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CHAPTER 1

INTRODUCTION

The subject of biology has undergone a change in recent times, with the introduction of

mathematical techniques to study biological phenomena. Within mathematical biology,

partial differential equations have been used to model and analyze the behaviour of

a large variety of systems. These include things as diverse as population dynamics,

predator-prey models, biological pattern formation and the spread of diseases. Murray

(2002), one of the fundamental texts on mathematical biology, lists a variety of fields in

which such systems of equations can be seen. This thesis deals with the investigation of

two such applications of reaction-diffusion equations, namely zebrafish stripe patterns

and epidemic models.

The use of reaction-diffusion equations to model biological coat patterns (such as

patterns seen on fish, tigers, zebras and other organisms) was first used during the 1950s.

Alan Turing’s seminal work in this field (Turing (1952)) was one of the first works

to discuss the mathematical basis of the underlying chemical reactions behind pattern

formation. Murray (2002) also describes detailed mathematical models for mammalian

coat patterns, such as those seen on tigers and zebras. Works such as Kondo and Asai

(1995), Asai et al. (1999) and Kondo and Miura (2010) have concentrated specifically

on reaction-diffusion models for fish patterns. In Chapter 2, a mathematical model for

zebrafish stripe patterns (based on Asai et al. (1999)) was analyzed, and the effects of

varying the parameters was studied. The stability of different types of zebrafish patterns

was also investigated. This work can help to understand the relationship between the

parameters and the expressed patterns, and can be used by biologists to gain insights

into the mathematical models describing morphogenesis.

The use of mathematical models to study epidemics is one of the most application-

oriented areas of mathematical biology. With rising populations and increasing conges-

tion in urban localities, it has become very easy for diseases to be transmitted across

regions. Mathematical models to study the spread of diseases such as cholera and ty-

phoid have been constructed, such as in Capasso and Paveri-Fontana (1979), which



dealt with cholera in Mediterranean Europe. In Chapter (3), a reaction-diffusion model

for man-environment-man epidemics was studied, and the role of each parameter was

investigated. The response to an outbreak of the disease was simulated for various

conditions. Such models can be used to estimate the possible damage that could be

caused by an epidemic, and design measures to prevent it from spreading. Some ideas

on further extensions along similar lines were also proposed.

All simulations shown in the thesis were done using (MATLAB (2010)), and this

thesis was prepared using LATEX.
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CHAPTER 2

REACTION-DIFFUSION PATTERNS IN ZEBRAFISH

2.1 Overview

As mentioned earlier, the theory of reaction diffusion equations can be used to model

pattern generation on animal bodies. Earlier works such as Kondo and Asai (1995) and

Asai et al. (1999) have looked at fish stripe patterns using reaction-diffusion systems.

Using the model proposed in Asai et al. (1999), simulations were performed in order to

determine the variations in stripe patterns on the bodies of zebrafish. The wide variety

of stripe patterns obtained by varying the parameter values in the models was in keeping

with the variety of stripe patterns seen on zebrafish.

The theory, as explained in Asai et al. (1999), states that a mutation resulting in the

structure of the catalyzing enzymes (for the reaction diffusion system) can be repre-

sented by a change in parameters from the original model. Thus, starting from the same

initial condition (three horizontal white stripes, in our case), it was possible to obtain

various other patterns (stripes, spots, irregular patterns) by varying the parameters.

Furthermore, patterns were found to be of two types - stable and oscillatory. The

stable patterns resulted in steady diffusion of the same original stripe pattern, while

oscillatory patterns showed some periodic variations between white stripes on a black

background and black stripes on a white background. This was possibly due to the

relative values of the coefficients used in the system of PDEs.

The model was proposed for zebrafish, with modifications in Leopard gene. Sim-

ilar reaction diffusion models can also be used to describe patterns in various other

biological situations.

2.2 Model and simulations

The underlying model used was as follows (as described in Asai et al. (1999)):



∂u
∂t

= x(u, v)− du+Du∇2u

∂v
∂t

= y(u, v)− gv +Dv∇2v

x(u, v) = au− bv + c

y(u, v) = eu− f

0 ≤ x, y ≤ P

In this model, u and v represent the concentrations of two chemical species known

as the activator and the inhibitor. The parameters a, b, c, d, e, f and g were varied in

order to generate different zebrafish patterns. Duand Dv represent the diffusion co-

efficients for the activator and the inhibitor respectively. P represents the maximum

threshold on the value of both activator and inhibitor concentrations.

The ∇2 operation was implemented using the five-point stencil finite difference

method, a commonly used implementation of the discrete Laplacian operator with step

size h. ∇2u(x, y) = (u(x−h, y)+u(x+h, y)+u(x, y−h)+u(x, y+h)− 4×u)/h2

Since the exact values of most of these parameters cannot be determined analyt-

ically, the results of the simulations must be treated as qualitative, rather than quan-

titative. The trends observed were due to relative, rather than absolute, values of the

parameters.

To begin with, the initial pattern was specified as 3 white stripes across the body (as

shown in Figure 2.1), by setting a high value of the activator in those regions of the grid.

The simulations (in each case) were run for 10000 cycles, on a 100 × 100 grid with a

granularity of 0.1. A high activator concentration was depicted by ’white’ regions, and

a low concentration by ’black’ regions on the plots.
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Figure 2.1: Initial Stripe Pattern

2.3 Simulation results

To begin with, the following default values were set for the various parameters (as

specified in Asai et al. (1999)):

a = 0.08

b = 0.08

c = 0.04

d = 0.03

e = 0.10

f = 0.15

g = 0.05

P = 0.50

Du = 0.001

Dv = 0.001
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All figures show the variation of u (activator concentration) over the entire range of

x and y values, after 10000 cycles.

The initial values of the diffusion constants for activator and inhibitor were both set

to 0.001. On running the default simulation, the following result was obtained.

Figure 2.2: Default simulation

As shown in Figure 2.2, the stripes were found to diffuse along the body and be-

come thicker. No significant change was observed beyond this. However, the following

simulations (with changing parameter values) showed the range of varied patterns that

could be obtained.

2.3.1 Variation in patterns with respect to parameter values

The pattern shown in Figure 2.3 was obtained when the value of a was set to 0.1,

keeping all other parameters same. Under these conditions, it was observed that the

initial ’white stripe’ pattern had transformed into a predominantly grey pattern, with

black stripes running along the body of the fish. This resembles the stripe patterns seen

in some wild types of zebrafish (experimental data seen in Asai et al. (1999))
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Figure 2.3: a = 0.1

Figure 2.4: b = 0.045
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When the parameter b was reduced to 0.045, the stripes were found to turn extremely

faint, with a mottled grey background (as seen in Figure 2.4). Interestingly, the variation

in the value of the b parameter caused no major qualitative change in the stripe pattern

till a value of 0.05, following which different patterns were seen. Below a certain

threshold (e.g., for b = 0.02), the pattern obtained was observed to be identical to

the original pattern seen in Figure2.2.

Figure 2.5: c = 0.2

Increasing the value of the parameter c to 0.2 resulted in a pattern (Figure 2.5) that

had black spots on a white background, as seen in certain variants of zebrafish.
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Figure 2.6: d = 0.01

Varying the value of the parameter d to 0.01 caused the appearance of a pattern

(Figure 2.6) showing black stripes on a white background. The stripes, however, were

found to be thinner than the ones seen in Figure 2.3, though similar in pattern.

Figure 2.7: e = 0.08
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Figure 2.8: f = 0.2

Figure 2.9: g = 0.08

When the parameter e was reduced to 0.08, the stripes became wider as well as

fainter when compared to the original pattern. Some of the stripes became less distinct

and merged to form a larger white pattern, interspersed with black regions (Figure 2.7).

When f was increased to 0.2, the pattern formed (Figure 2.8) again showed black

stripes on a white background (similar to Figure 2.6 and Figure 2.6). These stripes were

found to be thinner than the ones in Figure 2.6 and much thinner than the ones in Figure

2.3.

Increasing g to 0.08 (as shown in Figure 2.9) resulted in a slightly distorted version

of the stripe pattern with the original set of parameters (shown in Figure 2.2).
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2.3.2 Stable and unstable patterns - temporal variations

Another interesting feature that was observed was the stability of certain patterns. While

some sets of parameters gave rise to patterns that were stable and kept evolving in

the same manner with respect to time, others gave rise to unstable patterns that varied

from one set of features to another with a certain periodicity. Stability in patterns was

observed whenever the value of u saturated (due to x(u) reaching either 0 or P ). This

periodic variation in patterns is also seen in other biological systems, such as predator-

prey species described by the Lotka-Volterra logistic equations.

a b c

d e f

g h i

Figure 2.10: oscillatory patterns (a-i)

Simulation results showed both types of patterns (stable patterns and oscillating

patterns), as shown in Figure 2.10 and Figure 2.11 respectively.
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a b c

d e f

g h i

Figure 2.11: Stable patterns (a-i)

2.4 Discussion

First, the variations in zebrafish stripe patterns with respect to the parameters in the

model were studied, and different patters (observable in zebrafish) were generated by

varying the parameters. This could be extended by looking at thresholding effects.

Many organisms apply some sort of biological thresholding in order to come up with

black and white patters (e.g., zebras), and this could be done in our case also. Further-

more, the exact relationship of the various parameters to the expression of the underly-

ing genes could be investigated (similar to what has been done in Asai et al. (1999)).

Then, the stability of the patterns with respect to time was studied. Further work

could involve looking at the exact time scales and parameter values that determine sta-

bility of patterns, and the biological rationale behind the stability, or lack thereof, of

particular sets of patterns. Also, the model here was defined for zebrafish - one could

try to investigate similar models for other organisms and attempt to come up with some

general results that could give further insight into the theory of animal patterns.
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CHAPTER 3

REACTION-DIFFUSION BASED EPIDEMIC

MODELS

3.1 Overview

The mathematical treatment of epidemic spreading is another area where reaction diffu-

sion equations can be applied. The spread of infectious diseases depends on the distribu-

tion of the infectious agents as well as the distribution of the affected human population.

Certain models of epidemic spreading have also incorporated the geographical spread

of the agents (vectors) using reaction-diffusion models. The model used as the basis

for the simulations in this section was from Capasso and Kunisch (1988). Phenomena

relating to the spread of numerous transmittable diseases, such as cholera, typhoid fever

and malaria have been studied using similar models.

In this section, the reaction-diffusion model for the man-environment-man epidemic

model was studied, and the effect of varying the model parameters was investigated.

The theory, as stated in Capasso and Kunisch (1988) and Capasso and Wilson (1997),

concerns the variation in concentration of infectious agents as well as the percentage

of affected humans, and also deals with the spatial spreading of the infectious agents.

Simulations were performed, starting with an initial localized epidemic outbreak, and

the subsequent behaviour was studied for a range of parameters. These simulations were

performed for a one-dimensional system and later extended to the two-dimensional

systems, and the results were obtained. In certain cases, the epidemic was localized

to the initial affected region and gradually died out, while in other cases the epidemic

spread across the entire simulation space.

3.2 Model and simulations

The following model was used as the underlying basis for the simulations:



The underlying model used was as follows (as described in Capasso and Kunisch

(1988)):

∂u
∂t

= D∇2u(x, t)− a11u(x, t) + a12v(x, t)

∂v
∂t

= a21g(u(x, t))− a22v(x, t)

Here, u represents the concentration of the infectious agent species in the environ-

ment, while v represents the infective human population at a particular spatial location,

at a particular point in time. The parameters a11 and a22 represent the reciprocal of the

mean lifetime of the infectious agent and the reciprocal of the mean infectious period

(on humans) respectively. The parameter a12 is the multiplicative factor of the infec-

tious agent due to the human population at a particular location, while the function

g(u) represents the ’force of infection’, as described in Capasso and Wilson (1997). D

represents the diffusion constant for the infectious agent species.

The function g can be chosen as any monotonically increasing function such that

g(0) = g′(0) = 0, g′(x) is positive for any x > 0, lim
x→∞

g(x) = 1 and g has a transition

from convex to concave at some point x0 > 0. In all the simulations, the choice of g

was taken as g(x) = x2/(1 + x2).

In the 1-D case (x = 0 to x = 100), the initial condition was set at random and

scaled to a lower value(u = 0.05 × rand(100)) throughout the line, with the corre-

sponding value of g as the initial condition for v (v = g(u)). The epidemic outbreak

was then simulated with a pulse of value u0 at x = 50 and x = 51. The values of

the parameters were varied and the resulting situation was represented in the form of

graphs, showing the evolution of u as a function of space and time.

In two dimensions, u(x, t) and v(x, t) were replaced by u(x, y, t) and v(x, y, t). The

system was simulated on a grid of size 100× 100. The initial conditions were taken as

u = 0.05 × rand(100, 100) and v = g(u). The epidemic outbreak was then simulated

with a pulse of value u0 localized from (x, y) = (50, 50) and (x, y) = (51, 51). A

similar investigation of parameter variation effects was performed, and the resulting

surface graphs were plotted.

15



3.3 Simulation results

3.3.1 1-D system

The first set of results below show the variation in the concentration of the infecting

species (u) over the entire simulation space (x = 0 to x = 100), at various points of

time.

a b

c d

Figure 3.1: u(x) versus loop iterations: (a)1000 iterations, (b)2000 iterations, (c)3000
iterations, (d)4000 iterations

Initially, the following conditions were specified: a11 = a21 = a22 = 0.01, a12 =

0.1, D = 0.01 and u0 = 1. On simulating the system, the concentration of u as a

function of distance was determined (as shown in Figure 3.1). All following plots show

the variation of infecting species concentration (u) over the entire simuation space (x=0

to x=100), after 2000 iterations.

When the value of the parameter a11 was varied, the behaviour of the system showed

the following trend: the final value of u varied inversely with the value of a11, as shown

in Figure 3.2.

When a12 was varied, the following trends were observed. A higher parameter value
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Figure 3.2: Variation of u for different values of a11

Figure 3.3: Variation of u for different values of a12
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resulted in a higher saturation level, as well as more infected regions for the same initial

condition. Also, below a certain value, the disease dies out and does not spread at all

(e.g., a12 = 0.025, as shown in Figure 3.3).

Figure 3.4: Variation of u for different values of a21

The variation of a21 showed some interesting properties (Figure 3.4). Above a cer-

tain threshold, any increase in the value of the parameter led to a corresponding increase

in the final saturation value, as well as the area infected. However, reducing the value

of the parameter had no effect below a certain point (with other parameters staying

constant). In our case, parameter values of 0.01, 0.005 and 0.001 all showed the same

behaviour.

When a22 was varied, the following behaviour was observed (Figure 3.5). On re-

ducing the value of the parameter, the concentration of the infecting species was found

to increase. Increasing the value of the parameter beyond a certain point ensured that

the disease died out without speading. This behaviour was similar to that observed in

Figure 3.3.
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Figure 3.5: Variation of u for different values of a22

Figure 3.6: Variation of u for different values of D

Varying the value of the diffusion constant, as expected, resulted in a corresponding
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change in the infected area. However, there was no change in the peak concentration of

the infecting species (Figure 3.6).

Figure 3.7: Variation of u for different values of u0

On the other hand, varying the initial infection pulse (u0) showed an on-off be-

haviour (Figure 3.7). All values greater than a certain threshold (u0 = 0.33) resulted

in the same final state (after a sufficient number of iterations, in this case 2000), while

values lower than that threshold ensured that the disease died out. Thus, a bifurcation

was seen in the behaviour of the system at a value of u0 = 0.33.

3.3.2 2-D system

Using the same model as the 1-D system, simulations were performed for a two-dimensional

case (as an extension of the same 1-D model). The same initial conditions were speci-

fied: a11 = a21 = a22 = 0.01, a12 = 0.1, D = 0.01 and u0 = 1. The first set of results

below show the variation in the concentration of the infecting species (u) over the entire

simulation space, at various points of time.

The variation in u with respect to time was plotted, as shown in Figure 3.8.
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a b

c d

Figure 3.8: u(x, y) versus loop iterations: (a)1000 iterations, (b)2000 iterations,
(c)3000 iterations, (d)4000 iterations

All following plots show the variation of infecting species concentration (u) over

the entire simuation space (x=0 to x=100), after 2000 iterations.

0.02 0.01 0.005

Figure 3.9: u(x, y) for different values of a11

When the parameter a11 was varied, the following behaviour was observed. Above

a certain level, increasing the value of the parameter resulted in zero epidemic spread.

Below that threshold value, any reduction in the parameter resulted in an increase in the

peak concentration of the infecting species (Figure 3.9).

Varying the value of a12 (Figure 3.10) showed the opposite trend as seen with a11.
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0.2 0.1 0.075

Figure 3.10: u(x, y) for different values of a12

The value of the parameter was found to be directly proportional to the peak concentra-

tion of infecting species. Also, reducing the value below a certain limit resulted in the

epidemic dying out. Additionally, an increase in the parameter value also resulted in an

increase in the area affected.

0.02 0.01 0.005

Figure 3.11: u(x, y) for different values of a21

When a21 was varied, the peak concentration of the infectious agent became higher

with a higher parameter value. Also, parameter values below a certain level ensured

that the disease died out without spreading (Figure 3.11).

0.02 0.01 0.005

Figure 3.12: u(x, y) for different values of a22

Varying a22 showed the exact opposite behaviour as a21. The peak concentration

stayed zero for values above a particular threshold (e.g, 0.02), while it increased with

a reduction in the parameter value below the threshold (e.g, 0.01, 0.005). This was
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plotted, as shown in Figure 3.12. However, there was little correlation between the

parameter value and the area affected by the disease.

0.0025 0.005 0.015

Figure 3.13: u(x, y) for different values of D

As in the 1-D case, the variation in the diffusion constant D did not cause any

change in the peak concentration of the infecting species. The only change was in the

area affected by the disease (Figure 3.13).

100 10

1 0.5

Figure 3.14: u(x, y) for different values of initial pulse u0

The variation of u with respect to the initial infection pulse u0 also showed a similar

behaviour to that of the 1-D analogue. Above a certain threshold value (around 0.6), the

system finally stabilized at the same peak value irrespective of the value of u0. However,
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if the initial pulse was below this threshold, the disease failed to spread and died out (as

shown in Figure 3.14).

3.4 Discussion

The following trends were seen in general, with respect to both the 1-D and 2-D sys-

tems. A higher mean lifetime (lower a11) meant that, on an average, the concentration

of the agent would be higher. Similarly, a higher infectious period (lower a22) was seen

to have had the same effects on the system. When the multiplicative factor of the agent

was made higher (higher a12), the concentration was also found to increase. Further-

more, increasing a21, which led to an increased effect of the ’force of infection’ (g) also

increased the concentration of the infecting species.

Apart from these factors, the diffusion coefficient D just controlled the rate of dis-

ease spreading, and not the value of the infecting species concentration. The initial

disease pulse u0 served as a switch: any value above a certain threshold was sufficient

to trigger an outbreak that could spread to other regions, while any value below the

threshold ensured that the disease did not spread.

3.5 Further work

Since these models are applicable to many common infectious diseases, they can be

used to predict the effects of disease outbreak on populations, similar to Capasso and

Paveri-Fontana (1979), which used a similar model to analyze the outbreak of cholera

in Meditteranean Europe. Using values for these parameters (determined from previous

epidemological data), these models can be used to assess the amount of damage that

could be caused by a particular disease in a particular geographical area. Furthermore,

resopnses can be designed based on which areas are likely to get affected more.

Models that take the effect of medical relief can also be formulated, in order to study

how and where medical aid could best be introduced (in the event of an outbreak). One

could also simulate several diseases and determine the limits of parameter tolerances for

them. Using these limits, we can seek to redesign our existing infrastructure to restrict

24



the effects of an epidemic to the minimum possible, and prevent them from spreading

throughout the area.
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CHAPTER 4

CONCLUSIONS

In Chapter 2, the reaction-diffusion system governing zebrafish stripe patterns was in-

vestigated. The values of the various parameters were tweaked in order to come up

with different types of patterns, similar to the ones seen in zebrafish with a modified

Leopard gene. The qualitative trends seen in the results of these simulations were in

keeping with similar results from earlier works such as Asai et al. (1999). Furthermore,

two broad classes of patterns were determined - stable patterns and oscillatory patterns.

Simulations were performed to show examples for each class of patterns. Possible ex-

tensions of this part of the thesis include the following - correlating the exact parameter

values with the expression of certain genes, comparing the patterns with laboratory or-

ganisms and investigating the conditions for stable/oscillatory patterns, and looking at

the effect of thresholding on these patterns.

In Chapter 3. the man-environment-man model (described in Capasso and Wil-

son (1997)) for epidemics was studied, for both one-dimensional and two-dimensional

systems. The relationship between the nature of epidemic spreading and the various pa-

rameters (mean lifetime of the infectious agent, mean infectious period, multiplicative

factor, ’force of infection’, diffusion constant and initial infection pulse value) was de-

termined using simulations, for both types of systems. This work can be used to predict

the effects of possible future epidemics, and to design appropriate targeted response

measures in order to mitigate the damage caused. These models could also be extended

to take other factors (such as the effect of medical aid) into account. Simulations could

also help to redesign existing areas in order to make it significantly harder for epidemics

to spread. This has significant potential, especially in densely populated areas where

epidemics can spread quickly and cause a lot of damage.

Thus, mathematical models using reaction-diffusion systems can be used for inves-

tigating a variety of biological phenomena. Two such applications have been studied in

this thesis, and these were the results of the study.
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