
Preprocessing for Illumination Variations and

Face Recognition using Feature Location based

Feature Extraction

A Project Report

submitted by

R.ABIRAM VELAN (EE11B003)

TULLURI VINAY KUMAR (EE11B045)

in partial fulfillment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

in

ELECTRICAL ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

2015

CERTIFICATE

This is to certify that the project titled Preprocessing for Illumination varia-

tions and Face Recognition using feature location based feature extrac-

tion, submitted by R.Abiram Velan (EE11B003) and Tulluri Vinay Kumar

(EE11B045), to the Indian Institute of Technology, Madras, for the award of the

degree of Bachelor of Technology in Electrical Engineering, is a bonafide

record of the project work done by them in the Department of Electrical Engi-

neering, IIT Madras. The contents of this report, in full or in parts, have not

been submitted to any other Institute or University for the award of any degree

or diploma.

Dr. R.Aravind
Project Guide
Professor,
Dept. of Electrical Engineering,
IIT Madras, Chennai - 600036

Place: Chennai

Date: 18th May, 2015

ACKNOWLEDGEMENTS

We take this opportunity to express our sincere gratitude towards our project

guide, Dr.R.Aravind, for the freedom and support he gave us during the course

of the project. We are extremely grateful to him for agreeing to take us on as his

students. His guidance and deep knowledge of the field have been indispensable.

i

ABSTRACT

Keywords: Preprocessing, Histogram Equalization, Color and Contrast En-

hancement, High Frequency Emphasis filtering, CLAHE, MSRCR, Face Detection,

Viola-Jones, Face Recognition, feature extraction.

The main aim of this work is to implement a new face recognition algorithm,

which is computationally simple and very efficient. To deal with bad illumination

conditions, which is a hindrance to face detection and recognition algorithms, some

preprocessing algorithms like Histogram Equalization, Contrast Limited Adaptive

Histogram Equalization, Multi-scale Retinex with Color Restoration, Color and

Contrast Enhancement, High Frequency Emphasis Filtering are proposed and dis-

cussed. The face detection algorithm used is based on Viola-Jones algorithm with

MATLAB implementation. The recognition algorithm is evaluated using Yale

and Feret databases. Experimental results demonstrate the effectiveness of this

approach of face recognition.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES vi

ABBREVIATIONS vii

1 Introduction 1

2 Image Preprocessing 4

2.1 Histogram Equalization . 5

2.2 Color and Contrast Enhancement 6

2.3 High Frequency Emphasis Filtering 8

2.4 CLAHE . 10

2.5 Multi Scale Retinex with Color Restoration 12

3 Face Detection and Extraction of facial features 15

3.1 Viola-Jones Algorithm . 15

3.2 MATLAB’s implementation of Viola-Jones algorithm 17

3.3 Improving Face Detection . 18

3.3.1 Dealing with non-face detections 19

3.3.2 Dealing with in-plane rotation of faces 19

3.3.3 Dealing with bad Illumination conditions 20

4 Face Recognition 21

4.1 Training . 21

4.2 Extraction of facial features . 22

4.3 Face Identification . 23

iii

5 Experiments and Results 25

6 Scope for future work 27

A MATLAB implementation of Preprocessing Algorithms 28

A.1 Multi-Scale Retinex with Color Restoration 28

A.2 High Frequency Emphasis Filtering 29

A.3 Contrast and Color Enhancement 30

B MATLAB implementation of Face Recognition Algorithm 32

B.1 Training . 32

B.2 Face Identification . 33

iv

LIST OF FIGURES

1.1 Face Recognition Process . 2

2.1 Low contrast image and its histogram. Image courtesy: Yale Face
database [1] . 5

2.2 Histogram equalized image and its histogram. Image courtesy: Yale
Face database [1] . 6

2.3 Original image (left); Image after Color and Contrast Enhancement
(right). Image courtesy: FERET database [5] 8

2.4 Original image (left); Image after High frequency emphasis filter-
ing (centre); Image after Histogram Equalization (right). Image
courtesy: Yale face database [1] 10

2.5 Original Histogram and the Histogram after clipping. Figure cour-
tesy: Zhiyuan Xu [10]. 11

2.6 Original image (left); Image after CLAHE (right). Image courtesy:
Yale face database [1] . 12

2.7 Input color image (left); Image after MSR (centre); Image after
MSRCR (right). Image courtesy: FERET database [5] 14

3.1 Illustration of Integral Image and Haar-like rectangular features
(a− f). Image courtesy: [12] 16

3.2 (a) given training image; (b) Considered Haar-like pattern; (c)Feature
calculation with difference in sum of image pixel values in white to
that of black. Image courtesy: [9] 17

3.3 The results of face, eyes, mouth and nose detection. Image courtesy:
FERET database [5] . 18

3.4 Image with false detection (left); Detection after improvement (right).
Image courtesy: FERET database [5] 19

3.5 (a) Given Image; (b) faces detected before improvement; (c) faces
detected after improvement. 20

3.6 Image before preprocessing (left); Image after preprocessing (right).
Image courtesy: Yale Face database [1] 20

v

4.1 Face image from yale database and extracted features (left); Face
image from FERET database and extracted features (right). Image
courtesy: Yale Face database [1] and FERET database [5] . . . 23

5.1 Given image, enhanced image, detected and resized face and ex-
tracted facial features. Image courtesy: Yale Face database [1] . 25

vi

ABBREVIATIONS

AHE Adaptive Histogram Equalization

CLAHE Contrast Limited Adaptive Histogram Equalization

SSR Single Scale Retinex

MSR Multi Scale Retinex

MSRCR Multi Scale Retinex with Colour Restoration

vii

CHAPTER 1

Introduction

As one of the most successful applications of image processing and analysis,

face detection and recognition has received great significance in recent times and

emerged as an active research area which spans numerous fields and disciplines.

Not only for computer scientists, this field is also a topic of interest for many psy-

chologists and neuro-scientists. The reason being face recognition, in addition to

having numerous practical day to day applications such as access control, security

monitoring, surveillance systems etc., is also a fundamental human behavior that

is essential for effective human communication and interactions.

Face recognition may not be the most reliable and efficient when compared to

other bio-metrics, but one major advantage is that it does not require much co-

operation from the individual as others do. Current face recognition technologies

struggle to perform under certain conditions such as facial expressions, pose vari-

ation, poor lighting, sunglasses, long hair, aging etc. Lots of research is being

carried out to overcome these issues and to come up with more robust systems

for recognition. To a certain extent, algorithms which can deal with slight pose

variation, in-plane rotation of faces, poor lighting conditions etc., have come up.

But due to the increasing significance and applications of face recognition tech-

nology in recent times, more efficient systems are under demand which in turn is

encouraging a lot of research in this area.

The two very general applications of face recognition are Face Identification

- given a face image, the system should be able to tell who he/she is or the

most probable - and Face Verification - given a face image and a guess of the

identification, system should be able to tell whether our guess about the given

facial image is true or false.

Image Input

Image Preprocessing

Face Detection

Cropping of face part

Resizing face to 250 × 250 pixels

Feature Extraction

Face Identification

Figure 1.1: Face Recognition Process

2

Image pre-processing is one of the very crucial steps in the face recognition pro-

cess to tackle the various issues that were mentioned earlier. This report majorly

is targeted to deal with images under poor lighting or illumination conditions.

In Chapter 2, some image pre-processing algorithms, namely Histogram Equal-

ization, Contrast Limited Adaptive Histogram Equalization, Multi-scale Retinex

with Color Restoration, Color and Contrast Enhancement, High Frequency Em-

phasis Filtering are proposed and discussed.

Chapter 3 is about the face detection algorithm used to detect faces. A brief

description of Viola-Jones algorithm, on which the detection method used is based

on, is given and the MATLAB implementation of the algorithm is discussed. Few

improvements are made to the existing algorithm to deal with issues like non-face

detections and in-plane rotation of faces.

Chapter 4 is about a new method of face recognition based on a paper by Walaa

Mohamed et al.[8], which is proposed and discussed. Owing to various applications

of face recognition these days in cloud technology, live stream applications, etc.,

where the speed of the computations matters a lot, traditional algorithms might

not be very efficient in such cases. The algorithm discussed in this chapter is

computationally simple and also very efficient, which could make this algorithm a

very application friendly one.

3

CHAPTER 2

Image Preprocessing

Image Preprocessing is the very first step in Digital Image Processing. The

principle objective of image preprocessing is to improve the interpretibilty and

perception of information, for human viewers or an automated image processing

technique, by eliminating the unwanted distortions and enhancing some of the

image features essential for further processing. It is a highly subjective problem

and depends mainly on the type of application.

The image preprocessing techniques can be broadly classified into the following

two categories:

1. Spatial Domain Techniques, which directly deals with the image pixels
and manipulates the intensity value of each pixel to achieve the desired
enhancement.

2. Frequency domain Techniques, in which the image is transformed to
its frequency domain, the enhancement techniques are performed on the
transformed image and then the image is transformed back to the spatial
domain.

Image preprocessing is an essential step for the field of Face Recognition. This

is because of the fact that when an image is captured, it is affected by a lot of

factors like noise, illumination condition, optical and motion blur, etc. These

factors in turn affect the facial features which will be used for face detection and

recognition. Thus preprocessing techniques are used to enhance the facial features

and improve the recognition results. Some of the image preprocessing techniques

are discussed in detail in this section.

Among all the Preprocessing algorithms mentioned below, the High Frequency

Emphasis Filtering followed by Histogram Equalization was found to give the best

results with the face recognition algorithm used in this thesis.

2.1 Histogram Equalization

Histogram Equalization is a commonly used contrast enhancement technique.

In the histogram of a low contrast image, most of the pixels are clustered around

a narrow band of intensity levels and thus leaving a huge range of intensity levels

unused. Figure 2.1 shows a low contrast image along with its histogram. It can

be seen that most of the pixels are concentrated towards the left of the histogram.

Histogram Equalization maximizes the contrast of the given image by trying to

flatten its histogram, thus making use all the gray intensity levels available in the

dynamic range.

Figure 2.1: Low contrast image and its histogram. Image courtesy: Yale Face
database [1]

The histogram of a digital image with n number of pixels and L intensity levels

in the range [0, G] is defined as a discrete function,

h(rk) = nk (2.1)

where, rk is the kth intensity level in the interval [0, G] and nk is the number of

pixels in the image with intensity level rk. For images of class uint8, the value

of G is 255 and G = L− 1. The normalized histogram is obtained by dividing all

the elements of h(rk) by the total number of pixels

p(rk) =
h(rk)

n
=
nk
n

(2.2)

5

for k = 1, 2, ..., L. The equalization transformation is given by

sk = T (rk) =
k∑
j=1

p(rj)

=
k∑
j=1

nj
n

(2.3)

for k = 1, 2, ..., L, where sk is the intensity level in the histogram equalized image

corresponding to value rk in the input image.

Figure 2.2 shows the histogram equalized image of the low contrast image in

figure 2.1 and also the histogram of the histogram equalized image. It can be seen

that the histogram is well spread, making use of all the intensity levels available.

Figure 2.2: Histogram equalized image and its histogram. Image courtesy: Yale
Face database [1]

2.2 Color and Contrast Enhancement

Preprocessing techniques generally operate globally on the entire image or act

locally or a combination of both. This preprocessing technique by Mark De-

Nies [2] is a combination of limited local scaling and limited global power-law

transformation, thus providing a reasonable compromise between global and local

enhancement algorithms.

6

This enhancement technique modifies the image intensity and image saturation.

Hence, it performed on an image in HSV format, and the color enhancement

is done on the S (saturation) plane and intensity enhancement is done on the

V (intensity) plane. It involves separation of intensity and saturation values to

enhance the features of the image. At the same time, the direction of separation

is preserved, i.e., the darker (or brighter) pixels in a neighborhood remains darker

(or brighter) locally, though the gradient of separation is reduced in high gradient

regions to facilitate gradients to increase in the low gradient regions.

First, the input image is converted from RGB format to HSV format. The S

and V planes of the image are processed separately. Rebalancing of the intensity

values towards the middle of the range of values is done by applying the following

power-law adjustment to the V plane of the image.

s = rγ (2.4)

where γ = (Iavg − Imidrange)
2 and Iavg is the average intensity in the image and

Imidrange is the middle value of the range of intensity level, which is 127.5 (if range

is 0 to 255) and 0.5 (if range is 0 to 1). The value of γ is typically restricted to

lie between 0.67 and 1.5. This step tends to spread out the intensity values in

the dark intensity range for predominantly darker images or darkens the brighter

images.

The S and V planes are scanned using 128 successively larger threshold values

calculated as

thresi =
(max val × i)

128
(2.5)

where i = 1, 2, ..., 128, thresi is the ith threshold value and max val is the maxi-

mum pixel value of that particular plane of the image. For each threshold value,

patches are identified in both S and V planes which contains pixel values greater

than the threshold value surrounded by pixels with smaller values. These patches

are then stretched by the addition of a multiple of difference between input value

7

and current threshold to its output value. Also, to avoid radical changes to local

intensities, the stretching is limited to 1/8th of the input value. Two passes are

made for each plane - first pass stretches the pixels towards higher values and for

the second pass, the plane is inverted and the same procedure is repeated, stretch-

ing the pixels towards the lower values. Finally, the resultant S and V planes are

re-normalized to fit the range of 0 to 255 or 0 to 1.

Figure 2.3: Original image (left); Image after Color and Contrast Enhancement
(right). Image courtesy: FERET database [5]

Figure 2.3 shows an image and its enhanced output image. It can be seen that

both the color and intensity contrast have been enhanced in a natural appearing

way. However this algorithm is slower compared to other enhancement techniques

discussed. The MATLAB functions used for the implementation of Contrast and

Color Enhancement are given in Appendix A.3.

2.3 High Frequency Emphasis Filtering

In an image, the high frequency components are associated with the edges and

other abrupt changes in the gray levels. Thus, sharpening of the image can be

achieved in the frequency domain by using a highpass filtering process in the

Fourier Transform. Highpass filters zero out the dc term, thus reducing the average

intensity value of the image to 0. To avoid this, an offset is added to the highpass

8

filter. This offset along with the multiplication of the filter by a constant greater

than 1, helps in enhancing the high frequency components of the image while at the

same time retaining the gray level tonality due to the low frequency components.

The transfer function for the High Frequency Emphasis filtering is given by the

following equation:

Hhfe(u, v) = a+ bHhp(u, v) (2.6)

where a ≥ 0 and b > a, typically a lies in the range 0 to 0.5 and b lies in the range

1.5 to 2 (here a = 0.5 and b = 1.5 is used), Hhp(u, v) is the transfer function of

the highpass filter. For this method, a Butterworth highpass filter of nth order is

used, whose transfer function is given by:

Hhp(u, v) =
1

1 +

(
D0

D(u, v)

)2n (2.7)

where D0 is the specified non-negative quantity (here D0 = 1 is used) and D(u, v)

is the distance of the point (u, v) from the center of the frequency rectangle. Two

discrete functions are considered in the two dimensional discrete space, denoted

by f and g, and let f(x, y) denote gray level of the input image at the point (x, y),

g(x, y) denote the gray level of the output image at the point (x, y) and F and G

denote the Fourier transform of the corresponding images. Then, the expression

for high frequency emphasis filtering can be obtained from equations 2.6 and 2.7

as:

G(u, v) = Hhfe(u, v)F (u, v)

=

(
a+

b

1 +
(

D0

D(u,v)

)2n
)
F (u, v) (2.8)

Using the convolution theorem, the above equation can be represented in the

spatial domain as:

g(x, y) = hhfe(x, y) ∗ f(x, y) (2.9)

9

where hhfe(x, y) is the inverse Fourier transform of the filter transfer function

Hhfe(u, v).

Figure 2.4: Original image (left); Image after High frequency emphasis filtering
(centre); Image after Histogram Equalization (right). Image courtesy:
Yale face database [1]

After High frequency emphasis filtering, in order to further improve the contrast

of the face and background, Histogram equalization (section 2.1) is applied on the

filtered image. Figure 2.4 shows the original image, the image after high frequency

emphasis filtering, and the image after further application of histogram equaliza-

tion to the filtered image. The MATLAB function used for the implementation of

high frequency emphasis filter is given in Appendix A.2.

2.4 CLAHE

The normal histogram equalization technique uses the same transformation de-

rived from the image histogram to all the pixels of the image. In case of Adaptive

Histogram Equalization (AHE), the transformation function is derived for each

pixel in the image from its neighborhood region. The problem with this method

was that it was also enhancing the noise in relatively homogeneous regions. To

solve this problem, a new method called the Contrast Limited Adaptive Histogram

Equalization (CLAHE) was proposed by S.M.Pizer [6].

10

This CLAHE method applies histogram equalization to smaller neighborhoods

and the histogram is clipped. The high peaks in the histogram are normally caused

due to homogeneous regions when a narrow range of intensity values are mapped

to a wide range of intensity values. Hence, enforcing a maximum limit on the

number of pixels for any gray level will limit the extent of contrast enhancement

and thus enhancement of noise. Now the image histogram has to be renormalized.

This is done by redistributing the clipped pixels uniformly over all the histogram

bins. This is shown in figure 2.5.

Figure 2.5: Original Histogram and the Histogram after clipping. Figure courtesy:
Zhiyuan Xu [10].

The clip limit NCL is specified by the user. Adding a uniform level L to the

clipped histogram will increase the histogram over the clip limit. Thus, the original

histogram is clipped at a lower limit Nclip, so that after the addition of L (which

depends on Nclip) the maximum of histogram is equal to the clip limit NCL.

v =

vorig + L if vorig < Nclip

NCL if vorig ≥ Nclip

(2.10)

where vorig is the value in the original histogram and v is the value in the histogram

after clipping. The Figure 2.6 shows an image before and after application of

CLAHE.

11

Figure 2.6: Original image (left); Image after CLAHE (right). Image courtesy:
Yale face database [1]

2.5 Multi Scale Retinex with Color Restoration

The development of Multi-Scale Retinex with Color Restoration (MSRCR) al-

gorithm started after the last published concept for Retinex by Edwin Land [4],

which introduced a surround spatial form. The MSRCR algorithm combines color

constancy with local contrast enhancement to make the images approach the re-

alism of direct scene observation. This algorithm has three stages - Single Scale

Retinex, Multi Scale Retinex and Color Restoration.

The Single Scale Retinex (SSR) uses the Gaussian surround function pro-

posed by Hurlbert [3], given by the following expression:

F (x, y) = Ke(−r
2/c2) (2.11)

where r =
√
x2 + y2, c is the Gaussian surround space constant and K is the

normalization factor calculated from,

∑
x

∑
y

F (x, y) = 1 (2.12)

The SSR is given by,

RSSRi(x, y) = log[Ii(x, y)] − log[F (x, y) ∗ Ii(x, y)] (2.13)

12

where F (x, y) is the surround function, I is input image and the subscript i refers

to the different planes (R,G,B for color images and the only plane for grayscale

images) of the image. Choosing the value of c for the surround function is a trade-

off between compression and rendition. Smaller value of c ensures good dynamic

range compression whereas a large value of c ensures good tonal rendition.

The Multi Scale Retinex (MSR) overcomes this problem with SSR by estab-

lishing a good balance between dynamic range compression and color rendition.

The MSR is represented by:

RMSRi(x, y) =
N∑
n=1

ωn
[

log
(
Ii(x, y)

)
− log

(
Fn(x, y) ∗ Ii(x, y)

)]
(2.14)

where N is the number of scales, ωn is the weight associated with the nth scale

(generally N = 3 and ωn = 1
3
), Fn is the surround function of nth scale with

surround space constant cn and subscript i refers to the different planes of the

image. The dynamic range compression results in the violation of the Gray world

algorithm, which states that the average of red, green and blue components of an

image should average out to a common gray value. Also the region of constant

color bleaches out. Thus MSR was good enough for grayscale images but not

suited for color images.

These limitations of MSR are overcome by adding a Color Restoration Step

to arrive at the Multi Scale Retinex with Color Restoration (MSRCR). The

color restoration is calculated using the expression,

Ci(x, y) = β
[

log
(
αIi(x, y)

)
− log

(S∑
i=1

Ii(x, y)
)]

(2.15)

where β is the gain constant, α controls the strength of non-linearity and S is the

number of image planes (generally 3). The final representation of MSRCR is given

by:

RMSRCRi(x, y) = G
(
Ci(x, y) ×RMSRi(x, y) + b

)
(2.16)

13

where G is the gain constant and b is the gain offset value. The MSRCR imple-

mentation compared to MSR gives better contrast and better color restoration.

The figure 2.7 shows a color image along with its MSR output and MSRCR out-

put. The MATLAB function used for the implementation of MSRCR is given in

Appendix A.1.

Figure 2.7: Input color image (left); Image after MSR (centre); Image after
MSRCR (right). Image courtesy: FERET database [5]

14

CHAPTER 3

Face Detection and Extraction of facial features

Face Detection is the first step in any face recognition algorithm. It will search

for faces in an image or video and return the location of the faces found. The

difficulty associated with face detection can be attributed to variations in scale,

location, orientation (in-plane rotation), pose (out-of-plane rotation), facial ex-

pression, lighting conditions and occlusions. There have been various reported

approaches for face detection. According to M.H.Yang [11], the various methods

of face detection can be categorized into four categories:

1. Knowledge based methods, which use predefined rules based on human
knowledge to determine a face.

2. Feature invariant approaches, which aim at finding face structure fea-
tures that robust to pose and illumination variations.

3. Template matching methods, which use pre-stored face templates to
judge if an image is a face or not.

4. Appearance based methods, which learn models from a set of represen-
tative training face images to perform detection.

3.1 Viola-Jones Algorithm

For the recognition algorithm explained in the next chapter (Chapter 4), MAT-

LAB’s vision.CascadeObjectDetector is used, which is based on the Viola-

Jones Algorithm [7]. The Viola-Jones algorithm consists mainly of three parts to

enable a fast and accurate detection. They are:

1. the Integral Image, for feature computation.

2. Adaboost Learning, for feature selection and classifier learning.

3. Attentional Cascade Structure, for efficient computational resource al-
location.

The Integral Image part of the algorithm mainly deals with the computation

of haar-like features. A haar-like feature considers adjacent rectangular regions at

a specific location in the detection window, sums up the pixel intensities in each

region and calculates the difference between these sums. This difference is then

used to categorize subsections of an image. For face detection, all human faces

share some similar properties. This knowledge is used to construct haar features.

Figure 3.1: Illustration of Integral Image and Haar-like rectangular features (a−f).
Image courtesy: [12]

The Integral image (also known as the summed data table), is an algorithm

for fast and efficient computation of sum of values in the rectangle subset of grid.

Integral images are computed as shown below:

S(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (3.1)

where S(x, y) is the integral image at pixel location (x, y) and i(x′, y′) is the

original image. The sum of pixels in rectangle region ABCD in figure 3.1 can be

calculated as:

∑
(x,y)∈ABCD

i(x, y) = S(D) + S(A) − S(B) − S(C) (3.2)

The modified Adaboost Algorithm is used for feature selection. For a detec-

tion region of size 24x24 detection region, the number of possible rectangle features

is close to 180,000. Among all these features, only a few of them are expected to

give almost consistently high values when on top of a face. In order to find these

16

Figure 3.2: (a) given training image; (b) Considered Haar-like pattern; (c)Feature
calculation with difference in sum of image pixel values in white to
that of black. Image courtesy: [9]

features, Viola-Jones used a modified version of the AdaBoost algorithm. Ad-

aBoost is a machine learning boosting algorithm which is capable of constructing

a strong classifier through a weighted combination of weak classifiers. The mod-

ified algorithm is designed to select only the best features. The best performing

feature is selected based on the weighted error given by it.

The next part is Attentional cascade and the major idea behind this part

is that smaller,and thus more efficient, boosted classifiers can be built which can

reject most of the negative sub-windows while keeping almost all the positive

examples. As a result, majority of the sub-windows will be rejected in early stages

of the detector, making the process extremely efficient.

3.2 MATLAB’s implementation of Viola-Jones

algorithm

The MATLAB libraries are used to implement the Viola-Jones algorithm for face

detection. The cascade object detector library uses the Viola-Jones algorithm to

detect faces and facial features like nose, eyes and mouth. Training image labeler

tool box in MATLAB can be used to train a custom classifier to use with any Sys-

tem object. detector = vision.CascadeObjectDetector(<model>) creates an

object, detector, configured to detect objects defined by the input string, <model>.

17

The <model> input describes the type of object to detect. There are several valid

<model> strings, such as ‘FrontalFaceCART’, ‘UpperBody’ and ‘ProfileFace’. The

Classification Model property controls the type of object to be detected.

The following are the Trained Cascade Classification Models used:

1. FrontalFaceCART (Default) - detects faces that are upright and forward
facing. This model is composed of weak classifiers, based on the classification
and regression tree analysis (CART). These classifiers use Haar features to
encode facial features. CART-based classifiers provide the ability to model
higher order dependencies between facial features.

2. EyePairBig/EyePairSmall - detects a pair of eyes. The EyePairSmall
model is trained using smaller images. This enables the model to detect
smaller eyes than the EyePairBig model can detect.

3. Mouth - detects the mouth. This model is composed of weak classifiers,
based on a decision stump, which use Haar features to encode mouth details.

4. Nose - detects the nose. This model is also composed of weak classifiers,
based on a decision stump, which use Haar features to encode nose details

Figure 3.3: The results of face, eyes, mouth and nose detection. Image courtesy:
FERET database [5]

3.3 Improving Face Detection

The face detection algorithm might not work as expected under some circum-

stances like in-plane rotation of faces, bad illumination conditions, etc. The results

of the face detection algorithm can be improved as discussed below:

18

3.3.1 Dealing with non-face detections

During face detection in an image, sometimes there will be detection of some

smaller non-face parts along with the detection of face. To avoid such non-face

detections, the detections of dimensions less than a fraction of that of the largest

detection can be ignored, resulting in the reduction in chances of false detection.

This can be seen in figure 3.4.

Figure 3.4: Image with false detection (left); Detection after improvement (right).
Image courtesy: FERET database [5]

3.3.2 Dealing with in-plane rotation of faces

When a face is found rotated (in-plane) beyond a certain angle in the image, the

face detection algorithm will not be able to detect the face. This can be handled by

the rotation of the entire image in small steps on either directions (clockwise and

anti-clockwise) and detecting faces at each step. When a face is tilted in certain

image and if face is not detected, then according to the improvement suggested

when the image is rotated in small intervals at some point of rotation of image,

face will be either straight or atleast at an angle at which face could be detected.

The figure 3.5 shows the improvement in the detection of faces.

19

Figure 3.5: (a) Given Image; (b) faces detected before improvement; (c) faces
detected after improvement.

3.3.3 Dealing with bad Illumination conditions

There are many cases in which the face in the image is not properly illuminated

and as a result, the face detection algorithm may not be able to detect such faces.

This challenge can be overcome by applying some image preprocessing algorithms,

like those mentioned in Chapter 2, on the input image before detecting faces. This

increases the success rate of the face detection algorithm considerably.

Figure 3.6: Image before preprocessing (left); Image after preprocessing (right).
Image courtesy: Yale Face database [1]

The figure 3.6 shows a badly illuminated face on the left, which was not detected

by the face detection algorithm. The image on the right is the same image after

preprocessing (High Frequency Emphasis filtering followed by histogram equal-

ization) and now, the face detection algorithm was able to detect the face in the

image.

20

CHAPTER 4

Face Recognition

Face recognition is the process of automatic identification or verification of a

person from a digital image or a video frame from a video source by comparing

selected facial features from the image and a facial database. Face recognition

has been one of the most important and interesting field of research in the last

two decades. This is due to the increasing need of automated recognition and

surveillance systems, design of human-computer interface, etc. The face recog-

nition algorithm is divided into three steps - face detection, where the face is

detected in the input image, facial feature extraction, where the facial features

like eyes, nose and mouth are extracted from the detected image and face identi-

fication, where the database is scanned and the correct match is identified using

the extracted features. The following face recognition algorithm is based on the

paper by Walaa Mohamed et al.[8].

4.1 Training

The training part of Face Recognition involves the creation of a database of

several people, so that when one of them is spotted in an image frame, they can

be identified. So, for the creation of this database, a lot of images of different

persons are needed. Here, this algorithm is being implemented only for grayscale

images, though it can be easily extended to color images. Because of this, all the

frames are first converted to grayscale images.

Each grayscale image is enhanced using an image preprocessing algorithm - here

High Frequency Emphasis Filtering (section 2.3) - so that the illumination and

other effects are dealt with and further processing is easier. The face detection

algorithm, using vision.CascadeObjectDetector (section 3.2) in MATLAB, is

then applied on the enhanced image and the position of the faces are located in

the image. Each face located in the image is then cropped out and re-sized to a

fixed size of 250×250 pixels using bi-cubic interpolation technique. These re-sized

faces are stored along with a tag that relates itself with a person.

The MATLAB implementation of the training part of the face recognition al-

gorithm is given in Appendix B.1.

4.2 Extraction of facial features

The next part of face recognition is the about the extraction of features from

the face. It is these features that are actually used to differentiate one person from

another. The facial features used in this recognition algorithm are the eyes, nose

and mouth. The reason for choosing these as the facial features for recognition

is that the other parts of the face do not account for the recognition process and

under illumination conditions and other effects, these features remain unaffected.

In the paper [8], a new method of extracting facial features was proposed, which

was based on the feature location with respect to the whole face region.

Initially, MATLAB’s vision.CascadeObjectDetector was used to locate the

facial features - eyes, nose and mouth - in the face images (of constant size)

detected and stored earlier. The coordinates of the right eye, left eye, nose and

mouth were detected for a lot of face images of same size and using them, it can be

concluded that the facial features for images of same size can be obtained at specific

coordinates independent of the face image. Thus, for a particular face detection

algorithm, the coordinates of the facial features can be considered constant.

The two face databases used for testing this face recognition algorithm were

Extended Yale database B [1] and FERET database [5]. For images from yale

database, the faces were of constant size of 192 × 168 pixels and the candidate

22

region for eyes was between rows 25 and 70 and between columns 1 and 70 for

right eye, and between rows 25 and 70 and between columns 95 and 168 for left

eye. The candidate region for nose was between rows 65 and 130 and between

columns 40 and 125. The candidate region for mouth was between rows 125 and

185 and columns 20 and 150. For images from feret database, faces were detected,

cropped and resized to a fixed size of 250×250 pixels and the candidate region for

eyes was between rows 75 and 125 and between columns 40 and 130 for right eye,

and between rows 75 and 125 and between columns 120 and 210 for left eye. The

candidate region for nose was between rows 115 and 185 and between columns

75 and 175. The candidate region for mouth was between rows 170 and 240 and

columns 70 and 180.

Figure 4.1: Face image from yale database and extracted features (left); Face im-
age from FERET database and extracted features (right). Image cour-
tesy: Yale Face database [1] and FERET database [5]

The figure 4.1 shows face images from Yale and FERET databases and the

extracted facial features using the above mentioned coordinates.

4.3 Face Identification

The final part of the face recognition algorithm is Face Identification, where

given an image, the person in the image has to be identified using the training

database. This starts with the application of image preprocessing algorithm on

the test image followed by detection of face. The detected face is then resized to

23

the fixed size (250 × 250 pixels) and the facial features are extracted using the

coordinates of the features (mentioned in section 4.2).

Now the extracted facial features have to be compared with the facial features

of the faces stored in the database and for this purpose, the ssim function in

MATLAB is used. ssim or Structural Similarity Index function of MATLAB is

used to measure the similarity of an image with respect to a reference image.

A ssim value of 1 implies perfect similarity of the images and as the similarity

between the images reduces, the ssim value drops below 1.

The structural similarity indices are calculated for the facial features of the test

image and the facial features of each image stored in the database as shown below:

ssim totali = ssim(retest, rei) + ssim(letest, lei) + ssim(ntest, ni) + ssim(mtest,mi)

(4.1)

where retest is the right eye from the test image, letest is the left eye from test image,

ntest is the nose from test image, mtest is the mouth from test image, rei, lei, ni,mi

are the corresponding features from the ith image in the database. The image in

database with maximum ssim totali value is identified as the closest match for the

given test image. The MATLAB implementation of the face identification part is

given in Appendix B.2.

24

CHAPTER 5

Experiments and Results

The Face Recognition Algorithm discussed in chapter 4 was tested using the

Extended Yale Database [1] and FERET Database [5]. The Yale database consists

of face images of 38 different persons with 60 images for each person, thus the

database totally consists of 2280 images. All the images in the yale database are

frontal face images under various illumination conditions. The FERET database

consists of images of 994 different persons with a total of 5831 images. These

images consist of pose variations, expressions and people with and without glasses.

The figure 5.1 shows the image at different stages of the recognition algorithm.

Figure 5.1: Given image, enhanced image, detected and resized face and extracted
facial features. Image courtesy: Yale Face database [1]

While using Yale database for testing the recognition algorithm, the first image

of each person is used for training and the remaining images were used for testing.

This is the case of single enrollment. Similarly, the recognition algorithm was also

tested using multiple enrollments, in which the multiple images of each person

was used for training and the algorithm was tested on the remaining images. The

results of testing the Recognition algorithm is given in Table 5.

Table 5.1: Results of Recognition Algorithm tested on Yale database

No. of Enrollments Success %

1 84.83
2 90.03
3 94.31
4 98.52
5 99.42
6 99.90

While using FERET database for testing the recognition algorithm, success

percentage with one enrollment was less than 30% and with multiple enrollments,

it increased, but not more than 50%. This is because most of the faces in the

database had pose variation, which the algorithm could not handle. When the

images that succeeded and failed were examined and it was found that most of

the straight faces were recognized and only the faces with pose variations failed.

26

CHAPTER 6

Scope for future work

The face recognition algorithm discussed is not suitable for pose variations and

side faces. Thus, the algorithm can be modified to incorporate a solution to this

problem. Spoofing is one major threat to current face recognition systems, where

a picture of a person can be used to cheat the recognition system. Hence, depth

estimation of face is one important research area which could make the current

recognition algorithms robust and efficient. Also, the recognition algorithm can be

made to handle optical and motion blur, which are very common in most images.

APPENDIX A

MATLAB implementation of Preprocessing

Algorithms

A.1 Multi-Scale Retinex with Color Restoration

function [I_msr ,I_msrcr] = msrcr(I)

%MSRCR Multi Scale Retinex with Colour Restoration

I=double(I);

[m,n]=size(I(:,:,1));

I_msr=zeros(m,n,3);

r=161;

o=floor((r+1)/2);

F=zeros(r,r,3);

% surround space constant

Cn=[250 ,250 ,250];

% Creation of the gaussian surround function

for s=1:3

for i=1:r

for j=1:r

F(i,j,s) =exp(-((i-o)^2+(j-o)^2)/(Cn(s))^2);

end

end

F(:,:,s)=F(:,:,s)/(sum(sum(F(:,:,s))));

end

% Multi -scale retinex

G=zeros(m,n);

for s=1:3

K(:,:,1)=imfilter(I(:,:,s),F(:,:,1));

K(:,:,2)=imfilter(I(:,:,s),F(:,:,2));

K(:,:,3)=imfilter(I(:,:,s),F(:,:,3));

for i=1:m

for j=1:n

G(i,j)=1/3*((log(I(i,j,s)+1)-log(K(i,j,1)+1)

)+(log(I(i,j,s)+1)-log(K(i,j,2)+1))+(log(

I(i,j,s)+1)-log(K(i,j,3)+1)));

end

end

% Remapping intensity values to the range 0 to 255

G_min=min(min(G));

G_max=max(max(G));

I_msr(:,:,s)=(G-G_min)*255/(G_max -G_min);

end

% Color Restoration

C=zeros(m,n,3);

beta =46;

alpha =125;

b=30;

gain =192;

for s=1:3

for i=1:m

for j=1:n

C(i,j,s)=beta*(log(alpha*I(i,j,s)+1)-log(sum

(I(i,j,:))+1));

end

end

end

I_msrcr=zeros(m,n,3);

for s=1:3

for i=1:m

for j=1:n

I_msrcr(i,j,s)=gain *((I_msr(i,j,s)*C(i,j,s))+b);

end

end

Imin=min(min(I_msrcr (:,:,s)));

Imax=max(max(I_msrcr (:,:,s)));

I_msrcr (:,:,s)=(I_msrcr (:,:,s)-Imin)*255/(Imax -Imin)

;

end

I_msrcr=uint8(I_msrcr);

I_msr=uint8(I_msr);

end

A.2 High Frequency Emphasis Filtering

function [I_out] = high_freq_emp(I_in)

% High Frequency Emphasis Filtering

[f1 ,f2] = freqspace(size(I_in),’meshgrid ’);

D = sqrt(f1.^2 + f2.^2);

% Butterworth high pass filter

bw_hp =1./((1+0.1./D).^2);

% high frequency emphasis filter

hfe_filter =0.5+0.75* bw_hp;

hfe_filter=ifftshift(hfe_filter);

% Filtering in the frequency domain

I_f=fft2(I_in);

29

I_f=I_f.* hfe_filter;

% Convertion back to spacial domain

I2=uint8(ifft2(I_f));

% histogram equalization of filtered image

I_out=histeq(I2);

end

A.3 Contrast and Color Enhancement

The following is the MATLAB implementation of Contrast and Color Enhance-

ment from the paper by Mark DeNies [2].

% Contrast enhancement function derived from the paper

% "Contrast and Color Enhancement"

% by Mark DeNies , DeNies Video Software. 2012

function [outImg] = ContrastEnhancement(fname)

Img = imread(fname);

HSV = rgb2hsv(Img);

% amplify the intensity

V = HSV(:,:,3);

V = powerLaw(V);

[maxVal vOut] = enhance (3.0, V, max(V(:)), 4);

V = maxVal - vOut;

V = powerLaw(V);

[maxVal vOut] = enhance (3.0, V, maxVal , 4);

V = maxVal - vOut;

%put the modified intensity back

HSV(:,:,3) = V ./ maxVal;

% amplify the saturation

S = HSV(:,:,2);

[maxVal sOut] = enhance (2.0, S, max(S(:)), 8);

S = maxVal - sOut;

[maxVal sOut] = enhance (2.0, S, maxVal , 8);

S = maxVal - sOut;

% put the modified saturation back

HSV(:,:,2) = S ./ maxVal;

% reconstruct the RGB image

outImg = hsv2rgb(HSV);

end

function [oImg] = powerLaw(I)

maxVal = max(I(:));

iAvg = mean(I(:));

power = max (0.6667 , min(1.5 ,(iAvg / (maxVal /2))^2));

oImg = maxVal * (I./ maxVal).^ power;

30

end

function [maxV outImg] = enhance(delta , Img , maxVal ,

maxStretch)

outImg = Img;

[h,w] = size(Img);

DeltaH = ones(h,w);

DeltaApply = zeros(h,w);

Range = maxVal / maxStretch;

for i=1:128

% calculate current threshold

sVal = (maxVal*i) / 128;

% Set B = true for all pixels > sVal

B = Img > sVal;

% Set H = hills , labeled 1:nH

[H nH] = bwlabel(B,8);

for j=1:nH

% fetch current Hill

HList = find(H == j);

% find it ’s maximum value

pMax = max(Img(HList));

limit the stretching

DeltaMax = min(delta , Range /(pMax - sVal));

%set List = those pixels which can be stretched more: those

%whose deltaH <delta. Set DeltaApply=the amount to stretch

%each of them: the remaining delta , or DeltaMax.

L = HillList(find(DeltaH(HList) < delta));

if ~isempty(List)

DeltaApply(L) = min(DeltaMax , delta -DeltaH(L

));

outImg(L) = outImg(L) + DeltaApply(L) .* (

Img(L) - sVal);

DeltaH(L) = DeltaH(L) + DeltaApply(L);

end;

end;

end;

maxV = max(outImg (:));

end

31

APPENDIX B

MATLAB implementation of Face Recognition

Algorithm

B.1 Training

clear;

close all;

clc;

% Size of the resized image

S=250;

% For storing the detected faces

I=zeros(S,S ,994);

flag=zeros (994 ,1);

% For storing the variance of the detected faces

variance=zeros (994 ,1);

for i=1:994

% Reading image and converting to grayscale

img=rgb2gray(imread(sprintf(’E:\\BTP\\ feret_db \\data\\

images \\ person (%d)\\1. ppm’,i)));

% Enhancement and detection of face

[img ,flag(i)]= face_detect(img);

% Storing the detected face

I(:,:,i)=img;

end

The face detect function used in the above code is defined below:

function [Out ,flag] = face_detect(In)

%FACE_DETECT - Used to detect faces in the given image.

%Detect objects using Viola -Jones Algorithm

%To detect Face

FDetect = vision.CascadeObjectDetector;

% Enhancing the image

In_e=enhance(In);

flag =0;

% Returns Bounding Box values based on number of objects

BB = step(FDetect ,In_e);

for i = 1:size(BB ,1)

% Avoiding non -face detections

if(BB(i,3) <200)

continue;

else

Out=In(BB(i,2):BB(i,2)+BB(i,4),BB(i,1):BB(i,1)+

BB(i,3));

% flag is set to 1 if face is detected

flag =1;

break;

end

end

if(flag ==1)

% Resizing the detected face to 250 x250 pixels

Out=imresize(Out ,[250 250],’bicubic ’);

else

Out=uint8(zeros (250));

end

end

The enhance function used in the face detect function is the high frequency

emphasis filtering algorithm followed by histogram equalization. It can be referred

from Appendix A.2.

B.2 Face Identification

The following is the MATLAB code used for testing the Recognition algorithm

on FERET database.

clear;

close all;

clc;

% Loading the enrolled images and data.

load(’database.mat’);

success =0; fail =0;

33

for i=1:994

if(n_img(i) <=1)

continue;

end

for j=2: n_img(i)

% Reading the input test image

I_test=double(imread(sprintf(’E:\\ BTP\\ feret_db \\

data\\ images \\ person (%d)\\%d.jpg’,i,j)));

% Enhancing , detecting and resizing the face in the

test image

[I_test ,f]= face_detect(I_test);

if(f==0)

continue;

end

% Extraction of facial features from test image

re_test=I_test (75:125 ,40:130);

le_test=I_test (75:125 ,120:210);

n_test=I_test (115:185 ,75:175);

m_test=I_test (170:240 ,70:180);

e_dist=zeros (994 ,4);

eucl_dist=zeros (994 ,1);

for k=1:994

if(flag(k)==0)

continue;

end

% Extraction of features from database image

re=I(75:125 ,40:130 ,k);

le=I(75:125 ,120:210 ,k);

n=I(115:185 ,75:175 ,k);

m=I(170:240 ,70:180 ,k);

% Calculating ssim values

e_dist(k,1)=ssim(re_test ,re);

e_dist(k,2)=ssim(le_test ,le);

e_dist(k,3)=ssim(n_test ,n);

e_dist(k,4)=ssim(m_test ,m);

eucl_dist(k)=sum((e_dist(k,:)));

end

% Face Identification

[a,b]=max(eucl_dist (1:994));

if(b==i)

success=success +1;

imwrite(uint8(I_test),sprintf(’E:\\ BTP\\

ferret_db \\ s_ssim \\%d_%d.jpg’,i,j));

else

fail=fail +1;

34

imwrite(uint8(I_test),sprintf(’E:\\ BTP\\

ferret_db \\ f_ssim \\%d_%d.jpg’,i,j));

end

end

end

success_percent=success /(success+failure)

35

REFERENCES

[1] The exteded yale face database b. 2005. http://vision.ucsd.edu/~leekc/
ExtYaleDatabase/ExtYaleB.html.

[2] Mark DeNies. Contrast and color enhancement. DeNies Video Software, 2012.

[3] A. C. Hurlbert. The computation of color. PhD thesis, Massachusetts Insti-
tute of Technology, 1989.

[4] Edwin H. Land. An alternative technique for the computation of the des-
ignator in the retinex theory of color vision. Proc Natl Acad Sci U S A,
1986.

[5] National Institute of Standards and Technology. The color feret database.
2005. http://www.nist.gov/itl/iad/ig/colorferet.cfm.

[6] John D.Austin Robert Cromartie Ari Geselowitz Tery Greer Bartter Haar
Romeny John B.Zimmerman Stephen M.Pizer, E.Philip Amburn and Karel
Zuiderveld. Adaptive histogram equalization and its variations. Computer
Vision, Graphics and Image processing, pages 335–368, 1987.

[7] Paul Viola and Michael J.Jones. Robust real-time object detection. In Inter-
national Journal of Computer Vision, 2001.

[8] Moheb Girgis Walaa Mohamed, Mohamed Heshmat and Seham Elaw. A new
method for face recognition using variance estimation and feature extraction.
International Journal of Emerging Trends and Technology in Computer Sci-
ence (IJETTCS), 2:134–141, 2013.

[9] Yi-Qing Wang. An analysis of the viola-jones face detection algorithm. Image
Processing On Line, 2014.

[10] Zhiyuan Xu, Xiaoming Liu, and Xiaonan Chen. Fog removal from video se-
quences using contrast limited adaptive histogram equalization. In Computa-
tional Intelligence and Software Engineering, 2009. CiSE 2009. International
Conference on, pages 1–4, Dec 2009.

[11] Ming-Hsuan Yang, D. Kriegman, and N. Ahuja. Detecting faces in images:
a survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
24(1):34–58, Jan 2002.

[12] Cha Zhang and Zhengyou Zhang. A survey of recent advances in face detec-
tion. Microsoft Research, 2010.

36

