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ABSTRACT

Self-force has been a widely studied yet not fully understood phenomenon in Physics. From the �rst

example of self-force, that is the motion of a point electric charge in its own electromagnetic �eld,

it has been a mostly unexplained and controversial subject. In this project, we study the notion of

self-force of a point electric charge in �at spacetime and arrive at Lorentz-Dirac equation. We go on

to study some controversies and their resolutions in the case of uniformly accelerating point electric

charge. We then develop new mathematical tools called bi-tensors which are useful in extending the

notion of self-force to curved spacetime. Finally, we discuss the motion of a point scalar charge in the

presence of its own �eld, and we make a note on the presence of tail term which does not appear in

�at spacetime and is entirely a manifestation of curvature of spacetime.
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Chapter 1

Introduction to self-force

1.1 Introduction to self-force - various theories

The self-force of a charged particle has been a topic of great debate in the theoretical physics community.

On one hand, it leads to in�nite self-energies for point particles. On the other hand, it is necessary

to incorporate it to explain various phenomenon observed in nature such as radiation reaction. Here

we give a small introduction to the theory of self-force and discuss two historical theories which have

been suggested to explain this phenomenon without facing di�culties.

The self-force of a charged particle, which is de�ned as the force experienced by a charged particle

due to its own electromagnetic �eld, is given by

Fret = α.
e2

ac2
ẍ− 2

3

e2

c3

...
x + γ.

e2a

c4

....
x + . . . (1.1.1)

Here, a is the radius of the particle and α and γ are some constants which depend on the distribution

of charge assumed for the particle - for example, spherically distributed charge with uniform charge

density. Notice that the second term doesn't depend on the charge distribution. For a point par-

ticle, when we take the limit a → 0, we immediately see that the �rst term goes to in�nity, which

is the main problem here, the in�nite self-energy. The second term is the experimentally observed

radiation reaction and remains the same for any charge distribution assumed as an approximation for

the particle. This term is very much needed and can not be neglected by any theory where as the

�rst term is the problematic one. All other terms go to zero and cause no problem. Hence, we need a

theory which gets rid of the �rst term while retaining the second one. In this introduction, we discuss

two such theories which try to achieve this. Most of the results in this section have been referred from

[1].

1.1.1 Absorber Theory

Dirac had an ingenious idea to get the required force with minimum changes except for an arbitrary

assumption. He considered the advanced version of the self-force,

Fadv = α.
e2

ac2
ẍ+

2

3

e2

c3

...
x + γ.

e2a

c4

....
x + . . . (1.1.2)

1
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Notice the sign change in the second term. Now he considered half the di�erence of Fret and Fadv.

That is

F =
1

2
× (Fret − Fadv) = −2

3

e2

c3

...
x + . . . (1.1.3)

We can immediately observe the simplicity of the idea. Dirac proposed that the point particles,

here electrons, not only interact with the retarded potentials but also with their advanced counterparts,

and he assumed that the interaction is half the di�erence between retarded and advanced potentials.

Though this yields the result we need, it is based on an arbitrary assumption without any physical

basis. But Feynman and Wheeler explained the physical nature of this idea in their absorber theory.

Their idea is that any charged particle does not interact with itself electromagnetically, it can only

interact with other charged particles with both advanced and retarded �elds. Let an electron generate

a �eld at time t which reaches another particle at a distance r at time t′ = t+ r
c . This particle, apart

from re�ecting the wave back which is the usual retarded wave, sends an advanced wave which reaches

the electron at the time t′′ = t′ − r
c = t. Notice the minus sign because the advanced wave travels into

the past. Hence, this combination of advanced and retarded waves results in the radiation reaction.

1.1.2 Bopp's non-linear theory

It has been known for a long time that the root of the problem of self-force is in the factor 1
r in the

de�nition of 4-petential which comes from the Green's function. The 4-potential is given by,

Aµ(t, ~x) =
1

4πε0c2

ˆ
jµ(t− r

c ,
~x′)

r
.d3x′ (1.1.4)

where r = |~x− ~x′|. Bopp modi�ed the above formula to

Aµ(t, ~x) =
1

4πε0c2

ˆ
jµ(t− r

c
, ~x′).f(r).d3x′ (1.1.5)

For the theory to be relativistically invariant, we demand that,

Aµ(t, ~x) =
1

4πε0c2

ˆ
jµ(t− r

c
, ~x′).F (s2).d3x′dt′ (1.1.6)

where s2 = c2(t− t′)2 − r2, is the relativistically invariant spacetime interval between source and �eld

points. The form of the function, F (s2), ensures that the results are relativistically invariant. Now we

are free to choose the function F . We only assume that it is very small everywhere except near s = 0.

This assumption implies that F is signi�cant for only those values of s which satisfy s2 ≤ a2 for some

small a, which is not to be confused with the radius of the particle de�ned in the previous subsection.

What this means is that only particles which are almost light-like separated are a�ected by the force

whereas, in the Maxwell's case, particles which are exactly light-like separated are a�ected by the force.

Suppose that we are very far away from the source such that r � a, then the e�ect of the �eld is felt

only by the particles within the time interval

∆t = t− t′ ≈ r

c
± a2

2rc
(1.1.7)
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Since a� r, we get

∆t = t− t′ ≈ r

c
(1.1.8)

Thus, we come back to Maxwell's description as long as we are far away from the source, in the

sense that we get back the retarded solutions of Maxwell's equation, which have support only on the

light cone of the source - that is the interactions travel at the speed of light. In fact, if we integrate

over t′ between t′ ±∆t, during which most of the contribution of F comes, and if we assume F to be

a constant, say K, over this interval, we get,

Aµ(t, ~x) =
Ka2

c

ˆ
jµ(t− r

c ,
~x′)

r
.d3x′ (1.1.9)

which is exactly similar to (1.1.4). Comparing these equations, it is easy to see that,

K =
1

4πε0ca2
(1.1.10)

Hence, this theory is a good classical theory for point particles. It predicts a �nite self energy for

a point particle and includes radiation reaction. Like all other theories which include self force, this

theory is valid only as long as classical electrodynamics is considered. As soon as quantum e�ects are

considered, the problems come back.

1.2 Course of the report

In this introduction, we have explained what a self-force is and how classical theory of electromagnetism

fails to explain self-force of a point particle. We have mentioned two historical theories which tried

to address this problem; one which avoided the concept of self-force altogether, and another which

assumed a di�erent, non-linear form for 4-potential in contrast to Maxwell's equations.

In the following chapters, we shall be discussing self-force in detail using modern notation. Chapter

2 deals with the notion of self-force in �at spacetime, which yields the well known Lorentz-Dirac

equation. We derive the Green's functions associated with d'Alembertian wave equation and equation

of motion of a point electric charge from scratch. We discuss two approaches to arrive at the same

equation of motion.

Then we move on to chapter 3 in which we study the consequences and controversies involving self-

force. Especially, this discussion is focused on the issue of radiation reaction of a uniformly accelerating

particle as seen by two observers - one who is an inertial observer and another who is accelerating along

with the particle. We resolve some apparent paradoxes concerning conservation of energy and principle

of equivalence.

In chapter 4, we introduce and de�ne the concept of bi-tensors. This is a new mathematical which

is very useful to make sense of physical quantities which are de�ned with respect to two non-local

points, for example, Green's functions. As we know, tensors are locally de�ned objects in curved

spacetime and hence, cannot be used to describe such non-local objects. The technology of bi-tensors

makes this task very easy. We use this concept to compute the Green's functions of covariant scalar

wave equation. Before doing this, we also de�ne covariant Taylor expansion. All these computations
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are valid in a region called normal convex region of a point, which will be de�ned in due course.

Chapter 5 deals with two di�erent coordinate systems, namely, Fermi-normal coordinates and

retarded coordinates. First we de�ne the tetrad, then the coordinates and then we get expressions for

tetrad in terms of small displacements in coordinates. We then �nd the metric near the worldline of

the particle which is itself an object worth studying, though not in present report. Then we move

on to coordinate transformations between these coordinates and �nish the chapter with the relations

between tetrad of the two coordinate systems.

In the �nal chapter, we collect all the results and arrive at the equation of motion of a scalar charge

in�uenced by its own �eld. We quote the equation of motion obtained for a point electric charge and

compare the two equations with Lorentz-Dirac equation.



Chapter 2

Lorentz-Dirac equation in �at spacetime

2.1 Equations - of motion and of electrodynamics

The fundamental equations which form the foundation for later work are the Maxwell's equations of

Electrodynamics and Lorentz force law, which is essentially the equation of motion of particles in

electromagnetic �eld. In this section we derive both the equations from the action principle. The

action for a particle in electromagnetic �eld is given by,

S = SEM + Sint + Sparticle = − 1

16π

ˆ
FαβF

αβd4x+

ˆ
Aαj

αd4x−m
ˆ
dτ (2.1.1)

We can observe that the above equation has three separate terms. The �rst term, SEM , has a

pure electromagnetic origin. The third term, Sparticle, is the well known action for a particle of mass

m. The second term, Sint, is the interaction term; it connects the interaction between matter and

electromagnetic �eld. Here all the symbols have their usual meanings,

Fαβ = ∂αAβ − ∂βAα (2.1.2)

=⇒ Fαβ = −Fβα (2.1.3)

and for a point particle of charge q we have,

jα(x) = q

ˆ
uα(τ)δ(x− z)dτ (2.1.4)

where, zα(τ) is the trajectory of the particle and uα(τ) = dzα(τ)
dτ is the four-velocity of the particle.

Now we derive the fundamental equations from the action principle. Throughout this report, we use

the Minkowski metric de�ned as, ηαβ = diag(−1, 1, 1, 1).

5
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2.1.1 Maxwell's dynamical equations

The action has two independent quantities which can be varied to get equations of motion. To get

Maxwell's dynamical equations we vary the action, S, with respect to the four potential, Aµ.

δS

δAµ
=
δSEM
δAµ

+
δSint
δAµ

+
δSparticle
δAµ

= 0 (2.1.5)

Since Sparticle does not depend on Aµ,

δSparticle
δAµ (x)

= 0 (2.1.6)

The electromagnetic term gives

δSEM
δAµ(x)

=
δ

δAµ

(
− 1

16π

ˆ
FαβF

αβd4x′
)

=
1

4π
∂σF

σµ(x) (2.1.7)

Similarly the interaction term gives

δSint
δAµ(x)

=
δ

δAµ

(ˆ
Aαj

αd4x′
)

= jµ(x) (2.1.8)

Now substituting (2.1.6), (2.1.7) and (2.1.8) into (2.1.5), we get the following equations,

1

4π
∂σF

σµ(x) + jµ(x) + 0 = 0

=⇒ Fµσ,σ = 4πjµ (2.1.9)

These are the two Maxwell's dynamic equations which contain source. The other two equations

are actually Jacobi identities,

Fαβ,γ + F βγ,α + F γα,β = 0 (2.1.10)

which follow from the antisymmetric property of Fαβ , given in (2.1.3). These equations, as can be

seen, do not contain any source terms and are not dynamical equations. They constrain the possible

solutions of the Maxwell's dynamic solutions.

2.1.2 Lorentz force law

The Lorentz force is in fact the equation of motion of particle in the presence of an electromagnetic

�eld. To get the equation of motion, we vary the action, S, with respect to the trajectory of the
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particle, zµ(τ).

δS

δzµ
=
δSEM
δzµ

+
δSint
δzµ

+
δSparticle
δzµ

= 0 (2.1.11)

Consider the individual terms one by one. First,

δSEM
δzµ

= 0 (2.1.12)

because the electromagnetic �eld does not explicitly depend on the trajectory of the particle.

Now, consider the interaction term. Here, we should note that a variation in worldline induces a

change in Aµ (x). With this in mind, we get

δSint
δzµ(τ)

=
δ

δzµ

(ˆ
Aαj

αd4x

)
=

ˆ [{
δ

δzµ
(Aα)jα

}
+

{
Aα

δ

δzµ
(jα)

}]
d4x

= quαFαµ(z) (2.1.13)

Here, integration by parts has been used between �fth line and sixth line. Now, consider the particle

term,

δSparticle
δzµ(τ)

=
δ

δzµ

(
−m
ˆ
dτ ′
)

= maµ (2.1.14)

Substituting the above results - (2.1.12), (2.1.13) and (2.1.14) - into the equation (2.1.11), we get

the following equations of motion,

0 + quαFαµ(z) +maµ = 0

=⇒ maµ = qFµα(z)uα (2.1.15)

The last equation is the Lorentz force law. We can observe that the force is evaluated at z(τ) which

is the trajectory of the particle. But Fαβ has a singularity at this point - in fact, on the whole worldline

of the particle - because the force is due to the �eld of the particle itself. What we tried to do was to

calculate the force, generated by the particle, acting on itself. Hence, (2.1.15) does not make sense.

More care should be taken in calculating the self-force of a point particle.

2.2 Green's functions in �at spacetime

The problem with the Lorentz force above is that there is a singularity on the world line. The singularity

has its origin in the 4-potential generated by the particle which in turn depends on the Green's function.
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Ultimately the singularity comes from the Green's function. First, we need to know what the Green's

functions in this case are and how they a�ect the theory. Here, we derive the Green's function for the

d'Alembertian, �.

2.2.1 Derivation

We start with the following equations,

(2.1.2) and (2.1.9)⇒ �Aµ = 4πjµ (2.2.1)

Hence, the Green's function for the d'Alembertian, �, satis�es the di�erential equation

�G(x, x′) = 4πδ(x− x′) (2.2.2)

=⇒
(

1

c2

∂2

∂t2
−∇2

)
G(x, x′) = 4πδ(x− x′)

Let the Fourier transform of G(x, x′) be G̃(k, x′) - here the Fourier transform is with respect to x

but not x′. We know that x = (ct, ~x), similarly k = (ωc ,
~k). Let k.x = kµxµ = (ωt− ~k.~x). The Fourier

transform and its inverse are given by

G̃(k, x′) =
1

(2π)2

ˆ
eik.xG(x, x′)d4x (2.2.3)

G(x, x′) =
1

(2π)2

ˆ
e−ik.xG̃(k, x′)d4k (2.2.4)

We also know that,

δ(x− x′) =
1

(2π)4

ˆ
e−ik.(x−x

′)d4k (2.2.5)

Substituting (2.2.4) and (2.2.5) in the equation (2.2.2), we get

G̃(k, x′) =

(
−c2

π

)
eik.x

′

ω2 − c2~k.~k
=

(
−c2

π

)
eik.x

′

ω2 − c2k2
(2.2.6)

Substituting this back into (2.2.4), we get

G(x, x′) =
1

(2π)2

(
−c2

π

) ˆ
e−ik.(x−x

′)

ω2 − c2k2
d4k (2.2.7)

=
1

(2π)2

(
−c2

π

) ˆ
ei[
~k.(~x−~x′)−ω(t−t′)]

ω2 − c2k2
d4k (2.2.8)

=
1

(2π)2

(
−c2

π

) ˆ
ei[
~k.(~x−~x′)−ω(t−t′)]

(ω − ck)(ω + ck)
d4k (2.2.9)
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where k = |~k|, it is not to be confused with the four wave vector, kµ. Conventionally, the ω

integration is done �rst. Contour integration followed by application of Residue theorem is the best way

to �nd the integral with respect to ω because the integration path, which is from ω = −∞ to ω = +∞,

includes the poles ω = ±ck. In contour integration we treat ω as a complex variable and integrate

over a contour in its complex plane. Let ω = ωR + iωI , where ωR and ωI are real and imaginary parts

respectively. There are two possible contours for integration: one above the real axis and the other

below. The integrand then has the factor eωI(t−t′) which converges only when the exponent is negative.

Hence, among the possible contours, those which lie entirely in the upper half-plane must have t < t′

and those which lie entirely in the lower half-plane must have t > t′. We consider two contours: one

contour which is the real axis plus a semi circle of radius r →∞ in the upper half-plane and another

which is the real axis plus a semi circle of radius r →∞ in the lower half-plane.

Even after choosing a contour, as the real axis passes through two poles we need a way to get

around them. These paths around the poles, called as indentations, are semicircles of radius ε → 0.

There are four possibilities to go around the two poles: both up, both down, one up and one down and

vice versa. Out of these four possibilities the last two are of no concern in this derivation. The �rst

two are the most important ones which give two di�erent solutions for the Green's functions; they are

retarded and advanced Green's functions for the �rst and second cases respectively. We derive both the

functions separately.

The integration itself is straight forward once a contour with appropriate indentations are �xed.

The only additional calculations are the Residues of the poles. They are

R1 =
eick(t−t′)

−2ck
at ω = −ck (2.2.10)

R2 =
e−ick(t−t′)

2ck
at ω = ck (2.2.11)

Using the above residues, for the case of both the indentations above the poles (denoted by + sign

near the integral symbol), we get

˛
+

e−iω(t−t′)

(ω − ck)(ω + ck)
d4k =

(2πi)

(
−i sin[ck(t−t′ )]

ck

)
t > t

′
i.e., upper semicircle

0 t < t′ i.e., lower semicircle

(2.2.12)

or using Heaviside step function, we can write the above integral as

˛
+

e−iω(t−t′)

(ω − ck)(ω + ck)
d4k = (2πi)

(
−i sin[ck(t− t′)]

ck

)
Θ(t′ − t)

=
2π

ck
sin[ck(t− t′)]Θ(t′ − t) (2.2.13)

Similarly, for both indentations below the poles (denoted by − sign near the integral symbol), the
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integral is given by

˛
−

e−iω(t−t′)

(ω − ck)(ω + ck)
d4k =

−2π

ck
sin[ck(t− t′)]Θ(t− t′) (2.2.14)

The appearance of Θ functions in the above integrals suggests a notion of causality. But calcu-

lating these integrals is only one part in the total integration. There is also an integration over total

momentum space which is essentially the inverse Fourier transform from momentum space to position

space. This integration can be done using spherical coordinates for momentum space. We can choose

the kz-axis to be along any direction because the integral is invariant under rotations. To simplify the

integration, choose kz-axis along the vector ~x − ~x′. The integration for both advanced and retarded

Green's functions is similar. The advanced Green's function has the following form

G−(x, x′) =
−c
2π2

ˆ ∞
0

ˆ π

0

ˆ 2π

0
k2 sin θdkdθdφeik|~x−

~x′| cos θ sin[ck(t− t′)]Θ(t′ − t)
k

Let R = |~x− ~x′|. After doing the integration over φ, which is trivial, we get

G−(x, x′) =
c

π

ˆ ∞
0

ˆ π

0
k sin θdkdθeikR cos θ sin[ck(t′ − t)]Θ(t′ − t)

The integral over θ, which is also easy to do, yields

G−(x, x′) =
c

π

ˆ ∞
0

kdk
2 sin kR

kR
sin[ck(t′ − t)]Θ(t′ − t)

=
2c

πR

ˆ ∞
0

dk sin (kR) sin[ck(t′ − t)]Θ(t′ − t)

The integral over k requires a few steps to get to the �nal answer. The �rst one is to write product

of sines as a sum of cosines

G−(x, x′) =
c

πR

ˆ ∞
0

dk
{

cos
(
k
[
R− c(t′ − t)

])
− cos

(
k
[
R+ c(t′ − t)

])}
Θ(t′ − t)

Since cosine is an even function in k, this integral can be replaced with another integral from

k = −∞ to k = ∞ by multiplying a factor of half. Also, sine is an odd function and hence, can

be added to the corresponding cosine terms without changing the value of the integral. Then the

combination of cosine and sine functions can be replaced by eikx. The �nal integrals are

G−(x, x′) =
c

2πR

ˆ ∞
−∞

dk
{
eik[R−c(t′−t)] − eik[R+c(t′−t)]

}
Θ(t′ − t)

=
c

R

[
δ(R− c(t′ − t))− δ(R+ c(t′ − t))

]
Θ(t′ − t)

Since R > 0 and Θ ensures that t′ > t the second δ-function is always 0 and the only contribution

comes from the �rst δ-function. Hence, �nally, the advanced Green's function is



CHAPTER 2. LORENTZ-DIRAC EQUATION IN FLAT SPACETIME 11

G−(x, x′) =
c

R
δ(R− c(t′ − t)) =

1

R
δ

(
t′ −

[
R

c
+ t

])
(2.2.15)

After a similar analysis for the indentations above the poles, we get the retarded Green's function

G+(x, x′) =
c

R
δ(R+ c(t′ − t)) =

1

R
δ

(
t′ −

[
t− R

c

])
(2.2.16)

This completes the derivation of Green's functions for d'Alembertian which are useful in the case

of electrodynamics.

2.2.2 Discussion

The form of the Green's functions agrees with the names advanced and retarded. Take the case of re-

tarded Green's function which is easy to visualize. Clearly, the function is 0 for t > t′ but there is much

more to it. The Green's function is non zero only at t = t′+R
c . This means that the e�ect of source at ~x′

which radiates a wave at t′ is felt at the �eld point, ~x, at t, that is after a delay of Rc where R is the dis-

tance between source and �eld points. The e�ect doesn't take any more or any less time but exactly R
c .

Even in the case of advanced Green's functions, the wave reaches the �eld point R
c seconds in advance.

This implies that the interaction travels exactly at a speed of light both into the past and into the fu-

ture. This further implies that the Green's functions have support only on the light cone of the source.

That is the electromagnetic waves radiated from the source at any instant can reach only to those

points which can be reached by a light wave radiated by the source at that same instant.

One more important aspect of the above Green's functions, which is relevant to the discussion in

the previous section, is the appearance of R in the denominator. This implies a singularity at R = 0

(both �eld and source points coincide). This means the 4-potential and hence, electromagnetic �elds

are singular on the world line of the source particle. This can not be avoided and this is the reason

why the calculations of self-force using Lorentz force law in the previous section yielded meaningless

results.

We have derived all the Maxwell's equations and Lorentz force in �at spacetime. We have argued

why the Lorentz force law does not make sense when applied to calculate self-force of a point particle.

We have derived the Green's functions and argued that the singularity in the Green's function is the

main reason for in�nite self-force of a point particle. In the next section, We will extend the Lorentz

force law to Lorentz-Dirac force equation. We will also introduce radiation reaction which can not be

avoided in any theory explaining self-force.

2.3 Slowly moving (non-relativistic) point charges

From the advanced and retarded Green's functions calculated in the previous subsection, we get the

following expression for electromagnetic 4-potential, Aαε (x).

Aαε (t, ~x) =

ˆ
jα (t− ε |~x− ~x′| , ~x′)

|~x− ~x′|
d3x′ (2.3.1)
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where

ε =

+1 for retarded solution

−1 for advanced solution

2.3.1 Far zone

In the far zone, we have |~x| � |~x′|. Let r ≡ |~x|. Then we have

∣∣~x− ~x′∣∣ = r − n̂ · ~x′ +O
(
r−1
)

Now expanding jα in Taylor series around w ≡ t− εr, we obtain

jα
(
t− ε

∣∣~x− ~x′∣∣ , ~x′) =
∞∑
l=0

εl

l!

(
n̂ · ~x′

)l ∂l
∂wl

jα
(
w, ~x′

)
Substituting this expression into (2.3.1), we get a multipole expansion for 4-potential

Aαε (t, ~x) =
1

r

∞∑
l=0

εl

l!

ˆ (
n̂ · ~x′

)l ∂l
∂wl

jα
(
w, ~x′

)
d3x′

=
1

r

∞∑
l=0

εl

l!

dl

dwl

ˆ (
n̂ · ~x′

)l
jα
(
w, ~x′

)
d3x′ (2.3.2)

To the leading order, the scalar potential is given by

rΦε (t, ~x) =

ˆ
ρ
(
w, ~x′

)
d3x′ + ε

d

dw

ˆ
ρ
(
w, ~x′

) (
n̂ · ~x′

)
d3x′

= q + εn̂ · d
dw

ˆ
ρ~x′d3x′

= q + εn̂ · ~̇p (2.3.3)

where q =
´
ρd3x′ and ~p =

´
ρ~x′d3x′ and the overdot denotes di�erentiation with respect to w.

Similarly, the vector potential is given by

rAiε (t, ~x) =

ˆ
ji
(
w, ~x′

)
d3x′
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But, by Gauss's theorem, we know that

´
~∇′ ·

(
x′i~j
)
d3x′ = 0

=⇒
´ [

~∇′
(
x′i
)
·~j + x′i

(
~∇′ ·~j

)]
d3x′ = 0

=⇒
´ [

ji + x′i
(
− ∂ρ
∂w

)]
d3x′ = 0

=⇒
´
jid3x′ =

d

dw

ˆ
ρx′id3x′

=⇒
´
~jd3x′ = ~̇p

Substituting this back into previous equation we get

r ~Aε (t, ~x) = ~̇p (2.3.4)

The magnetic �eld due to this vector potential is given by

r ~Bε = r~∇× ~Aε

= r~∇×

(
~̇p

r

)

= r~∇
(

1

r

)
× ~̇p+ r

(
1

r

)
~∇× ~̇p

= r

(
− n̂
r2

)
× ~̇p+

(
−εn̂× ~̈p

)
= − n̂

r
× ~̇p+

(
−εn̂× ~̈p

)
To the leading order in r, the magnetic �eld is given by

r ~Bε = −εn̂× ~̈p (2.3.5)

Similarly the electric �eld is given by

~Eε = −~∇Φε −
∂ ~Aε
∂t

= −~∇

(
q

r
+
εn̂ · ~̇p
r

)
− ∂

∂t

(
~̇p

r

)

= −q~∇
(

1

r

)
− ε
[
~∇
(

1

r

)
n̂ · ~̇p+

1

r
~∇
(
n̂ · ~̇p

)]
− 1

r

∂

∂t

(
~̇p
)

=
q

r2
+

ε

r2

[
2n̂
(
n̂ · ~̇p

)
− ~̇p
]

+
1

r

[
n̂
(
n̂ · ~̈p

)
− ~̈p
]
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To the leading order in r, the electric �eld is then given by

r ~Eε = n̂
(
n̂ · ~̈p

)
− ~̈p (2.3.6)

It can be observed that

~Eε = ε ~Bε × n̂ (2.3.7)

That is the electric and magnetic �elds are perpendicular to each other and are perpendicular to

direction of propagation n̂. Hence, these are transverse electromagnetic waves. For ε = +1, the waves

are outgoing and hence, energy is removed by these waves from the source. For ε = −1, the waves are

incoming and hence, energy is provided by these waves to the source.

The Poynting vector, ~S, is given by

~Sε =
1

4π
~Eε × ~Bε

=
1

4π

 n̂
(
n̂ · ~̈p

)
− ~̈p

r

×(−εn̂× ~̈p
r

)

= − ε

4πr2

[(
n̂ · ~̈p

){
n̂×

(
n̂× ~̈p

)}
− ~̈p×

(
n̂× ~̈p

)]
= − ε

4πr2

[(
n̂ · ~̈p

){
n̂
(
n̂ · ~̈p

)
− ~̈p (n̂ · n̂)

}
−
{
n̂
(
~̈p.~̈p
)
− ~̈p

(
~̈p · n̂

)}]
= − ε

4πr2

[(
n̂ · ~̈p

)2
n̂−

∣∣∣~̈p∣∣∣2 n̂]
=

ε

4πr2

(∣∣∣~̈p∣∣∣2 sin2 (θ)

)
n̂ (2.3.8)

where θ is the angle between the vectors n̂ and ~̈p.

The rate of energy �owing out of a sphere of radius r is given by

dE

dw
=

ˆ
~S · ~dA

=

ˆ π

0

ˆ 2π

0

ε

4πr2

(∣∣∣~̈p∣∣∣2 sin2 (θ)

)
r2 sin (θ) dθdφ

=

ˆ π

0
2π

ε

4π

∣∣∣~̈p∣∣∣2 sin3 (θ) dθ

=
ε

2

∣∣∣~̈p∣∣∣2 ˆ π

0
sin3 (θ) dθ

= ε
2

3

∣∣∣~̈p∣∣∣2 (2.3.9)

Thus, we can con�rm that energy �ux is outward for ε = +1 and inward for ε = −1. For a point

charge, since ~p = q~z, we have dE
dw = ε2

3q
2a2, where a is the acceleration of the point charge. This is

Larmor formula.
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2.3.2 Near zone

Near the source, we have |~x− ~x′| � t. Hence, expanding jα in Taylor series about t, treating |~x− ~x′|
as a small quantity, we get

jα
(
t− ε

∣∣~x− ~x′∣∣ , ~x′) =
∞∑
l=0

(−ε)l

l!

∣∣~x− ~x′∣∣l ∂l
∂tl

jα
(
t, ~x′

)
Substituting this into (2.3.1), we obtain

Aαε (t, ~x) =

ˆ [∑∞
l=0

(−ε)l
l! |~x− ~x

′|l ∂l
∂tl
jα (t, ~x′)

]
|~x− ~x′|

d3x′

=
∞∑
l=0

(−ε)l

l!

ˆ ∣∣~x− ~x′∣∣l−1 ∂l

∂tl
jα
(
t, ~x′

)
d3x′

=

[∑
l even

1

l!

∂l

∂tl

ˆ ∣∣~x− ~x′∣∣l−1
jα
(
t, ~x′

)
d3x′

]
− ε

[∑
l odd

1

l!

∂l

∂tl

ˆ ∣∣~x− ~x′∣∣l−1
jα
(
t, ~x′

)
d3x′

]
(2.3.10)

It can be observed that the �rst sum is independent of ε and is same irrespective of radiation at in�nity.

Hence it is not responsible for radiation reaction. On the other hand, the second sum changes sign

with ε and hence, corresponds to radiation reaction force. This can be looked at in another way. The

�rst sum can be written as 1
2 (Aαret +Aαadv), the coloumb part, and the second sum as 1

2 (Aαret −Aαadv).
Hence, the radiation reaction potential is given by

Aαrr (t, ~x) =
1

2
(Aαret −Aαadv) = −

∑
l odd

1

l!

∂l

∂tl

ˆ ∣∣~x− ~x′∣∣l−1
jα
(
t, ~x′

)
d3x′ (2.3.11)

The leading term for scalar potential comes from l = 3 because l = 1 term vanishes by virtue of

charge conservation.

Φrr (t, ~x) = − 1

3!

∂3

∂t3

ˆ
ρ
(
t, ~x′

) ∣∣~x− ~x′∣∣2 d3x′

The leading term for vector potential comes from l = 1.

~Arr (t, ~x) = − ∂

∂t

ˆ
~j
(
t, ~x′

)
d3x′

In the special case of a point charge, we have ρ (t, ~x′) = qδ (~x′ − ~z (t)) and ~j (t, ~x′) = q~vδ (~x′ − ~z (t)).
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The scalar potential is

Φrr (t, ~x) = − q
3!

d3

dt3
|~x− ~z (t)|2

= − q
3!

d2

dt2
[2 (~x− ~z) · (~v)]

= − q
3!

d

dt

[
2 (−~v)2 + 2 (~x− ~z) · (−~a)

]
= − q

3!

[
4~v · ~a− 2 (~x− ~z) · ~̇a+ 2~v.~a

]
=
q

3
(~x− ~z) · ~̇a− q~v · ~a (2.3.12)

Similarly, the vector potential is given by

~Arr (t, ~x) = −q d
dt
~v

= −q~a (2.3.13)

The magnetic �eld associated with this radiation reaction potential is then given by

~Brr (t, ~x) = ~∇× ~Arr = 0 (2.3.14)

Similarly, the electric �eld is given by

~Err (t, ~x) = −~∇Φrr −
∂

∂t
~Arr

= −~∇
[q

3
(~x− ~z) · ~̇a− q~v · ~a

]
− ∂

∂t
(−q~a)

= −q
3
~∇
(
~x · ~̇a

)
+ q

∂

∂t
(~a)

= −q
3
~̇a+ q~̇a

=
2

3
q~̇a (2.3.15)

Finally, the radiation reaction force is given by

~Frr = q
(
~Err + ~v × ~Brr

)
=

2

3
q2~̇a (2.3.16)

The rate of work done by this force is given by

Ẇ = ~Frr · ~v =
2

3
q2~̇a · ~v =

2

3

[
d

dt
(~a · ~v)− |~a|2

]
Averaging over time and assuming that motion is either periodic or unaccelerated at early and late

times, the �rst term in the above expression vanishes and we get〈
Ẇ
〉

= −2

3
q2 |~a|2 (2.3.17)
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This quantity is negative and is exactly equal in magnitude to the rate of energy radiated by the point

charge given by Larmor formula. Hence, there is an energy balance on average.

2.4 Covariant form of Lorentz-Dirac equation

In this section, the covariant form of Lorentz-Dirac equation is derived. We start with the light-cone

mapping. In this subsection we de�ne several quantities which will be useful in the derivation that

follows. The de�nitions and results in this subsection can be found in [2].

2.4.1 Light-cone mapping

For the retarded wave, the trajectory, zα (τ), of the particle intersects the light cone of the �eld point,

xα, on the past cone.

σ (x, u) ≡ 1

2
ηαβ (xα − zα (u))

(
xβ − zβ (u)

)
= 0 (2.4.1)

From the above equation, we can get u (x), the proper time of the particle when z (τ) intersects the

past light cone. We shall call u as the retarded time.

We shall also need an invariant measure of distance between x and z (u). The scalar quantity

r (x) = −ηαβ (xα − zα (u))uβ (u) (2.4.2)

satis�es the required property. We can con�rm the same by observing that in momentarily comoving

Lorentz frame, r = t− z0 (u), and since the speed of light is assumed to be unity, it is also the spatial

separation between x and z (u). Hence, r (x) may be referred to as retarded distance.

Now we de�ne a new vector, kα (x), in the direction of xα − zα (u), which is a null vector.

kα (x) =
(xα − zα (u))

r
(2.4.3)

It can be easily observed that the vector kα (x) satis�es

kα (x) kα (x) = 0 and kα (x)uα (u) = −1 (2.4.4)

where the second equation provides convenient normalization for the rescaled null vector.

It is easy to see that a change in x results in a change in u, unless that change is along the null

geodesic linking x and z. Let the �eld point be displaced to a new point x + δx. The corresponding

intersection point is z (u+ δu). Using 2.4.1, we can obtain a relation between δu and δx.

σ (x+ δx, u+ δu)− σ (x, u) = dσ (x, u) = 0

=⇒ u,β = −kβ (2.4.5)

The above relation simpli�es the process of di�erentiation of a function f (x) with implicit reference

to u. Now a function f (x) = F (x, u) can be di�erentiated with respect to x and the dependence on
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u can be removed using the relation (2.4.1). That is, we have

∂f

∂xα
=

(
∂F

∂xα

)
u

+
∂u

∂xα

(
∂F

∂u

)
x

=

(
∂F

∂xα

)
u

− kα
(
∂F

∂u

)
x

(2.4.6)

This is the di�erentiation rule under light-cone mapping.

Using the above rule we can �nd that

rα ≡ r,α =
∂r

∂xα
− kα

∂r

∂u

= −uα + kα (1 + rak) (2.4.7)

where ak ≡ aβk
β . Here, it is understood that all worldline quantities such as uα and aα are to be

evaluated at τ = u. From (2.4.7), using the relations in (2.4.4), we obtain

kαrα = −kαuα + kαkα (rak + 1) = 1 (2.4.8)

Another example of di�erentiation, using the rule (2.4.6), which will be useful in subsequent sec-

tions, is

kα,β =

(
∂kα
∂xβ

)
u

− kβ
(
∂kα
∂u

)
x

=
1

r
(ηαβ + kαuβ + kβuα − kαkβ)− akkαkβ (2.4.9)

From the above equation it is clear that

kα,βk
β =

1

r

(
ηαβk

β + kαk
βuβ + kβkβuα − kαkβkβ

)
− akkαkβkβ =

1

r
(kα − kα + 0− 0)− 0 = 0

(2.4.10)

which is the geodesic equation of null vector. We also have

kα,α =
δαα
r

+
kαuα + uαkα

r
− kαkα

(
ak +

1

r

)
=

4

r
− 2

r
− 0 =

2

r
(2.4.11)

2.4.2 Electromagnetic Field of a relativistic point charge

The current density of a relativistic point charge is given by

jα
(
x′
)

= q

ˆ
uα (τ) δ

(
x′ − z (τ)

)
dτ
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The elctromagnetic 4-potential is given by

Aαε (x) =

ˆ
Gε
(
x, x′

)
jα
(
x′
)
d4x′

=

ˆ
Gε
(
x, x′

)(
q

ˆ
uα (τ) δ

(
x′ − z (τ)

)
dτ

)
d4x′

= q

ˆ (ˆ
Gε
(
x, x′

)
δ
(
x′ − z (τ)

)
d4x′

)
uα (τ) dτ

= q

ˆ
Gε (x, z)uα (τ) dτ (2.4.12)

For the retarded wave, we know that the Green's function is given by

Gret (x, z) =
δ
(
z0 − (t− |~x− ~z|)

)
|~x− ~z|

= Θ
(
t− z0

)
δ (σ)

Substituting this result in (2.4.12) gives

Aαret (x) = q

ˆ
dτuα (τ) Θ

(
t− z0

)
δ (σ)

= q

ˆ
dτuα (τ) Θ

(
t− z0

) δ (τ − τ |σ=0)∑∣∣∂σ
∂τ

∣∣
σ=0

= q
uα (u)

r (x)
(2.4.13)

From the above equation we get

Aretα,β (x) = q

[
uα,β
r

+ uα

(
−rβ
r2

)]
= q

[
−kβaα
r

− uα
r2

(−uβ + kβrak + kβ)

]
= q

[
−kβaα − kβuαak

r
+
uαuβ − uαkβ

r2

]
(2.4.14)

Using this relation, the electromagnetic �eld tensor is given by

Fαβ (x) = Aβ,α −Aα,β

=
2q

r

(
a[αkβ] + aku[αkβ]

)
+

2q

r2
u[αkβ] (2.4.15)

The �rst term is the radiative part, which depends on the acceleration of the point charge, and the

second term, the Coloumb part, which does not depend on acceleration of the particle, falls o� more

rapidly than radiative part and hence, is also called bound part.

After a lengthy algebra, using the equations derived in subsection 2.4.1, it can be shown that

Fαβ,β = 0 (2.4.16)

away from the world line. These are the vacuum Maxwell's equations.
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We can now calculate electromagnetic �eld's stress-energy tensor, Tαβem , given by

Tαβem =
1

4π

[
FαµF βµ −

1

4
gαβFµνFµν

]
(2.4.17)

Using the expression for Fαβ in (2.4.15) in the above de�nition gives

Tαβem =

[
q2

4πr2

(
a2 − a2

k

)
kαkβ

]
+

[
q2

2πr3

(
a(αkβ) + ak

(
u(αkβ) − kαkβ

))]
+

[
q2

4πr4

(
2u(αkβ) − kαkβ +

ηαβ

2

)]
(2.4.18)

In the above expression, the �rst term is referred to as radiative component, Tαβrad, and the second and

third terms combined is referred to as bound or Coloumb component, Tαβbnd. Therefore

Tαβrad =

[
q2

4πr2

(
a2 − a2

k

)
kαkβ

]
and

Tαβbnd =

[
q2

2πr3

(
a(αkβ) + ak

(
u(αkβ) − kαkβ

))]
+

[
q2

4πr4

(
2u(αkβ) − kαkβ +

ηαβ

2

)]
Note that a2 = aαaα. The above decomposition into radiative and bound parts is meaningful because

each component is conserved separately, that is

∂βT
αβ
rad = 0, ∂βT

αβ
bnd = 0 (r 6= 0) (2.4.19)

These equations can be con�rmed easily after a lengthy algebra using the equations derived in section

2.1. The motivation behind the name radiative is that it scales as r−2 and is proportional to kαkβ .

2.4.3 Radiation-Reaction force

After doing calculation similar to that of the retarded 4-potential, we get the advanced 4-potential

Aαadv (x) = q
uα (v)

radv (x)
(2.4.20)

where v (x) is the proper time of the particle when z (τ) intersects the future light cone. We shall call

v as the advanced time. Similar to r (x), radv (x) is the advanced distance given by

radv (x) = −ηαβ [zα (v)− xα]uβ (v) (2.4.21)

Before going further, we need to express all the advanced quantities in terms of retarded quantities

like r. This is helpful because our point of interest is the behaviour of the �eld very close to the

world-line. Also, for such close points, since r is small, we can express ∆τ ≡ v − u and radv (x) as a

Taylor expansion in powers of r. It can be noticed that ∆τ and r are of the same order of smallness.
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We have

zα (v) = zα (u) +
∂zα (τ)

∂τ

∣∣∣∣
τ=u

∆τ +
1

2

∂2zα (τ)

∂τ2

∣∣∣∣
τ=u

∆τ2 +
1

6

∂3zα (τ)

∂τ3

∣∣∣∣
τ=u

∆τ3

+
1

24

∂4zα (τ)

∂τ4

∣∣∣∣
τ=u

∆τ4 +O
(
∆τ5

)
= zα + uα∆τ +

1

2
aα∆τ2 +

1

6
ȧα∆τ3 +

1

24
äα∆τ4 +O

(
∆τ5

)
in which the terms on the right hand side are evaluated at the retarded time, u.

Substituting this in the relation σ (x, z (v)) = 0, and using σ (x, z (u)) = 0, gives the following

σ (x, z (v)) = 0

=⇒ 2r∆τ − [1 + rak] ∆τ2 − rȧk
3 ∆τ3 − 1

12

[
a2 + räk

]
∆τ4 +O

(
∆τ5

)
= 0

where ȧk = ȧαkα and äk = äαkα.

Assume that

∆τ = a0 + a1r + a2r
2 + a3r

3 +O
(
r4
)

Substituting this into the previous relation and equating coe�cients of di�erent powers of r to 0, we

get

a0 = 0

a1 = 2

a2 = −2ak

a3 = 2

(
a2
k −

a2

3
− 2

3
ȧk

)
Hence,

∆τ = 2r

[
1− akr +

(
a2
k −

a2

3
− 2

3
ȧk

)
r2 +O

(
r3
)]

(2.4.22)

We substitute (2.4.22) into the expansion of zα (v), and also into a similar expansion of uα (v),

uα (v) = uα + aα∆τ +
1

2
ȧα∆τ2 +

1

6
äα∆τ3 +O

(
∆τ4

)
and then we substitute the above expansions into (2.4.21),

radv (x) = ηαβ [zα (v)− xα]uβ (v)

= r +
2

3

(
a2 + ȧk

)
r3 +O

(
r4
)

(2.4.23)

Similarly we can express uα (v) in terms of powers of r, we get

uα (v) = uα + 2aαr + 2 [ȧα − akaα] r2 +O
(
r3
)

(2.4.24)
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The advanced 4-potential is obtained by substituting (2.4.23) and (2.4.24) into (2.4.20)

Aαadv (x) = q
uα (v)

radv (x)

=
quα

r
+ 2qaα + 2q

[
ȧα − akaα −

1

3

(
a2 + ȧk

)
uα
]
r +O

(
r2
)

(2.4.25)

The radiation-reaction potential is given by

Aαrr (x) =
1

2
[Aαret (x)−Aαadv (x)]

= −qaα − q
[
ȧα − akaα −

1

3

(
a2 + ȧk

)
uα
]
r +O

(
r2
)

(2.4.26)

here, we consider only terms of order less than 2 because the higher order terms, after di�erentiation,

give rise to terms which become 0 on the world-line.

After a lengthy but straight-forward algebra using relations derived in section 2.1, on the world-line,

where xα = zα or equivalently r = 0, we get

Arrα,β (z) =
q

3
uαȧβ + qȧαuβ

and hence,

F rrαβ (z) = Arrβ,α (z)−Arrα,β (z)

= −2

3
q (ȧαuβ − ȧβuα) (2.4.27)

The radiation reaction force is given by

Fαrr = qFαβrr (z)uβ

= −2

3
q2uβ

(
ȧαuβ − ȧβuα

)
=

2

3
q2
(
ȧα + a2uα

)
or equivalently

Fαrr =
2

3
q2
(
δαβ + uαuβ

)
ȧβ (2.4.28)

The equation of motion of the charged particle is therefore

maα = Fαext + Fαrr = Fαext +
2

3
q2
(
δαβ + uαuβ

)
ȧβ (2.4.29)

This is in fact the Lorentz-Dirac equation. Thus, the half-retarded minus half-advanced potential is

indeed responsible for the radiation reaction because it gives correct covariant form of Lorentz-Dirac

equation.

De�ne Ωαβ ≡ a[αuβ], then

Ω̇αβ = ȧ[αuβ] =
1

2
(ȧαuβ − ȧβuα)
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Therefore, the radiation-reaction �eld becomes

F rrαβ (z) = −4

3
qΩ̇αβ

2.5 Discussion

We can verify that the covariant form of radiation-reaction force indeed gives the correct expression

for the force on slowly moving particles derived in the �rst section. For slowly moving particles we

know that uα ≈ (1, 0, 0, 0), which then implies

F 0
rr =

2

3
q2
(
δ0
β + u0uβ

)
ȧβ =

2

3
q2
(
ȧ0 − ȧ0

)
= 0

and

F irr =
2

3
q2
(
δiβ + uiuβ

)
ȧβ =

2

3
q2
(
ȧi − 0

)
=

2

3
q2ȧi

=⇒ ~Frr =
2

3
q2~̇a

which is the radiation reaction force on slowly moving charged particle.

The correct form of Lorentz-Dirac equation also con�rms that the radiation reaction force is indeed

due to the half the di�erence of retarded and advanced potentials.

In this part, we have derived the radiation-reaction force in both non-relativistic and relativistic

cases. We have compared the equations in both the cases and proved that Lorentz-Dirac equation

reduces to the former case in the non-relativistic limit. The next step is literature survey of radiation

reaction in the case of a uniformly accelerating charge and its consequences.



Chapter 3

Literature survey

3.1 Rohrlich's papers

This paper addresses a few questions about the applicability and consequences of self-force and radia-

tion reaction in the special case of a uniformly accelerating charged particle. The questions raised are

as follows:

1. There have been claims that uniformly accelerated charges do not radiate. But, from the radiation

rate formula, it is widely known that accelerated charges do radiate. Is this formula always true?

2. Maxwell's equations are known to be conformal invariant. Conformal transformations is a more

general class of transformations of which Lorentz transformations is only a subgroup. Conformal

group also consists of transformation from an inertial frame to a uniformly accelerated frame.

Since there is no radiation by a uniformly moving charge, by conformal invariance, it is thought

that the charge does not radiate even in uniformly accelerated frames. If the charge does radiate

where does the argument of conformal invariance breakdown?

3. The radiation reaction of a uniformly accelerating charge is zero. Does this imply that the charge

does not radiate? If the charge does radiate, and since the radiation reaction force is zero, where

does it get the necessary energy from? Does this radiation violate conservation of energy?

4. In case of gravitation, do neutral and charged particles, which are identical in every other as-

pect, undergo same motion in presence of a uniform gravitational �eld? If the charged particle

does radiate, this can be used as a test to di�erentiate gravity-free regions from regions with

gravitational �elds. Does this violate principle of equivalence?

We discuss the problems stated above in detail and develop answers to all the questions raised.

3.1.1 Fields of a uniformly accelerating charge

The electromagnetic �elds at (t, ~r) of a uniformly accelerating charge at (t′, ~r′), with the magnitude of

acceleration 1
α , are given by (Ref [3])

24
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EBφ = 0 = HB
ρ = HB

z (3.1.1)

EBz = −4eα2

(
α2 + t2 + ρ2 − z2

)
ξ3

EBρ = 8eα2 ρz

ξ3

HB
φ = 8eα2 ρt

ξ3

where ξ ≡
[(
α2 + t2 − ρ2 − z2

)2
+ 4α2ρ2

] 1
2
. Here, we have used cylindrical coordinates ρ, φ, z. These

�elds were derived by Born (and hence the superscript B), who assumed that they held everywhere in

the spacetime. But Schott pointed out that the equations held only in that region of spacetime where

z + t > 0. This condition is a consequence of causality. The actual condition for causality requires

t− t′ = R ≡
∣∣~r − ~r′∣∣ > 0.

Since the charge undergoes hyperbolic motion, we have, z′ =
√
α2 + t′2. Now, requiring that R > 0

implies that z + t > 0. Hence, the Schott solution is equivalent to Born solution except for the

restriction to the spacetime region, z + t > 0.

As an aside, Bondi and Gold gave modi�es expressions for the �elds which extended their applica-

bility to entire spacetime region. The expressions remain the same for the region z + t > 0 and zero

for z + t < 0. The �elds attain in�nite values on the region z + t = 0 because these �elds have been

emitted by charges moving at the speed of light at t = −∞. The �nal expressions which satis�es all

these quali�cations are as follows

Eφ = 0 = Hρ = Hz (3.1.2)

Ez = −4eα2

(
α2 + t2 + ρ2 − z2

)
ξ3

.θ (z + t)

Eρ = 8eα2 ρz

ξ3
.θ (z + t) +

2eρ

ρ2 + α2
.δ (z + t)

Hφ = 8eα2 ρt

ξ3
.θ (z + t)− 2eρ

ρ2 + α2
.δ (z + t)

These �elds satisfy Maxwell's equations everywhere and contain the causality condition within them.

It is easy to see that the complete hyperbolic motion of the particle is invariant under Lorentz

transformations. This implies that the �elds have same form (form invariant) in all inertial frames. This

form invariance is a consequence of conformal invariance of Born solution. But the causality condition

restricts the symmetry of the solution of Maxwell's �eld equations to Lorentz transformations. In other

words, Born solution is a sum of advanced and retarded �elds which is conformal invariant but Schott

solution is restricted to retarded �elds which is invariant under only a subgroup of full conformal group,

namely Lorentz group. Hence, conformal invariance is not a physical symmetry of the solution and
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any physical arguments based on conformal invariance do not yield sensible conclusions. This answers

the second of the questions raised above.

3.1.2 Radiation rate of uniformly accelerating charge

The intensity of radiation emitted at time t′ in the (space-like) direction nµ which is orthogonal to the

velocity of the charge at that time vµ (τ) is given by

I = Tµνvµnν (3.1.3)

where τ is the propertime corresponding to t′. We de�ne radiation rate as the total rate of radiation

energy emitted by the charge at time t′. This is obtained by integrating I invariantly over a light

sphere in the limit of in�nite radius R = t− t′. That is

R = lim
R→∞

ˆ
Tµνvµnνd

2σ, for a �xed t′

Observe that R → ∞ and t′ being �xed =⇒ t → ∞ because the causality condition must still be

valid. The expression for R, in a most general motion, is given by

R =
2

3
e2aµa

µ (3.1.4)

where aµ (τ) is the four-acceleration of the particle. It can be observed that R is an invariant, which

is expected since the integration is carried out over light sphere which is itself an invariant. In general,

R is a function of source point, that is of the propertime τ . However, in the case of hyperbolic motion,

it is evidently a constant and is independent of when and where the radiation has been emitted.

Using the �elds (3.1.1) given in the previous subsection, along with causality condition, the intensity

and radiation rate of a charged particle in hyperbolic motion are given by

R =
2

3

e2

α2
(3.1.5)

I =
e2α4

4πR2

sin2 θ(√
α2 + t′2 − t′ cos θ

)6 (3.1.6)

where cos θ = ẑ · n̂. Therefore, it can be seen that a uniformly accelerating point charge does radiate

at a constant rate given by (3.1.5), with a radiation pattern given by (3.1.6). This answers the �rst

question raised previously.

Since our de�nition of radiation is invariant under Lorentz transformations, every inertial observer

sees the same radiation rate and intensity.

The radiation rate computed above holds for all values of t′ such that z + t > 0 and this result is

independent of the value of the �elds in the region z+ t ≤ 0. Hence, the argument by Bondi and Gold

that all the radiation is emitted at t′ = −∞ is unphysical and unnecessary.
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3.1.3 Conservation of energy

The equation of motion of a charged particle with the inclusion of radiation reaction is given by

maµ = Fµext + Γµ (3.1.7)

where

Γµ =
2

3
e2

(
daµ

dτ
− vµaνaν

)
(3.1.8)

For a uniformly accelerating charge, it is easy to show that Γµ = 0. This yields the equation of motion

maµ = Fµext. (3.1.9)

We know that the kinetic energy is given by T = m (γ − 1). Hence the zeroth component of (3.1.9)

implies
dT

dτ
= F 0

ext =
dWext

dτ
(3.1.10)

Hence, the change in kinetic energy of the particle is due to the work done by the external force and

is independent of the charge of the particle. But we have seen in the previous subsection that the

charge does radiate. This might seem to be in direct contradiction with the principle of conservation

of energy. The resolution to this apparent contradiction is very simple.

Let us consider a general motion. In this case, the zeroth component of (3.1.7), after noting that
dt
dτ = γ, gives

dT

dt
−
(
dQ

dt
−R

)
=
dWext

dt
(3.1.11)

since Γ0 = 2
3e

2
(
da0

dτ − γa
2
)

=
(
dQ
dt −R

)
, where Q = 2

3e
2a0. This equation tells that the work done by

the external force equals the increase in kinetic energy of the particle minus the work done by radiation

reaction, which has two parts - one which is always positive (R > 0) and the other which can be either

positive or negative or zero. In a general motion, the work done by radiation reaction force need not

be zero. Part of this work goes out as radiation emitted by the charged particle and the remaining

part goes into changing the value of Q. Hence, Q can be interpreted as a form of internal energy of

the particle like kinetic energy. It has been termed as acceleration energy by Schott.

For periodic motions, averaging over long periods of time, the term dQ
dt vanishes. Hence, on an

average all the work done by radiation reaction goes out as radiation emitted by the charged particle.

It might now be tempting to say that there is no radiation when radiation reaction is zero. However,

this is not true because hyperbolic motion is a very special case. the work done by radiation reaction

itself is zero. But dQ
dt does not vanish as in periodic or bound motion. Hence, we have

R =
dQ

dt
> 0

Considering m−Q as the internal energy of the particle, we can interpret the above equation in an

intuitive way. That is, the radiation emitted originates from the internal energy of the particle. This

reduction in internal energy of accelerating charge does not change the rest mass of the particle as can
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be con�rmed from the rest frame of the particle. In the rest frame, a0 = γ~v ·~a = 0. Hence, Q = 0 and

this is consistent with the physical picture. This answers the third question raised.

3.1.4 Principle of equivalence

It has been shown by Rohrlich (Ref [4]) that a charged particle falling freely in a homogeneous constant

gravitational �eld undergoes hyperbolic motion. We have also seen in the previous subsections that

charged and neutral particles follow same trajectories in the presence of a homogeneous constant

gravitational �eld. But a charged particle in hyperbolic motion does radiate and hence, this radiation

can be used to identify whether the particle is in an �eld-free region or in a gravitational �eld. This

clearly seems to violate the principle of equivalence. However, by the de�nition of radiation rate given

above, an observer can measure the radiation only at a very large distance from the source, that is, at

R → ∞, whereas principle of equivalence is a locally valid principle. Hence, an observer who tries to

test the validity of principle of equivalence has to do so locally and hence cannot use radiation emitted

by the source as a strategy. This clari�es the fourth question raised above.

3.2 Teitelboim's and Hirayama's papers

In the previous section, radiation has been de�ned at R → ∞, also called the wave zone. But later,

Rohrlich and Teitelboim derived the same radiation rate formula using another approach. In this

approach, radiation can be identi�ed at any arbitrary distance from the source. Radiation can then be

pictured as something which tends to exist immediately after the emission of the �elds by the source.

The important idea of this approach is identi�cation of bound and radiative parts of electromagnetic

energy momentum tensor. This splitting is well de�ned in the sense that both the parts are conserved

separately everywhere o� the worldline of the particle. There exists such a splitting even in Rindler

frame which can be used to �nd the radiation rate formula by an observer �xed in a Rindler frame.

The bound part has a property that for a speci�c surface, the �ux of the bound part across this

surface is zero. This property was �rst identi�ed and used by Rohrlich [5], who gave a description of

this surface, and then developed by Teitelboim [6]. This property, along with a few other properties of

the radiative part such as its �ux being independent of direction of the hypersurface and the distance

from the source, can be exploited to compute radiation rate at any arbitrary distance from the source.

3.2.1 Classical radiation in Lorentzian frame

In the previous section, the quantity Q = 2
3e

2a0, which has been called acceleration energy, has been

identi�ed as a part of internal energy. Teitelboim [6], in his paper, has re�ned the idea of this term

using the concept of bound and radiative parts of electromagnetic energy momentum tensor. After a

rigorous derivation he arrives at the following equation of motion for a charged particle

maµ − 2

3
e2ȧµ = −2

3
e2a2vµ + Fµext.

The interpretation of this equation goes as follows. The mass m consists of both bare and
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electromagnetic masses, the latter of which is a divergent term for point charge. The left hand side of

the equation is identi�ed as the rate of change of four-momentum, which is given by

pµ = mvµ − 2

3
e2aµ,

and the right hand side is the sum of all the forces - in this case, the radiation reaction force plus

external force.

In the case of hyperbolic motion, ȧµ = a2vµ. Hence, all the radiated energy is supplied by the

bound electromagnetic energy, previously called acceleration energy by Schott. Also, all the work

done by the external force goes into changing the mechanical energy of the particle in both charged

and uncharged cases. This fact is clearly speci�c to the case of hyperbolic motion. In general, both

mechanical and bound electromagnetic energies contribute to the radiation.

3.2.2 Classical radiation in Rindler frame

Hirayama [7] extended the work of Teitelboim to calculate the energy radiated by a uniformly charged

particle as seen by an observer who is accelerating uniformly at a di�erent rate. This is a very di�cult

task because there is no standard convention of de�ning acceleration of a body relative to a non-inertial

observer. Hirayama obtained the formula

RRindler =
2

3
e2αµαµ (−u · v)

where

αµ = (δµν + vµvν)
(
aν − gν − (g · g)

1
2 uν

)
aµ = acceleration of the particle

vµ = velocity of the particle

gµ = acceleration of the observer �xed in the Rindler frame

uµ = velocity of the observer �xed in the Rindler frame

In the above formula, when the particle is instantaneously at rest in the Rindler frame, that is

when vµ = uµ, then αµ = aµ − gµ. Hence, αµ can be interpreted as the relative acceleration of the

particle relative to the observer �xed in the Rindler frame.

Observe that RRindler is identical to R when gµ = 0 and vµ = uµ, that is when the observer is an

inertial observer comoving with the charge instantaneously. Also, RRindler = 0 when αµ = 0, that is

when the observer coaccelerates with the charge he does not observe any radiation. This implies that

an observer �xed in a static homogeneous gravitational �eld does not observe radiation from a charge

�xed in the same �eld.
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3.2.3 Principle of equivalence - revisited

Previously we argued that radiation cannot be used to test the validity of principle of equivalence

because radiation was de�ned to be a wave zone phenomenon which is measured far away from the

source whereas principle of equivalence is a locally valid principle. But with the new approach it might

be argued that radiation can be measured at arbitrary distances from the source and hence can be

used to test the validity of principle of equivalence.

The paradox is that for a charge �xed in a static homogeneous gravitational �eld, an observer

falling freely in this �eld observes radiation from the charge whereas another observer �xed in this �eld

observes no radiation. Hence, it can be argued that charged test particles can be used to di�erentiate

�eld-free regions from real gravitational �elds which is a clear violation of principle of equivalence.

This paradox can be resolved by noting that all the radiation observed by freely falling observer

goes into that region of spacetime which is inaccessible to the co-accelerating observer. However, for

this resolution to be valid, it is necessary, as pointed out by Rohrlich, that radiation be only Lorentz

invariant instead of generally invariant.



Chapter 4

Bi-tensors - Green's functions in curved

spacetime

4.1 Bi-tensors

4.1.1 Basic de�nitions

The de�nition of a vector is applicable only locally, in the sense that, we cannot compare two vectors

which are de�ned at two points separated by a �nite distance unless one of the vectors is parallel

transported to the other point. But, frequently in physics, there appear quantities which are functions

of two points and hence cannot be de�ned in the conventional way. Such quantities, whose arguments

consist of n points, are called n-tensors. A special case of n-tensor is bi-tensor where the quantity is

a function of two points in the spacetime. There are many examples of bi-tensors such as geodesic

distance between two points, Green's function which is a function of source point and �eld point,

Dirac delta function, etc. The local de�nition of vectors is su�cient to describe these quantities in �at

spacetime. However, we need to be careful in de�ning these quantities in a curved spacetime. Most of

the below discussed concepts on bi-tensors can be found in [8].

The simplest example of a bi-tensor is product of two vectors de�ned at two points, that is

Cαα′
(
x, x′

)
= Aα (x)Bα′

(
x′
)
.

Observe that vectors de�ned at x have Greeks indices without primes and vectors de�ned at x′ have

Greek indices with primes. This notation will be followed throughout this report.

The coordinate transformation law for the bi-tensor is given by

C̄αα′
(
x̄, x̄′

)
=
∂x̄α

∂xβ
∂x′β

′

∂x̄′α′
Cββ′

(
x, x′

)
,

which can be extended to any bi-tensor of higher or lower rank. Similarly, contraction of indices can be

done provided it is performed over indices referring to same point. Covariant derivative with respect

to a variable can also be de�ned in the usual sense, where indices corresponding to other variables

31
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should be ignored. Following the usual convention, we have

Cαα′;β = Cαα′,β + Γγβ
αCγα′

and

Cαα′;β′ = Cαα′,β′ − Γα′β′
γ′ Cαγ′

where it is understood that prime or no-prime on the indices denote the point where a quantity is being

evaluated. Also, one can note that indices referring to di�erent points commute. Hence, successive

covariant derivatives at di�erent points commute whereas successive covariant derivatives at the same

point involve Riemann tensor in their commutation relations.

4.1.2 Bi-scalar of geodetic interval

One of the fundamental bi-scalars in the study of nonlocal behaviour of spacetime is the bi-scalar of geodetic interval,

denoted by s (x, x′) (A bi-scalar is a bi-tensor with no indices). It is the magnitude of invariant space-

time distance between x and x′ along a geodesic joining them. It is de�ned by the following equations

gαβs;αs;β = gα
′β′s;α′s;β′ = ±1 (4.1.1)

and

lim
x→x′

s = 0 (4.1.2)

where the + sign holds when the separation between x and x′ is space-like and − sign holds when it

is time-like. All points x for which s = 0 constitute the light cone of x′. There can be more than one

geodesic which connect the two points x and x′ and hence s is usually a multi-valued function. But

when we con�ne ourselves to a region close enough to x′, all the points x within this region have a

unique geodesic connecting them to x′. Such a region is called convex neighbourhood of x′, denoted by

N (x′). Throughout this report, we study the behaviour of quantities in this region.

4.1.3 Synge's world function

In most problems in physics, it is more convenient to work with half the square of the invariant distance

between two spacetime points. This object is called Synge's world function, denoted by σ (x, x′). It is

given by

σ
(
x, x′

)
= ±1

2
s2

and is positive for space-like intervals and negative for time-like intervals. From (4.1.1) and (4.1.2), we

have

gαβσ;ασ;β = gα
′β′σ;α′σ;β′ = 2σ (4.1.3)

and

lim
x→x′

σ = 0 (4.1.4)
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Hereafter, we de�ne the notation σα ≡ σ;α and so on. Also, we re-express the equation (4.1.4) as

[σ] = 0

where the square brackets denote the limit x→ x′. Such a limit is called coincidence limit.

4.1.4 Coincidence limits

In order to de�ne a covariant Taylor expansion of a general bi-tensor around a point x we need higher

derivatives of σ. Applying repeated di�erentiation of (4.1.3), we get

σγ = gαβσασβγ (4.1.5)

σγδ = gαβ (σαδσβγ + σασβγδ) (4.1.6)

σγδε = gαβ (σαδεσβγ + σαδσβγε + σαεσβγδ + σασβγδε) (4.1.7)

σγδεζ = gαβ (σαδεζσβγ + σαδεσβγζ + σαδζσβγε + σαδσβγεζ

+σαεζσβγδ + σαζσβγδε + σασβγδεζ) (4.1.8)

From (4.1.3), we can see that

[σα] = 0 (4.1.9)

Using (4.1.5), we get

σβ (gβγ − σβγ) = 0 =⇒ [σαβ] = gα′β′ (4.1.10)

From (4.1.7), using (4.1.9) and (4.1.10), taking the coincidence limit, we get

[σγδε] = [σγδε] + [σδγε] + [σεγδ] .

Using the result σδγε + σεγδ = 2σγδε − Rεδγ
ζ σζ , we obtain, after taking coincidence limit,

[σαβγ ] = 0 (4.1.11)

From (4.1.8), in coincidence limit, using previous results, we have,

[σγδεζ ] = [σγδεζ ] + [σδγεζ ] + [σεγδζ ] + [σζγδε]

Using the result σδγεζ + σεγδζ + σζγδε = 3σγδεζ − (Rεγδ
η ση);ζ − (Rζγδ

η ση);ε − Rζεγ
η σηδ − Rζεδ

η σγη,

we get

[σαβδζ ] = −1

3

(
Rα′γ′β′δ′ +Rα′δ′β′γ′

)
(4.1.12)

The other combinations of derivatives such as
[
σαβγ′δ′

]
can be similarly obtained. These can be

found in (*poisson review)
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4.1.5 Covariant Taylor expansion

A bi-tensor, Tα′β′ , whose indices all refer to the same point and which is su�ciently di�erentiable, can

be expanded around the point x′ in the following way (for a more rigorous de�nition, refer Section 1

of [8])

Tα′β′ = Aα′β′ + Aα′β′
γ′ σγ′ +

1

2
Aα′β′

γ′δ′ σγ′σδ′ +O
(
s3
)

(4.1.13)

Using the results derived in the previous subsection, we have

Aα′β′ =
[
Tα′β′

]
Aα′β′γ′ =

[
Tα′β′;γ′

]
−Aα′β′;γ′

Aα′β′γ′δ′ =
[
Tα′β′;γ′δ′

]
−Aα′β′;γ′δ′ −Aα′β′γ′;δ′ −Aα′β′δ′;γ′

Applying these results in the expansion of σα′β′ , we get the following expressions

σα′β′ = gα′β′ −
1

3
Rα′

γ′
β′
δ′

σγ′σδ′ +O
(
s3
)

(4.1.14)

σα′β′γ′ = −1

3

(
Rα′γ′β′

δ′ + Rα′
δ′
β′γ′

)
σδ′ +O

(
s2
)

(4.1.15)

σα′β′γ′δ′ = −1

3

(
Rα′γ′β′δ′ +Rα′δ′β′γ′

)
+O (s) (4.1.16)

This procedure of expanding a tensor around a point x′ in terms of �rst derivatives of σ is applicable

only to tensors whose indices all refer to the same point. For bi-tensors, we need a way to bring all

the indices to same point before expanding. We de�ne a new bi-tensor from the old bi-tensor whose

indices all refer to same point. Then we can use above results.

4.1.6 Bi-vector of geodetic parallel displacement

The new bi-tensor with all indices referring to same point is obtained by changing the indices which

correspond to di�erent point to this same point. This can be achieved in a most natural way using an

object of the form gα α′ (x, x
′). This object is called bi-vector of geodetic parallel displacement. It is

determined by the following de�ning equations

gαα′;βg
βγσγ = 0, gαα′;β′g

β′γ′σγ′ = 0 and
[
gα β′

]
= δα β (4.1.17)

By de�nition, applying gα α′ to a vector Aα (x) outputs the vector Aα′ (x
′) which is the vector

obtained by parallel transporting Aα (x) along the geodesic joining the two point x and x′. Therefore,

we have the following relations,

gα α′ g
β
β′ gαβ = gα′β′ , gα

α′ gβ
β′ gα′β′ = gαβ, (4.1.18)

gα α′ σα = −σα′ , gα
α′ σα′ = −σα (4.1.19)

and

gαα′g
αβ′ = δβ

′

α′ , gαα′g
βα′ = δβα (4.1.20)
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The derivatives of gα α′ will be useful in expanding an arbitrary bi-tensor around the point x′.

Di�erentiating (4.1.17) successively with respect to the point x′ gives

0 = gαα′;β′δ′g
β′γ′σγ′ + gαα′;β′g

β′γ′σγ′δ′ (4.1.21)

0 = gαα′;β′δ′ε′g
β′γ′σγ′ + gαα′;β′δ′g

β′γ′σγ′ε′ + gαα′;β′ε′g
β′γ′σγ′δ′ + gαα′;β′g

β′γ′σγ′δ′ε′ (4.1.22)

In the coincidence limit, using gαα′;ε′δ′ = gαα′;δ′ε′ − Rε′δ′α′
γ′ gαγ′ , we get[

gαβ′;γ′
]

= 0 (4.1.23)[
gαβ′;γ′δ′

]
=

1

2
Rα′β′γ′δ′ (4.1.24)

4.1.7 Covariant Taylor expansion (continued)

Consider a bi-tensor with two indices referring to point x and x′. It can be denoted as Tαβ′ . De�ne a

new bi-tensor

T̄α′β′ = gα α′ Tαβ′ .

This is a tensor since both the indices refer to the same point. Hence, we can use the results of

expansion give in previous subsection. Di�erentiating this equation, applying the coincidence limits

and using equations (4.1.23) and (4.1.24) gives

[
T̄α′β′;γ′

]
=
[
gα α′ Tαβ′;γ′

]
(4.1.25)[

T̄α′β′;γ′δ′
]

=
[
gα α′ Tαβ′;γ′δ′

]
+

[
1

2
Rγ′δ′α′

ε′ Tε′β′

]
(4.1.26)

4.1.8 van Vleck determinant

The van Vleck determinant is de�ned as

∆
(
x, x′

)
= det

[
∆α′

β′
(
x, x′

)]
, (4.1.27)

∆α′
β′
(
x, x′

)
= − gα′ α

(
x, x′

)
σα β′

(
x, x′

)
(4.1.28)

It can be shown that

∆
(
x, x′

)
= −

det
[
−σαβ′ (x, x′)

]
√
−g
√
−g′

where g and g′ are the determinants of the metric tensor at x and x′ respectively. Using (4.1.10) and

(4.1.17), it can also be shown that in the coincidence limit[
∆α′

β′

]
= δα

′
β′ , [∆] = 1

Using the covariant Taylor expansion de�ned above, we get, near the coincidence,

∆α′
β′ = δα

′
β′ +

1

6
Rα
′
γ′β′δ′ σ

γ′σδ
′
+O

(
s3
)

(4.1.29)



CHAPTER 4. BI-TENSORS - GREEN'S FUNCTIONS IN CURVED SPACETIME 36

and hence,

∆ = 1 +
1

6
Rγ′δ′σ

γ′σδ
′
+O

(
s3
)

(4.1.30)

where we have used the fact that for a �small� matrix, a, we have det (1 + a) = 1 + tr (a) +O
(
a2
)
.

Di�erentiating (4.1.3) twice, we get

σαβ′ = σγ α σγβ′ + σγσγαβ′ .

Multiplying by −gα′α, we obtain

∆α′
β′ = gα

′
α g

γ′
γ σ

α
γ ∆γ′

β′ + ∆α′
β′;γ σ

γ

After multiplying both by the inverse of van Vleck bi-tensor, we �nd that

δα
′
β′ = gα

′
α g

β
β′ σ

α
β +

(
∆−1

)γ′
β′

∆α′
γ′;γ σ

γ

whose trace yields the di�erential equation

4 = σα α + (ln ∆),α σ
α (4.1.31)

where we have used the fact that δ ln (det (M)) = tr
(
M−1δM

)
. This equation can also be written as

∆−1 (∆σα);α = 4 (4.1.32)

4.2 Green's functions in curved spacetime

4.2.1 Elementary solution using Hadamard approach

In this section, following Hadamard's method, we �nd an elementary solution to homogeneous covariant

scalar wave equation, which will then be used to obtain Green's functions for inhomogeneous covariant

scalar wave equation (refer Section 2 of [8]). The covariant scalar wave equation is given by

gαβφ;αβ = 0 (4.2.1)

Using Hadamard's approach, we try to �nd an �elementary solution� to the above equation, which is

a bi-scalar of the form

G(1) =
1

(2π)2

(
U

σ
+ V ln |σ|+W

)
(4.2.2)

where U , V and W are bi-scalars which are regular everywhere. Also, U satis�es a normalization

condition given by

[U ] = 1 (4.2.3)
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Substituting G(1) into the wave equation, using (4.1.3) and (4.1.32), we get

(2π)2 gαβG
(1)
;αβ = 0 = − 1

σ2
gαβ

(
2U;α − U∆−1∆;α

)
σβ (4.2.4)

+
1

σ

[
2V + gαβ

(
2V;α − V∆−1∆;α

)
σβ + gαβU;αβ

]
+gαβV;αβ ln |σ|+ gαβW;αβ

In order for this expression to vanish everywhere, the coe�cient of the logarithmic term must vanish

everywhere, and coe�cieents of the singular terms must vanish at least on the light cone while the last

term can take care o� the light cone. This implies

gαβ
(
2U;α − U∆−1∆;α

)
σβ = 0 (4.2.5)

gαβV;αβ = 0 (4.2.6)

We assume a power series expansion for v and w in terms of σ

V =
∞∑
n=0

vnσ
n, W =

∞∑
n=0

wnσ
n (4.2.7)

Substituting the power series for v into (4.2.6) and using (4.1.3) and (4.1.32), we arrive the following

recurrence relation for vn

v0 + gαβ
(
v0;α −

1

2
v0∆−1∆;α

)
σβ = −1

2
gαβU;αβ (4.2.8)

vn +
1

n+ 1
gαβ

(
vn;α −

1

2
vn∆−1∆;α

)
σβ = − 1

2n (n+ 1)
gαβvn−1;αβ (4.2.9)

Similarly, substituting the power series for w into

2V + gαβ
(
2V;α − V∆−1∆;α

)
σβ + gαβU;αβ + σgαβW;αβ = 0 (4.2.10)

which is obtained from (4.2.4), we get the following recurrence relation for wn

wn +
1

n+ 1
gαβ

(
wn;α −

1

2
wn∆−1∆;α

)
σβ = − 1

2n (n+ 1)
gαβwn−1;αβ −

1

n+ 1
vn

+
1

2n2 (n+ 1)
gαβvn−1;αβ (4.2.11)

These equations hold for all n = 1, 2, . . . , n. All the vn can be found uniquely by integrating the

above equations but there is an arbitrariness in wn's since w0 still remains arbitrary. This arbitrariness

is expected since G(1) is not a unique solution to the homogeneous wave equation and any �singularity-

free� solution can be added to it.

The equation (4.2.5) holds everywhere and on every geodesic emanating from x′. Hence, that
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equation is equivalent to the following equation

U−1U;α =
1

2
∆−1∆;α

which on integrating, using the initial condition (4.2.3), gives the following solution

U = ∆
1
2 (4.2.12)

Substituting this solution into the equation (4.2.8) and using the expansion (4.1.30), we �nd that

[V ] = [v0] =
1

12
R (4.2.13)

4.2.2 Green's function for inhomogeneous wave equation

Now we introduce Feynman propagator, and move the elementary solution to the complex plane. Thus,

we have (refer Section 2 of [8]),

GF = G(1) − 2iG

where G is the sought after Green's function for the inhomogeneous wave equation.. Using the well

known identities, which can be obtained by assuming a limiting Cauchy distribution for δ-function,

1

σ + iε
= P

(
1

σ

)
− iπδ (σ)

and

ln (σ + iε) = ln |σ|+ iπθ (−σ)

we can obtain the symmetric Green's function

G =
1

8π

(
∆

1
2 δ (σ)− V θ (−σ)

)
(4.2.14)

One can immediately see that G is independent of W and is hence unique unlike G(1). Secondly, G

vanishes for space-like separation of x and x′. Finally, it has support on the light-cone like the Green's

functions of �at spacetime. However, it is non-zero even inside the light-cone which is not the case in

�at spacetime. The bi-scalar V hence represents the tail term of the Green's function.

4.2.3 Advanced distributional methods

In this subsection, we introduce some advanced distributional methods which will be useful in verifying

that G is indeed a solution to inhomogeneous wave equation. Let θ+ (x,Σ) be a generalized step

function, de�ned to be one when x is in the future of the spacelike hypersurface Σ and zero otherwise.

Similarly, de�ne θ− (x,Σ) = 1 − θ+ (x,Σ) to be one when x is in the past of the hypersurface Σ and

zero otherwise (for a more intuitive discussion on the generalized step function, refer Section 2 of [8]
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and Part III, Section 12.5 of [9]). Now de�ne light-cone step functions,

θ± (−σ) = θ± (x,Σ) θ (−σ) , x′ ∈ Σ (4.2.15)

where θ+ (−σ) is one when x is in chronological future of x′ and zero otherwise. Similarly, the other

step function. De�ne similarly, light-cone Dirac delta fucntionals,

δ± (−σ) = θ± (x,Σ) δ (−σ) , x′ ∈ Σ (4.2.16)

These light-cone functions cannot be di�erentiated at x = x′. Hence, we shift σ by a small positive

quantity ε. Note that the equation σ + ε = 0 de�nes two hyperboloids just inside the light-cone of x′,

one in past cone and another in future cone. The light-cone step functions can now be di�erentiated

without any pathologies because each of the signs, ±, selects a hyperboloid in future and past of x′

respectively making the limiting process smooth. Hence, we have

θ′± (−σ − ε) = θ± (x,Σ) θ′ (−σ − ε) = −θ± (x,Σ) δ (σ + ε) = −δ± (σ + ε) (4.2.17)

We also need derivatives of δ± (σ) in order to proceed further. For this purpose we shall rely on

the distributional identity

lim
ε→0+

ε

R5
=

2π

3
δ(3) (x) (4.2.18)

where R =
√
r2 + 2ε and r = |x|. This follows from another identity ∇2

(
1
r

)
= −4πδ(3) (x), where we

replace ∇2
(

1
r

)
by limε→0+ ∇2

(
1
R

)
= − limε→0+

6ε
R5 .

Using 2 (σ + ε) = −t2 + r2 + 2ε = − (t+R) (t−R), we get

δ± (σ + ε) =
δ (t∓R)

R

Using this result, we consider the following functionals

A± [f ] = lim
ε→0+

ˆ
εδ± (σ + ε) f (x) d4x

= lim
ε→0+

ˆ
ε
f (±R,x)

R
d3x

=
2π

3

ˆ
δ(3) (x) r4f (±r,x) d3x

= 0
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B± [f ] = lim
ε→0+

ˆ
εδ′± (σ + ε) f (x) d4x

= lim
ε→0+

ε
d

dε

ˆ
f (±R,x)

R
d3x

= lim
ε→0+

ε

ˆ (
± ḟ

R2
− f

R3

)
d3x

=
2π

3

ˆ
δ(3) (x)

(
±r3ḟ − r2f

)
d3x

= 0

C± [f ] = lim
ε→0+

ˆ
εδ′′± (σ + ε) f (x) d4x

= lim
ε→0+

ε
d2

dε2

ˆ
f (±R,x)

R
d3x

= lim
ε→0+

ε

ˆ (
f̈

R3
∓ 3

ḟ

R4
− 3

f

R5

)
d3x

= 2π

ˆ
δ(3) (x)

(
1

3
r2f̈ ± rḟ + r2f

)
d3x

= 2πf (0,0)

Using these results we can establish the following distributional identities

lim
ε→0+

εδ± (σ + ε) = 0 (4.2.19)

lim
ε→0+

εδ′± (σ + ε) = 0 (4.2.20)

lim
ε→0+

εδ′′± (σ + ε) = 2πδ(4)
(
x− x′

)
(4.2.21)

Notice that these results hold only in �at spacetime.

4.2.4 Invariant Dirac distribution

The invariant Dirac distribution is de�ned by the following equations

ˆ
f (x) δ4

(
x, x′

)√
−gd4x = f

(
x′
)
and

ˆ
f
(
x′
)
δ4

(
x, x′

)√
−g′d4x′ = f (x)

It is easy to see that this distribution is symmetric and can be expressed as

δ4

(
x, x′

)
=
δ(4) (x− x′)√

−g
=
δ(4) (x− x′)√

−g′
=
(
gg′
)− 1

4 δ(4)
(
x− x′

)
(4.2.22)
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Using exactly same method as in the previous subsection, it can be shown that

lim
ε→0+

εδ± (σ + ε) = 0 (4.2.23)

lim
ε→0+

εδ′± (σ + ε) = 0 (4.2.24)

lim
ε→0+

εδ′′± (σ + ε) = 2πδ4

(
x, x′

)
(4.2.25)

To prove these relations we argue that the above equations are scalar equations and hence should

hold in any coordinate system. Hence, in curved spacetime, doing the analysis in Riemann normal

coordinates is preferred since working in these coordinates is equivalent to working in �at spacetime.

Since we get same equations as (4.2.19) to (4.2.21), going back to general coordinates from frame

components gives the desired result.

4.2.5 Green's function for inhomogeneous wave equation (continued)

In this subsection we de�ne retarded and advanced Green's functions. Then we shall use the distri-

butional identities derived in the previous subsection to prove that the Green's function G satis�es

inhomogeneous wave equation. The retarded and advanced Green's functions are de�ned respectively

as follows

G±
(
x, x′

)
=

1

4π
[Uδ± (σ) + V θ± (−σ)] (4.2.26)

Before going further we see the limiting process introduced in the previous subsection, that ε → 0+.

The above equation then becomes

Gε±
(
x, x′

)
=

1

4π
[Uδ± (σ + ε) + V θ± (−σ − ε)]

where G± (x, x′) = limε→0+ G
ε
± (x, x′). Using the distributional identities derived above along with

σδ± (σ + ε) = −εδ± (σ + ε), σδ′± (σ + ε) = −δ± (σ + ε)−εδ′± (σ + ε), and σδ′′± (σ + ε) = −2δ′± (σ + ε)−
εδ′′± (σ + ε), we get

gαβGε±;αβ =
1

4π

[
−2εδ′′± (σ + ε)U + 2εδ′± (σ + ε)V + δ′± (σ + ε) {2U;ασ

α + (σα α − 4)U}

+δ± (σ + ε)
{
−2V;ασ

α + (2− σα α)V + gαβU;αβ

}
+ θε± (−σ − ε)

{
gαβV;αβ

}]
After taking the limit ε→ 0+, and using the equations (4.2.5), (4.2.6) and (4.2.10), we get

gαβG±;αβ = −δ4

(
x, x′

)
This proves that G± satis�es inhomogeneous covariant scalar wave equation. Therefore

G =
1

2
(G+ +G−)

also satis�es inhomogeneous covariant scalar wave equation.
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4.2.6 Discussion

In this part, we have introduced bi-tensors, highlighting some useful bi-tensors and their properties.

The we have computed Green's functions using the results on bi-tensors. We have used Hadamard's

approach to �nd these Green's functions and developed some advanced distributional methods to verify

that the solutions obtained do indeed satisfy the inhomogeneous covariant scalar wave equation. In

the next part, we de�ne two important coordinate systems and derive the transformations between

these coordinates which will be useful in understanding the �eld of a point scalar charge and hence,

its equation of motion.



Chapter 5

Coordinate systems

5.1 Conventions

Figure 5.1.1: Geometrical meaning of the points x, x′ and x̄.

In the foregoing discussion, we shall follow the convention given below.

43
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γ : timelike curve representing the worldline of the particle

zµ (τ) : a point on γ at proper time τ

uµ :
dzµ (τ)

dτ
, velocity at that point

aµ :
Duµ (τ)

dτ
, acceleration at that point

x : a point in the convex neighbourhood of γ

x′ : z (u) , the point of intersection of a null geodesic from γto x, at proper time u,

such that xis on the future cone of x′

x̄ : z (t) , the point of intersection of spacelike geodesic from γto x,

which is orthogonal to γat x̄, at proper time t

Here, the convex neighbourhood of a point x is de�ned as the spacetime region around it where all the

points inside this region are simply connected to x, that is, for a point x′ in this region, there is a

unique geodesic entirely inside the region which connects x′ to x. All the results derived below hold

only in this region.
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5.2 Fermi normal coordinates

Figure 5.2.1: Geometrical interpretation of Fermi Normal coordinates.

5.2.1 Fermi-Walker transport

A vector �eld vµ is said to be Fermi-Walker transported on γ, if it is a solution of the equation

Dvµ

dτ
= (vνa

ν)uµ − (vνu
ν) aµ (5.2.1)

The properties of FW transport are that uµ automatically satis�es the above equation and if two vector

�elds vµ and wµ satisfy this equation then their inner product is a constant on the curve γ.

5.2.2 Tetrad and dual tetrad on γ

We can erect an orthonormal tetrad (uµ, eµa) on curve γ at an arbitrary point, which is then FW

transported along the curve to get the tetrad at each point on γ, so that they remain orthonormal (for

a more rigorous way of de�ning the tetrad, refer [9]). The tetrad satisfy
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Deµa
dτ

= (aνe
ν
a)uµ, gµνu

µuν = −1, gµνe
µ
au

ν = 0, gµνe
µ
ae
ν
b = δab (5.2.2)

From the tetrad, we de�ne the dual tetrad
(
e0
µ, e

a
µ

)
, as follows

e0
µ = −uµ, eaµ = δabgµνe

ν
b (5.2.3)

which is also FW transported on γ. The tetrad and its dual give rise to the completeness relations

gµν = −uµuν + δabeµae
ν
b , gµν = −e0

µe
0
ν + δabe

a
µe
b
ν (5.2.4)

5.2.3 Fermi normal coordinates

The Fermi normal coordinates of x are de�ned as

x̂0 = t, x̂a = −eaᾱ (x̄)σᾱ (x, x̄) , σᾱ (x, x̄)uᾱ (x̄) = 0 (5.2.5)

where the third relation de�nes the point x̄, from the requirement that geodesic connecting x and x̄

and γ are orthogonal. Using this de�nition and from (5.2.4), it can be shown that

s2 = δabx̂
ax̂b = 2σ (x, x̄) (5.2.6)

where s is the spatial distance between x and x̄ along the geodesic connecting them. This s should

not be confused with the one introduced in subsection 4.1.2. We can see that

σᾱ = −x̂aeᾱa = −sωaeᾱa (5.2.7)

A change in the point x to x+δx, induces a change in the point x̄ to x̄+δx̄ due to the change in the

geodesic connecting them. The new point x̄+δx̄ is determined using σᾱ (x+ δx, x̄+ δx̄)uᾱ (x̄+ δx̄) = 0

and the fact that δx̄ᾱ = uᾱδt. The change in FNC are given by

dt = µσᾱβu
ᾱdxβ, dx̂a = −eaᾱ

(
σᾱ β + µ σᾱ β̄ u

β̄σβγ̄u
γ̄
)
dxβ (5.2.8)

where µ−1 = −
(
σᾱβ̄u

ᾱuβ̄ + σᾱa
ᾱ
)
.

5.2.4 Coordinate displacements near γ

The above equation for coordinate displacements can be expressed in term of powers of s. For this we

need (4.1.14) and also the relations σᾱ = −eᾱa x̂a and gᾱ α = uᾱē0
α + eᾱa ē

a
α where

(
ē0
α, ē

a
α

)
is dual tetrad

at x. After some algebra we get,

µ−1 = 1 + aax̂
a +

1

3
R0c0dx̂

cx̂d +O
(
s3
)
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where aa (t) = aᾱe
ᾱ
a and R0c0d (t) = Rᾱγ̄β̄δ̄u

ᾱeγ̄cuβ̄eδ̄d. Inverting the above equation gives,

µ = 1− aax̂a + (aax̂
a)2 − 1

3
R0c0dx̂

cx̂d +O
(
s3
)

Using similar expansions and substituting the above relation in equation (5.2.8), we get

dt =

[
1− aax̂a + (aax̂

a)2 − 1

3
R0c0dx̂

cx̂d +O
(
s3
)] (

ē0
βdx

β
)

+

[
−1

6
R0cbdx̂

cx̂d +O
(
s3
)] (

ēbβdx
β
)

(5.2.9)

dx̂a =

[
1

2
Ra c0d x̂

cx̂d +O
(
s3
)] (

ē0
βdx

β
)

+

[
δa b +

1

6
Ra cbd x̂

cx̂d +O
(
s3
)] (

ēbβdx
β
)

(5.2.10)

where Rac0d (t) = Rᾱγ̄β̄δ̄e
ᾱ
ae
γ̄
cuβ̄eδ̄d and Racbd (t) = Rᾱγ̄β̄δ̄e

ᾱ
ae
γ̄
c e
β̄
b e
δ̄
d.

5.2.5 Metric near γ

Inverting equations (5.2.9) and (5.2.10), gives the following relations for the tetrad,

ē0
αdx

α =

[
1 + aax̂

a +
1

2
R0c0dx̂

cx̂d +O
(
s3
)]
dt+

[
1

6
R0cbdx̂

cx̂d +O
(
s3
)]
dx̂b (5.2.11)

ēaαdx
α =

[
δa b −

1

6
Ra cbd x̂

cx̂d +O
(
s3
)]
dx̂b +

[
−1

2
Ra c0d x̂

cx̂d +O
(
s3
)]
dt (5.2.12)

These relations give the components of tetrad at x in terms of FNC.

Invoking the completeness relation (5.2.4), the metric at x is given by,

gtt = −
[
1 + 2aax̂

a + (adx̂
a)2 +R0c0dx̂

cx̂d +O
(
s3
)]

(5.2.13)

gta = −2

3
R0cadx̂

cx̂d +O
(
s3
)

(5.2.14)

gab = δab −
1

3
Racbdx̂

cx̂d +O
(
s3
)

(5.2.15)

This is the metric near γ in FNC.
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5.3 Retarded coordinates

Figure 5.3.1: Geometrical interpretation of Retarded coordinates

5.3.1 Tetrad and dual tetrad on γ

Similar to FNC, we can build an orthonormal tetrad (uµ, eµa) which is FW transported on world line

according to

Deµa
dτ

= aau
µ (5.3.1)

where aa (τ) = aµe
µ
a . We also have the dual tetrad given by e0

µ = −uµ and eaµ = δabgµνe
ν
b . The tetrad

and its dual give rise to the following completeness relations

gµν = −uµuν + δabeµae
ν
b , gµν = −e0

µe
0
ν + δabe

a
µe
b
ν (5.3.2)

By parallel transporting the tetrad at the point x′ to the point x, we can obtain the tetrad at x,

(eα0 , e
α
a ), and also the dual tetrad at x, given by e0

α = −gαβeβ0 and eaα = δabgαβe
β
b . The metric at x can
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then be written as

gαβ = −e0
αe

0
β + δabe

a
αe
b
β (5.3.3)

and the parallel propagator from x′ to x is given by

gα α′
(
x, x′

)
= −eα0uα′ + eαae

a
α′ , gα

′
α

(
x′, x

)
= uα

′
e0
α + eα

′
a e

a
α (5.3.4)

5.3.2 Retarded coordinates

The retarded coordinates are de�ned by

x̂0 = u, x̂a = −eaα′
(
x′
)
σα
′ (
x, x′

)
, σ(x, x′) = 0 (5.3.5)

where the third relation indicates that x and x′ are connected by a null geodesic. Since σα
′
is a null

vector, we get

r =
(
δabx̂

ax̂b
) 1

2
= uα′σ

α′ (5.3.6)

where r is a positive quantity since the geodesic connecting x and x′ is future directed and hence, σα
′

is past directed. In �at spacetime r is equal to the spatial distance between the points x and x′. Hence,

in curved spacetime, r can still be called retarded distance between x and x′.

From (5.3.5), we have

σα
′

= −r
(
uα
′
+ Ωaeα

′
a

)
(5.3.7)

where Ωa = x̂a

r is a unit spatial vector which satis�es δabΩ
aΩb = 1.

Similar to the case of FNC, a displacement in the point x induces a displacement in the point x′

and hence, th retarded coordinates change according to the following relations

du = −kαdxα, dx̂a = −
(
raa + eaα′ σ

α′
β′ u

β′
)
du− eaα′ σα

′
β dx

β (5.3.8)

where kα = σα
r the displacement in x′ is found using the fact that x+δx and x′+δx′ are still connected

by a null geodesic, that is, σ(x, x′) = 0 = σ(x+ δx, x′ + δx′), and the relation δx′α
′

= uα
′
δu.

5.3.3 The scalar �eld r (x) and the vector �eld kα (x)

As long as x and x′ are linked by the relation σ(x, x′) = 0, the quantity r (x) = σα′(x, x
′)uα

′
(x′) can

be considered to be a scalar �eld. The gradient of r, remembering the induced displacement in x′, is

given by

∂βr = −
(
σα′a

α′ + σα′β′u
α′uβ

′
)
kβ + σα′βu

α′ (5.3.9)

Similarly, kα (x) = σα(x,x′)
r(x) can be viewed as an ordinary vector �eld de�ned at the point x. Using

the equation (4.1.3), it is easy to see that kα satis�es the following relations

σαβk
β = kα, σα′βk

β =
σα′

r
(5.3.10)
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from which it can be seen that σα′βu
α′kβ = 1. Substituting this into (5.3.9), gives

kα∂αr = 1 (5.3.11)

Combining the relation σα = gα α′ σ
α′ with (5.3.7), gives

kα = gα α′
(
uα
′
+ Ωaeα

′
a

)
(5.3.12)

which can alternatively be written as

kα = eα0 + Ωaeαa (5.3.13)

which is the vector kα at the point x.

Using the results (5.3.9) and derivative of σα under a displacement of x, we �nd the covariant

derivative of rkα, which is easier to compute. This then immediately gives the covariant derivative of

kα,

rkα;β = σαβ − kασβγ′uγ
′ − kβσαγ′uγ

′
+
(
σα′a

α′ + σα′β′u
α′uβ

′
)
kαkβ

From this, using the results previously established in this subsection, we can infer that kα satis�es the

geodesic equation in a�ne parameter form, that is, kα ;β k
β = 0, and from (5.3.11), we can also infer

that the a�ne parameter is r.

5.3.4 Coordinate displacements near γ

Substituting the expansion for σα′β′ from (4.1.14), using (5.3.4) in the expansion of σα′β , and substi-

tuting these expansions into the equations (5.3.8), along with (5.3.13), gives

du =
(
e0
αdx

α
)
− Ωα (eaαdx

α) (5.3.14)

dx̂a = −
[
raa +

1

2
r2Sa +O

(
r3
)] (

e0
αdx

α
)

+

[
δa b +

(
raa +

1

3
r2Sa

)
Ωb +

1

6
r2 Sa b +O

(
r3
)] (

ebαdx
α
)

(5.3.15)

which can also be expressed in gradient form as

∂αu = e0
α − Ωae

a
α (5.3.16)

∂αx̂
a = −

[
raa +

1

2
r2Sa +O

(
r3
)]
e0
α +

[
δa b +

(
raa +

1

3
r2Sa

)
Ωb +

1

6
r2 Sa b +O

(
r3
)]
ebα (5.3.17)

From the last equation, using the identity ∂αr = Ωa∂αx̂
a, we get

∂αr = −
[
raa +

1

2
r2Sa +O

(
r3
)]
e0
α +

[(
1 + rabΩ

b +
1

3
r2S

)
Ωa +

1

6
r2Sa +O

(
r3
)]
eaα (5.3.18)

We can arrive at the same expansion using (5.3.9).

In the above expansions, we have de�ned the following quantities,

Sab = Ra0b0 +Ra0bcΩ
c +Rb0acΩ

c +RacbdΩ
cΩd = Sba
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Sa = SabΩ
b = Ra0b0Ωb −Rab0cΩbΩc

S = SaΩ
a = Ra0b0ΩaΩb

5.3.5 Metric near γ

Inverting the relations (5.3.14) and (5.3.15), gives the following relations of tetrad with coordinate

displacements,

e0
αdx

α =

[
1 + raa +

1

2
r2Sa +O

(
r3
)]
du+

[(
1 +

1

6
r2S

)
Ωa −

1

6
r2Sa +O

(
r3
)]
dx̂a (5.3.19)

eaαdx
α =

[
raa +

1

2
r2Sa +O

(
r3
)]
du+

[
δa b −

1

6
r2 Sa b +

1

6
r2SaΩb

]
dx̂b (5.3.20)

These relations, along with the equation (5.3.3), can be used to obtain the components of metric

near γ in retarded coordinates,

guu = − (1 + raaΩ
a)2 + r2a2 − r2S +O

(
r3
)

(5.3.21)

gua = −
(

1 + rabΩ
b +

2

3
r2S

)
Ωα + raa +

2

3
r2Sa +O

(
r3
)

(5.3.22)

gab = δab −
(

1 +
1

3
r2S

)
ΩaΩb −

1

3
r2Sab +

1

3
r2 (SaΩb + ΩaSb) +O

(
r3
)

(5.3.23)

where a2 = δaba
aab.

5.4 Transformation from retarded to Fermi normal coordinates

De�ne the quantity ∆ = t− u, which is not to be confused with van Vleck determinant. Also, de�ne

the function

p(τ) = σµ (x, z(τ))uµ(τ)

in which x is always kept �xed and z (τ) is an arbitrary point on the world line. We know that p (u) = r

and p (t) = 0. Taylor expansion of p (t) around u gives,

p(t) = p(u) + ṗ(u)∆ +
1

2
p̈(u)∆2 +

1

6
p(3)(u)∆3 +O(∆4)

where,
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ṗ(u) = σα′β′u
α′uβ

′
+ σα′a

α′

p̈(u) = σα′β′γ′u
α′uβ

′
uγ
′
+ 3σα′β′u

α′uβ
′
+ σα′ ȧ

α′

p(3)(u) = σα′β′γ′δ′u
α′uβ

′
uγ
′
uδ
′
+ σα′β′γ′(5u

α′uβ
′
uγ
′
+ uα

′
uβ
′
aγ
′
)

+ σα′β′(3u
α′uβ

′
+ 4uα

′
ȧβ
′
) + σα′ ä

α′

Using the expansions (4.1.14), (4.1.15), (4.1.16) and the equation (5.3.7), we get

ṗ(u) = −
[
1 + raaΩ

a +
1

3
r2S +O(r3)

]
p̈(u) = −r(ȧ0 + ȧaΩ

a) +O(r2)

p(3)(u) = ȧo +O(r)

where ȧ0 = ȧα′u
α′ , ȧa = ȧα′e

α′
a and we used a2 + ȧα′u

α′ = 0.

Substituting these results in expansion of p (t), we obtain

r =

[
1 + raaΩ

a +
1

3
r2S +O(r3)

]
∆ +

1

2
r [ȧo + ȧaΩ

a +O(r)] ∆2 − 1

6
[ȧo +O(r)] ∆3 +O(∆4) (5.4.1)

Inverting the above power series gives ∆ in terms of powers of r

∆ = t−u = r

{
1− raa(u)Ωa + r2 [aa(u)Ωa]2 − 1

3
r2ȧo(u)− 1

2
r2ȧa(u)Ωa − 1

2
r3Ra0b0(u)ΩaΩb +O(r3)

}
(5.4.2)

This gives the relation between time coordinates.

Now, consider the following function

pa(τ) = −σµ(x, z(τ))eµa(τ)

in which, again, x is �xed and z (τ) is arbitrary. We know that pa (t) = sωa = x̂a = pa (u+ ∆) and

pa (u) = rΩa. Expanding pa (t) around u gives

sωa = pa(u) + ṗa(u)∆ +
1

2
p̈a(u)∆2 +

1

6
pa(3)(u)∆3 +O(∆4)

where
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ṗa(u) = −σα′β′eα
′
a u

β′ − (σα′u
α′)(aβ′e

β′
a )

= −raa −
1

3
r2Sa +O

(
r3
)

p̈a(u) = −σα′β′γ′eα
′
a u

β′uγ
′ − (2σα′β′u

α′uβ
′
+ σα′a

α′)(aγ′e
γ′
a )− σα′β′eα

′
a a

β′ − (σα′u
α′)(ȧβ′e

β′
a )

= (1 + rabΩ
b)aa − rȧa +

1

3
rRa0b0Ωb +O(r2)

p(3)
a (u) = −σα′β′γ′δ′eα

′
a u

β′uγ
′
uδ
′ − (3σα′β′γ′u

α′uβ
′
uγ
′
+ 6σα′β′u

α′uβ
′
+ σα′ ȧ

α′ + σα′u
α′ ȧβ′u

β′)(aδ′e
δ′
a )

− σα′β′γ′δ′eα
′
a (2aβ

′
uγ
′
+ uβ

′
aγ
′
)− (3σα′β′u

α′uβ
′
+ 2σα′a

α′)(ȧγ′e
γ′
a )− σα′β′eα

′
a ȧ

β′ − (σα′u
α′)(äβ′e

β′
a )

= 2äa +O(r)

and we used the same expansions as in the previous derivation.

Combining all these results, we get

sωa = rΩa−r
[
aa +

1

3
Sa +O(r2)

]
∆+

1

2

[
(1 + rabΩ

b)aa − rȧa +
1

3
rRa0b0Ωb +O(r2)

]
∆2+

1

3
[ȧa +O(r)] ∆3+O(∆4)

which, after substituting (5.4.2), yields

sωa = r

{
Ωa − 1

2
r
[
1− rab(u)Ωb

]
aa(u)− 1

6
r2ȧa(u)− 1

6
r2Ra0b0(u)Ωb +

1

3
r2Rab0c(u)ΩbΩc +O(r3)

}
(5.4.3)

Using the identity δabω
aωb = 1 after squaring the above expression gives

s = r

{
1− 1

2
raa(u)Ωa +

3

8
r2 [aa(u)Ωa]2 − 1

8
r2ȧ0(u)− 1

6
r2ȧa(u)Ωa − 1

6
r2Ra0b0(u)ΩaΩb +O(r3)

}
(5.4.4)

5.5 Transformation from Fermi normal to retarded coordinates

De�ne the function

σ(τ) = σ(x, z(τ))

which only depends on τ since x is held �xed. We have σ (u) = 0 and σ (t) = s2

2 and we de�ne

∆ = t− u. Also, σ̇ (τ) = p (τ). Expanding σ (u) around t gives

σ(u) = σ(t)− p(t)∆ +
1

2
ṗ(t)∆2 − 1

6
p̈(t)∆3 +

1

24
p(3)(t)∆4 +O(∆5)

where, using previous expressions for derivatives of p (τ), now evaluated at τ = t, along with (5.2.7),

we have
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ṗ(t) = −
[
1 + saaω

a +
1

3
s2Ra0b0ω

aωb +O(s3)

]
p̈(t) = −sȧaωa +O(s2)

p(3)(t) = ȧ0 +O(s)

Substituting these expansions into expansion of σ (u), we get

s2 =

[
1 + saaω

a +
1

3
s2Ra0b0ω

aωb +O(s3)

]
∆2 − 1

3
s [ȧaω

a +O(s)] ∆3 − 1

12
[ȧ0 +O(s)] ∆4 +O(∆5)

(5.5.1)

Inverting the above equation gives ∆ as an expansion in powers of s

∆ = t−u = s

{
1− 1

2
saa(t)ω

a +
3

8
s2[aa(t)ω

a]2 +
1

24
s2ȧ0(t) +

1

6
s2ȧa(t)ω

a − 1

6
s2Ra0b0(t)ωaωb +O(s3)

}
(5.5.2)

Noting that r = p (u), expanding this around t gives

r = −ṗ(t)∆ +
1

2
p̈(t)∆2 − 1

6
p(3)(t)∆3 +O(∆4)

Substituting (5.5.2) gives

r = s

{
1 +

1

2
saa(t)ω

a − 1

8
s2[aa(t)ω

a]2 − 1

8
s2ȧ0(t)− 1

3
s2

˙
aa(t)ωa +

1

6
s2Ra0b0(t)ωaωb +O(s3)

}
(5.5.3)

Expanding rΩa = pa (u) around t gives

rΩa = pa(t)− ṗa(t)∆ +
1

2
p̈a(t)∆2 − 1

6
pa(3)(t)∆3 +O(44)

where, using previous expressions for derivatives of pa (τ), now evaluated at τ = t, we have

ṗa(t) =
1

3
s2Rab0cω

bωc +O(s3)

p̈a(t) = (1 + sabω
b)aa +

1

3
sRa0b0ω

b +O(s2)

p(3)
a (t) = 2ȧa(t) +O(s)

Substituting these results including (5.5.2), we obtain

rΩa = s

{
ωa +

1

2
saa(t)− 1

3
s2ȧa(t)− 1

3
s2Rab0c(t)ω

bωc +
1

6
s2Ra0b0(t)ωb +O(s3)

}
(5.5.4)
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5.6 Transformation of tetrads at x

The tetrad at x can be obtained by parallel transporting the tetrad at x′ along the null geodesic joining

x and x′ or the tetrad at x̄ along the space-like geodesic joining x and x̄, orthogonal to γ at x̄. In this

section, we derive the relation between these two tetrads so obtained.

Consider the functions

pα(τ) = gαµ (x, z(τ))uµ(τ), pαa (τ) = gαµ (x, z(τ)) eµa(τ)

where x is a �xed point, z (τ) is an arbitrary point on γ, and gαµ is a parallel propagator on the unique

geodesic connecting x and z. We know that ēα0 = pα (t) , ēαa = pαa (t) , eα0 = pα (u) , and eαa = pαa (u).

Expanding pα (t) around u gives

ēα0 = pα(u) + ṗα(u)∆ +
1

2
p̈α(u)∆2 +O(∆3)

where

ṗα(u) = gαα′;β′u
α′uβ

′
+ gαα′a

α′

=

[
aa +

1

2
rRa0b0Ωb +O(r2)

]
eαa

p̈α(u) = gαα′;β′γ′u
α′uβ

′
uγ
′
+ gαα′;β′(2a

α′uβ
′
+ uα

′
aβ
′
) + gαα′ ȧ

α′

= [−ȧ0 +O(r)] eα0 + [ȧa +O(r)] eαa

To obtain these expansions we have used the expansions (4.1.21), (4.1.22) and (5.3.4). Substituting

these expansions and (5.4.2) in the previous equation gives

ēα0 =

[
1− 1

2
r2ȧ0(u) +O(r3)

]
eα0

+

[
r(1− rabΩb)aa(u) +

1

2
r2ȧa(u) +

1

2
r2Ra0b0(u)Ωb +O(r3)

]
eαa (5.6.1)

Expanding pαa (t) around u gives

ēαa = pαa (u) + ṗαa (u)∆ +
1

2
p̈αa (u)∆2 +O(∆3)

where, again using previously discussed expansions, we have
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ṗαa (u) = gαα′;β′e
α′
a u

β′ + (gαα′u
α′)(aβ′e

β′
a )

=

[
aa +

1

2
rRa0b0Ωb +O(r2)

]
eα0 +

[
−1

2
rRba0cΩ

c +O(r2)

]
eαb

p̈αa (u) = gαα′;β′γ′e
α′
a u

β′uγ
′
+ gαα′;β′(2u

α′uβ
′
aγ′e

γ′
a + eα

′
a a

β′) + (gαα′a
α′)(aβ′e

β′
a ) + (gαα′u

α′)(ȧβ′e
β′
a )

= [ȧa +O(r)] eα0 +
[
aaa

b +O(r)
]
eαb

Substituting these expansions and (5.4.2) into the previous equation gives

ēαa =

[
δba +

1

2
r2ab(u)aa(u)− 1

2
r2Rba0c(u)Ωc +O(r3)

]
eαb

+

[
r(1− rabΩb)aa(u) +

1

2
r2ȧa(u) +

1

2
r2Ra0b0(u)Ωb +O(r3)

]
eα0 (5.6.2)

Expanding pα (u) around t gives

eα0 = pα(t)− ṗα(t)∆ +
1

2
p̈α(t)∆2 +O(∆3)

where using similar expansions as in the above case, we have

ṗα(t) =

[
aa +

1

2
sRa0b0ω

b +O(s2)

]
ēαa

p̈α(t) = [−ȧ+O(s)] ēα0 + [ȧa +O(s)] ēαa

which, along with (5.5.2), gives

eα0 =

[
1− 1

2
s2ȧ0(t) +O(s3)

]
ēα0

+

[
−s
(

1− 1

2
sabω

b

)
aa(t) +

1

2
s2ȧa(t)− 1

2
s2Ra0b0(t)ωb +O(s3)

]
ēαa (5.6.3)

Similarly, expanding pαa (u) around t gives

eαa = pαa (t)− ṗαa (t)∆ +
1

2
p̈αa (t)∆2 +O(∆3)

where using similar expansions as in the above case, we have

ṗαa (t) =

[
aa +

1

2
sRa0b0ω

b +O(s2)

]
ēα0 +

[
−1

2
sRba0cω

c +O(s2)

]
ēαb

p̈αa (t) = [ȧa +O(s)] ēα0 +
[
aaa

b +O(s)
]
ēαb
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which, along with (5.5.2), gives

eαa =

[
δba +

1

2
s2ab(t)aa(t) +

1

2
Rba0c(t)ω

c +O(s3)

]
ēαb

+

[
−s
(

1− 1

2
sabω

b

)
aa(t) +

1

2
s2ȧa(t)−

1

2
s2Ra0b0(u)ωb +O(s3)

]
ēα0 (5.6.4)



Chapter 6

Motion of a point particle

6.1 Dynamics of a point scalar charge

A point particle carries charge q and moves on the world line γ described by the relations zµ (λ). The

particle generates a scalar potential Φ (x) and a �eld Φα (x) = ∇αΦ (x). The dynamics of this system

is governed by the action

S = Sfield + Sparticle + Sinteraction

The free �eld action is given by

Sfield = − 1

8π

ˆ (
gαβΦαΦβ + ξRΦ2

)√
−gd4x (6.1.1)

where the �eld is coupled to Ricci scalar R through an arbitrary constant ξ.

The free particle action is given by

Sparticle = −m0

ˆ
γ
dτ (6.1.2)

where m0 is the bare mass of the particle and dτ =
√
gµν (z) żµżνdλ. The overdot denotes di�erentia-

tion with respect to λ.

Finally, the interaction term is given by

Sinteraction = q

ˆ
γ

Φ (z) dτ = q

ˆ
Φ (x) δ4 (x, z)

√
−gd4xdτ (6.1.3)

The stationary action principle under the variation of �eld δΦ (x), gives the wave equation

(�− ξR) Φ(x) = −4πµ (x) (6.1.4)

where

µ(x) = q

ˆ
γ
δ4 (x, z) dτ (6.1.5)

58
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is the charge density. These equations determine Φαonce the motion of scalar charge is speci�ed.

The stationary action principle under the variation of the worldline δzµ (λ), yields the equation of

motion

m (τ)
Duµ

dτ
= q (gµν + uµuν) Φν (z) (6.1.6)

for the scalar charge, where m (τ) = m0 − qΦ (z). This expression for m (τ) can also be written as a

di�erential equation
dm

dτ
= −qΦµ (z)uµ (6.1.7)

It is advised to note that the above equation of motion for the particle is only valid formally since

the potential Φ (x), which is a solution of the wave equation, diverges on the world line.

6.2 Retarded potential near the world line

Figure 6.2.1: Normal Convex neighbourhood of x

The retarded solution to (6.1.4), after boundary conditions are suitably taken care of, is given by
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Φ (x) =

ˆ
G+

(
x, x′

)
µ
(
x′
)√

g′d4x′ (6.2.1)

where G+ (x, x′) is the retarded Green's function given by the equation (4.2.26). Substituting (6.1.5),

gives

Φ (x) = q

ˆ
γ
G+ (x, z) dτ (6.2.2)

Now the spacetime is divided into two regions, one is the normal convex neighbourhood of x, denoted

by N (x), and the other is the region outside N (x). Assuming that the worldline goes through N (x),

we can divide the above integral into three parts (for a more detailed discussion of this, refer [9])

Φ (x) = q

ˆ τ<

−∞
G+ (x, z) dτ + q

ˆ τ>

τ<

G+ (x, z) dτ + q

ˆ ∞
τ>

G+ (x, z) dτ

where τ< and τ>are the proper-time values when γ enters and leaves N (x). The last term vanishes

since, G+ = 0 in that region. In the second term, we can use Hadamard's solution derived in previous

part on Green's functions in curved spacetime,

ˆ τ>

τ<

G+ (x, z) dτ =

ˆ τ>

τ<

U (x, z) δ+ (σ) dτ +

ˆ τ>

τ<

V (x, z) θ+ (−σ) dτ

The �rst integration in the last equation can be computed easily by changing the variables from

τ to σ. This action yields proper results because we are in the normal convex region of x and hence,

there is only one point on the worldline where σ = 0. This point is in the past of x, which is nothing

but x′ = z (u). Also, σ increases as z (τ) passes through x′. Hence, σα′ is non-zero at this point. Using

the result r = σα′u
α′ , and noting that dσ = σµu

µdτ , we get,

Φ (x) =
q

r
U
(
x, x′

)
+ q

ˆ u

τ<

V (x, z) dτ + q

ˆ τ<

−∞
G+ (x, z) dτ (6.2.3)

6.3 Field of a scalar charge in retarded coordinates

While di�erentiating the above potential, we must be careful to note that a displacement in x induces

a displacement in x′ because the two points are always connected by a null geodesic. Hence, δU =

U;αδx
α + U;α′u

α′δu. Thus, the gradient of scalar potential is given by

Φα (x) = − q

r2
U
(
x, x′

)
∂αr +

q

r
U;α

(
x, x′

)
+
q

r
U;α′

(
x, x′

)
uα
′
∂αu+ qV (x, x′)∂αu+ Φtail

α (x) (6.3.1)

where the tail term is de�ned by

Φtail
α (x) = q

ˆ u

τ<

∇αV (x, z) dτ + q

ˆ τ<

−∞
∇αG+ (x, z) dτ

= q

ˆ u−

−∞
∇αG+ (x, z) dτ (6.3.2)
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In the last equation, the integration is done only up to τ = u− = u− 0+, because the retarded Green's

function is singular at σ = 0.

The scalar �eld Φα (x) is now expanded in powers of r and the results are expressed in retarded

coordinates. It is convenient to work with frame components ofΦα (x) by decomposing it in the tetrad

(eα0 , e
α
a ) de�ned in section 14. For this purpose, we shall need (5.3.16), (5.3.18) and

U
(
x, x′

)
= 1 +

1

12
r2
(
R00 + 2R0aΩ

a +RabΩ
aΩb
)

+O
(
r3
)

(6.3.3)

which is obtained from the equations (4.2.12), (4.1.30) and (5.3.7). The frame components of Ricci

tensor are de�ned as follows

R00 (u) = Rα′β′u
α′uβ

′

R0a (u) = Rα′β′u
α′eβ

′
a

Rab (u) = Rα′β′e
α′
a e

β′

b

We shall also need the following expansions,

U;α

(
x, x′

)
=

1

6
r gα

′
α

(
Rα′0 +Rα′bΩ

b
)

+O
(
r2
)

(6.3.4)

and

U;α′
(
x, x′

)
uα
′

= −1

6
r
(
R00 +R0bΩ

b
)

+O
(
r2
)

(6.3.5)

Finally, we shall need

V
(
x, x′

)
=

1

12
(1− 6ξ)R+O (r) (6.3.6)

which was �rst derived in the equation (4.2.13). Here, R = R (u).

Using all these results, we �nally obtain the equations

Φ0 (u, r,Ωa) = Φα (x) eα0 (x)

=
q

r
aaΩ

a +
1

2
qRa0b0ΩaΩb +

1

12
(1− 6ξ) qR+ Φtail

0 +O (r) (6.3.7)

Φa (u, r,Ωa) = Φα (x) eαa (x)

= − q

r2
Ωa −

q

r
abΩ

bΩa −
1

3
qRb0c0ΩbΩcΩa −

1

6
q
(
Ra0b0Ωb −Rab0cΩbΩc

)
+

1

12
q
[
R00 −RbcΩbΩc − (1− 6ξ)R

]
Ωa +

1

6
q
(
Ra0 +RabΩ

b
)

+ Φtail
a +O (r) (6.3.8)

where all the frame components have their usual meanings and they are evaluated at τ = u.

The above equations clearly show that the �eld Φα (x) is singular on the worldline. There are two

reasons for this - one is that the �eld diverges as r−2 as r → 0, and the other is that many terms

depend on Ωa and therefore possess directional ambiguity at r = 0.
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6.4 Field of scalar charge in Fermi normal coordinates

First �nd the frame components of Φα (x) in the tetrad of FNC, (ēα0 , ē
α
a ). This can be done using

(5.6.1) and (5.6.2). We obtain

Φ̄0 = Φαē
α
0

=
[
1 +O

(
r2
)]

Φ0 +

[
r(1− rabΩb)aa(u) +

1

2
r2ȧa(u) +

1

2
r2Ra0b0(u)Ωb +O(r3)

]
Φa

= −1

2
qȧaΩ

a +
1

12
(1− 6ξ) qR+ Φ̄tail

0 +O (r)

and

Φ̄a = Φαē
α
a

=

[
δba +

1

2
r2ab(u)aa(u)− 1

2
r2Rba0c(u)Ωc +O(r3)

]
Φb +

[
raa +O

(
r2
)]

Φ0

= − q

r2
Ωa −

q

r
abΩ

bΩa +
1

2
qabΩ

baa −
1

3
qRb0c0ΩbΩcΩa −

1

6
qRa0b0Ωb − 1

3
qRab0cΩ

bΩc

+
1

12
q
[
R00 −RbcΩbΩc − (1− 6ξ)R

]
Ωa +

1

6
q
(
Ra0 +RabΩ

b
)

+ Φ̄tail
a +O (r)

Note that the components are still functions of retarded coordinates which are evaluated at x′, except

Φ̄tail
0 and Φ̄tail

a which are evaluated at x̄.

Using the results (5.5.2), (5.5.3) and (5.5.4), we have

1

r2
Ωa =

1

s2
ωa +

1

2s
abω

bωa −
3

2s
abω

baa +
15

8

(
abω

b
)2
ωa +

3

8
ȧ0ωa −

1

3
ȧ0

+ ȧbω
bωa +

1

6
Ra0b0ω

b − 1

2
Rb0c0ω

bωcωa −
1

3
Rab0cω

bωc +O (s)

and
1

r
abΩ

bΩa =
1

s
abω

bωa +
1

2
abω

baa −
3

2

(
abω

b
)2
ωa −

1

2
ȧ0ωa − ȧbωbωa +O (s)

In these equations all the frame components on the right-hand side are evaluated at x̄. In the above

derivation, we also use aa (t) = aa (u) − sȧa (t) + O
(
s2
)
, which follows from (5.5.2), that is, u =

t − s + O
(
s2
)
. All the other terms, when transformed into FNC, have only leading terms which are

trivial.
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Substituting these results into the frame components of Φα (x) in FNC, we obtain

Φ̄0 (t, s, ωa) = Φα (x) ēα0 (x)

= −1

2
qȧaω

a +
1

12
(1− 6ξ) qR+ Φ̄tail

0 +O (s) (6.4.1)

Φ̄a (t, s, ωa) = Φα (x) ēαa (x)

= − q

s2
ωa −

q

2s

(
aa − abωbωa

)
+

3

4
qabω

baa −
3

8
q
(
abω

b
)2
ωa +

1

8
qȧ0ωa +

1

3
qȧa

− 1

3
qRa0b0ω

b +
1

6
qRb0c0ω

bωcωa +
1

12
q
[
R00 −Rbcωbωc − (1− 6ξ)R

]
ωa

+
1

6
q
(
Rao +Rabω

b
)

+ Φ̄tail
a +O (s) (6.4.2)

where all the frame components have their usual meanings and are evaluated at x̄.

Now, we need to compute the averages of the frame components of Φα (x) over the surface S (t, s).

These averages are equivalent to the mean value of the �eld at a �xed distance from the worldline

at a �xed time, as measured in an instantaneously comoving frame of the particle. We need two

angles θA (A = 1, 2) to chart the two-surface S. A standard choice is polar angles given by ωa =

(sin θ cosφ, sin θ sinφ, cos θ), such that x̂a = sωa are the spatial coordinates of the point in FNC.

De�ning ωaA = ∂ωa

∂θA
, we obtain, from (5.2.15), the induced metric on this two-surface

ds2 = s2

[
ωAB −

1

3
s2RAB +O

(
s3
)]
dθAdθB (6.4.3)

where ωAB = δabω
a
Aω

b
B (which is the metric of unit two-sphere) and RAB = Racbdω

a
Aω

cωbBω
d. The

surface area element is then given by

dA = s2

[
1− 1

6
s2Rcacbω

aωb +O
(
s3
)]
dω (6.4.4)

where dω =
√

det [ωAB]d2θ, which in our standard choice reduces to dω = sin θdθdφ. This is the

solid angle element. Integrating the above equation gives the total surface area of S (t, s), which is

A = 4πs2
[
1− 1

18s
2Rabab +O

(
s3
)]
.

The averaged �elds are given by

〈
Φ̄0

〉
(t, s) =

1

A

˛
S(t,s)

Φ̄0 (t, s, ωa) dA,
〈
Φ̄a

〉
(t, s) =

1

A

˛
S(t,s)

Φ̄a (t, s, ωa) dA (6.4.5)

Before proceeding, we note the following integrals

1

4π

˛
ωadω = 0,

1

4π

˛
ωaωbdω =

1

3
δab,

1

4π

˛
ωaωbωcdω = 0 (6.4.6)



CHAPTER 6. MOTION OF A POINT PARTICLE 64

which are easy to prove. Using the above integrals, it is very easy to obtain the average �eld

〈
Φ̄0

〉
=

1

12
(1− 6ξ) qR+ Φ̄tail

0 +O (s) (6.4.7)〈
Φ̄a

〉
= − q

3s
aa +

1

3
qȧa +

1

6
qRao + Φ̄tail

a +O (s) (6.4.8)

which is still singular on the world line. Nevertheless, we take the limit s→ 0 of the above expressions,

whence the tetrad (ēα0 , ē
α
a ) coincides with (uᾱ, eᾱa ). Going back to the general coordinates using the

completeness relation (5.2.4), we obtain the average �eld given by

〈Φᾱ〉 = lim
s→0

(
− q

3s

)
aᾱ −

1

12
(1− 6ξ) qRuᾱ + q

(
gᾱβ̄ + uᾱuβ̄

)(1

3
ȧβ̄ +

1

6
Rβ̄γ̄u

γ̄

)
+ Φtail

ᾱ (6.4.9)

where, from (6.3.2), we have

Φtail
ᾱ (x̄) = q

ˆ t−

−∞
∇ᾱG+ (x̄, z) dτ.

All the terms on the right hand side of the equation (6.4.9) are evaluated at the point x̄ = z (t), which

can now be considered to be an arbitrary point on the worldline γ.

6.5 Equations of motion

Since the retarded �eld Φα (x) is singular on the worldline of the particle, it di�cult to assess how the

�eld acts on the particle. Hence, we model the particle to be hollow spherical shell of radius s0 and

compute the net force on this shell at propertime τ by �nding the average of qΦα (x) over the surface of

the shell. Here, we assume that the �eld produced by the shell at s = s0 is equal to the �eld produced

by the particle. Taking the limit s0 → 0, using (6.4.9), we have, at an arbitrary point on the worldline

zµ (τ),

q 〈Φµ〉 = − (δm) aµ −
1

12
(1− 6ξ) q2Ruµ + q2 (gµν + uµuν)

(
1

3
ȧν +

1

6
Rνλu

λ

)
+ qΦtail

µ (6.5.1)

where

δm = lim
s0→0

(
q2

3s0

)
(6.5.2)

is evidently a divergent quantity, and

qΦtail
µ = q2

ˆ τ−

−∞
∇µG+

(
z (τ) , z

(
τ ′
))
dτ ′ (6.5.3)

is the tail part of the force.

Substituting (6.5.1) and (6.5.3) into (6.1.6) yields the equation of motion for scalar charge,

(m+ δm) aµ = q2 (δµν + uµuν)

[
1

3
ȧν +

1

6
Rνλu

λ +

ˆ τ−

−∞
∇νG+

(
z (τ) , z

(
τ ′
))
dτ ′

]
(6.5.4)
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where m = m0 − qΦ (z), the dynamical mass, is also a formally divergent quantity. The combination

mobs = m + δm is taken to be �nite and to give true measure of inertia of the particle. Substituting

(6.5.1) and (6.5.3) into the equation (6.1.7) gives the di�erential equation for mobs

dmobs

dτ
= − 1

12
(1− 6ξ) q2R− q2uµ

ˆ τ−

−∞
∇µG+

(
z (τ) , z

(
τ ′
))
dτ ′ (6.5.5)

It is worth noting that the observed mass is not conserved. This is a very crucial property of dynamics of

scalar charge in curved spacetime. This means that, because of the time-dependent metric, the particle

can emit monopole radiation, the energy for which comes from the inertial mass of the particle. A

similar fact has also been discussed in the section dealing with Rohrlich's paper where the radiation

energy emitted by a particle in a general motion is supplied partly by mechanical energy and partly

by bound part of electromagnetic energy.

It is to be noted that the expression δm = q2

3s0
for the spherical shell is wrong and its actual value

is δm = q2

2s0
. This discrepancy is believed to originate from the assumption that the �elds of the shell

and particle on the surface s = s0 are equal. However, except for these divergent terms, the remainder

of the �eld remains the same for the shell ans the particle, since their di�erence vanishes in the limit

s0 → 0. Hence, the equation of motion is reliable even though the expression for δm is incorrect.

Another important point to note is that the equation of motion derived above is a third order

di�erential equation in zµ (τ) and such an equation is known to admit unphysical solutions like runaway

solutions and pre-acceleration solutions. Also, so far in the derivation we have not considered the

external force. Both these issues can be solved in a single stroke. In the classical picture, a point

particle is only an idealization of an extended object whose internal structure is irrelevant and hence,

our equations provide only an approximate description of the actual motion of the particle. Within

this approximation, we can replace the acceleration on the right hand side of the equation of motion

by
Fµext
m . This yields the equation of motion

m
Duµ

dτ
= Fµext + q2 (δµν + uµuν)

[
1

3m
Ḟ νext +

1

6
Rνλu

λ +

ˆ τ−

−∞
∇νG+

(
z (τ) , z

(
τ ′
))
dτ ′

]
(6.5.6)

This equation is free from third order terms in zµ (τ) and hence, does not admit unphysical solutions.

6.6 Discussion

Comparing the equations (2.4.29) and (6.5.4), we can clearly see that, apart from curvature and tail

terms, which are to be expected since we are working in curved spacetime, the two equations match

except for a factor of 2. After a similar analysis as above, we can obtain the equation of motion of a

point electric charge, which is quoted here without proof (detailed derivation can be found in Part VI,

Chapter 18 of [9])

(m+ δm) aµ = q2 (δµν + uµuν)

[
2

3
ȧν +

1

3
Rνλu

λ

]
+ 2q2uν

ˆ τ−

−∞
∇[µG

ν]
+λ′
(
z (τ) , z

(
τ ′
))
uλ
′
dτ ′
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We can see that the non-curvature and non-tail part of the above equation exactly matches the

Lorentz-Dirac equation. The factor of 2, we believe, is attributed to the degrees of freedom of the

�eld. For a scalar �eld, the number of degrees of freedom is 1 and it is well known that the number of

degrees of freedom is 2 which explains the factor of 2.

The appearance of the tail term suggests that the equation of motion is not instantaneous, that is

the motion of the particle is not decided by the quantities evaluated at that particular instant. Rather,

it depends on the entire history of the particle's motion.
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