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ABSTRACT 

 

 

KEYWORDS: Data Centers, analytic modeling, Continuous Time Markov 

Chain(CTMC). 

 

Performance and usability of Cloud services are in general stochastic in nature and they 

are affected by many factors such as location of Data Centers, number of physical 

machines in Data Centers, Virtual Machine(VM) characteristics, nature of workload, 

infrastructure characteristics and management policies. Due to this, developing a scalable 

analytic model for Cloud becomes difficult. Data Centers, pricing structure and 

percentage usage of Data centers and Physical Machines are usually not taken into 

account while modeling resource allocation in an IaaS based Cloud. We have used these 

factors in modeling the Cloud in this thesis. 

 

In this thesis, we have tried to understand the complexity of the cloud computing systems 

by modeling the Infrastructure-as-a-Service(IAAS) based Cloud. We have built an 

analytical model for Cloud using Continuous Time Markov Chain(CTMC) modeling. 

The model is built as two interacting sub-models for simplification and better 

understanding. We also have simulated the model to understand the working of the cloud 

more clearly. 
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NOTATIONS 

 

 

λ         Input rate of job requests 

β         Rate of allocation of VM 

δ Rate of finding a PM in a given pool 

µ Service time of a PM 

π Steady state probability of a given state



CHAPTER 1 

INTRODUCTION 

 

Cloud computing is mostly based on sharing of resources in order to reduces the wastage 

of resources on the consumer side and also reduce the usage of power and economy. It is 

a model of network based computing where the consumers submit their requests for 

computing resources such as operating systems(OS), software packages, storage, 

programming environment etc. Once the requests are evaluated and provisioned to the 

users, the users can use these computing resources without having any knowledge of the 

resource locations and execution environment. 

1.1. Definition for Cloud Computing 

National Institute of Standards and Technology (NIST) provides the following definition 

for cloud computing [1] : 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g. networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with 

minimal management effort or service provider interaction. 

 

1.2. Properties of Cloud Services 

Cloud computing is a computing model where various computing resources such as 

infrastructure, platforms, software are made available to the users across the globe as 

services over internet. The Cloud services are different from the traditional hosting 

mainly in four aspects.  

1. It is an on-demand service.  

2. It is highly elastic since the resources used by the client can vary at any given 

time and in general the pricing is modeled on pay-per-use basis, so users have to 

pay for the resources they use at a given time.  

3. It enables the users to access the systems using the internet regardless of their 

location.  
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4. The service is fully managed and maintained by the provider. There are different 

types of services that the supplier provides. One can use the service suitable for 

ones needs. 

  

1.3. Major Cloud Services 

The three main services provided by the cloud computing are: 

1 Infrastructure as a Service (IaaS), 

2 Platform as a Service (PaaS), 

3 Software as a Service  (SaaS) 

 

In IaaS, physical or virtual machines and other resources are provided to the consumers 

on-demand from the large pools installed in the data centers. Examples include 

OpenStack, Amazon EC2 [4]. 

 

In the PaaS models, the consumers are provided with the computing platform, which  

typically includes operating system, database, web server, development tools. Consumers 

can create softwares using the tools available through the platform. Example of PaaS is 

Microsoft Azure. 

 

In SaaS,  the consumers are provided access to the applications, softwares and databases, 

while the providers manage the infrastructure and the platform. Example of SaaS is 

Gmail. 

 

1.4. Components of an Open Source Cloud 

An Open Source Cloud comprises of the following components [3], [14]: 

1. Hardware and the Operating System which resides over a physical machine. 

2. Hypervisor for example Xen, KVM. It provides a platform to initiate multiple 

Virtual Machines(VMs) on the same physical machine [12]. 

3. VM disk images. 
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4. Networking (includes DHCP and DNS) 

5. Interface (for resource configuration and VM allocation) 

6. Cloud Framework (like OpenStack, Eucalyptus) 

 

The rest of the thesis is organized as follows. In Chapter 2, we give a generic end-to-end 

model to IaaS based cloud. In Chapter 3, we model the first sub model of IaaS based 

Cloud, the Resource Provision Decision Engine(RPDE) using Continuous Time Markov 

Chains(CTMC) approach, write equations to find the probable time spent in each state of 

CTMC and hence can be used to compute the delay cause by RPDE. We also discuss the 

optimizer which can be used to improvised decision making for selecting a PM for the 

job allocation. In Chapter 4, we model the provisioning of VMs for a job and the service 

execution after a PM is selected for the particular job. In Chapter 5, we simulate the end-

to-end model of IaaS based cloud and present our results. In Chapter 6, we conclude the 

thesis. 
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CHAPTER 2 

MODELING OF IaaS BASED CLOUD 

 

On receiving a request, an IaaS Cloud provisions on-demand Operating System instance 

with computational resources in the form of Virtual Machines on one or multiple 

Physical Machines which are deployed in Datacenter’s provided by the supplier. 

Performance and dependability of such cloud based services are very critical [7]. 

Providers of IaaS cloud offer Service Level Agreements(SLA) to the clients as a 

guarantee for their services which are not to be violated. The performance of cloud 

however depends on various factors such as Physical Machine characteristics(cores, 

RAM, memory,etc), hypervisor, request types and their rate, location of DataCentres, 

management of resources by the provider etc. [2]. Hence, systematic assessment of cloud 

properties is difficult and non-trivial. In this thesis, we have tried to model the IaaS based 

cloud, which is scalable, so that we get better insight to the structure of the cloud and its 

functioning and hence one can assess the performance and other properties of the cloud 

[10].  

We have used stochastic approach to model the IaaS cloud. Since the cloud architecture 

is complicated, we have tried to break the model into submodels, model different parts of 

the cloud using Continuous Time Markov Chain(CTMC) and combine it altogether to 

explain the cloud architecture [8].  

In the rest of this thesis, first, a general end to end model of IaaS cloud is discussed, then 

we model various parts of the general model using CTMC approach, quantifying the 

effects of various parameters like request rate, service rate, location of DataCentres, 

number of PMs, number of VMs per PM, etc. Then we simulate the end-to-end model 

and conclude. 
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2.1. General end to end model of IaaS Cloud 

When a job is processed, an instance of OS is deployed on a VM. The VM can be 

customised by the user giving them access to deciding the size of memory, cores, RAM, 

etc. These VMs are deployed on a PM which can host multiple VMs. These PMs reside 

in DataCentres which are managed and maintained by the provider. Each stage in 

deployment of a VM on a PM causes a delay which can be optimized by various 

techniques. This optimisation can be done by splitting PMs at each datacentre into three 

pools namely, hot, warm and cold pool. PMs in hot pool are turned on and are ready to 

use; in warm pool are turned on but in standby mode; in cold pool are turned off.  

Deploying a VM image on a PM of hot pool causes minimum delay, while it requires 

more time to provision a VM on PM of warm pool as it takes time for the PM to be ready 

to use for deploying the VM. PMs in cold pool need to be turned on to use and hence 

causes maximum delay. But this arrangement helps in reducing resource utilisation and 

power consumption.  

2.1.1. Factors considered to decide best PM for a job 

There are many factors that are considered before selecting the PM and not just selecting 

the  PM based on the minimum delay time. The metrics used for deciding the best PM for 

a particular job are : 

1. Start up time in the hot, warm and cold pools. 

2. Distance of the datacentre from the location of origin of request. 

3. Pricing of PMs in datacentre 

4. Percent utilisation of PM at a given time due to ongoing requests 

It is possible that a PM from hot pool is available but is too far compared to available PM 

from warm pool from a closer datacentre. In this case the PM from hot pool will cause 

lesser startup delay but can take much more time to complete the request life cycle. 

Hence, a warm pool PM can at times be better than hot pool PM. Pricing of PMs vary 

with datacentres. There are consumers who give priority to pricing over response time. 

Overloading a PM with multiple requests which slows down the response time is also not 
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desirable. Hence a proper balance between the above factors depending on the user 

preferences is necessary for selecting a suitable PM for the job. 

The optimal size of these pools can be different across different datacentres and can be 

determined based on number of jobs a datacentre at a certain location is expected to 

receive at any given time. Forecasting techniques can be used to determine the size of 

such pools. This thesis does not concentrate on the size of such pools.  

Here, it is assumed that all the PMs and all the VMs are identical, each job requests for 

one VM.  

 

Figure 2.1 :  End-to-end model of IaaS based Cloud 

The above figure 2.1 shows the generic model of the IaaS based cloud for how the 

request preceeds through the architecture till it is resolved and results are provided back 

to the user [11]. 

Requests when submitted passed through a first come first serve(FCFS) queue to a 

Resource Provisioning Decision Engine(RPDE). It is assumed that no requests come 

simultaneously. There is a limit on the number of requests the queue can have at a given 

time. It rejects any new request if the queue is full. The RPDE takes one request at a time 

and determines the best possible PM available for it across the datacentres that which is 

found by optimising the metrics discussed in part 2.1.1. It is possible that a PM from a 

warm or cold pool is selected though there is availability of PMs in hot pool in different 

datacentre. But within a datacentre a PM from hot pool is always given priority over that 
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from warm pool and similarly PM from warm pool is given over that from cold pool. The 

algorithm that we have used is such designed that it looks at the K nearest datacentres 

from the location of origin of request. If no PM is available in any of these datacentres 

that can satisfy the user requirements then the request is rejected.  

Once the PM is selected, the next part is assigning and instantiating a VM in the selected 

PM. It has been assumed that all the VMs are homogenous that is, they have same 

storage, cores and RAM. Only one VM can be instantiated at a given time. Hence, in case 

of multiple requests for VMs in the same PM, the request are stalled in a FCFS queue. 

Once the VM is instantiated, it is allocated to the user to attend to its job. Once the job is 

completed, the VM is released and it is available again to be used to attend to another job 

request. 

The entire model has been broken into two sub models. 

1. Resource Provisioning Decision Engine(RPDE) 

2. VM instantiation and deployment and run time execution of the job 

Each of these models are discussed in detail in the next 2 chapters of the thesis. 
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CHAPTER 3 

RESOURCE PROVISION DECISION ENGINE 

 

3.1.  Major factors affecting PM selection 

The function of RPDE is to allocate the best possible PM for the job. The factors affecting 

the selection of the best PM are :  

1. Start up time in the hot, warm and cold pools. 

2. Distance of the datacentre from the location of origin of request. 

3. Pricing of PMs in datacentre [6] 

4. Percent utilisation of PM at a given time due to ongoing requests 

CTMC and queueing theory is used to model RPDE [5]. The model for RPDE is shown in 

two parts for simplicity. Model  showed in figure 4.1 portrays how a PM is found across 

multiple datacentres for a single job request. Figure 4.2 shows how queue of requests 

are resolved across multiple datacentres. 
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3.2. CTMC Model of RPDE 

 

Figure 3.1 : Allocation of PM across multiple DCs for one job request 

In figure 3.1, all the states in first row are labeled as (k,n) where k denotes the kth closest 

datacentre to the location of origin of the request, and n denotes the number of jobs 

waiting  in the queue. Below each of these states, there are three states labeled ‘h’, ‘w 

and ‘c’. These denote the PMs in hot, warm and cold pool respectively for the given 

datacentre. 

Figure 3.2 also follows the same notation of (k,n). But here, state (k,n) denotes the 

complete datacentre k that is, it denotes the hot, warm and cold pool of the kth 

datacentre. 
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Figure 3.2 : Resolution of multiple job requests across multiple DCs to allocate best 

possible PMs. 

3.3. Input Parameters 

Input parameters used are  

λ – it denotes mean job arrival rate, where job arrival is assumed to follow poisson 

function. 

  ,       – rate of finding a PM in hot, warm and cold pool respectively 

         – Probability that the PM of hot/warm/cold pool can accept the job  

N – maximum number of jobs allowed in the buffer 

K – maximum number of datacentres that the algorithm will look for to find the PM 

Y and Z – they denote the response rate which is function of the hot, warm and cold 

states of the corresponding DC and it can be derived by solving the model 4.1. But these 
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are redundant variables and the complete model can be solved first finding these 

variables. 

         are the probabilities that a PM in the corresponding pool satisfies the metrics 

and is eligible to accept the job request and are not the probabilities that the PM is 

allocated to cater to the request. N and K can be determined by the provider, while λ, 

  ,       can be forecasted or estimated for the PMs.  

3.4. Working of RPDE 

In order to find the K nearest  datacentres, bucket sort can be used to identify 

datacentres in the vicinity of location of request. Then for the nearby  datacentres, one 

can bubble up the nearest datacentre(partly carrying out bubble sort), identify a PM 

that can cater to the request. If there is a need to find PM from other datacentre that 

can be better than the current one, then bubble up the next nearest datacentre and 

follow the same procedure. This model considers the pricing over different datacentres 

to be constant. Even if pricing varies across different DCs, one can sort on basis of price 

also as a factor and then carry out the same procedure as explained above. 

As shown in figure 3.1, when a request arrives, the algorithm first finds the nearby 

datacentres to the location of origin of request using bucket sort. Then among the 

nearby datacentres, it finds the nearest datacentre by bubbling up the nearest one. Now 

it looks for availability of PM in the hot pool of this datacentre. The mean lookup time is 

given by      , mean probability to find a PM is given by   . High priority is given to 

finding PM in the hot pool hence if it finds a PM in the hot pool of the nearest 

datacentre, it will allocate the PM for the job. Else if no PM isavailable to cater to the  

needs of the user, then it will look into the warm pool for PM. Two things can occur in 

this state, 

 (i) if  it doesn’t find a PM in this pool, it will move to the cold pool or  

(ii) if it finds the PM in the warm pool then it will generate a metric for the PM 

considering the factors discussed in part 3.1 , such that this metric can later be used to 

to compare with other such eligible PMs to identify the best PM available for the job. It 
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stores the metric along with the other useful details of the PM(like location of 

datacentre, identity of the PM, etc).  Then it will move on to finding the next closet 

datacentre to find such eligible PM. The next closest datacentre is found by bubbling it 

up over the nearby datacentres. 

When it looks for PM in the cold pool, then no matter if  it finds a PM or not, it will move 

on to the next closest datacentre. If it finds a PM, it will generate a metric and store the 

details of PM before moving further. 

The same procedure is followed over the remaining datacentres also. Whenever it finds 

a PM in hot pool for any datacentre, it will  compare the stored metrics of the eligible 

PMs that it found for all the nearer datacentres and it finds the best possible PM for the 

job and this PM is allocated for the job by sending the details of this PM to the next 

stage where a VM is allocated and instantiated. 

If the algorithm doesn’t find any PM for the job over the K datacentres then the user 

request is rejected. 

Figure 3.2 explains the queuing in the buffer when a new request comes in while a 

request is already being carried out. The notation (k,n) denotes kth datacentre and n 

requests in the buffer. When the system receives its first request, it goes to state (1,1) 

which is closest datacentre to origin of request and it keeps moving further to states 

(2,1), (3,1), … untill it finds the optimal PM for the job. Suppose the algorithm was in 

state (k,1) and during the process it receives another request, the it will put this request 

on hold in the buffer, which is, it will move to state (k,2). State (k,n) implies that the 

system is attending to a request and the are n requests in the buffer which needs to be 

attended. While in state (k,n), suppose the system finds the right PM for the current 

request, then it moves to state (1,n-1) which is it starts attending to the request at the 

head of the FCFS based queue and there are n-1 requests in the buffer. The maximum 

size of the buffer is N, so any more requests while the are N in the buffer are rejected. 
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3.5. Mathematical Formulation of the Model 

We try solving both the given Markov Chain models simultaneously to find the steady 

state probability of each state which is denoted by  (     ), where k is the kth datacentre, 

n is the number of pending requests in the buffer and j  denotes the current pool the 

system is in and it takes values h ,w, c corresponding to hot, warm and cold pools 

respectively. These probabilities shows the percentage distribution of time the system 

spends in each state. This information can be used to find the total delay caused by the 

system per request and also gives insight to what is the optimal number of datacentres 

should the provider look into to determine the best possible PM such that the rate of 

rejection is under control and the quality of service is improved. 

 

On solving the above two models simultaneously, we get the following equations :  

For the state (0,0), 

  (   )       ( (     )    (     )      (     ))        (     )     (     ) 

 

For state (1,1), equations for the hot, warm and cold pool respectively are : 

(    ) (     )     (   )      ( (     )    (     )      (     ))        (     )

    (     ) 

(    ) (     )    (    ) (     ) 

(    ) (     )    (    ) (     ) 

 

For states (k,1), where k ranges from 2 to K , equations for hot, warm and cold pools are : 

(    ) (     )       (     )     (       ) 
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(    ) (     )    (    ) (     ) 

(    ) (     )    (    ) (     ) 

 

For states (1,n), where n ranges from 2 to N-1 : 

(    ) (     )     (       )      ( (       )    (       )      (       ))

       (       )     (       ) 

(    ) (     )    (    ) (     )     (       ) 

(    ) (     )    (    ) (     )    (       ) 

 

For states (k,n) where n ranges from 2 to N-1 and k ranges from 2 to K : 

(    ) (     )       (       )     (       )    (       ) 

(    ) (     )    (    ) (     )     (       ) 

(    ) (     )    (    ) (     )    (       ) 

 

For state (1,N) : 

(    ) (     )    (       ) 

(    ) (     )    (    ) (     )     (       ) 

(    ) (     )    (    ) (     )    (       ) 

 

For states (k,N), where k ranges from 2 to K : 

(    ) (     )       (       )     (       )    (       ) 

(    ) (     )    (    ) (     )     (       ) 

(    ) (     )    (    ) (     )    (       ) 
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Also we know that, 

 (   )  ∑∑ ∑  (     )
  *     +

 

   

 

   

   

 

In all, the total number of equations are :      . 

 

3.6. Simulation 

A code has been written to solve the above equations and hence to get probability of each 

state for given input parameters. We have plotted results for the parameters given in table 

3.1. 

Table 3.1 :  Parameters used to simulate RPDE 

Description Value 

Look up rate in each pool                      per second 

Probability of accepting job                      

Rate of job requests 1 per second 

Maximum size of buffer N = 10 

Number of nearest DCs looked to find 

optimal PM 

K = 6 

 

Figure 3.1 shows the percentage time spent in the nearest DC looking for an optimal PM 

to allocate the job, when there are certain number of requests already in the queue. We 

have plotted for all the 3 pools. If we add the percentages for a give pool across all the 

number of requests in the pool, we get the percentage time spent in the given pool of the 

nearest DC (nearest DC depends on the location of origin of the request). 
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Figure 3.1 : Percentage time spent in nearest DC when given number of jobs are in 

buffer which needs attention for each type of pool. 

Figure 3.2 shows the percent time spent in DCs in the order of  distance of it from the 

location of origin of request in all the pools together. It shows that maximum time is 

spents in the nearest DC followed by the second nearest DC. The contribution of the rest 

of DCs is pretty low for the parameters considered for this simulation. Similarly, 

depending on the forecast of the load, the provider can decide the optimal number of DCs 

to look at for desired level of consumer satisfaction and low job rejection rate. 

Figure 3.3 shows the percent time spent in each of hot, warm and cold pools respectively 

over all the DCs no matter how many requests are pending to be attended. 
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Figure 3.2 : Average percentage of time spent in each of nearest 6 DCs for given job request 

 

Figure 3.3 : Percent time spent looking for optimal PM in each type of pool. 
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CHAPTER 4 

PROVISIONING OF VMs 

 

4.1. Allocation of VM for given job request 

Once an appropriate PM is selected to carry out the job request, the next task  is to 

instantiate and allocate VM/VMs for the job. Its includes configuration of VM, its 

instantiation and finally allocation of the VM to the user to resolve the job and provide 

the desirable outputs to the user. The time taken for instantiation of a VM is different for 

the physical machines belonging to different pools. Instantiation of VM is fastest in the 

hot pool, followed by warm and cold pool respectively.  

We model the hot pool for VM allocation for a given PM using CTMC modeling and see 

what happens when there are multiple requests to the same PM for VMs.  

The notation used in figure 4.3 is of the form (n,m), where n denotes the number of job 

requests in the buffer, while m denotes the m
th 

VM being utilized for the job. The 

maximum number of VMs that a PM can hold can be determined by the configurations of 

the PM and each VM individually. Since it is assumed that all the VMs and PMs are 

homogeneous, so the configurations of each VM is same and so is the configuration of 

each PM. Configuration of VM and PM include the available RAM, cores and storage.  

Assuming Rp, Cp and Sp denote RAM, cores and storage of a PM respectively and 

similarly Rv, Cv and Sv denote RAM, cores and storage of a VM respectively. Then the 

maximum number of VMs, a PM can accommodate is given by  

      *     ( 
  

  
)         ( 

  

  
)         ( 

  

  
)+ 

The parameters used in the model are as follows : 

λh, λw, λc  - denote the job arrival rate for PMs in hot pool, warm pool and cold pool 

respectively. Where,  
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Here,          are the probabilities of hot pool, warm pool and cold pool getting selected 

for VM allocation. Note that, 

                          

Where,            is the probability of job rejection.  

β – denotes the rate at which the VM is allocated, which includes VM configuration, 

instantiation and provisioning. 

µ - denotes the rate of completion of job. 

 

Figure 4.1 : First Come First Serve basis allocation of VMs for a given job when a PM 

has already been selected. 
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Figure 4.3 shows state transitions that occur for a given PM, which belongs to the hot 

pool, when it receives multiple job requests and how VMs are allocated to the users on 

first come first serve(FCFS) basis. Also average service time for a request is assumed to 

be µ after which the VM configuration is dissolved and the hardware is now available to 

cater to new requests which are waiting in the queue. 

In the figure, state (0,0) denotes no VM has been allocated for a job and there is no 

request waiting in the buffer. State (n,0) denotes that there are n requests waiting in the 

buffer while the system is trying to configure and allocate a VM for the first request that 

came in which is at the head of FCFS queue. When there is a new job request which 

comes at the rate of   , it goes in a FCFS buffer and there is a state transition to the next 

state (n+1,0). The state (n,m) denotes n requests in the buffer and m VMs have already 

been allocated for previous jobs and they are still running, while the system is 

configuring a new VM for the least recent job request. As soon as the system configures a 

new VM for the job, it is allocated for the corresponding user and the transition of state 

occurs from (n,m) to (n-1,m+1) which is one less job requests in the buffer and one more 

VM is now up and running. If the current state is (n,m) and one of the VMs completes its 

service to the user and now is available to take up another job, then the transition is to the 

new state (n,m-1). 

Similar transitions take place for PMs belonging to warm pool and cold pool, but once a 

PM is used to allocate a VM for a request, it is turned ON and is now part of the hot pool 

and hence the dynamics of this PM are no longer those for a warm/cold pool but it 

follows hot pool dynamics. Then depending on the load of requests that a DC is 

receiving, it can decide to put some other machines on standby or turn it off, when a 

machine completes its service to the user/users and is free. 

Once the VM is configured and allocated for the job, this VM uses the resources that it 

gets from the PM of the particular DC to complete the job that it receives from the user. 

The response time for the completion of job varies depending on various factors such as : 

1. The type of work which the user has asked to be finished. 

2. The type of hypervisor that is being used (like Xen, KVM) 
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3. Type of VM used (like HVM - Hardware Virtual Machine, PVM – ParaVirtual 

Machine) 

4. The configuration of the given VM like the number of cores used, RAM and 

storage allocated for the job 

5. Percentage utilisation of the given PM due to multiple requests. The more are the 

PM resources under usage by multiple requests, the slower is the response time. 

We have assumed homogenous PMs, so the hypervisors and the type of VMs used, VM 

configuration are same. Similar kind of work is asked for completion to the DCs. Hence 

we can assume the fluctuations of the response time  around the mean value to be 

minimal and hence can be represented by mean response time given by 1/ µ (that is the 

rate of service response is given by µ). 

Once the service is rendered, the VM dissolves and it frees all the cores, RAM and 

storage that it was using towards the service to the user. The hardware is then available to 

take up a new job. 
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CHAPTER 5 

SIMULATION OF THE MODEL 

 

We have written a code to present the working of the optimizer. For requests originating 

from different locations, the code determines the appropriate PM from appropriate DC 

which will best cater the job. The optimizer takes the following factors into account while 

determining the best PM for the job :  

i. Location of DCs with respect to the location of origin of request. 

ii. Availability of PMs in different pools of each DC namely hot, warm and cold 

pools. 

iii. Variable pricing structure at each DC. 

iv. Percentage usage of each DC. 

We have assumed the requests to be coming at random rate with mean λ, which is greater 

than the rate of completion the job, so that we get insight into the usage of all kinds of 

pools. In general, the average rate of requests is lesser than the rate of job completion 

which takes care that the rate of job rejection in under control. The simulation is 

performed for countable number of DCs and locations for job requests input. We have 

assumed the pricing for PM per usage to vary linearly with the  percentage usage of  DCs. 

Also its is assumed that there is no PM failure and once a request is allotted certain PM, 

the job does not migrate to another PM [9]. 

The parameters used for the simulation are as follows : 

Table 5.1 : Parameters for simulation of IaaS based cloud model 

Description Value 

Rate of requests  > 1 per unit (λ) 

Number of job requests per 

iteration 

100 (scalable ) 

Number of iterations 200 
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Points of request origin 3 

Number of DCs 3 

Base price for each DC 10,9,8 resp. per VM per hour 

Number of PMs per DC 24 

Number of PMs per pool 8 

Number of VMs per PM 1 

Start up time Hot – 10 units, warm – 20 

units , cold – 50 units 

Response time (1/µ)  30 units 

 

The pricing in each DC is different and varies linearly with the number of PMs utilized at 

any given time. Although the pricing does not vary once a PM is allotted to the user. The 

variation of pricing with VM is as shown in figure 5.1. 

 

Figure 5.1 : Pricing Structure assumed for each of the Datacenters 

In the simulation, one iteration involves 100 job requests for VMs. As we have assumed 

1 VM per PM, it is safe to say that each job requests for a PM. The number of job 



 24 

requests over the process can be scaled to any  higher number and the algorithm will 

generate similar results, thus showing that the model is scalable.  

This process is iterated 200 times. In each of the plots 5.2, 5.3 and 5.4, the first 100 

iterations denote the results when the optimizer suggested in this thesis is not used to 

allocate a PM for the given job request whereas the next 100 iterations depict the results 

when we use the optimizer as discussed in this thesis for PM allocation. 

  

 

Figure 5.2 : Selection of  pool with/without taking location of DC as a factor for 

deciding the optimal PM. 

In the figure 5.2, the first 100 iteration show the allocation of pool when we do not 

consider the optimizer and allocate a PM just depending on availability of it in the best of 

the pools. It does not take the distance of the DC from point of request origination, nor 

does it take pricing structure which can be different in each DC. The next 100 iteration 

show the allocation of pool when we consider DC location, pricing structure on basis of 

percent utilisation and availability of PMs in different pools as factors affecting the 

selection of a particular PM. For each iteration(process) including 100 job requests, the 3 

corresponding points on Y axis show the number of PMs selected from each of hot pool, 

warm pool and cold pool respectively. 
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We see that on an average, the number of PMs selected from hot pool are larger in case 

of first 100 iteration where only availability in different pools is taken into account 

compared to next 100 iteration where we use the optimizer. This is because, a PM from 

warm pool which is from a closer DC and/or costs lesser to the user can be better 

compared to a PM from hot pool from a farther DC with higher costs. Such better PM 

from warm pool is chosen over hot pool PM if we use the optimizer. Hence, we see 

reduction in number of PMs selected from hot pool while rise in those from warm pool. 

Same logic can be used to explain the increment in number of cold pool PMs as well.  

 

Figure 5.3 : Number of PMs selected from close/medium/far distance DC when the 

optimizer is/isn’t used . 

Figure 5.3 shows that over first 100 iterations, for a request originating from any 

particular point, it is equally likely for any DC to be selected to allot a PM for the job no 

matter how close or far it is from the location of request origination. However, when the 

optimizer is used (in the next 100 iterations), the likeliness of the closest DC to get the 

job increases, while it decreases for the farthest DC. 
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Figure 5.4 : Number of PMs selected from DC which has low/medium/high pricing at 

that given time when the optimizer is/isn’t used. 

Figure 5.4 shows that when the optimizer is not used, it is equally likely that the PM 

selected can belong to any DC no matter what the pricing structure for the particular DC 

is, at the given time. However, when the optimizer is used, the probability that the job is 

allotted to a PM from a DC which has lesser price compared to other DCs increases 

compared to the model which does not use the optimizer. Similarly, job allocation to 

higher price DC PMs is relatively lesser. 
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CHAPTER 6 

CONCLUSION 

 

In this thesis, we have quantified the effects of rate of job requests, Data Center locations, 

various pools in each DC, number of PMs in each DC, pricing structure in each DC, 

service time for a job and percentage usage of each DC on the working and performance 

of IaaS based Cloud. We modeled the Cloud as two sub models using CTMC and 

queuing theory and have successfully demonstrated the effects on various factors 

mentioned above on resource allocation by using an optimizer. These models give better 

insight into the working of IaaS based Cloud services and the providers of Cloud services 

can use these models to determine optimum size of various pools in a given DC, number 

of DCs should it look for to determine the PM which suits most for a job, all while 

ensuring avoidance of any SLA violations, maintaining a low job rejection rate and 

saving power consumption.  
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APPENDIX A 

 

A.1. For simulation of RPDE model 

Following is a part of code to simulate RPDE model. It shows how the equations can be 

converted to matrix form which can then be used to get the desired results. 

 

% notation : PI(k,n,j)denotes steady state probability of k
th 

DC, n 

jobs in buffer j={hot,warm,cold} pool. PI is denoted as a vector 

of size (1 x (     )). 

 

%Job(2->N-1)DC(2->K) 

for k = 2:K 

    for n = 2:N-1 

        PI(3*k+(n-1)*(3*K)+h-2, 3*k+(n-1)*(3*K)+h-2) = -(lamda + delh); 

        PI(3*k+(n-1)*(3*K)+h-2, 3*(k-1)+(n-1)*(3*K)+w-2) = delw*Pw; 

        PI(3*k+(n-1)*(3*K)+h-2, 3*(k-1)+(n-1)*(3*K)+c-2) = delc; 

        PI(3*k+(n-1)*(3*K)+h-2, 3*(k)+(n-2)*(3*K)+h-2) = lamda; 

         

        PI(3*k+(n-1)*(3*K)+w-2, 3*k+(n-1)*(3*K)+w-2) = -(lamda + delw); 

        PI(3*k+(n-1)*(3*K)+w-2, 3*k+(n-1)*(3*K)+h-2) = delh* (1-Ph); 

        PI(3*k+(n-1)*(3*K)+w-2, 3*k+(n-2)*(3*K)+w-2) = lamda; 

         

        PI(3*k+(n-1)*(3*K)+c-2, 3*k+(n-1)*(3*K)+c-2) = -(lamda + delc); 

        PI(3*k+(n-1)*(3*K)+c-2, 3*k+(n-1)*(3*K)+w-2) = delw* (1-Pw); 

        PI(3*k+(n-1)*(3*K)+c-2, 3*k+(n-2)*(3*K)+c-2) = lamda; 

    end 

end 
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A.2. For simulation of complete model 

Defining PMs as cells in MATLAB for each DC and each pool. We have considered 3 

DCs and 3 points of  origination of requests. We store informations like total number of 

PMs in  the pool, total PMs currently under use and also current status of each PM in the 

pool. This can be extended to multiple VMs in each PM in a given pool. 

 
PMs = cell(3,3); 

% cell {ii,jj} denotes ii
th
 DC and jj

th
 pool of it 

% in PMs{ii,jj}, the first element is number of PMs available to 

take up a new job while the last element denotes the total number 

of PMs in that pool. 

for ii = 1:3 

    for jj = 1:3 

        PMs{ii,jj} = [8,0,0,0,0,0,0,0,0,0,0,8];                   

    end 

end 

 

We can define startup times and pricing structure for different pools and DCs as shown below. 

% We have defined pricing structure to be a linear function of 

the number of PMs available in the given pool. 

start_time = [10,20,50]; 

price = [10-(24 - (PMs{1,1}(1)+PMs{1,2}(1)+PMs{1,3}(1)))/12, 8-(24 -  

(PMs{2,1}(1) + PMs{2,2}(1)+PMs{2,3}(1)))/24,    9-(24 - 

(PMs{3,1}(1)+PMs{3,2}(1)+PMs{3,3}(1)))/18];            

 

We define a metric for each pool of each DC, and the pool of a DC with minimum of this metric 

value can be chosen to take up the job. 

% dc denotes DC and hwc denotes that it can be either of hot, 

warm and cold pools. 

for dc = 1:3 

    for hwc = 1:3 

        metric(dc,hwc) = a*start_time(hwc) + b*price(dc) + 

c*DC_dist(loc,dc); 

    end 
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end 

 

We constantly keep on updating the status of each PM of each pool across various DCs. 

% We have assumed that as soon as a PM is allocated a job, we 

have the information about how much time it will  take to 

complete the client services.  

% Instead one can also release the PM as soon as the job is 

completed. In this case as soon as the job is completed, the PM 

sends a status signal and hence the PM can be released to take up 

new job. 

for aa = 1:3 

    for bb = 1:3 

        for cc = 1:PMs{aa,bb}(12) 

            if PMs{aa,bb}(cc+1) ~= 0 

                PMs{aa,bb}(cc+1) = PMs{aa,bb}(cc+1) - 1; 

            end 

        end 

        PMs{aa,bb}(1) = sum(PMs{aa,bb}(2:(PMs{aa,bb}(12)+1))==0); 

    end 

end 
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