the propertime corresponding to t'. We define radiation rate as the total rate of radiation
energy emitted by the charge at time #’. This is obtained by integrating I invariantly over a light
sphere in the limit of infinite radius R =t — ¢. That is

R = lim [ T"v,n,d*c, for a fixed ¢’
R—o0
Observe that R — oo and ¢’ being fixed = t — oo because the causality condition must still be
valid. The expression for R, in a most general motion, is given by
R = 3¢ o (3.1.4)

where a” (7) is the four-acceleration of the particle. It can be observed that R is an invariant, which
is expected since the integration is carried out over light sphere which is itself an invariant. In general,
‘R is a function of source point, that is of the propertime 7. However, in the case of hyperbolic motion,
it is evidently a constant and is independent of when and where the radiation has been emitted.

Using the fields (3.1.1) given in the previous subsection, along with causality condition, the intensity
and radiation rate of a charged particle in hyperbolic motion are given by

2

2e

- e2at sin? 6
~ 47R? 2 2 / 6
(\/a + e —t cos@)

where cos = Z - n. Therefore, it can be seen that a uniformly accelerating point charge does radiate

(3.1.6)

at a constant rate given by (3.1.5), with a radiation pattern given by (3.1.6). This answers the first
question raised previously.

Since our definition of radiation is invariant under Lorentz transformations, every inertial observer
sees the same radiation rate and intensity.

The radiation rate computed above holds for all values of ¢’ such that z +¢ > 0 and this result is
independent of the value of the fields in the region z +t¢ < 0. Hence, the argument by Bondi and Gold

that all the radiation is emitted at ¢ = —oo is unphysical and unnecessary.
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3.1.3 Conservation of energy

The equation of motion of a charged particle with the inclusion of radiation reaction is given by

mat = F!, +TH (3.1.7)
where 5 i
I* = §62 <c?7 — v“aya”) (3.1.8)

For a uniformly accelerating charge, it is easy to show that I'* = 0. This yields the equation of motion

B
mal' = I, ,.

(3.1.9)

We know that the kinetic energy is given by 7' = m (v — 1). Hence the zeroth component of (3.1.9)
implies
d7T _ F() _ dWext
dr et dr

Hence, the change in kinetic energy of the particle is due to the work done by the external force and

(3.1.10)

is independent of the charge of the particle. But we have seen in the previous subsection that the
charge does radiate. This might seem to be in direct contradiction with the principle of conservation
of energy. The resolution to this apparent contradiction is very simple.

Let us consider a general motion. In this case, the zeroth component of (3.1.7), after noting that

dt _ :
o =7, gives

T (dQ AW
- <dt - ) =— (3.1.11)

since I'0 = %62 (%‘f — 7a2) = (% — R), where () = %eQaO. This equation tells that the work done by
the external force equals the increase in kinetic energy of the particle minus the work done by radiation
reaction, which has two parts - one which is always positive (R > 0) and the other which can be either
positive or negative or zero. In a general motion, the work done by radiation reaction force need not
be zero. Part of this work goes out as radiation emitted by the charged particle and the remaining
part goes into changing the value of ). Hence, () can be interpreted as a form of internal energy of
the particle like kinetic energy. It has been termed as acceleration energy by Schott.

For periodic motions, averaging over long periods of time, the term % vanishes. Hence, on an
average all the work done by radiation reaction goes out as radiation emitted by the charged particle.
It might now be tempting to say that there is no radiation when radiation reaction is zero. However,
this is not true because hyperbolic motion is a very special case. the work done by radiation reaction
itself is zero. But % does not vanish as in periodic or bound motion. Hence, we have

rR=2 -y
dt

Considering m — @ as the internal energy of the particle, we can interpret the above equation in an
intuitive way. That is, the radiation emitted originates from the internal energy of the particle. This

reduction in internal energy of accelerating charge does not change the rest mass of the particle as can
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be confirmed from the rest frame of the particle. In the rest frame, a® = y¢'-@ = 0. Hence, Q = 0 and

this is consistent with the physical picture. This answers the third question raised.

3.1.4 Principle of equivalence

It has been shown by Rohrlich (Ref [4]) that a charged particle falling freely in a homogeneous constant
gravitational field undergoes hyperbolic motion. We have also seen in the previous subsections that
charged and neutral particles follow same trajectories in the presence of a homogeneous constant
gravitational field. But a charged particle in hyperbolic motion does radiate and hence, this radiation
can be used to identify whether the particle is in an field-free region or in a gravitational field. This
clearly seems to violate the principle of equivalence. However, by the definition of radiation rate given
above, an observer can measure the radiation only at a very large distance from the source, that is, at
R — oo, whereas principle of equivalence is a locally valid principle. Hence, an observer who tries to
test the validity of principle of equivalence has to do so locally and hence cannot use radiation emitted

by the source as a strategy. This clarifies the fourth question raised above.

3.2 Teitelboim’s and Hirayama’s papers

In the previous section, radiation has been defined at R — oo, also called the wawve zone. But later,
Rohrlich and Teitelboim derived the same radiation rate formula using another approach. In this
approach, radiation can be identified at any arbitrary distance from the source. Radiation can then be
pictured as something which tends to exist immediately after the emission of the fields by the source.
The important idea of this approach is identification of bound and radiative parts of electromagnetic
energy momentum tensor. This splitting is well defined in the sense that both the parts are conserved
separately everywhere off the worldline of the particle. There exists such a splitting even in Rindler
frame which can be used to find the radiation rate formula by an observer fixed in a Rindler frame.
The bound part has a property that for a specific surface, the flux of the bound part across this
surface is zero. This property was first identified and used by Rohrlich [5], who gave a description of
this surface, and then developed by Teitelboim [6]. This property, along with a few other properties of
the radiative part such as its flux being independent of direction of the hypersurface and the distance

from the source, can be exploited to compute radiation rate at any arbitrary distance from the source.

3.2.1 Classical radiation in Lorentzian frame

In the previous section, the quantity Q = %eQaO

, which has been called acceleration energy, has been
identified as a part of internal energy. Teitelboim [6], in his paper, has refined the idea of this term
using the concept of bound and radiative parts of electromagnetic energy momentum tensor. After a
rigorous derivation he arrives at the following equation of motion for a charged particle

2 2
Zelat = —Ze2q%ot + FH

[
ma 3 3 ext*

The interpretation of this equation goes as follows. The mass m consists of both bare and
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electromagnetic masses, the latter of which is a divergent term for point charge. The left hand side of

the equation is identified as the rate of change of four-momentum, which is given by

2
Pt = mot — Ze2at,

3
and the right hand side is the sum of all the forces - in this case, the radiation reaction force plus
external force.

In the case of hyperbolic motion, a* = a2

v, Hence, all the radiated energy is supplied by the
bound electromagnetic energy, previously called acceleration energy by Schott. Also, all the work
done by the external force goes into changing the mechanical energy of the particle in both charged
and uncharged cases. This fact is clearly specific to the case of hyperbolic motion. In general, both

mechanical and bound electromagnetic energies contribute to the radiation.

3.2.2 Classical radiation in Rindler frame

Hirayama [7]| extended the work of Teitelboim to calculate the energy radiated by a uniformly charged
particle as seen by an observer who is accelerating uniformly at a different rate. This is a very difficult
task because there is no standard convention of defining acceleration of a body relative to a non-inertial

observer. Hirayama obtained the formula

2
2
RRindler = ge CM‘“O&M (_u : U)

where

o = (3 + v'u,) (a¥ — g = (g-9)7 ")

a” = acceleration of the particle

v* = velocity of the particle

g" = acceleration of the observer fixed in the Rindler frame

ut = velocity of the observer fixed in the Rindler frame

In the above formula, when the particle is instantaneously at rest in the Rindler frame, that is
when v* = u#, then o* = a* — g*. Hence, o” can be interpreted as the relative acceleration of the
particle relative to the observer fixed in the Rindler frame.

Observe that Rpindgier is identical to R when ¢g#* = 0 and v* = u*, that is when the observer is an
inertial observer comoving with the charge instantaneously. Also, Rgindier = 0 when o = 0, that is
when the observer coaccelerates with the charge he does not observe any radiation. This implies that
an observer fixed in a static homogeneous gravitational field does not observe radiation from a charge
fixed in the same field.
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3.2.3 Principle of equivalence - revisited

Previously we argued that radiation cannot be used to test the validity of principle of equivalence
because radiation was defined to be a wave zone phenomenon which is measured far away from the
source whereas principle of equivalence is a locally valid principle. But with the new approach it might
be argued that radiation can be measured at arbitrary distances from the source and hence can be
used to test the validity of principle of equivalence.

The paradox is that for a charge fixed in a static homogeneous gravitational field, an observer
falling freely in this field observes radiation from the charge whereas another observer fixed in this field
observes no radiation. Hence, it can be argued that charged test particles can be used to differentiate
field-free regions from real gravitational fields which is a clear violation of principle of equivalence.

This paradox can be resolved by noting that all the radiation observed by freely falling observer
goes into that region of spacetime which is inaccessible to the co-accelerating observer. However, for
this resolution to be valid, it is necessary, as pointed out by Rohrlich, that radiation be only Lorentz

invariant instead of generally invariant.



Chapter 4

Bi-tensors - Green’s functions in curved

spacetime

4.1 Bi-tensors

4.1.1 Basic definitions

The definition of a vector is applicable only locally, in the sense that, we cannot compare two vectors
which are defined at two points separated by a finite distance unless one of the vectors is parallel
transported to the other point. But, frequently in physics, there appear quantities which are functions
of two points and hence cannot be defined in the conventional way. Such quantities, whose arguments
consist of n points, are called n-tensors. A special case of n-tensor is bi-tensor where the quantity is
a function of two points in the spacetime. There are many examples of bi-tensors such as geodesic
distance between two points, Green’s function which is a function of source point and field point,
Dirac delta function, etc. The local definition of vectors is sufficient to describe these quantities in flat
spacetime. However, we need to be careful in defining these quantities in a curved spacetime. Most of
the below discussed concepts on bi-tensors can be found in [3].

The simplest example of a bi-tensor is product of two vectors defined at two points, that is
CS (z,2") = A% (z) By (2') .

Observe that vectors defined at x have Greeks indices without primes and vectors defined at z’ have
Greek indices with primes. This notation will be followed throughout this report.

The coordinate transformation law for the bi-tensor is given by

_ 0x“ 92’7

= a7 9w O (©7)

which can be extended to any bi-tensor of higher or lower rank. Similarly, contraction of indices can be
done provided it is performed over indices referring to same point. Covariant derivative with respect

to a variable can also be defined in the usual sense, where indices corresponding to other variables

31
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should be ignored. Following the usual convention, we have

«

wis = Carp+ Typ® Co

and
Cg/;ﬁl - 03175/ - Fo/ﬁl ’Y/ C,?/

where it is understood that prime or no-prime on the indices denote the point where a quantity is being
evaluated. Also, one can note that indices referring to different points commute. Hence, successive
covariant derivatives at different points commute whereas successive covariant derivatives at the same

point involve Riemann tensor in their commutation relations.

4.1.2 Bi-scalar of geodetic interval

One of the fundamental bi-scalars in the study of nonlocal behaviour of spacetime is the bi-scalar of geodetic interval
denoted by s (z,2’) (A bi-scalar is a bi-tensor with no indices). It is the magnitude of invariant space-

time distance between z and x’ along a geodesic joining them. It is defined by the following equations

gaBS;aS;ﬁ = galﬁls;als;ﬁ/ = :|:1 (4:].].)
and
lim s =0 (4.1.2)
r—x’

where the + sign holds when the separation between z and z’ is space-like and — sign holds when it
is time-like. All points z for which s = 0 constitute the light cone of /. There can be more than one
geodesic which connect the two points z and 2’ and hence s is usually a multi-valued function. But
when we confine ourselves to a region close enough to 2/, all the points x within this region have a
unique geodesic connecting them to z’. Such a region is called convez neighbourhood of x’, denoted by

N (2'). Throughout this report, we study the behaviour of quantities in this region.

4.1.3 Synge’s world function

In most problems in physics, it is more convenient to work with half the square of the invariant distance
between two spacetime points. This object is called Synge’s world function, denoted by o (z, ). Tt is
given by .

o (:U, :L") = i552
and is positive for space-like intervals and negative for time-like intervals. From (4.1.1) and (4.1.2), we
have
af

g o008 = galﬁla;a/a;gl =20 (4.1.3)

and
lim 0 =0 (4.1.4)

r—x’
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Hereafter, we define the notation o, = 0,4 and so on. Also, we re-express the equation (4.1.4) as

[] =0

where the square brackets denote the limit # — 2’. Such a limit is called coincidence limit.

4.1.4 Coincidence limits

In order to define a covariant Taylor expansion of a general bi-tensor around a point x we need higher

derivatives of o. Applying repeated differentiation of (4.1.3), we get

0y = 9*%000s,
O~§ = gaﬁ (Uaéaﬁ'y + Uao'ﬁ'yﬁ)
Onde = gaﬁ (Uaéeo—,é"y + 0a508ve T Oac0pys + Uag,é"yz?e)
O~de¢ = gaﬁ (UaéeCO—,B’y + 0asc08y¢ T 0as¢OBve T 0as0Bye¢

+00ecTBys + OacOpyse + Uoﬂﬂ*y(k()

From (4.1.3), we can see that
[oa] =0

Using (4.1.5), we get
0% (987 = 087) =0 = [0ag] = gurpy

From (4.1.7), using (4.1.9) and (4.1.10), taking the coincidence limit, we get
[‘7756] = [‘7756} + [0576] + [0675] .
Using the result 0g e + 0eys = 2045¢ — RSMC o¢, we obtain, after taking coincidence limit,
[0apy] =0
From (4.1.8), in coincidence limit, using previous results, we have,

[0v5e¢] = [onsec] + [05vec] + [Tevsc] + [ocyse]

(4.1.5)
(4.1.6)
(4.1.7)

(4.1.8)

(4.1.9)

(4.1.10)

(4.1.11)

Using the result osyec + Oeyse + 0¢yse = 30ys5ec — (Reys o) ¢ (Reys" (777);6 — Reey"ops — Rees" 0,

)

we get

1
[Capsc] = —3 (Rory g5 + Rorgrproy)

(4.1.12)

The other combinations of derivatives such as [aam/y} can be similarly obtained. These can be

found in (*poisson review)
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4.1.5 Covariant Taylor expansion

A bi-tensor, Ti g/, whose indices all refer to the same point and which is sufficiently differentiable, can

be expanded around the point 2’ in the following way (for a more rigorous definition, refer Section 1

of [8])
/ 1 1 S!
TO/,B’ = AO/B’ —+ Aa’ﬁ”y Oy —+ 5 Aoa’ﬂ”y 5 Oy O +0 (53) (4113)

Using the results derived in the previous subsection, we have
Aws = [Tus]

Awrpry = [Ta’ﬁ’;v’] — Awpry
Aa/ﬁl,yldl = [Ta/ﬁ/;,ylé‘/] —_ Aa'ﬁ/;’y/5’ —_ Aalﬁl,y/;(sl —_ Aalﬁlél;,y/

Applying these results in the expansion of o/, we get the following expressions

1 ;oo
Ja/B/ = ga/B/ — § Ra,"/ 8 O',Y/O'b'/ —+ O (33) (4114)
1 ! !
O-O/,Bl’y’ = —g (Ra”y’/ﬁ’(s + Ra/(s /3/’Yl> 0'5/ + O (82) (4115)
1
Ua’,B"y’(5’ = —g (RO/,Y/B/(;/ =+ Ro/é’ﬂ"y’) —+ O (S) (4116)

This procedure of expanding a tensor around a point 2’ in terms of first derivatives of o is applicable
only to tensors whose indices all refer to the same point. For bi-tensors, we need a way to bring all
the indices to same point before expanding. We define a new bi-tensor from the old bi-tensor whose

indices all refer to same point. Then we can use above results.

4.1.6 Bi-vector of geodetic parallel displacement

The new bi-tensor with all indices referring to same point is obtained by changing the indices which
correspond to different point to this same point. This can be achieved in a most natural way using an
object of the form ¢, (x,2'). This object is called bi-vector of geodetic parallel displacement. It is

determined by the following defining equations
gaoéf;ggfg“yo7 =0, gaa/;grgﬁwafyf =0and [¢* 5/] = 0% (4.1.17)

By definition, applying g%, to a vector A, (z) outputs the vector Ay (2') which is the vector
obtained by parallel transporting A, (z) along the geodesic joining the two point 2 and z’. Therefore,

we have the following relations,

9% 0 9° 5 Gap = g, 90 987 Gurp = gas, (4.1.18)

!

9% Oa = —0u/y Ga® Og = —0q (4.1.19)

and
Jaar 9™ =051, Gaarg™ =08 (4.1.20)
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The derivatives of g®, will be useful in expanding an arbitrary bi-tensor around the point z’.

Differentiating (4.1.17) successively with respect to the point 2’ gives

0= gaa’;ﬁ’(s’gﬂ 7 oy + gaa’;ﬁ’gﬂ 7 0§ (4121)

0= gaa’;ﬂ’d’s’gﬁ 7 Oy + gaa’;ﬁ’&gﬁ 7 Onyle! + goco/;ﬂ’s’gﬁ 7 On' gt + gaa’;ﬁ’gﬁ K Oyl sl (4122)

. . . . . /
In the coincidence limit, using gaa’.e's’ = Gaa’:s'e¢ — Rerstar’ Gary', We get

[gaﬁlwl] = 0 (4123)
1
[gaﬁl;,yla/] = iRa/ﬂ/,Y/é/ (4 1 24)

4.1.7 Covariant Taylor expansion (continued)

Consider a bi-tensor with two indices referring to point  and #’. It can be denoted as T, 5. Define a

new bi-tensor

Talgl = gaa/ af’-

This is a tensor since both the indices refer to the same point. Hence, we can use the results of
expansion give in previous subsection. Differentiating this equation, applying the coincidence limits

and using equations (4.1.23) and (4.1.24) gives

[Talﬂl;,yl] = [gaa/ algl;,}/] (4125)

_ 1 /
[Ta//Bl;,ylél] = [gaa/ 01,3';’7'5'] -+ |:2 Rw/(s/axe TE'B/:| (4126)

4.1.8 wvan Vleck determinant

The van Vleck determinant is defined as
A (x,:c') = det [AO‘/ 8 (x,x/)} ) (4.1.27)

AY g (z,2") = — 9 (z,2") 0% p (z,2) (4.1.28)

It can be shown that
det [—oap (z,2")]
V=9v—¢

where g and ¢’ are the determinants of the metric tensor at x and 2’ respectively. Using (4.1.10) and

A(a:,:v'):

(4.1.17), it can also be shown that in the coincidence limit
A% ] =g, 18] =1
Using the covariant Taylor expansion defined above, we get, near the coincidence,

/ / 1 ’ Y]
Aa B = 5a B =+ 6 Ra ~' B8 O"y O'5 +O (53) (4129)
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and hence,
1 / !/ q
A=1+cRyyo " 4+ 0 (s%) (4.1.30)

where we have used the fact that for a “small” matrix, a, we have det (1 +a) =1+ tr (a) + O (a?).
Differentiating (4.1.3) twice, we get

Oapr = 0 q0ygr + 070405
Multiplying by — ga/o‘, we obtain
Ay =970y 0% A gt AV 0

After multiplying both by the inverse of van Vleck bi-tensor, we find that

5(1 B! = ga @ gﬂﬁ/ O'aﬂ —|— (A_l)fy g Aa ~iy 0.’7
whose trace yields the differential equation

4=0%+(nA) ,o" (4.1.31)

where we have used the fact that 6 In (det (M)) = tr (M~'6M). This equation can also be written as

AT (A%, =4 (4.1.32)

4.2 Green’s functions in curved spacetime

4.2.1 Elementary solution using Hadamard approach

In this section, following Hadamard’s method, we find an elementary solution to homogeneous covariant
scalar wave equation, which will then be used to obtain Green’s functions for inhomogeneous covariant

scalar wave equation (refer Section 2 of [8]). The covariant scalar wave equation is given by
9P a5 =0 (4.2.1)

Using Hadamard’s approach, we try to find an “elementary solution” to the above equation, which is

a bi-scalar of the form

W = (21)2 (U +Vin|o| + W> (4.2.2)
T g

where U, V and W are bi-scalars which are regular everywhere. Also, U satisfies a normalization
condition given by
U]=1 (4.2.3)
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Substituting G into the wave equation, using (4.1.3) and (4.1.32), we get

1
(2r)g"°aG); =0= — 59 (Wa - UATAG) 0y (4.2.4)

1
2V 4 g™ 2V — VAT ML) 05 + 67 U |
g

+9* Vg ln o] + g Wiag

In order for this expression to vanish everywhere, the coefficient of the logarithmic term must vanish
everywhere, and coefficieents of the singular terms must vanish at least on the light cone while the last

term can take care off the light cone. This implies

9P (2U,0 —UATIAL) 05 =0 (4.2.5)
9PVias =0 (4.2.6)

)

We assume a power series expansion for v and w in terms of o

V= ivnan, W = iwnan (4.2.7)
n=0 n=0

Substituting the power series for v into (4.2.6) and using (4.1.3) and (4.1.32), we arrive the following

recurrence relation for v,

1 1
vo + g*° <vo;a — QUOA_lA;a> op = —igaﬁU;ag (4.2.8)
v +Lgo‘ﬁ Uniaw — 1v A7TA, ) os = v g, 1. (4.2.9)
" n+1 g o | 98 2n (n+1) n-Laf -
Similarly, substituting the power series for w into
2V + g% (2Via — VAT AL) 05+ g% Uap + 09 Wias = 0 (4.2.10)

which is obtained from (4.2.4), we get the following recurrence relation for w,

1 1 _ 1 1
wnt 9" <“’ el A) B = o e T
1 o
_— _1: 4.2.11
T s (4.210)

These equations hold for all n = 1,2,...,n. All the v, can be found uniquely by integrating the
above equations but there is an arbitrariness in w,,’s since wq still remains arbitrary. This arbitrariness
is expected since G(!) is not a unique solution to the homogeneous wave equation and any “singularity-
free” solution can be added to it.

The equation (4.2.5) holds everywhere and on every geodesic emanating from z/. Hence, that
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equation is equivalent to the following equation
-1 L
U U, = §A A,

which on integrating, using the initial condition (4.2.3), gives the following solution

N

U=A (4.2.12)

Substituting this solution into the equation (4.2.8) and using the expansion (4.1.30), we find that
1
[V] = [w] = ER (4.2.13)

4.2.2 Green’s function for inhomogeneous wave equation

Now we introduce Feynman propagator, and move the elementary solution to the complex plane. Thus,

we have (refer Section 2 of [8]),
¢I =W -2ic

where G is the sought after Green’s function for the inhomogeneous wave equation.. Using the well

known identities, which can be obtained by assuming a limiting Cauchy distribution for d-function,
1 1
— =P <> —imd (o)
o+ 1€ o

In (0 +i€) =Inlo| + i (—0)

and

we can obtain the symmetric Green’s function

1

G=— (Aéa (0) — Vo (—a)) (4.2.14)
87

One can immediately see that G is independent of W and is hence unique unlike G, Secondly, G

vanishes for space-like separation of  and 2’. Finally, it has support on the light-cone like the Green’s

functions of flat spacetime. However, it is non-zero even inside the light-cone which is not the case in

flat spacetime. The bi-scalar V' hence represents the tail term of the Green’s function.

4.2.3 Advanced distributional methods

In this subsection, we introduce some advanced distributional methods which will be useful in verifying
that G is indeed a solution to inhomogeneous wave equation. Let 64 (z,3) be a generalized step
function, defined to be one when x is in the future of the spacelike hypersurface ¥ and zero otherwise.
Similarly, define 0_ (z,¥) = 1 — 04 (z,%) to be one when z is in the past of the hypersurface ¥ and

zero otherwise (for a more intuitive discussion on the generalized step function, refer Section 2 of [8]
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and Part III, Section 12.5 of [9]). Now define light-cone step functions,
0y (—0) =04 (2,X)0(—0), 2 €% (4.2.15)

where 6, (—o) is one when z is in chronological future of 2’ and zero otherwise. Similarly, the other

step function. Define similarly, light-cone Dirac delta fucntionals,
6y (—0) =04 (2,2)5(~0), 2/ €X (4.2.16)

These light-cone functions cannot be differentiated at x = 2. Hence, we shift o by a small positive
quantity €. Note that the equation o + ¢ = 0 defines two hyperboloids just inside the light-cone of 2/,
one in past cone and another in future cone. The light-cone step functions can now be differentiated
without any pathologies because each of the signs, +, selects a hyperboloid in future and past of x’

respectively making the limiting process smooth. Hence, we have
O, (—0c—¢€) =04 (x,2)0 (0 —€) = =0+ (2,X)6 (0 +¢€) = =6+ (0 +¢) (4.2.17)

We also need derivatives of 04 (¢) in order to proceed further. For this purpose we shall rely on
the distributional identity
€ 27

im — = ——§®
el—l>r(§l+ =3 o (x) (4.2.18)

where R = v/r2 + 2¢ and r = |x|. This follows from another identity V? (1) = —4716®) (x), where we
replace V2 (%) by lim_, g+ V? (%) = —lim,_,o+ %.
Using 2 (0 +€) = —t2+ 1?2 +2e=—(t+ R) (t — R), we get

S(tFR)

(5:|:((7+€): R

Using this result, we consider the following functionals

Ay [f] = lim+ edx (0 +¢€) f(x)d*z

e—0
= lim /Gf(iR’X)di{,E
e—0t R

= 2% / 5 (x) rt f (£r,x) >z
0
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e—0
= lim ed/f(iR’X)d?’
e—0t+ de

Cilfl= lim [ e (o+4¢€) f(x)d'x

e—0t
& [ f(ERX) 5
=1
e—1>r(§l+6d62/ R d

. N Y
-l (R?’ Figi- 3R5> tr
= 277/6(3) (x) <:13r2f'j: rf+ 7‘2f> >z
— 27 (0,0)

Using these results we can establish the following distributional identities

lim edy (0 +€) =0 (4.2.19)
e—0t
lim €. (c+¢€) =0 (4.2.20)
e—0t
lim e’} =216 (2 — 2’ 4.2.21
6_1>%1+5i(0+6) o'W (z — 2) ( )

Notice that these results hold only in flat spacetime.

4.2.4 Invariant Dirac distribution

The invariant Dirac distribution is defined by the following equations
/f () 04 (SL‘,SU/) V—gdtr = f (x’) and /f (:13’) 04 (:L’,:c') V—g'd's' = f (x)

It is easy to see that this distribution is symmetric and can be expressed as

oW (z — ') B oW (z — ')
/_g _g/

o4 (z,2") = = (gg’)fi 5 (z — ') (4.2.22)
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Using exactly same method as in the previous subsection, it can be shown that

€1_1)1(1;1+ €y (oc+€) =0 (4.2.23)
61_1)1(1;1+ e (c+€) =0 (4.2.24)
1_i)r(1gl+ €0l (o +€) = 2704 (z,2") (4.2.25)
€

To prove these relations we argue that the above equations are scalar equations and hence should
hold in any coordinate system. Hence, in curved spacetime, doing the analysis in Riemann normal
coordinates is preferred since working in these coordinates is equivalent to working in flat spacetime.
Since we get same equations as (4.2.19) to (4.2.21), going back to general coordinates from frame

components gives the desired result.

4.2.5 Green’s function for inhomogeneous wave equation (continued)

In this subsection we define retarded and advanced Green’s functions. Then we shall use the distri-
butional identities derived in the previous subsection to prove that the Green’s function G satisfies
inhomogeneous wave equation. The retarded and advanced Green’s functions are defined respectively

as follows .
G (z,2') = o [Udy (o) + Vs (—0)] (4.2.26)
T

Before going further we see the limiting process introduced in the previous subsection, that ¢ — 07.

The above equation then becomes

1

GS (z,2)) = i [Ubds (0 +€) + Vi (-0 —€)]

where Gy (z,2') = lim_,g+ G5 (z,2’). Using the distributional identities derived above along with
00y (0+¢€)=—€bdy (0+¢€),00 (0c+e)=—01(0+€)—€d (0 +¢€),and 0] (0 +¢€) = =20, (0 +¢€)—
b (o +¢€), we get

gaﬁG;;aﬁ = % [—2e6 (0 + €) U 4 2e0’ (04 €) V + 0% (04 €) {2Usa0” + (0% —4) U}
+d4 (0 +€) {—2V;aaa +2-0%)V+ gaﬁU;ag} +0% (-0 —¢) {gO‘BV;aBH
After taking the limit e — 0", and using the equations (4.2.5), (4.2.6) and (4.2.10), we get
§Gtp = 61 (2.)
This proves that G4 satisfies inhomogeneous covariant scalar wave equation. Therefore

G=>(G,+G.)

DN |

also satisfies inhomogeneous covariant scalar wave equation.
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4.2.6 Discussion

In this part, we have introduced bi-tensors, highlighting some useful bi-tensors and their properties.
The we have computed Green’s functions using the results on bi-tensors. We have used Hadamard’s
approach to find these Green’s functions and developed some advanced distributional methods to verify
that the solutions obtained do indeed satisfy the inhomogeneous covariant scalar wave equation. In
the next part, we define two important coordinate systems and derive the transformations between
these coordinates which will be useful in understanding the field of a point scalar charge and hence,

its equation of motion.
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Coordinate systems

5.1 Conventions

space-like geodesic '|

| .
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f X ‘—7 X lr:
| i
| |
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Figure 5.1.1: Geometrical meaning of the points x, 2’ and Z.

In the foregoing discussion, we shall follow the convention given below.

43
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: timelike curve representing the worldline of the particle

:a point on v at proper time 7

dz*
: <T), velocity at that point
dr
Dut () . .
R acceleration at that point
T

: a point in the convex neighbourhood of ~v

: 2z (u), the point of intersection of a null geodesic from ~yto x, at proper time u,

such that xis on the future cone of 2/

: z (t), the point of intersection of spacelike geodesic from ~to =,

which is orthogonal to ~vat &, at proper time ¢

Here, the convex neighbourhood of a point x is defined as the spacetime region around it where all the

points inside this region are simply connected to x, that is, for a point 2’ in this region, there is a

unique geodesic entirely inside the region which connects 2’ to z. All the results derived below hold

only in this region.
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5.2 Fermi normal coordinates

Figure 5.2.1: Geometrical interpretation of Fermi Normal coordinates.

5.2.1 Fermi-Walker transport
A vector field v* is said to be Fermi- Walker transported on -, if it is a solution of the equation

Do
dr

= (vya”) v — (vyu”) a* (5.2.1)

The properties of FW transport are that u* automatically satisfies the above equation and if two vector

fields v* and w* satisfy this equation then their inner product is a constant on the curve ~.

5.2.2 Tetrad and dual tetrad on ~

We can erect an orthonormal tetrad (u”,el) on curve v at an arbitrary point, which is then FW

transported along the curve to get the tetrad at each point on 7, so that they remain orthonormal (for

a more rigorous way of defining the tetrad, refer [9]). The tetrad satisfy
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Del
dTa = (aveg) v, guu'u’ = =1, guehu” =0, gueley = dap (5.2.2)
From the tetrad, we define the dual tetrad (62, eZ), as follows
0 _ a __ 5ab v 593
e, = —Uy, €, =0"guep (5.2.3)

which is also FW transported on «. The tetrad and its dual give rise to the completeness relations

g = —ufu + 5%elel Juv = —6268 + Sapeliel (5.2.4)

nev

5.2.3 Fermi normal coordinates

The Fermi normal coordinates of x are defined as

%=t %= —e (%) 0% (x,7), 05 (x,Z)u®(Z) =0 (5.2.5)

where the third relation defines the point Z, from the requirement that geodesic connecting x and &

and v are orthogonal. Using this definition and from (5.2.4), it can be shown that

§% = 0pi%3% = 20 (z,7) (5.2.6)

where s is the spatial distance between z and Z along the geodesic connecting them. This s should

not be confused with the one introduced in subsection 4.1.2. We can see that
= —swe? (5.2.7)

A change in the point x to z+dx, induces a change in the point T to Z+ JdZ due to the change in the
geodesic connecting them. The new point +4d7 is determined using o5 (x + dz, 7 + 67) u® (z + 6z) = 0
and the fact that 7% = u®§t. The change in FNC are given by

dt = pogpudz’, di® = —el <05‘g + 05‘5 uBaMuw dz (5.2.8)

where p~! = — (J&Bu&uﬁ + Uaa‘j‘).

5.2.4 Coordinate displacements near -~y

The above equation for coordinate displacements can be expressed in term of powers of s. For this we
need (4.1.14) and also the relations 0% = —e$2® and g%, = u®e’, + eSe% where (€9, e%) is dual tetrad

at x. After some algebra we get,

1
ph =14 a0 + S Rocoad®a! + O (s°)
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where a, (t) = age? and Roeoq (t) = R@Bgu&eZugeg. Inverting the above equation gives,

1
f=1—agi® + (aqi®)® — §R080dicﬁ:d +0 (s

Using similar expansions and substituting the above relation in equation (5.2.8), we get

dt = {1 — 003" + (aq37)? — %R()cgdi’%d +0 (53)] (as”) + [—éROdeQf;%d +0 (33)} (ehaa?)

! ) (5.2.9)
di® = [2 R® a7 + O (53)] (5az”) + [5% + = R gaifi + 0 (53)} (has?) (5210
where Rgeq () = Raﬁggeg‘e;_’uféefl and Rgepq (1) = R&W;geg‘eZefefl.
5.2.5 Metric near v
Inverting equations (5.2.9) and (5.2.10), gives the following relations for the tetrad
g eq ) 8 g )
1 1
&0 dz® = [1 + a0i” + 5 Roepad ! + O (33)} dt + [GROdemd +0 (83)] di’ (5.2.11)
1 1
e dz® = [5&,, — R® 4a 22+ O (53)] dzb + [—2 R® 04224+ O (33)] dt (5.2.12)
These relations give the components of tetrad at = in terms of FNC.
Invoking the completeness relation (5.2.4), the metric at x is given by,
Jit = — |:1 + 2a,3* + (adfa)z + ROCOdfcid + 0 (53)} (5.2.13)
2
Ga = —gROCadi%d +0 (s) (5.2.14)
1 cn
Gab = Oab — = Racha®“3? + O (%) (5.2.15)

3

This is the metric near v in FNC.
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5.3 Retarded coordinates

Figure 5.3.1: Geometrical interpretation of Retarded coordinates

5.3.1 Tetrad and dual tetrad on v

Similar to FNC, we can build an orthonormal tetrad (u”,ef) which is FW transported on world line

according to

Dely
dT“ = a,u” (5.3.1)
where aq (7) = ayel;. We also have the dual tetrad given by 62 = —uy and e}, = 5“bgWeZ. The tetrad

and its dual give rise to the following completeness relations
uy o W,V ab v _ 0,0 a, b
g = —utu + 6%eqey, gu = —eyue, + dapee) (5.3.2)

By parallel transporting the tetrad at the point 2’ to the point x, we can obtain the tetrad at x,

(e, e), and also the dual tetrad at z, given by eg = —gaﬁeg and el = 5abgaﬁef. The metric at x can
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then be written as

o = —€aeh + dapeieh (5.3.3)

and the parallel propagator from 2’ to x is given by
9% o (2,2) = —€fua + cgel, g%, (2, 7) = ued, + € el (5.3.4)

5.3.2 Retarded coordinates

The retarded coordinates are defined by

i =u, %= —e% (J:/) o (1:, x/) , o(z,2') =0 (5.3.5)

where the third relation indicates that 2 and 2’ are connected by a null geodesic. Since 0 is a null

vector, we get
1

canb)2
r= (5abxaxb> = Uy o®

’ (5.3.6)
where 7 is a positive quantity since the geodesic connecting x and ' is future directed and hence, o
is past directed. In flat spacetime r is equal to the spatial distance between the points  and z’. Hence,
in curved spacetime, r can still be called retarded distance between x and 2.
From (5.3.5), we have
P —— (ua’ + Qaeg’) (5.3.7)

where Q% = % is a unit spatial vector which satisfies 9,,Q°Q° = 1.
Similar to the case of FNC, a displacement in the point x induces a displacement in the point z’

and hence, th retarded coordinates change according to the following relations

du = —kqodx®, dz* = — (raa et o g uﬂl) du — €% 0% 5da” (5.3.8)

where kq = 2= the displacement in 2’ is found using the fact that x+dx and 2’4 2" are still connected

by a null geodesic, that is, o(z,2') = 0 = o(x + 6z, 2’ + 62'), and the relation 62/ = u® su.

5.3.3 The scalar field r (z) and the vector field k, (z)

As long as z and 2’ are linked by the relation o(z, ') = 0, the quantity r (z) = o (z, 2" )u® (') can
be considered to be a scalar field. The gradient of 7, remembering the induced displacement in z’, is
given by

Opr = — (Ja/aa, + Ualﬁxua,uﬁl) kg + Ualgua/ (5.3.9)

Similarly, k£ (x) = gar(&;p ) can be viewed as an ordinary vector field defined at the point x. Using

the equation (4.1.3), it is easy to see that k, satisfies the following relations

O

Oaph® = ko, owpk? = (5.3.10)

r
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from which it can be seen that o, gu® k% = 1. Substituting this into (5.3.9), gives
kO = 1 (5.3.11)
Combining the relation ¢® = g%, 0® with (5.3.7), gives
K= g%, (ua’ + Q“eg’) (5.3.12)
which can alternatively be written as
kE* = ef + Q% (5.3.13)

which is the vector k¢ at the point x.

Using the results (5.3.9) and derivative of o, under a displacement of x, we find the covariant
derivative of rk,, which is easier to compute. This then immediately gives the covariant derivative of
kOH

rkag = 0ap — kaag,y/u'yl — kgamrtﬂ/ + (aa/ao‘, + aaxgru“/uﬂ/> koks

From this, using the results previously established in this subsection, we can infer that k£ satisfies the
geodesic equation in affine parameter form, that is, k. k? =0, and from (5.3.11), we can also infer

that the affine parameter is 7.

5.3.4 Coordinate displacements near

Substituting the expansion for og from (4.1.14), using (5.3.4) in the expansion of o,g, and substi-

tuting these expansions into the equations (5.3.8), along with (5.3.13), gives

du = (egdaza) — Qg (el dzx®™) (5.3.14)
~a a 1 2 qa 3 0 7, a a 1 2 qa 1 2 qa 3 b ..«
dz® = — |ra —1—57“5 +O(7") (eadm)—i— 0%+ | ra —i—grS Qb—l—ger—i—O(r) (6ad£€>

(5.3.15)
which can also be expressed in gradient form as
Dot = €2 — Qe (5.3.16)

1 1 1
Oud® = — [ra“ + 525+ 0 (7“3)] €q + [6% + (ma + 37«25@) Q + 6’"2 5% +0 (Tg)] ee (5:3.17)

From the last equation, using the identity O,r = Q,0,2%, we get

Oar = — [ra“ + %7‘25(1 +0 (7“3)} ed + Kl + rap’ + :1))7“25> Qg + éT2Sa +0 (T‘3>:| es  (5.3.18)

We can arrive at the same expansion using (5.3.9).

In the above expansions, we have defined the following quantities,

Sab = RaObO + RaOchc + RbOacQc + RacbdQCQd = Sba
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Sa = Sabe = RaObOQb - RabUCQbQC

S = 5,0% = Ryopo02Q°

5.3.5 Metric near v

Inverting the relations (5.3.14) and (5.3.15), gives the following relations of tetrad with coordinate

displacements,

eQdx® = [1 +ra® + %TQSa +0 (7‘3)] du + [(1 + (157“25’> Q, — érQS’a +0 (7’3)} dz® (5.3.19)

1

1
eqdr® = [raa + §T25a +0 (7‘3)} du + [5“1, ~ 3

1
r? 8%, + 6r2sa9b] dib (5.3.20)

These relations, along with the equation (5.3.3), can be used to obtain the components of metric

near v in retarded coordinates,

Guu = — (1410 +r2a® — 125 + O (r) (5.3.21)
2 2

Gua = — <1 + rapQ’ + 3r2S> Qo +rag + §T2Sa +0 (T3) (5.3.22)

Jab = 0ap — | 1 + gr S ) Q. — gr Sap + gr (Sa% + QSp) + O (r ) (5.3.23)

where a? = §,a%al.

5.4 Transformation from retarded to Fermi normal coordinates

Define the quantity A =t — u, which is not to be confused with van Vleck determinant. Also, define

the function
p(7) = ou (@, 2(7)) u(7)

in which z is always kept fixed and z (7) is an arbitrary point on the world line. We know that p (u) = r

and p (t) = 0. Taylor expansion of p (t) around u gives,

plt) = plu) + H()A + () A + pO(w)A? 1 O(A%)

where,
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p(u) = oarguu” + ooa®
pu) = Ua//glv/ua,uﬁl’lﬂ, + 3aa/5/u°‘,uﬁl + UO/C'LO/
p(?)) (u) — Uo/,b’/'y/a/uo‘,uﬁ/uwu& + O‘a//gl»y/(5ualuﬁluw + ua/uﬁla'y/)

+ ooz (3u U + 4u®' i) + o i

Using the expansions (4.1.14), (4.1.15), (4.1.16) and the equation (5.3.7), we get

p(u) = — |1+ 7a, Q% + %7"25 +0(r®)

() = —r(ag + @aQ%) + O(r?)
p® (u) = o + O(r)

. . ! . . / . ’
where a9 = aou® , dq, = e and we used a® + anu® = 0.

Substituting these results in expansion of p(t), we obtain

1 1 1
r= [1 +7ra 0% + 57‘25 + 00| A+ 57 (a0 + @ 4+ O(r)] A% — 8 [ao + O(r)] A3 + O(A*) (5.4.1)

Inverting the above power series gives A in terms of powers of r

A=tou=r {1 g (W) + 12 [aa (W — 120 (1) — 21200 (1)2" — 215 Raop(1)2°2 + O(?)

3 2 2
(5.4.2)

This gives the relation between time coordinates.

Now, consider the following function

Pa(T) = —opu(x, 2(7))eg (1)
in which, again, x is fixed and z () is arbitrary. We know that p, (t) = sw® = 2% = p, (u + A) and
pa (1) = rQ?% Expanding p, (t) around u gives

1 1
s = () + (WA + S (WAL + () A + O(AY)

where
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Pa(u) = _Ua’ﬁ’eg,uﬁ/ - (Ua’ua,)(aﬁ’eg,)
1
= —rag — grzsa + 0 (7"3)
Palu) = —Ja/gw/eg‘/uﬁ,uy - (20a/ﬁ/u°‘,u5/ + aa/ao‘/)(ayez/) - ao/gleg‘/aﬁ/ - (aa/ua/)(dglea/)

1
= (1+ ray®")aq — riq + 5rRaoo®” + O(r?)

/ oA st / oA ’ / A /. / /
p((l?’) (u) = —Ja/guy/g/eg uur - (3Ua//3/,y/ua 'y + 60a/5/ua u’ + oa® + oqu® agluﬂ )(ag/eg)

! !

- aa/,g/yg/eg/(Qaﬁ,uvl +u¥a) - (3aa/3/ua/uﬁ, + 20a/aa/)(d7/eg,) - o*o//gfeg/dﬂ - (aa/ua/)(dgfea )

= 24 + O(r)

and we used the same expansions as in the previous derivation.

Combining all these results, we get

sw® = rQ%—r [a“ + %S“ + O(TQ)} A+% [(1 + rapy®)a® — ra® + %T‘RaObOQb + O(rz)] A%% [a® 4+ O(r)] A3+O(A*

which, after substituting (5.4.2), yields

1 1 1 1
swh=r {Q“ — 57 {1 — Tab(u)Qb] a®(u) — ETQC'L“(U) - ETZR“ObO(u)Qb + §T2RabOC(U)QbQC + O(T3)}
(5.4.3)
Using the identity d,w®w® = 1 after squaring the above expression gives
1 a 3 2 a2 1 2. 1 2. a 1 2 ayb 3
s=rl— iraa(u)Q T [aq(u)Q" — " ao(u) — 5" (g (u)Q* — a" Raopo(u)Q2°Q” + O(r?)
(5.4.4)
5.5 Transformation from Fermi normal to retarded coordinates
Define the function
o(7) = o(x,2(7))
which only depends on 7 since x is held fixed. We have o (u) = 0 and o (t) = % and we define

A =t—wu. Also, 6 (1) = p(7). Expanding o (u) around ¢ gives

1 1 1
o(u) = ot) ~ p(O)A + PHA? — SH(1A + SO (A +O(A7)
where, using previous expressions for derivatives of p (1), now evaluated at 7 = ¢, along with (5.2.7),

we have
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p(t) = — |1+ saw®+ %szRaoww“wb +0(s®)
pt) = —saqw®+ O(s?)
pPA(E) = a0+ O(s)

Substituting these expansions into expansion of o (u), we get

1 1
s? = [1 + sa,w® + éSQRaObow“wb + 0(83) A% — §S [aqw® 4+ O(s)] A3 — D [ap + O(s)] A+ O(A®)
(5.5.1)

Inverting the above equation gives A as an expansion in powers of s

1 1 1 1
A=t—u=s {1 — §5aa(t)wa + 232[aa(t)wa]2 + ﬂs%o( )+ ESQaa(t)w“ — BszRaobo(t)wawb + 0(53)}
(5.5.2)
Noting that » = p (u), expanding this around ¢ gives
. 1. 2 1 (3) 3 4
r==p(t)A + SB(t)AT = p™ (AT + O(AT)
Substituting (5.5.2) gives
1 a Lo a2 1o Lo 1 ' b
r=sql+ 2saa( Jw? — 3° [aq(t)w?]* — 35 ao(t) — 38 aq(t)w® + 652Ra0bg(t)w“w + O(s3)
(5.5.3)
Expanding rQ® = p® (u) around ¢ gives
1
rQf = pt(t) - pU (A + 55" (H)A% - P PP (B)A* + oY)

where, using previous expressions for derivatives of p, (7), now evaluated at 7 = ¢, we have

1
pa(t) = §S2Rab00wbw0+0(s3)

Pat) = (14 sap®)ag, + %sRaobowb + O(s?)
P = 2aa(t) +O(s)

Substituting these results including (5.5.2), we obtain

1 1
rQ% =s {w“ + 58&“(15) - gSQda(t) - fSQRbOC( t)wbw® + s2RY o (H)w® + 0(53)} (5.5.4)
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5.6 Transformation of tetrads at z

The tetrad at z can be obtained by parallel transporting the tetrad at =’ along the null geodesic joining
x and 2’ or the tetrad at Z along the space-like geodesic joining = and Z, orthogonal to v at Z. In this
section, we derive the relation between these two tetrads so obtained.

Consider the functions

p(r) = g% (@, 2(1)) w(7),  pa(7) = g% (z,2(7)) e (7)
where z is a fixed point, z (1) is an arbitrary point on ~, and g, is a parallel propagator on the unique
geodesic connecting x and z. We know that e = p® (t), €3 =p5 (t), ef =p“ (u), and e = pg (u).
Expanding p® (t) around u gives
. 1. :
eg = p"(u) + P (WA + S5 (w)A% + O(A%)

where

!

pa (U) = gaa/;ﬁlua Uﬁ + gaa/aa
1
= (Ia + §TRa0b09b + O(TQ) 62{
].ja (U) = gaa/;ﬁlv/ualuﬁluvl + gaa/;ﬁl(Qaa/uB/ + ua/aﬁ/) + gaa/da/

= [—ao+ O(r)]eg + [a® 4+ O(r)] e

To obtain these expansions we have used the expansions (4.1.21), (4.1.22) and (5.3.4). Substituting

these expansions and (5.4.2) in the previous equation gives

1
eg = [1 — §r2a0(u) +0(r*)| e

1 1
+ [r(l — rap?)a® (u) + 572d“(u) + §T2Ra0b0(u)(2b +0(r) ]| e (5.6.1)

Expanding pg (t) around u gives
1
¢a = pa(u) + 05 (WA + S5 (W) A + O(A%)

where, again using previously discussed expansions, we have
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e

Pa (U) = gaa’;ﬂ’eg uﬁ + (gaa )(a‘ﬁ'eﬁ )
1 1
= [mf+erme+cxf%}ea+[—rRz%Q“+Ooﬂ>e?

o /

Pa(w) = ¢ pyea W e o (2u” " V/eg/ + e a®) + (g%, a” )(aﬁ/eﬁl) + (g%, u”

a0+ O] e + [aua” +O(r)] e

Substituting these expansions and (5.4.2) into the previous equation gives

o = [5ba+;r2ab(u)aa(u) — P R+ O(r )]

1 1
+ [r(l — rapQ®)aq(u) + ~12aq(u) + §T2Ra0b0(u)9b + O(TS)} &)

2

Expanding p® (u) around ¢ gives
1
eg = p*(t) =" (DA + 5" (AT + O(AY)

where using similar expansions as in the above case, we have

p(t) = {a —i——sR 0boW +O( 2) ey

P*(t) = [-a+O0(s)eg +[a" + O(s)] &g

which, along with (5.5.2), gives

i = [1- 320+ 00

1 1 1
+ [—5 (1 - 2sabwb> a®(t) + =5%a%(t) — =s?R%(t)w” + O(s) | &

Similarly, expanding p$ (u) around ¢ gives
1
€q = Pa(t) — pg (H)A + 5152“(75)A2 +0(4%)

where using similar expansions as in the above case, we have

1 1
p(t) = [aa + §sRaobowb + 0(82)] €y + [—QSRbGOCwC + O(s?)] &

B0 = la+ O] + awa’ +0(s)] &f

/

51§

Jages )

(5.6.2)

(5.6.3)
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which, along with (5.5.2), gives

1 1
63 = |:(5ba + 552@b(t)aa(t) + §Rba06(t)wc + 0(83) é?

1 1
+ [—s (1 — zsabwb> aq(t) +

=S

2

2a4(t)

1
- 5 32Ra0b0

(w)w® 4+ O(s)| &8

o7

(5.6.4)



Chapter 6

Motion of a point particle

6.1 Dynamics of a point scalar charge

A point particle carries charge ¢ and moves on the world line v described by the relations z# (\). The
particle generates a scalar potential ® (z) and a field ®, (z) = V4@ (z). The dynamics of this system

is governed by the action

S = Sfield + Sparticle + Sinteraction

The free field action is given by
1 af 2 4
Spia = == | (9°7®a®s +ERD?) y=gd'a (6.1.1)

where the field is coupled to Ricci scalar R through an arbitrary constant &.

The free particle action is given by
Sparticle = _mO/dT (612)
gl

where mg is the bare mass of the particle and dr = /g, (2) 2#2Vd\. The overdot denotes differentia-
tion with respect to A.

Finally, the interaction term is given by
Sinteraction = q/ D (2)dr =q / ® ()04 (z,2) /—gd zdr (6.1.3)
gl
The stationary action principle under the variation of field 0 (x), gives the wave equation
(O —¢R) P(x) = —4mp () (6.1.4)

where

w(x) = q/ 0y (z,2)dr (6.1.5)
g

28
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is the charge density. These equations determine ®,0nce the motion of scalar charge is specified.
The stationary action principle under the variation of the worldline dz# ()\), yields the equation of
motion
Du# y y
m (7) - = (¢" +uHu”) @, (2) (6.1.6)
for the scalar charge, where m (7) = mg — q® (z). This expression for m (7) can also be written as a
differential equation
dm
i —q®, (2) u* (6.1.7)

It is advised to note that the above equation of motion for the particle is only valid formally since

the potential ® (x), which is a solution of the wave equation, diverges on the world line.

6.2 Retarded potential near the world line

Figure 6.2.1: Normal Convex neighbourhood of x

The retarded solution to (6.1.4), after boundary conditions are suitably taken care of, is given by
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O (z) = /GJr (z,2") p(2) Vg'di! (6.2.1)

where G (z,2') is the retarded Green’s function given by the equation (4.2.26). Substituting (6.1.5),
gives

O (x) = q/ Gy (z,z)dr (6.2.2)

Now the spacetime is divided into two regions, one is the normal convex neighbourhood of x, denoted
by N (x), and the other is the region outside N (z). Assuming that the worldline goes through N (),

we can divide the above integral into three parts (for a more detailed discussion of this, refer [9])
T< T (e 9]
@) =q [ Gilwadria| Gilwdrra| Giwz)dr
—0o0 T< T>

where 7. and 7sare the proper-time values when 7 enters and leaves A (x). The last term vanishes
since, G4 = 0 in that region. In the second term, we can use Hadamard’s solution derived in previous

part on Green’s functions in curved spacetime,

> T> >
/ Gy (z,z)dr = / Uz, z)oy (0)dr + / Vi(x,2)04 (—0o)dr
T< T<

T<

The first integration in the last equation can be computed easily by changing the variables from
7 to 0. This action yields proper results because we are in the normal convex region of x and hence,
there is only one point on the worldline where o = 0. This point is in the past of x, which is nothing
but #’ = z (u). Also, o increases as z (7) passes through 2’. Hence, o,/ is non-zero at this point. Using

the result r = o u®, and noting that do = o,utdr, we get,
u <
O (z) = gU (z,2') + q/ V(z,z)dr + q/ Gy (x,z)dr (6.2.3)
T< —00

6.3 Field of a scalar charge in retarded coordinates

While differentiating the above potential, we must be careful to note that a displacement in z induces
a displacement in 2’ because the two points are always connected by a null geodesic. Hence, 6U =

U.noz* + U;a/ualéu. Thus, the gradient of scalar potential is given by

b, (z) = —%U (z,2") Bar + gU;a (z,2') + gU;a/ (z,2") u® Bqu + qV (z,2")0qu + 1% () (6.3.1)

where the tail term is defined by
] u <
Pl () = q/ VoV (x,2)dr + q/ VoG4 (z,2)dr
T< —00

= q/ VoG (2, 2)dr (6.3.2)
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In the last equation, the integration is done only up to 7 = u~ = u— 0", because the retarded Green’s
function is singular at o = 0.

The scalar field @, (z) is now expanded in powers of r and the results are expressed in retarded
coordinates. It is convenient to work with frame components of®, () by decomposing it in the tetrad
(e, e%) defined in section 14. For this purpose, we shall need (5.3.16), (5.3.18) and

U(z,a) =1+ %ﬂ (Roo + 2R0a 2% + Rap2°2") + 0 (1) (6.3.3)

which is obtained from the equations (4.2.12), (4.1.30) and (5.3.7). The frame components of Ricci

tensor are defined as follows
R()() ('LL) = Ralﬂlualu’gl

R()a (u) = Ralgluale’gl
Rab (U) = Ra’B/eg 65

We shall also need the following expansions,

U.a (a:, a:’) = %r go‘/ o (Ro/(] + Ra/be> +0 (r2) (6.3.4)
and .
Ut (2, 2') u® = —or (ROO + RObe> +0 (r?) (6.3.5)
Finally, we shall need
V(z,2') = % (1-6R+0O(r) (6.3.6)

which was first derived in the equation (4.2.13). Here, R = R (u).
Using all these results, we finally obtain the equations
q)o (U, r, QCL) = @Oé (I) e(Of (.CC)
1 1 .
= D0,0 4 LaRuo @0 + - (1 6) g+ 3 1 0 (1) (6.3.7)
D, (u,r, Q) = Dy (z) €0 (2)

a

1 1
= _%Qa - gabeQa - 7quOCOQbQCQa - =q (Raobogb — RabOCQbQC>
T r 3 6
i — boe — — 1 b tail
+ 54 Rog — Rpc2°Q° — (1 — 68) R| Qq + G Roo+ Rap¥’ ) + 0" + 0O (r) (6.3.8)

where all the frame components have their usual meanings and they are evaluated at 7 = u.

The above equations clearly show that the field @, (x) is singular on the worldline. There are two

2

reasons for this - one is that the field diverges as == as r — 0, and the other is that many terms

depend on Q% and therefore possess directional ambiguity at r = 0.
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6.4 Field of scalar charge in Fermi normal coordinates

First find the frame components of ®, (z) in the tetrad of FNC, (e, e%). This can be done using
(5.6.1) and (5.6.2). We obtain

Oy = D65
= [14+0 ()] @0 + 11— rs)a®(u) + 57%8°(w) + 57 Rio() +O?) | @
= —%qdaQ“ + % (1-6¢)qR + 5" + O (r)
and
o, = P

1 1
= 517& + irzab(u)aa(u) — §T2Rba08(u)ﬂc + O(r?’)} by + [raa +0 (’I“2)] ®g
1 1 1 1
= 20, - 10,000, + ~gap%a, — 4R — ~qRa00?” — 7 qRap0e 0
r T 2 3 6 3
1 1 .
+ 150 [Roo = Ree22° = (1= 66) B| Qu + 2 (Rao + Fun?’) + L + 0 (1)
Note that the components are still functions of retarded coordinates which are evaluated at z’, except
®lail and @4 which are evaluated at 7.
Using the results (5.5.2), (5.5.3) and (5.5.4), we have
1 1 1 3, 15

2 3. 1.
Oy = =swg + —abwbwa — —aqpw’a, + — (abwb) We + —Qowe — =ag

r2 52 2s 2s 8 8 3

. 1 1 1
+ abwbwa + gRaObowb - inOCOwaCWa - gRabOCwbwc +0 (5)

and

%abeQa = %abwbwa + %abwbaa — g (abwb)2 Wy — %dowa — apwlwe + O (s)
In these equations all the frame components on the right-hand side are evaluated at Z. In the above
derivation, we also use aq (t) = aq (u) — siq (t) + O (s?), which follows from (5.5.2), that is, u =
t—s+0 (32). All the other terms, when transformed into FNC, have only leading terms which are

trivial.
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Substituting these results into the frame components of ®,, (x) in FNC, we obtain

D (1,5,0") = @a (2) & (2)

1 1 .
= —50aaw” + 75 (1= 6¢) gR + ot 10 () (6.4.1)
D, (t,5,w") = Oy (x) & (z)
_ 4 q b 3 b 3 )2 1. 1.
=~ 3% 5, (aa — apw wa) + 790w a0 = 24 (abw ) wa + 29aowa + 3qda
1 1 1
- quaObowb + BquOCOwbwcwa + 12 {Roo — Rpew®w® — (1 — 6¢) R] Wa
1 .
+ 54 (Rao + Ras®) + @+ 0 (s) (6.4.2)

where all the frame components have their usual meanings and are evaluated at Z.

Now, we need to compute the averages of the frame components of ®, (z) over the surface S (¢, s).
These averages are equivalent to the mean value of the field at a fixed distance from the worldline
at a fixed time, as measured in an instantaneously comoving frame of the particle. We need two
angles 4 (A =1,2) to chart the two-surface S. A standard choice is polar angles given by w® =
(sinf cos ¢, sinfsin ¢, cos #), such that ¢ = sw® are the spatial coordinates of the point in FNC.

Defining w% = %, we obtain, from (5.2.15), the induced metric on this two-surface
1
ds* = s* [wAB — 552RAB +0 (33)] g de” (6.4.3)

where wap = 6abij% (which is the metric of unit two-sphere) and Rap = Racbdijcw%wd. The

surface area element is then given by

dA = s* [1 - %32Rcacbw“wb +0 (33)] dw (6.4.4)

where dw = +/det [wap]d?0, which in our standard choice reduces to dw = sinfdfd¢. This is the
solid angle element. Integrating the above equation gives the total surface area of S (¢,s), which is
A=drs?[1 - 1—1852Rab , +0 (s3]

a

The averaged fields are given by

(®o) (t,5) = 155 Pg (t,5,w?) dA, (D) (t,8) = 195 D, (t,s,w")dA (6.4.5)
A Jst,9) A Js(t,9)

Before proceeding, we note the following integrals

4mr

1 1 1
wdw =0, e wiwbdw = 55“[’, o %wawbwcdw =0 (6.4.6)
7r T
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which are easy to prove. Using the above integrals, it is very easy to obtain the average field

1

(®g) = 5 (168 qR+ Bt 10 (s) (6.4.7)
= q 1. 1 Htail

D) = ———aq + 5904 + ZqRu0 (I)a 4.
(®,) ggda T 30d +6qR + + O (s) (6.4.8)

which is still singular on the world line. Nevertheless, we take the limit s — 0 of the above expressions,
whence the tetrad (e§,e%) coincides with (u®,e%). Going back to the general coordinates using the

completeness relation (5.2.4), we obtain the average field given by

. q 1 1.2 1.5 - .
(Dg) = ll—rf(l) <—$> s~ 15 (1 —6¢) qRua + q (9 + uaup) (3&5 + GRB,YW) + Lol (6.4.9)

where, from (6.3.2), we have
@taall (ﬂ_j) = q/ V&G+ (i, Z) dT.
—00

All the terms on the right hand side of the equation (6.4.9) are evaluated at the point Z = z (¢), which

can now be considered to be an arbitrary point on the worldline ~.

6.5 Equations of motion

Since the retarded field ®, () is singular on the worldline of the particle, it difficult to assess how the
field acts on the particle. Hence, we model the particle to be hollow spherical shell of radius sy and
compute the net force on this shell at propertime 7 by finding the average of ¢®,, (z) over the surface of
the shell. Here, we assume that the field produced by the shell at s = sg is equal to the field produced
by the particle. Taking the limit sy — 0, using (6.4.9), we have, at an arbitrary point on the worldline

(1),

1 1 9% 1 v at
q(®y) =—(dm)a, — D (1-6¢) q2Ru# + q2 (Guv + upuy) <3a + ER )\u)‘> + q@i l (6.5.1)

sm = lim <q2> (6.5.2)

is evidently a divergent quantity, and

q(IJZM = q2/ V.G (2(1),2 (7)) dr’ (6.5.3)

is the tail part of the force.
Substituting (6.5.1) and (6.5.3) into (6.1.6) yields the equation of motion for scalar charge,

T

. _
(m +dm) a* = ¢* (8", + u'u,) ld” + ERVAu’\ + / VYGy (2 (1), 2 (7)) dr’ (6.5.4)

3 -
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where m = mg — ¢® (2), the dynamical mass, is also a formally divergent quantity. The combination
Mmeps = M + dm is taken to be finite and to give true measure of inertia of the particle. Substituting

(6.5.1) and (6.5.3) into the equation (6.1.7) gives the differential equation for mps

dmops _ 1 (1—6¢)¢*R — ¢>u” /T_ V.G (2(1),2 (7)) dr’ (6.5.5)

dr 12

It is worth noting that the observed mass is not conserved. This is a very crucial property of dynamics of
scalar charge in curved spacetime. This means that, because of the time-dependent metric, the particle
can emit monopole radiation, the energy for which comes from the inertial mass of the particle. A
similar fact has also been discussed in the section dealing with Rohrlich’s paper where the radiation
energy emitted by a particle in a general motion is supplied partly by mechanical energy and partly
by bound part of electromagnetic energy.

It is to be noted that the expression dm = % for the spherical shell is wrong and its actual value
is dm = %. This discrepancy is believed to originate from the assumption that the fields of the shell
and particle on the surface s = sy are equal. However, except for these divergent terms, the remainder
of the field remains the same for the shell ans the particle, since their difference vanishes in the limit
so — 0. Hence, the equation of motion is reliable even though the expression for dm is incorrect.

Another important point to note is that the equation of motion derived above is a third order
differential equation in z# (7) and such an equation is known to admit unphysical solutions like runaway
solutions and pre-acceleration solutions. Also, so far in the derivation we have not considered the
external force. Both these issues can be solved in a single stroke. In the classical picture, a point
particle is only an idealization of an extended object whose internal structure is irrelevant and hence,
our equations provide only an approximate description of the actual motion of the particle. Within

this approximation, we can replace the acceleration on the right hand side of the equation of motion

by Fgf‘. This yields the equation of motion
Dut 1 . 1 T
m% =Fl, + ¢ (0, + ufuy) 3 v+ ER”AU)‘ + / VG4 (z (1),z (T/)) dr’ (6.5.6)
—00

This equation is free from third order terms in z# (7) and hence, does not admit unphysical solutions.

6.6 Discussion

Comparing the equations (2.4.29) and (6.5.4), we can clearly see that, apart from curvature and tail
terms, which are to be expected since we are working in curved spacetime, the two equations match
except for a factor of 2. After a similar analysis as above, we can obtain the equation of motion of a

point electric charge, which is quoted here without proof (detailed derivation can be found in Part VI,
Chapter 18 of [9])

N

2 1 T v /
(m + 6m) a" = ¢* (0%, + utu,) [3&” + 3R”Au/\] + 2q2ul,/ vikg? (z(1),2 (7)) ™ dr’
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We can see that the non-curvature and non-tail part of the above equation exactly matches the
Lorentz-Dirac equation. The factor of 2, we believe, is attributed to the degrees of freedom of the
field. For a scalar field, the number of degrees of freedom is 1 and it is well known that the number of
degrees of freedom is 2 which explains the factor of 2.

The appearance of the tasl term suggests that the equation of motion is not instantaneous, that is
the motion of the particle is not decided by the quantities evaluated at that particular instant. Rather,

it depends on the entire history of the particle’s motion.
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