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ABSTRACT

Since many years, the input from the human to the machine was managed through

keystrokes in the keyboard, hand movements using a computer mouse, based on

speech or gestures, etc. which requires fine motor control. An increasing number

of people suffer from neuromuscular diseases that affect their capacity to commu-

nicate with the computer. Development of a user-friendly assistive device which

can be controlled intuitively, without requiring extensive training to gain reliable

control and aid these people in communicating with computer is quite helpful.

Development of such a device needs careful design, to achieve good speed, accu-

racy and ease of use. Brain Computer interface (BCI) using Steady State visually

evoked potentials (SSVEP) and eye tracker based on Electrooculogram (EOG) are

chosen for this purpose. Aim of this project is to develop an in-house low cost

bio-potential based assistive device.

The system must be portable and small enough to mount on a person as a wearable

device. ADS1299 - a low noise, 8 channel, 24 bit analog front-end for biopotential

measurements was chosen for this purpose. This mixed signal processor has in-

strumentation amplifiers (INAs), filters and analog to digital converters (ADCs)

embedded in a single TQFP-64 package which serves the purpose of small size

and portability. ATmega328p, a low power micro-controller is used to interface

with ADS1299. ’Processing (language)’ based applications are designed in PC to

acquire and process the raw data from ADS1299 - ATmeag328p system.

The strength of (SSVEPs) have been observed to greatly depend on the stim-

ulation source and paradigm. Orientation and size specific neurons have been

discovered in the occipital cortex, which activate only when excited with specific
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patterns. Different shapes have different orientation and size aspects that eventu-

ally lead to activation of different neuronal groups. In this project the potential for

a novel shape switching based stimulation paradigm for SSVEP elicitation is in-

vestigated. Pattern reversal stimuli was found to elicit stronger SSVEP relative to

single graphic stimuli. Results indicate that there might exist a subject dependent

connection between the elicited SSVEP and choice of shapes for the stimulation

paradigm. For SSVEP based BCI, the developed biopotential acquisition system

is used to acquire 8 channel EEG at the occipital lobe. Visual stimulator to elicit

SSVEP, software for signal processing and control are implemented in ’Processing

(language)’. An online SSVEP based BCI system supporting four commands was

successfully implemented with a decode speed of 1 command per 5 seconds. This

thesis describes the data acquisition and processing software for an SSVEP based

system. Other details are covered elsewhere.

An EOG based virtual keyboard is an another assistive device designed as a part of

this project. A wearable dry electrode mask connected to the developed hardware

is used to acquire 2 channel (vertical and horizontal) EOG signals. A virtual key-

board application with 26 alphabets, 10 digits and three special keys (backspace,

enter, space) is design in ’Processing (language)’. The raw EOG data is processed

and decoded in the background of the application. Left, right and blink gestures

from the user eye are decoded into commands which helps the user to navigate

left, right and select a character respectively on the virtual keyboard. An average

typing speed of 1 char per 5 seconds was achieved using this system.
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Chapter 1

Introduction

1.1 Motivation

With the advent of new technologies machines have become an important part of

human life. There are many ways in which a healthy person interacts with these

machines. In many cases, these interactions require fine motor control of hand.

A significant number of individuals have several physical limitations, which limit

them from accessing the advance communication and entertainment technology.

These individuals often have motor neuron disabilities like cerebral palsy, spinal

cord injury, amyotrophic lateral sclerosis, multiple sclerosis, muscular dystrophy,

or traumatic brain injury.Communication between humans seems much simpler

than the one that involve human machine interaction. Hence, it is very difficult

for the patients to operate devices like keyboard, mouse, etc. Alternative computer

input devices are now available in a variety of choices, to support special needs

in communication. Several of these devices target the motor skills that are still

available to the individuals. Tonguepoint system [3] is based on a pressure sensitive

isometric joystick fixed firmly to mouthpiece, so that users will operate by tongue

movement. Headmouse [4] will transform head movement into cursor movement

on the screen. This is accomplished by a wireless optical sensor that tracks a

small adhesive backed target on the user forehead or glasses. A lot of attention

from the user is required to control the above devices. It can be quite strenuous.

In cursor control applications, the method of signaling a mouse click is based on

dwell times. These approaches can be very tricky for the user. Moreover, camera

and processing can make the system more expensive. Very difficult to use for

patients who doesn’t have the fine motor control. In the past decades, several
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people have widely reported the limitations of human computer interface (HCI)

tools. However there was a tremendous progress in this field in recent years,

there has been increasing interest in exploiting bio-electric signals such as EMG,

EOG, EEG for the purpose of devising various type of HCI. Some of the other

techniques like, automatic gesture recognition, analysis of facial expression, eye

tracking, force sensing has gained more interest as potential modalities for HCI.

Another approach is the usage of EEG waves originating in the brain. In this

project we focused on two types of biopotential based assistive devices. One was

the Brain Computer Interface (BCI) based on the Electroencephalogram (EEG)

and the second one - an electroocculgram (EOG) based virtual keyboard.

1.2 Brain Computer Interface (BCI)

Ever since the discovery of the electrical characteristics of the brain by Dr. Hans

Berger [5] , we have come a long way in deciphering, augmenting and interpreting

the brain functioning. What was then considered to be a complex meaningless

electrical (magnetic) signal has been unfolded into different characteristic com-

ponents, which give significant insight into the state and operation of the brain.

Besides diagnosis, it can be used as a non-traditional pathway for interaction with

humans. The class of devices falling to the latter category of applications was col-

lectively termed as Brain Computer Interface System, formally defined by Wolpaw

et al at the First International Meeting on BCI Technology (2000) as a commu-

nication system that does not depend on the brains normal output pathways of

peripheral nerves and muscles [6]. Interest in the domain has spiked because

potential applications of such systems [7] [8]. Also, recent developments in Neu-

roscience, Signal Processing and Machine Learning has contributed to subsequent

improvement in system feasibility and implementation.

A brain computer interface (BCI) system primarily involves harness of the electro-

magnetic signals acquired from the brain and/or neural system. Different differ-
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entiable types of EEG signal is available as electrode output on placement of the

same. The dominant type is primarily governed by the spatial location of the elec-

trodes and the state of the brain at any temporal instant. The spatial-temporal

nature of the EEG signal is decisive enough to be used for a BCI system. EEG

signals can be broadly classified as follows:

• Event Related Potentials [ERP] : P300, SSVEP

• Oscillatory Brain Activity : Delta [1-4 Hz], Theta [4-8 Hz], Alpha & Mu

[8-13 Hz], Beta [13-25 Hz], Gamma [25-40 Hz]

• Slow Cortical Potentials

• Neuronal Ensemble Activities

• Sensorimotor Cortex Rhythms

Of these, the ERPs, SCPs and sensorimotor cortex rhythms are widely researched

for use in BCI systems. Broadly speaking, BCI systems are classified based on the

type of activation signal used for interface. Slow Cortical Potentials abbreviated

as SCP are slowly varying potentials found on the scalp (0.5 − 10s). These signals

are manipulated based on user intention. Positive SCPs indicate reduced low

cortical activation rates whilst negative SCPs are indicative of increased cortical

activation due to increased muscle movement or other activities yielding increased

cortical activation. Birbaumer [9] et al has shown that people can learn to control

these potentials and hence be used to interface BCI systems. The primal drawback

of this method is the need for intensive training of the order of days or months.

The P300 wave discovered by Sutton [10] is known to be produced from the human

scalp when an unlikely event occurs between events of high probability. The signal

is known to be produced at a 300 ms delay from the onset of the stimulus, hence

the nomenclature of the signal. On using the P300 as a spelling device, for which

it is widely researched on, characters are flashed on the screen. User is asked to

count the number of times the character of his\her choice is flashed. By doing so, a
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P300 is elicited from the user scalp each time the character of choice is projected.

To account for greater accuracy and reliability multiple counts of elicited P300

have to be used to characterize user selection. Characters can be either projected

single element vice or row-column vice depending on the application requirements

such as number of selections to be made etc. One may also use P300 for control

tasks as shown by Finkea [11] and navigation as shown by Citi (mouse movement)

[12].

Steady State Visual Evoked Potentials, abbreviated as SSVEP signals are EEG sig-

nals elicited in response to a visual stimulus flickering at constant frequency in the

range of 5-50 Hz [13]. By repeated visual stimulation at a frequency greater than

5Hz, the quasi sinusoidal Transient Visual Evoked Potential (TVEP) is merged to

yield a near sinusoidal SSVEP resonant at the stimulation fundamental frequency

and it’s harmonics [14].

Originating predominantly from the occipital parietal region [15], the near sinu-

soidal SSVEPs are frequency and phase locked to the flicker frequency of the visual

stimulus. SSVEP based BCIs uses several flashing light sources that flash at a pre-

determined frequency. The user focuses on one of the sources of choice, which is

the understood by studying the SSVEP signals elicited in occipital and parietal

regions of the brain. The frequency of the elicited SSVEP signal is observed to

be the same as that of the generating source, which is used as a cue to identify

source of interest. Classification can be done by using native techniques as PSDA,

which analyzes the power content in the frequency of interest. Recently, the use

of multiple EEG channels for effective SSVEP detection has been found give im-

proved performance [16]. The Canonical Correlation Analysis (CCA), proposed

by Lin et al [17] and the Minimum Energy Channels [16], proposed by Friman

et al, are variants of optimal channelization to improve performance. Based on

the classification result, some action is performed. SSVEP based BCIs find appli-

cations in navigation [18] etc. Gao et al [19] experimented by using 48 different

classes. Bakardijan et al [20] demonstrated that maximum SSVEP response is
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obtained between 5.6 Hz and 15.3 Hz from 5-48 Hz range. Allison [21] and Zhang

[22] have shown that selective attention onto a target alone is sufficient to obtain

an accurate SSVEP signal.

As shown by Pfurtscheller [23] and Neuper [24], ERD (Event Related Desynchro-

nization) signals are generated in the sensory motor cortex in the event of motor

cortex related activity. 2 seconds before the actual movement of the limbs, there

is a relative decrease in power in the upper alpha band and lower beta band on

the contra lateral hemisphere. Eventually it becomes bilaterally symmetrical just

before movement execution. Like ERD, ERS (Event Related Synchronization)

signals can also be used to detect an event related to motor activity. It may occur

at the termination phase of the movement or simultaneous to the ERD but with

the difference being in the spatial point of origin.

BCI applications include spellers, environmental control, wheelchair control, neu-

romotor prosthesis, gaming and virtual reality. The greatest challenges in de-

velopment of a BCI system are the implementation of asynchronous nature in a

BCI system and implementation of a BCI without training [25]. Performance of a

BCI system can be numerically analyzed using it’s classification accuracy and the

information transfer rate (ITR). The ITR is represented either in bits\selection

or bits\min [6] keeping in convention of a standard communication system. ITR

depends on time segment length (buffer length) used and the algorithm processing

speed.

Whilst larger time segments yield better accuracy, they make the system less

feasible for online implementations because of slower response. Hence, a tradeoff

needs to be set for feasible accuracy at smallest buffer size possible for effective

online implementations.
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1.3 EOG based Human Computer Interface

Electrooculograms (EOGs) are strong bio-potentials induced by eye movements.

The metabolically active retinal epithelium generates the Corneal Retinal Po-

tential (CRP), which imparts the eyeball it’s dipole characteristics [26]. Using

bi-channel acquisition with electrodes aligned along the horizontal and vertical

axes, signals pertaining to the eyeball movement can be acquired. Useful EOG

features are generally observed in the 10-100 µV magnitude range and 0- 10 Hz

frequency range [26]. EOGs being essentially eye movement dependent can be

manipulated by a human, which offers a way for an effective human-computer

interaction. Potential applications of EOG include context recognition systems

[27] and assistive technology such as wheelchairs [28] [29], alarm systems [26] etc.

Despite it’s relatively high magnitudes, EOG signals are still susceptible to non-

deterministic variations since they are governed by numerous parameters such as

eye blinks, electrode placement, head movement, luminance etc., which need not

be constant across subjects and sessions. The ocular muscles work individually or

in synchrony to provide the overall motion of the eyeballs thereby positioning the

eye in the direction of vision. These movements can be broadly classified into four

categories:

• Saccades : These movements occur in the eye which are associated with

the normal functioning such as reading, gazing, etc. These movements are

mostly involuntary but can be voluntary sometimes.

• Vestibulo-ocular movements : These movements help an individual to keep

an object under the circle of vision even while the head is moving.

• Vergence movements : Unlike other movements, these movements function

independently for each eye such that the perception of depth and distance

can be achieved by superimposing the two images in the brain.

• Smooth pursuit movements : These are voluntary movements which are very
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slow in nature.

Over the last decade researchers all over the world developed different EOG based

assistive devices.

• Wijesoma et al. (2005) [30] developed initial model of a robotic wheelchair

system based on electrooculography. They used MP150 Biopac system to

acquire EOG signals and MATLAB for processing.

• Arslan Qamar Malik, and Jehanzeb Ahmad (2007) [31] designed and devel-

oped an EOG based mouse control device. They used INA126P, OPA277,

ADS7800 to acquire EOG signals and then interface with computer through

parallel ports.

• Manuel Merino et al. (2010) [32] developed a system to detect eye movement

based on the EOG signal. They used Ag/AgCl sensors and BCI2000 and

the amplifier g.USB amp for EOG acquisition.

• Usakli et al. (2010) [33] developed and realized a virtual keyboard that

allowed the user to write messages and to communicate other needs based

on EOG signals. 5 Ag/AgCl electrodes are used for EOG acquisition. They

used LT1167, LMC6001, MAX281, PIC12F675, PC817 in their acquisition

system design.

• Patterson Casmir D’Mello, Sandra D’Souza (2012) [34] developed a Lab-

VIEW based EOG classification system. Ag/AgCl electrodes were used for

EOG signal acquisition. M Series USB-6221 was used as a data acquisition

interface.

• Divya Swami et al. (2012) [35] designed an EOG based typing system. A

gUSB amplifier was used in filtering, amplification and analogue to digital

conversion of EOG signals.

Though the above systems had a good performance, they lack reusability and

wearability because of the electrode type (wet) and the bulky electronics. These
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systems has to be improvised to wearable devices so that any disabled person

can use them with ease. Moreover, the system should support dry electrodes for

re-usability. Thus, a wearable device has been designed as a part of this project.

Details of the implementation is explained in chapter 4.



Chapter 2

Biopotential Acquisition System

2.1 Introduction

Unlike other biopotential signals, EEG signals are in the order of 100 µV. The

instrument need to have high common mode rejection ratio - CMRR (>100 dB) to

seperate EEG from common mode signals. Ideally, instrumentation amplifiers with

high CMRR and high gain along with analog filters (low pass and high pass filters)

are used to implement the acquisition system for acquiring EEG signals. Gain of

the amplifier must be adjusted so that output voltage lies in the dynamic range of

analog to digital convertor (ADC). Finally, the digitized values are transferred to

a computing device like PC or any standalone micro-processor system for storage

and further processing. In most of the cases, a software application must be

provided on the computing side so that the user can use the device with ease.

2.2 Market survey

There are many non-invasive consumer BCIs available in the market. Some of

them are listed in table 2.1. These BCI kits are designed to acquire EEG signals

supporting different number of electrodes based on the purpose. Though the

internal hardwares of these kits can acquire any biopotential signals, structural

design make them incapable of acquiring signals like EOG. Some of them are used

for gaming while some of them to help in BCI research, etc. These kits can also

be used as assistive devices with a custom made software. But the cost is too high

(per number of channels) for a developer or consumer to bear.
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Device Price (in $) Number of
Electrodes

Sensors Interpretation

iFocusBand 310 1 8 mental states, facial
tension, eye

movement and quiet
eye

Mindwave 99.95 1 2 mental states
Mindflex 50 1 1 mental states

Emitov EPOC 299 14 3 mental states, 13
conscious thoughts,

head movements
(sensed by gyro)

Star Wars Force Trainer 45 1 1 mental state
Mindset 199 1 2 mental states

Neural Impulse Actuator 90 3 2 brain waves (Alpha
& Beta), facial muscle

and eye movements
XWave headset 90 1 8 EEG bands

MyndPlay BrainBand 158 1 8 EEG bands

Table 2.1: Commercial non-invasive BCIs[1]

Apart from the mentioned BCI kits, general purpose data acquisition (DAQ) sys-

tems available for medical applications are very costly . Here are some of the DAQ

available in the market.

1. BIOPAC MP36RWSW : Supports 4 isolated channels with maximum sam-

pling speed of 100k samples/sec with 24 bit resolution for input ranging 4 V

p-p. Cost : $ 8400

2. BIOPAC MP150WSW : Supports 16 channels with maximum sampling

speed of 200k samples/sec with 16 bit resolution for input range 10 V p-

p. Cost : $ 8100

3. Digital EEG KT88-2400 : Supports 19 EEG, 1 ECG, 1 EMG, 2 EOG and 1

channel for breath. Cost : $2108

4. Digital Electrocardiograph : Supports 12 lead ECG. Portable system. Cost

: $254.

Addressing these issues, this project also aims at designing a low cost ($ 80 approx.



2.3 Analog Front End 11

excluding electrodes cost) 8 channel (differential / single end) biomedical data

acquisition setup with compact (wearable) size and wireless features.

2.3 Analog Front End

With the advancement in the semiconductor technology, system on chips (SoCs)

have become popular over the past few decades. In the past, a biopotential acqui-

sition system includes input protection circuit, instrumentation amplifiers, analog

filters made of operational amplifiers, analog to digital converters (ADCs) and

a microprocessor as individual blocks. Such a design has large form factor and

consume large power. Moreover, the designer has to be very careful while design-

ing the PCB layout and the system has to be completely shielded to reduce the

noise. Hence, it is very difficult to design a precise, low power and a wearable

biopotential acquisition system with the above set of components.

2.3.1 ADS1299

To overcome the above limitations we opted ADS1299, a SoC developed by Texas

Instruments as the analog front end IC which replaces all the conventional ICs

such as instrumentation amplifiers, operational amplifiers and ADC. ADS1299 is

specifically meant to acquire EEG signals. Nevertheless, it can acquire any other

biopotential signals. Some of the key features which makes ADS1299 ideal to

include in the system are:

• It supports 8 single-end / differential analog input channels. Each channel

has a 24 bit ∆Σ ADC with a maximum data rate of 16 KSPS and consumes

5 mW / channel. Internal reference of ADC can be programmed to 4.5 V.

• It has a very low input referred noise of 1 µV p-p and a CMRR of 110 dB.

• Gain of instrumentation amplifiers can be programmed to 1,2, 4, 6, 8, 12,

24.
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• Supports serial peripheral interface (SPI) which is most common in many

micro-controllers. Thus, it can be configured by any micro-controller. More-

over, many ADS1299 devices can be cascaded to design a high channel DAQ

system in a daisy - chain configuration using the same SPI bus.

• Supports internal lead-off detection circuit based on current source or sink.

Functional block diagram of ADS1299 is shown in fig. 2.1.

2.3.2 ADS1299 control and status registers

All the important registers of ADS1299 can be grouped into three categories. They

are described below.

2.3.2.1 Global Settings

This category includes three configuration registers viz. CONFIG1, CONFIG2,

CONFIG3 and one lead-off control register viz.LOFF . These settings are applied

to all the input channels of ADS1299. CONFIG1 is used to configure daisy chain,

clock source (external / internal) and output data rate. CONFIG2 is used to

configure amplitude and frequency of internal test signal. Internal test signal helps

the user to test the functionality of ADS1299. CONFIG3 is used to configure bias

reference signal (internal / external). As seen from fig 2.1, bias reference is a part

of right leg driven circuit which improves CMRR of the system. LOFF is used to

configure the lead off comparator threshold settings , lead off current magnitude

and lead off frequency.

2.3.2.2 Channel Specific Settings

This category includes 13 registers viz. CHnSET (n = 1,2,..8), BIAS_SENSP,

BIAS_SENSN, LOFF_SENSP, LOFF_SENSN, LOFF_FLIP. CHnSET is used

to change the INA gain, select reference bias channel and disable or enable the

channel. LOFF_SENSP, LOFF_SENSN selects the positive and negative side
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Figure 2.1: ADS1299 functional Block Diagram[2]
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respectively from each channel for lead-off detection. LOFF_FLIP controls the

current direction for lead-off derivation.

2.3.2.3 Lead-off status registers

This category includes LOFF_STATP and LOFF_STATN registers which stores

whether the positive and negative electrodes on each channel is on or off respec-

tively.

2.3.3 Theory of operation

Any micro-controller which supports serial peripheral interface (SPI) has four

signals: CS(chip-select), SCLK (serial clock), MOSI (master out slave in), MISO

(master in slave out). Using these signals a micro-controller reads conversion data,

reads and writes registers, and controls ADS1299 operation. Apart from these four

signals, ADS1299 has DRDY signal asserts when the data conversion is complete

by turning logic low. This acts as an indication for the micro-controller to read the

digitized data from ADS1299. In this interface micro-controller acts as the master

and ADS1299 acts as a slave. Master asserts CS to logic low to enable the slave.

This signal has to remain low for the entire serial communication duration. SCLK

is provided by the master which shifts in commands and shifts out data from

ADS1299 for every rising / falling edge. MISO and MOSI are data lines though

which data is transmitted. ADS1299 latches data on MOSI (DIN) on every SCLK

falling edge where as data on MISO (DOUT) are shifted out on every SCLK rising

edge. Fig 2.2 shows the ADS1299 data output protocol.

Specific op-code commands need to be used to control and configure ADS1299

operation. These can be categorized into three types viz.

1. System commands

2. Data read commands
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Figure 2.2: ADS1299 data output protocol [2]

3. Register read commands.

System commands include WAKEUP (op-code : 02h) , STANDBY (04h), RESET

(06h), START (08h), STOP(0Ah). These commands control the state of ADS1299.

WAKEUP is used to wake from stand by mode. STANDBY is to enter low power

mode. RESET will reset the system and configures all the registers to default

values. START will trigger the ADC conversion. An alternate of this command

is to assert START pin of ADS1299 to logic high. START pin must be held low

when using START op-code command. STOP will halt the conversion.

Data read commands include RDATAC (10h), SDATAC (11h), RDATA (12h).

These commands control the data flow from ADS1299. RDATAC will allow

the micro-controller to read data continuously for every trigger from DRDY .

SDATAC will stop the continuous read mode. RDATA configures ADS1299 to

transfer data only on command and not continuously.

Unlike system and data read commands, register read commands are two op-code

commands. RREG and WREG are used to read and write ’n’ registers starting

from the address mentioned in the first op-code where ’n’ is mentioned in the

second op-code. In our system, we use WREG to configure all control registers of

ADS1299 and later send RDATC to receive data continuously.
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2.4 BioDaq v01- Schematics

As a first prototype of biopotential data acquisition system, we designed BioDaq

v01 as an arduino shield. An Arduino uno is used as the micro-controller board to

interface with ADS1299 housing at the center of BioDaq v01. Though BioDaqv01

is an arduino shield, it is designed as a genric board which can interface with any

other micro-controller. See appendix A for the detail list of bill of materials. Few

important components which are essential in BioDaq v01 are as follows :

• ADS1299 (24 bit, 8 channel analog front end IC by TI)

• TPS60403 (charge pump inverter)

• TPS73225 (2.5V Regulator)

• TPS72325 (-2.5V Regulator)

• TPS70933 (3.3V Regulator)

• TXB0108 ( Used for logic translator). Useful when trying to interface with

any other micro-controller with different logic levels.

As shown in fig 2.3, ADS1299 requires three supplies viz,. DVDD - digital supply

which used for digital circuitry like internal SPI module, AVDD - positive analog

supply, AVSS - negative analog supply. One of the standard procedure in acquiring

any biopotentials is to use anti-aliasing filters to remove high frequency signals so

as to avoid aliasing effects after sampling. We used first order anti-aliasing filter

using 5K resistor and 4.7nF capacitor before every electrode. This can be seen in

fig 2.3.
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The generic board that we have designed can accept voltages supply greater than

3.3V supply and convert to DVDD, AVDD and AVSS. fig 2.4 shows the power

supply ICs which we have used to achieve this. Since, the generic board is designed

to interface with any micro controller (µC), we have used a voltage level shifter ,

TXB108 for a proper SPI communication between ADS1299 and µC.

2.5 BioDaq v01 - PCB layout

Figure 2.5 shows the top and bottom layers of the BioDaq v01 mother board.

ADS1299 is soldered on a separate IC base which is then mounted on the moth-

erboard.This way, even if the motherboard is spoiled for some reasons, ADS1299

can be unplugged from it and can be plugged on to a new board. It is also helpful

when migrating to newer designs in the development stages. Since we are dealing

with sensitive analog signals, certain PCB guidelines are followed. Some of them

are:

• The ADS1299 power supplies includes AVDD, AVDD1, and DVDD. As both

the AVDD and AVDD1 are used in analog operation of ADS1299 they should

be as quiet as possible. AVDD1 is known to have transients at fCLK (clock

source for ADS1299) as it supplies to the charge pump block . Hence, we

need to separate the power planes of AVDD1 and AVSS1 from AVDD and

AVSS. They should be star connected with the junction node near to the

supply.

• To filter AC signal noise in the power supply 1 µF and a 0.1 µF solid ceramic

capacitors are used for each supply of ADS1299.

• Digital circuits like micro-controllers on the layout must be placed with at

most care so that the return currents on those devices should not cross the

analog return path of ADS1299. Since the BioDaq v01 is an arduino shield,

there is no need to worry about this issue.
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Figure 2.4: Power supply Schematics

• Since the analog inputs have very high input impedance, they are extremely

sensitive to extraneous noise. Hence, direct connections avoiding any stray

wiring capacitance is ensures at analog input pins. It is recommended to

treat AVSS pin as a sensitive analog signal and connect directly to the supply

ground with proper shielding.
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Figure 2.6: BioDaq v01 mounted on arduino UNO

2.6 Final hardware Setup

Figure 2.6 shows bioDaq v01 mounted on arduino uno. Arduino is connected to PC

via serial universal asynchronous receiver transmitter (UART) bus. This system

has provision to connect 8 electrodes (single-end / differential) , a bias signal (used

in single-end mode), BIASREF and BIAS_ELECTRODE. The latter two are used

in right leg driven circuit which improves the CMRR of the system.

2.7 Initial Hardware Tests

2.7.1 Testing SPI link

As discussed in section 2.3.3, ADS1299 operation is controlled by SPI op-code

commands. After a system reset, all the registers of ADS1299 are automatically

set to default values. In order to test the working condition of SPI link between

ADS1299 and arduino, op-code value corresponding to RREG is sent from arduino

to ADS1299 to read all the default register values. fig 2.7 (a) shows the default
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Figure 2.7: Default register values of ADS1299

register values read from bioDaq v01 on a serial terminal. Each line on the serial

terminal has register name, register address, register value (hex), register value

(binary) in the respective order. Figure 2.7 (b) is to compare default register values

described in the data sheet of ADS1299. Every transaction between ADS1299 and

arduino is carried over SPI bus. This test verifies the working condition of micro-

controller and ADS1299 interface.

2.7.2 Input Referred noise

Input referred noise is the default noise present int the system even when the

inputs are shorted to the ground. Since, the designed instrument is mean to
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Input channel no: Input referred noise (µV rms)
1 0.1622
2 0.2025
3 0.1008
4 0.0965
5 0.175
6 0.0957
7 0.0996
8 0.1202

Table 2.2: Input referred noise

acquire EEG signals which are of 100uV magnitude, input referred noise must

be very low. According to the data sheet of ADS1299, input referred noise at

250 Hz data rate is around 0.14 uV. We tested the designed hardware to check

whether the input referred noise matches the data sheet value. RDATAC op-code

command is used to acquire data continuously from ADS1299. Table 2.2 shows

our observation table for input referred noise for all the 8 channels with all inputs

connected to ground. The data is acquired by applying 50Hz digital notch filter

and second order bandpass butter worth filter [0.1 - 65Hz]. On an average, the

input referred noise is close to the value mentioned in the data sheet. This shows

the PCB layout doesn’t induce any extraneous noise.

2.7.3 Internal Test pulse of ADS1299

As seen from fig 2.1, ADS1299 has a provision to generate internal test pulse.To

test the configuration settings of ADS1299, we program CONFIG2 register in

ADS1299 to generate internal test pulse as discussed in section 2.3.2. Digitized

data which is acquired over SPI bus is transferred to PC over serial UART bus.

An application implemented in ’Processing (language)’ receives the data from the

COM port (to which Arduino is connected) and displays the waveform on the

Open BCI (open source platform for BCI study) developed GUI. Figure 2.8 shows

the test pulse acquired from bioDaq v01.
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Figure 2.8: Test pulse generated from bioDaq v01 shown on Open BCI developed
GUI

2.8 Design of BioDaq v02

Though the BioDaq v01 serves the purpose of low cost, low power biopotential

data acquisition system, it lacks wireless feature and has a poor form factor which

cannot be used as a wearable device. Taking this into consideration, BioDaq v02

is designed with a small form factor of size 6 x 4 sq-cm which can be used as a

wearable device. Unlike bioDaq v01, version 02 doesn’t use arduino uno. Instead,

ATmega328P-AU is directly used on the PCB along with ADS1299. However ar-

duino opti bootloader is uploaded into ATmega328p to make the system compat-

ible with software used for bioDaq v01. It has a provision to connect a bluetooth

module to make the system wireless and a provision for FTDI to program via

UART bus. A detail analysis on the selection of bluetooth for a particular data

acquisition system is discussed in Appendix B. We used HC05 as the bluetooth

device in BioDaq v02. Bill of materials required for BioDaq v02 are mentioned in

appendix A. Schematics of BioDaq v02 is very similar to BioDaq v01 expect for

ATmega328P -AU replacing arduino uno. Figure 2.9 shows the top and bottom

layout of bioDaq v02. Figure 2.10 shows bioDaq v02 packed in a tic-tac box along

with a Nokia battery (800 mAh). It has a provision to switch on/off the device
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Figure 2.9: BioDaq v02 PCB layout

and a power jack to charge the battery. Any Nokia charger will serve the purpose.
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Figure 2.10: BioDaq v02 assembled in a tic-tac box. (A) Front view, (B) Back
view



Chapter 3

SSVEP Based BCI system

BCI systems working based on SSVEP signals are known to produce high ITR

and accuracy with minimal training [28]. Also, the fact there is significant ease of

operability and minimum uncertainty further motivates the use of SSVEP signals

for our work. Despite these facts, a full fledged implementation of such a system

remains constrained to optimal conditions in a lab environment. Recently, the

use of multiple EEG channels for effective SSVEP detection has been found give

improved performance. Unlike other BCIs, SSVEP based BCI does not require any

subject training. P300 based BCI also doesn’t require training but the accuracy

decreases after a certain time of usage whereas it is not the case with SSVEP

based BCI. Figure 3.1 shows a block diagram of SSVEP based BCI system.

This chapter includes complete details of SSVEP based online BCI system and its

implementation. The work mentioned in this chapter is a collaborative work with

Mr.Sharat S. Embrandiri, an M.S student in Applied Mechanics, IIT Madras. I

was involved in developing data acquisition system to acquire EEG and software

for visual stimulator. Mr. Sharat was involved in developing novel algorithms to

increase the classification speed and accuracy of SSVEP based BCI system. Apart

from this, he also ideated the experiment to understand the effects of different

shape stimuli on SSVEP strength 1 which is expalined in detail in this chapter.

3.1 BCI System functional segmentation

In general, the system can be segmented into different functional units as shown in

2.1. Initially, visual stimulus is provided to the user via a monitor or an LED grid

array. The signals of interest are extracted using electrodes placed on the scalp
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Figure 3.1: BCI block diagram

around a region of interest. The signal is then fed to the bio signal amplifier where

it is pre-processed so as to improve SNR and overall signal strength. It is then

digitized using a DAQ board at a predetermined frequency. The processor handles

rest of the tasks involving signal processing, feature extraction, classification and

decision making. Decision made governs the final action taken by an external

hardware unit such as an orthosis. A feedback mechanism is supplemented to aid

user in training.

3.2 SSVEP Component Estimation

The crux of our problem is to identify the user’s intention by decoding the SSVEP

signals emanating from the scalp with maximum accuracy and minimum time

delay. Accuracy is estimated as conventionally done by finding the ratio of the

misclassifications to the number of test elements. The time delay incurred in

processing the signal and producing the result has two major aspects involved.

Primarily, the temporal buffer size used for SSVEP signal component estimation
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is responsible for substantial delay. In addition, the algorithm itself, implemented

for SSVEP detection is responsible for the secondary delay incurred. Different

techniques have been derived and implemented for maximizing the classification

accuracy at a maximal bit rate possible. Here, bit rate refers to the number of

instructions send to the implementation device per minute [6]. The classification

technique discussed in the following sections mandate the need of an SSVEP EEG

Source model. The source model is so defined as to replicate an ideal noise free

SSVEP response. A good enough approximation as suggested by Regan et al

[13] is the stimulus flicker frequency and it’s harmonics, which essentially implies

a low pass filter operation. Repetitive visual stimulation yields series of quasi

sinusoidal TVEPs culminating into a near sinusoidal SSVEP. This model is used

as a reference for further computations involved in determination of predominant

SSVEP signal.

3.3 SSVEP EEG Source Model

The SSVEP EEG model used as a reference for further implementation discussions

comprises of simple sinusoidal signals. In fact, this would be representative of pure

SSVEP signal devoid of any noise components. The SSVEP EEG signal for N t

samples of Ny channels sampled at F s Hertz can be represented as a sum of Nh

sinusoidal harmonics of fundamental frequency f as shown below:

yi(t) =
Nh∑
k=1

aiksin(2πkft) (3.1)

where i ϵ[1,2,... Ny] and t ϵ [0,1/F s,2/F s, . . . N t ]

In matrix form, it can be written as

Y = XA (3.2)

where X = [sin(2πft) sin(4πft) . . . sin(2Nhπft) ]
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X = [x1x2...xNh
] (3.3)

A = [a1a2...aNh
] (3.4)

We can estimate the coefficient matrix A by the method of least square error.

In order to minimize ||Y − AX||2 , we take the derivative and equate to zero as

follows,

d

dA
[(Y − AX)T (Y − AX)] = 0 (3.5)

d

dA
[Y T Y − Y T XA − AT XT Y + AT XT XA] = 0 (3.6)

−2XT Y + 2XT XA = 0 (3.7)

A = (XT X)−1XT Y (3.8)

Estimate of signal component in Y, Ŷ = X(XT X)−1XT Y

Here, X represents SSVEP sinusoidal and their harmonics and A is the coeffi-

cient matrix of the respective sinusoidal basis. Equation 3.8 provides an intuitive

understanding of the components inherently present in the channel data Y. The

elements of the projection coefficient matrix A corresponds to the projection val-

ues of the channel data Y 1 , Y 2 , ...Y Ny onto the sinusoidal basis components X1

, X2 , ...XNh
. In fact, as later discussed, the projection coefficient matrix A can

itself be used to estimate the dominant SSVEP component. On careful analysis,

it can be shown that the projection values are nothing but twice the signal power

content at the respective basis frequency.

Equation 3.1 assumes zero phase shift of the basis frequencies. However, in actual

recordings, this is highly unlikely and due regard must be given to the phase aspect

of the signal. For this, we try two different alternatives. Firstly we extend the basis

vector matrix X to include the cosine counterparts of the sinusoidal components.

The new matrix X, is as shown in [3.11]
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X = [sin(2πft)cos(2πft)sin(4πft)cos(2πft)...sin(2Nhπft)cos(2Nhπft)] (3.9)

Also, it is interesting to note that the use of different permutations in X does not

affect the end outcome. A permutation matrix is used when there is a need to

interchange rows \ columns of a matrix. Apparently, the inclusion of Permuta-

tion matrix Π does not affect the subsequent operations performed. For column

permutations on X, we post multiply by Π

Let Z = X Π, where Π is the permutation matrix. Let Ŷ1 = X(XT X)−1XT Y ,

Ŷ2 = Z(ZT Z)−1ZT Y .

Ŷ2 = X Π((X Π)T (X Π))−1(X Π)T Y (3.10)

Ŷ2 = X Π(ΠT XT X Π)−1ΠT XT Y (3.11)

Ŷ2 = X(XT X)−1XT Y (3.12)

since ΠT Π = Π ΠT = I (3.13)

∴ Ŷ2 = Ŷ1 (3.14)

Hence the inclusion of a permutation matrix does not change the operations. It

proves that the specific order of arrangement of basis vectors in X is insignificant

with regards to the final result.

3.4 Visual Stimulus

There is no universally accepted consensus on the nature of the SSVEP dynamics

and cortical regions involved as surmised by the varying theories found in litera-

ture. SSVEPs have been hypothesized to be caused by a resonance phenomenon

occurring in localized cortical sources [36]. Alternatively, another theory suggests

wave-like dynamics (standing and traveling) for the propagation of SSVEPs from
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a focal point of origin in the visual cortex [37]. SSVEP components have also

been reported to exhibit significant variability across subjects [38], stimulation

type [39], etc.

Whilst most of the variables involved are irrepressible, the stimulation source can

be refined to elicit greater SSVEP response. In the past researchers have studied

on the effect of stimulation color, size, intensity and the distance between user

and the stimulus, etc. on SSVEP strength.

3.4.1 Effect of stimulation shapes on SSVEP response

3.4.1.1 Introduction

Effect of different shapes on SSVEP strength which was never studied before. The

reason for this study comes from the fact that orientation and size specific neurons

have been discovered in the occipital cortex, which activate only when excited with

specific patterns. Different shapes have different orientation and size aspects that

eventually lead to activation of different neuronal groups [40]. Further, neurons se-

lectively sensitive to the orientation and size of retinal images have been observed

[41]. This motivated us to believe that different shapes, which possess dissimilar

orientation and size facets are likely to yield varying magnitudes of SSVEP re-

sponse. Hence, we made an attempt to investigate the SSVEP response during

stimulation with different shapes and their combinations. Apart from aiding in

improved stimulator design for a BCI system, the study could also offer greater

insight into SSVEP dynamics.

3.4.1.2 Methodology

Electroencephalogram (EEG) signals were recorded from 4 male and 1 female

subjects between 22-28 years old having normal or corrected-to-normal vision.

Recordings were made from scalp sites OZ , O1,O2,POZ ,PO3,PO4,PO5,PO6 as

per the extended 10-20 convention. Data was acquired at a sampling frequency of
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Figure 3.2: Experiment to understand the effects of different shape stimulus on
SSVEP strength

250 Hz using the hardware described in chapter 2. For removing the power line

interference artifacts, the data was notch filtered at 50 Hz. The stimulation was

presented on an LCD monitor with a refresh rate of 60 Hz, with the stimulation

paradigm consisting of different shape combinations. For simplicity in nomencla-

ture, B denotes blank, prefixes R & G denote the colors red & green respectively

and postfixes T, S, P, H & C denote the shapes triangle, square, pentagon, hexagon

& circle respectively. All the shapes used for stimulation were regular polygons

inscribed in a circle of radius 180 pixels. The paradigm was presented with a

flicker frequency of 12 Hz (Flash frequency for single graphic stimuli and Pattern

reversal frequency for pattern reversal stimuli). A single session of a subject con-

sisted of presenting each of combinations for a period of 10s with intermittent 5s

blank screen for subject relaxation. Offline analysis using 5 sessions recorded from

each subject was done in MATLAB.

3.4.1.3 Signal Detection

As mentioned in section 3, we first build the source model X. Using X, we segregate

the EEG data Y into signal component Ŷ and noise component Ỹ by projection
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theorem as:

Ŷ = X(XT X)−1XT Y, Ỹ = Y − Ŷ (3.15)

Using the signal component Ŷ and noise component Ỹ , the Signal to Noise Ratio

(SNR) ’p’ can be computed as

p = Tr(Ŷ T Ŷ )
Tr(Ỹ T Ỹ )

(3.16)

The SNR ’p’ that is computed for each EEG recording Y corresponding to a

particular stimulation paradigm is eventually compared to identify the best shape

combinations.

3.4.1.4 Results and Discussion

We observed SSVEP responses spanning the first subharmonic (6 Hz), fundamen-

tal frequency (12 Hz) and first harmonic (24 Hz) in our recordings. Shape reversal

stimuli with dissimilar shapes can be literally considered to be the combination

of pattern reversal stimulus of 12 Hz in the overlapping region and flash stimulus

of 6 Hz in the non overlapping regions. This augmented paradigm could possibly

explain the sub-harmonic frequencies seen in some of the SSVEP responses.

The subject-wise SNR values computed for each stimulation paradigm is shown

in fig 3.3. A wide inter-subject variability in the SNR range was observed, which

could be attributed to the fact that SSVEP responses of subjects need not be

identical [38]. As seen from fig 3.3, the single graphic stimuli yielded poorer

SNR values relative to the pattern reversal stimuli for all subjects. This can be

substantiated by the fact that the contrast is lower in the case of single graphic

stimuli relative to the pattern reversal stimuli. Shape switching alone and color

switching alone yielded better SNRs than the single graphic stimulus. However,

the magnitude of SNR improvement for the above cases was found to be subject

dependent. Patterns with alternating color and shape yielded the highest SNRs.
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Although no particular shape and color pair was observed to perform univer-

sally well, significant subject specific trends were observed. The effect of color on

the SSVEPs is intuitive since they correlate directly with the stimulus contrasts.

Shape effects on SNR could possibly indicate the role of the orientation and size

sensitive neuronal groups of the visual cortex in the SSVEP dynamics.

Subjects reported after-image effects post stimulation on high contrast identical

shape pattern reversal paradigm. For long stimulation periods, this could cause

extreme user discomfort. Use of shape switching paradigm is particularly advanta-

geous in this aspect, since it is capable of counter acting the effects of image reten-

tion after stimulation. Single graphic stimuli yielded relatively poorer SNR values

relative to pattern reversal stimuli. Although no clear cut universal shape promi-

nence was evident, a subject-specific trend was observed. Stimulation paradigms

involving switching of shape and color elicited the strongest SNR values.

3.5 BCI System Design

Figure 3.4 shows an overview of the SSVEP based BCI system which was imple-

mented as a part of this project. We used four checker stimulus with stimulation

frequencies 15 Hz, 12 Hz, 10 Hz and 8.57 Hz to elicit SSVEP components in EEG.

To demonstrate a BCI based assistive device, we included a toy car whose move-

ments are controlled based on the stimulus the user is looking for an interval of

time. 15 Hz , 12 Hz, 10 Hz and 8.57 Hz corresponds to forward, left, backward

and right movements of the toy car respectively. We used canonical correlation

analysis to classify SSVEP components.

3.5.1 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a multivariate statistical method to iden-

tify the underlying correlation between two data sets. CCA extends the ordinary

correlation, which is constrained to a pair of variables, to include data sets of
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Figure 3.4: BCI system overview
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variables. In CCA methodology, the correlation between canonical variables gen-

erated by linear combination of the variable data sets is studied. The coefficients

used for generating the canonical variables, known as the canonical coefficients is

obtained so as to maximize the correlation between the data sets.

CCA operates on two sets of variables. While one is the raw EEG data set pro-

cured from different electrodes placed across the scalp, the other is the simulated

EEG base model. X of dimension N t × 2Nh corresponds to the source model

of sinusoidal. Here N t is the number of time samples and Nh is the number of

harmonics considered for the source model. The raw EEG electrode acquired data

set notated as Y has a dimension of N t × NY , where N t is the number of time

samples as before and NY is the number of electrode channels. The canonical

variables denoted by x and y is obtained by linear combination of canonical co-

efficients W x and W y on X and Y respectively. The canonical coefficients are

obtained as a resultant of maximizing the correlation p(x,y) between x and y

x = X ∗ Wx (3.17)

y = Y ∗ Wy (3.18)

p(x, y) = E[xT y]√
E[xT x]E[yT y]

(3.19)

p(x, y) = W T
x CxyWy√

W T
x CxxWxW T

y CyyWy

(3.20)

To obtain the optimal canonical coefficients, we maximize the correlation coeffi-
cient p(x,y)

d

dWx

p(x, y) = 0 (3.21)

d

dWy

p(x, y) = 0 (3.22)
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On solving, we get

CxxWy = pλxCxxWx (3.23)

CyyWx = pλyCyyWy (3.24)

where, λx = λ−1
y =

√√√√ W T
y CyyWy

W T
x CxxWx

(3.25)

Substituting and solving, we get

Wy = pλxC−1
xy CxxWx (3.26)

Wx = pλyC−1
yx CyyWy (3.27)

=⇒ C−1
yy CyxC−1

xx CxyWy = p2Wy (3.28)

and C−1
xx CxyC−1

yy CyxWx = p2Wx (3.29)

By Eigen analysis, the solution for Wx and Wy can be obtained as the Eigen vec-

tors. Also the correlation coefficient between the canonical variables is equivalent

to the square root of the eigen values. We only consider the pair of the eigen vec-

tor filters corresponding to the highest eigen value (correlation coefficient). The

correlation coefficient is computed for each frequency class model and the class

yielding the highest correlation coefficient value is decided as the final choice.

3.5.2 Calibration

Calibration is an essential step in SSEVP based BCI systems as the classification

parameters differ from individuals and environmental conditions. In the calibra-

tion session raw EEG is acquired from 8 electrodes placed primarily around the oc-

cipital region at a rate of 256 samples per second. Specifically, the electrode sites as

per the 10-20 system of EEG electrode configuration areOZ , O1,O2,POZ ,PO3,PO4,PO5

,PO6. In this session, the subject is shown four checker patterns with pattern re-

versal rates of 15 Hz, 12 Hz, 10 Hz and 8.75 Hz. As per the voice commands, the
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user is asked to focus on a particular stimulus. Raw EEG is stored during this

interval with a frequency stamp corresponding to the stimulus. This frequency

stamp is used to evaluate classification performance by varying other parameters

like buffer length , correlation threshold, etc which are discussed in section 3.5.3.

3.5.3 Offline analysis

Canonical Correlation Analysis (CCA) was implemented on raw EEG calibration

data. CCA was implemented on overlapping time segments of overlap period N t

/4 , whereN t is 256 samples.The source model was constructed for all the four

frequency classes namely 15 Hz, 12 Hz, 10 Hz and 8.57 Hz with inclusion up to

the third order harmonic content.

Initially the source model is generated for all the four frequency classes. As dis-

cussed previously, Eigen analysis is performed to compute the canonical coeffi-

cients and correlation coefficients for each buffer length of data with respect to

the generated source models. Final classification is performed by assigning the

buffered time chunk of EEG data to the class yielding maximum correlation co-

efficient. Classification performance can be evaluated by comparing the results of

CCA with the prefixed classes in calibration data at any given time. A sample

plot of buffer size vs classification performance obtained for a subject is as shown

in fig 3.5. A sample plot of classification % accuracy vs correlation threshold value

for background obtained for a subject is shown in fig 3.6.



3.5 BCI System Design 41

Figure 3.5: Buffer length vs classification error

Figure 3.6: Classification % accuracy vs Correlation threshold for background

3.5.4 Online implementation

From the offline analysis, we can estimate the least buffer length for which a good

classification performance can be achieved. CCA is applied on this buffer length to

calculate correlation values for each frequency class. Maximum correlation value

obtained from all the classes is compared against correlation threshold for the

background class (obtained from offline analysis). A command corresponding to



3.5 BCI System Design 42

maximum correlation class is executed only if the value is above this threshold.

Otherwise, it is declared as zero class which means the user is not looking at the

visual stimuli. Buffer length and correlation threshold for background class varies

with the subject and other conditions like the size, intensity of the stimulus, etc.

Hence, calibration is essential for this BCI system. First prize was awarded for

live demonstration of SSVEP based BCI system in SHAASTRA Research Expo

at IIT Madras.



Chapter 4

EOG Based HCI system

4.1 Introduction

Electrooculograms (EOGs) are strong bio-potentials induced by eye movements.

The metabolically active retinal epithelium generates the Corneal Retinal Poten-

tial (CRP), which imparts the eyeball it’s dipole characteristics [26]. Using bi-

channel acquisition with electrodes aligned along the horizontal and vertical axes,

signals pertaining to the eyeball movement can be acquired. Useful EOG features

are generally observed in the 10-100 µV magnitude range and 0- 10 Hz frequency

range [26]. EOGs being essentially eye movement dependent can be manipulated

by a human, which offers a way for an effective human-computer interaction. Po-

tential applications of EOG include context recognition systems [27] and assistive

technology such as wheelchairs [28], alarm systems [26] etc. In this work, an EOG

based virtual keyboard, a potential assistive device to aid communication for par-

alyzed and disabled patients with intact and functional ocular system is proposed

and implemented. Despite it’s relatively high magnitudes, EOG signals are still

susceptible to non deterministic variations since they are governed by numerous

parameters such as eye blinks, electrode placement, head movement, luminance

etc., which need not be constant across subjects and sessions. To overcome these

constraints, we use a simple multi-thresholding algorithm for EOG detection and

classification. Prior to device use each time, threshold values are derived from a

calibration session for individual subjects. After verifying the offline accuracy, the

algorithm is ported to an asynchronous mode EOG based virtual keyboard. The

asynchronous mode accuracy and speed is estimated to determine the efficacy of

the designed system.
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Figure 4.1: Electrode configuration to acquire EOG signals

4.2 Acquiring EOG signals

EOG is acquired by bioDaq v02 from particular positions on the face as shown

in fig 4.1. Differential voltage between Vpos and Vneg corresponds to the verti-

cal channel, which yields information about blink and vertical movement of the

eyeball. Similarly, the differential voltage between Hpos and Hneg corresponds

to the horizontal channel, which gives information about horizontal movement of

the eyeball. A wearable mask with thin copper plates (dry electrodes) attached

at specific positions as shown in fig 4.2 is designed for acquiring EOG. Both hor-

izontal and vertical channels are sampled and digitized at a rate of 250 Hz using

bioDaq v02. The digitized data is streamed continuously to PC via bluetooth for

gesture classification. On the receiver side (i.e. PC), Processing (language) based

applet is designed to acquire, filter (passband 0.1-30 Hz) and classify the data into

commands and send to a Virtual Keyboard applet.
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Figure 4.3: AsKey home page

4.3 EOG based assistive application - AsKey

’Processing (language)’ based application is designed to implement EOG based

assistive application. We call this application as ’AsKey (Assistive keyboard)’.

’Processing’ IDE helps to port this application to Windows / UNIX/ MAC. Fig-

ure 4.3 shows the home page of AsKey. In this page, the user need to give details

like COM port to which bioDaq v02 is connected , baud rate at which the blue-

tooth transmits, calibration write file name and calibration read file name. It

has two buttons in the bottom viz., CALIBRATE and KEYBOARD. Respective

applications will be instantiated on clicking these buttons. Details of these child

applications are explained in sections 4.3.1, 4.3.2 . Any run-time errors caused

due to invalid inputs by the user will be displayed in the bottom most line of the

home page.

4.3.1 Calibration session

From the experiments conducted, we realized that EOG signal characteristics like

amplitude and signal width slightly vary with a person to person. Hence, training
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Figure 4.4: EOG calibration pictures: (A) Start, (B) Blink, (C) Relax, (D) Center
-> top, (E) Top -> center, (F) Centre -> left, (G) Left -> centre, (H) Centre ->
bottom, (I) Bottom -> centre, (J) Centre -> right, (K) Right -> centre, (L) End
of calibration
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the algorithm to understand the user EOG signals before entering into online mode

was essential to achieve higher accuracy in classifying the signals.

The fig 4.4 shows the list of pictures used in calibration session. Each picture

shown to the user in the full-screen mode. The user is made to sit in a fixed

position at a distance of 60 cm from the monitor with his eye level at the center of

the screen and asked not to turn his/her head in the training mode. He/she has to

follow the audio commands sent from the software like ‘blink’ (B), ‘up’ (U), ‘left’

(L), ‘down’ (D), ‘right’ (R), ‘center’ (C). For every command from the set {B,

U, L, D, R}, ‘center’ command was given after 2 sec. EOG signals from the two

channels are acquired during this 2 sec window and stored in calibration write file

(specified by the use in home page) for calculating the classification parameters.

The user is requested not to perform any other eye movement other than the

moving the eyeball from center to a particular position on the screen as per the

audio command in this 2 sec window. After the ‘center’ command is given, a ‘rest’

period of 3 sec window is given to the user before giving the next command. EOG

signals are not captured during this window. For every ’rest’ command, the user

is asked to look at the center and relax till he receives the next command. We

followed the following order of commands in the training mode:– B-C-rest- B-C-

rest- B-C-rest-U-C-rest- U-C-rest- U-C-rest-L-C-rest- L-C-rest- L-C-rest-D-C-rest-

D-C-rest- D-C-rest-R-C-rest- R-C-rest- R-C-rest.

4.3.2 Keyboard

4.3.2.1 Controlling keyboard

Figure 4.6 shows a virtual keyboard, which can be controlled by eye movements.

Blink, left and right movements of the eye are used to navigate and select the

characters on the keyboard. This virtual keyboard is designed in ‘Processing (lan-

guage)’ environment and can help the user to type a text using his eye movements.

In this application, there is a highlighter scrolling vertically from cell to cell at
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Figure 4.5: EOG signals acquired during calibration session

a speed of 1 cell/sec (speed can be adjusted according to the experience of the

user) . The user needs to blink when a particular character of his/her choice is

highlighted . The user needs to quickly gaze left/right outside the dimensions of

the monitor and return center to move the highlighter to the left/right column

respectively.

4.3.2.2 Feature extraction and Classification

As soon as the keyboard application is launched, it loads the calibration data

from calibration read file as mentioned by the user in home page. The following

classification parameters are calculated from the calibration data.

• Bth = a * maximum positive voltage in vertical channel when the user blinks

• Lth = b * maximum positive voltage in horizontal channel when the user

gazes left.

• Rth = c * maximum negative voltage in horizontal channel when the user

gazes right.
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Figure 4.6: Virtual Keyboard controlled by eye movements

Here, the values of the coefficients are empirically chosen as a=0.8, b=0.9 and c =

0.9 after careful offline analysis on many calibration files. Though the calibration

includes up and down movements, information related to this is not used in the

keyboard application.

For every 0.2 sec (equivalent to 50 samples for a 250 Hz data rate) temporary

buffer in the application is updated with the incoming 2 channel EOG data from

the micro-controller after applying a passband filter of frequency ranging from 0.1

to 30 Hz. Maximum voltage in vertical channel Vmax, the maximum and minimum

voltages in horizontal channel Hmax and Hmin of this buffer are computed . Vmax

is then compared with Bth for blink detection . The current character highlighted

on the keyboard is written on the text document if Vmax is greater than Bth .

Otherwise, Hmax and Hmin are compared with Lth and Rth to identify whether it

is left or right movement of eye .If Hmax > Lth, current buffer is decoded to index

1. If Hmin < Rth, current buffer is decoded to index 2. Current buffer is decoded

to index 0 if both the condition fails. As seen from fig 4.7, gesture (A) and (B)

differ from transition of index from 1 to 2 or 2 to 1. A transition from 1 to 2 is
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Figure 4.7: Eye movements. (A) Center -> Left -> Center , (B) Center -> Right
-> Center
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deciphered as left command and a transition from 2 to 1 is deciphered as right

command and the highlighter is shifted to the left or right column accordingly.

This system achieved 100% accuracy online with an average speed of 1 char/5 sec.
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Conclusions

• Designed a low cost 8 channel (single-end / differential) biopotential data

acquisition system with arduino uno as the micro-controller board interfacing

with the analog front end , ADS1299

• Designed a low cost 8 channel wearable and wireless biopotential data ac-

quisition system with a form factor of 6 x 4 sq cm. Uses ATmega328p -AU

instead of arduino uno board and a bluetooth module.

• Conducted experiments to study the effects of stimulation shapes on the

steady state visual evoked response.Results indicate that there might exist

a subject dependent connection between the elicited SSVEP and choice of

shapes for the stimulation paradigm.

• Demonstrated a 4 class online SSVEP based BCI. In this, the subject can

control the movements of a toy car with his brain waves. Developed software

for calibration and online sessions in ’Processing (language)’.

• Improved the design of an existing wearable dry electrode mask to acquire

EOG signals.

• Developed a user-end assistive application called ’AsKey’. This is a virtual

keyboard controlled by eye movements. Developed an efficient and simple

algorithm to classify blink, left and right movements of eye.
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Future scope

• Classification speed and accuracy of SSVEP based BCI system can be im-

proved with novel and efficient algorithms.

• Design a wearable dry electrode based BCI system which should take very

less setup time. The design should also focus on user comfort.

• BioDaq v02 can be improvised to a low cost product in the market.

• Wearable EOG mask should be redesigned focusing at user comfort.

• ’AsKey’ application can be developed in android environment. This makes

the user to carry a tablet rather than a PC along with him.

• EOG classification algorithm can be implemented in a micro-controller as it

involves a basic voltage thresholding. The micro-controller can transmit only

gestures rather than the complete raw data. As it transmits only few bytes,

power consumption by the bluetooth module reduces to a greater extent.
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Appendix A

Bill of materials

Part Function Quantity

0.1µF ,0.01 µF,

2.2 µF, 10 µF

Decoupling capacitors 10

1.5 nF For band passing the bias reference signal of ADS1299 1

1 µF Decoupling capacitors for ADS1299 15

4.7 nF , 5 KΩ Used in anti-aliasing filters for each electrode input. 20

100 µF Bypass capacitor for ADS1299 1

1 MΩ For band passing the bias reference signal of ADS1299 1

10 KΩ Pull up resistors 5

Electrodes To acquire EEG signals 8

ADS1299 Acts as a bio-potential amplifier and digitizer 1

TPS60403 Charge pump inverter. Helps to generate AVSS 1

TPS72325 To generate AVSS (=-2.5V) 1

TPS73225 To generate AVDD (=2.5V) 1

TPS70933 To generate DVDD (=3.3V) 1

ATmega328P-

AU

To interface with ADS1299 and transmit data to PC 1

HC05 Bluetooth module used in Biosig v02 1

Table A.1: Bill of materials



Appendix B

Choosing a bluetooth module for wearable

assistive devices based on biopotentials

Table B.1 shows some of the bio-potential signals with different amplitude and

frequency ranges. Among all biopotential signals EMG has a higher bandwidth.

So, we need a sampling frequency of more than 20KHz. Table B.2 shows the

data generated for 8 channels for different resolution of ADC at a sampling speed

of 20KHz. All the existing Bluetooth modules in the market communicate via

UART (Universal Asynchronous Receiver Transmitter) protocol. All the existing

micro-controllers support this communication protocol. Table B.3 shows some of

the bluetooth modules with different maximum baud rates.

Sampling speed (Hz) ADC resolution

8 bits 12 bits 24 bits

500 0.030 Mbps 0.045 Mbps 0.091 Mbps

1000 0.061 Mbps 0.091 Mbps 0.183 Mbps

1500 0.091 Mbps 0.137 Mbps 0.274 Mbps

2000 0.122 Mbps 0.183 Mbps 0.366 Mbps

Table B.4: Data generated for different ADC resolution and sampling speed

Maximum current consumption (active mode) is around 30-50mA for the above

bluetooth modules. They have a default firmware inbuilt in them, which enables

Biopotential signal Amplitude(µV) Bandwidth (Hz)
EEG 1-100 0-150
EOG 5-200 0-50
EMG 20-2000 0-10000
ECG 500-4000 0.01-250

Table B.1: Biopotential signal amplitudes and frequency ranges
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ADC bit resolution Generated Data (Mbps)
8 >0.152*8 = 1.216
12 >0.228*8 = 1.824
24 >0.457*8 = 3.656

Table B.2: Data generated for a given ADC resolution

Bluetooth module Max baud rate (Mbps)
HC-05 1.318
RN-42 0.87

BTM410 0.87
WT12 2.63
WT32 2.63
WT32i 3.515

Table B.3: Bluetooth modules

the user to change the data rate,name, connectivity password,etc through wireless

communication. Table B.4 gives an analysis of data generated for different ADC

resolution and sampling speed.All the above Bluetooth modules satisfy the above

sampling speeds. So, bluetooth module with low cost, low power, small size and

high reliability must be selected.
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