

SETTING UP THE OPENSTACK WITH XEN

HYPERVISOR & DEVELOPMENT OF A SIMULATOR

ON A MULTI-TIER SYSTEM

A Project Report

Submitted by

SHUBHAM AGRAWAL

EE10B096

In partial fulfilment of the requirements

for the award of the degree of

Master of Technology

in

Electrical Engineering

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

2014-2015

THESIS CERTIFICATE

This is to certify that the thesis titled SETTING UP THE OPENSTACK WITH XEN

HYPERVISOR & DEVELOPMENT OF A SIMULATOR ON A MULTI-TIER

SYSTEM submitted by Shubham Agrawal [EE10B096], to the Indian Institute of

Technology Madras, Chennai for the award of the degree of Master of Technology, is a

bona fide record of the research work done by him under our supervision. The contents of

this thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Dr. Ramakrishna Pasumarthy

Project Guide

Assistant Professor

Dept. of Electrical Engineering

IIT-Madras, 600 036

Place: Chennai

Date: 24
th

 May 2015

 i

ACKNOWLEDGEMENTS

I would like to express my appreciation and gratitude to my advisor Dr. Ramkrishna

Pasumarthy for giving me the opportunity to work on this highly exciting and challenging

project. Your invaluable guidance and motivation, throughout the project helped me to grow as a

researcher.

The following research work for setting the OpenStack on the front end with the XEN hypervisor

on the back end in a multi-tier environment & developing a simulator for the same would not

have been possible without the continuous guide and support of P.S. Sai Krishna.

I also thank the member of Cloud Computing lab, Mr. Manish Heda, Mr. Arejeet Nag and

Ms. Niharika Challapalli for their valuable help during the study. Lastly I would like to thank

my family and friends for their constant motivation and encouragement.

 ii

ABSTRACT

KEYWORDS: OpenStack, XEN Hypervisor, Xampp, Virtualization, Server Consolidation,

Cloud, Multi-tier system, Simulator.

Cloud computing is the emerging paradigm of computing services. As Clouds are complex,

large-scale, and heterogeneous distributed systems, management of their resources is a

challenging task. In this work we have tried to set a multi-tier system wherein the front end is

OpenStack, cloud computing software and the back end is Xen hypervisor. The paper talks

about deploying an application on virtual machines in Xen environment by developing a

simulator in java for the same with the aim of managing the resources from the OpenStack

Platform. The simulator sits on the virtual machines and makes use of the Xampp server to use

the data from MySQL Database server and deploying the application on Apache Web Server on

cloud. The simulator was developed in Java language and also makes use of PHP script. This is a

big untouched field where many researchers are trying to develop the best possible technology

for utilization based multi-resource system. Elastic n-tier applications have non-stationary

workloads that require adaptive control of resources allocated to them. This presents not only an

opportunity in pay-as-you-use clouds, but also a challenge to dynamically allocate virtual

machines appropriately.

GENERAL TERMS: Design, Experimentation, Management, Simulation.

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES vi

ABBREVIATIONS vii

1. INTRODUCTION 1

2. CLOUD COMPUTING – OVERVIEW AND OPENSTACK SETUP 4

2.1. Overview and Characteristics .4

2.2. Deployment Model Classification . 6

2.3. Service Model Classification . 6

2.4. OpenStack – Open Source Cloud Computing . 8

2.5. OpenStack Architecture . 8

2.6. Description of the Services . 10

2.7. OpenStack Framework Setup . 12

2.7.1 System Requirements . 12

2.7.2 Networking Mode . 14

2.7.3 Provisioning .15

2.7.4 Installation . 18

2.8. Installing Web Server and MySQL on Compute Node . 24

 iv

3. VM SETUP IN XEN ENVIRONMENT 27

3.1. XEN Overview . 27

3.2. XEN Setup . 28

3.2.1 OS Installation . 28

3.2.2 Installing XEN . 29

3.2.3 Network Configuration .29

3.2.4 Recommended Bridge Setting . 30

3.2.5 Choice of Toolstacks . 30

3.3. Grub Setup to Boot XEN Hypervisor . 31

3.4. VMM Setup . 32

3.5. Setting up VMs .33

3.6. Overview Diagram . 34

4. A BRIEF ABOUT XAMPP AND HTTPERF 35

4.1. XAMPP Overview. .35

4.2. Configuring the XAMPP Environment. .35

4.3. Setting up MySQL Database . 36

4.4. HTTPERF Overview. .37

4.4.1 Configuring Httperf .37

4.4.2 Building Httperf .38

4.4.3 Example .38

4.4.4 Selecting Timeout Values . 39

5. DEVELOPMENT OF SIMULATOR IN JAVA ENVIRONMENT 41

5.1. Simulator Overview . 41

5.2. Simulator Setup .43

5.3. Application – Differential Equation Solver . 44

5.4. Java Based Approach with MySQL Procedures .45

5.5. Expected Results and Conclusion .46

 v

5.6. Future Work. .46

A. APPENDIX A – SAMPLE CODES 48

A.1 Sample PHP Script . 48

A.2 Sample Procedure in MySQL .49

A.3 Sample Java Script . 50

B. APPENDIX B – REFERENCES 54

 vi

LIST OF FIGURES

2.1 Service Models ……………………………………………………….……..……………4

2.2 Example image to demonstrate Security Group ……………………………………….. 22

2.3 Example image to show launching of an image ……………………………………….. 23

2.4 Instances and Volumes ……………………………………………………….……..…. 23

2.5 Host connection through terminal ………………………………………………………24

3.1 Overview of the VM setup in Xen Environment ……………………………………….34

5.1 Experimental Setup for Simulator ………………………………………………………43

5.2 Working of Simulator in 3-Tier Environment Simulator ……………………………….42

 vii

ABBREVIATIONS

WWW World Wide Web

CPU Central Processing Unit

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

QoS Quality of Service

SLA Service Level Agreement

SLO Service Level Objectives

OS Operating System

VM Virtual Machine

VMM Virtual Machine Manager

DB Database

ODE Ordinary Differential Equation

IO Input Output

MIMO Multiple Input Multiple Output

IP Internet Protocol

CHAPTER 1

INTRODUCTION

Cloud computing found its origin in the success of server virtualization and the

potential to run IT more efficiently through server consolidation. Visionaries came up

with idea to bring virtualization to a next level by implementing early storage and

network virtualization techniques that could be applied systematically across all the

machines in a single data center.

Add to this self-provisioning and auto scaling, and cloud computing was born. At the

time it was called utility computing, however, and only Amazon – an online bookstore,

was using it as a way to manage their internal computing resources. Amazon saw a

growth in popularity of its EC2 (compute) and S3 (storage) services. The Amazon API

was being used by thousands of developers and many more customers to deploy and run

infrastructure in the cloud.

Internet applications such as online news, retail, and financial sites have become

common place in recent years. Modern Internet applications are complex software

systems that employ a multi-tier architecture and are replicated or distributed on a cluster

of servers. Each tier provides certain functionality to its preceding tier and makes use of

the functionality provided by its successor to carry out its part of the overall request

processing. For instance, a typical e-commerce application consists of three tiers—a

front-end Web tier that is responsible for HTTP processing, a middle tier Java enterprise

server that implements core application functionality, and a backend database that stores

product catalogs and user orders. In this example, incoming requests undergo HTTP

processing, processing by Java application server, and trigger queries or transactions at

the database.

Cloud computing has evolved through a number of phases which include grid and

utility computing, application service provision (ASP), and Software as a Service (SaaS).

It’s still at an early stage, with a motley crew of providers delivering a slew of cloud-

based services, from full-blown application to storage services. Characteristics of cloud

 2

like autonomous and dynamic provisioning, scalability, optimization benefits, networked

access and metered servicing have propelled this technology to the forefront Gong et al.

(2010). Multiple users were capable of accessing a central computer through dumb

terminals, whose only function was to provide access to the mainframe. Because of the

costs to buy and maintain mainframe computers, it was not practical for an organization

to buy and maintain one for every employee. Nor did the typical user need the large (at

the time) storage capacity and processing power that a mainframe provided. Providing

shared access to a single resource was the solution that made economical-sense for this

sophisticated piece of technology.

Among the three standard models of deployment of Cloud Gibson et al. (2012), SaaS

is the most popular and widely used model of cloud computing. SaaS uses the Internet to

deploy applications on the Cloud that are managed by third party vendors He (2010).

Users access the application via the web browser on their side. This eliminates the need

to download and install software to run these applications. SaaS enables users to use

applications without being responsible for maintaining the data, O/S, virtualization,

servers, storage and networking. In the SaaS model of deployment, the user is expected to

only give the inputs required for the particular applications to get back the outputs

without being responsible for computer administration, software installation or system

details. System details include properties like the number of nodes to be used, the amount

of storage needed and the operating system deployed etc.

The contribution of this work is to be able to develop a simulator which has an

application which solves a differential equation wherein it takes the required coefficients

and constants from the database server and update the time-bound results back on the

server. The application can be run on the web server on the front end, in a cloud

environment OpenStack and request can be made to VMs sitting on the back end Xampp

server. Several requests can come in simultaneously using httperf and is communicated

over the network. The code to fetch the query from the database server and to solve the

differential equation has been developed in Java language and PHP scripting language

has been used to display the results on the browser.

 3

The overview of the cloud computing and setting up of OpenStack cloud environment

has been discussed in a great detail in chapter 2. Chapter 3 talks about the setup and

configuration of virtual machines as per the experimental requirement in the XEN

environment which has been setup on the backend machine. Chapter 4 shades light on the

Xampp platform and talks about its setup and usage. It also discuss about running the

instance of httperf to generate multiple request to the server. An example request has

been included to have a better understanding of the working and results. Chapter 5 looks

into the experiment and results. The experimental part includes deploying an application

written in java which uses SQL queries to connect to backend database server and fetch

the queries to run the java code. The future scope in this attempt has also been discussed

to give a better understanding of the results we are trying to achieve. Finally the sample

codes has been included in Appendix A to make the understanding clearer of the PHP

connection to server to fetch the queries and writing the procedures in SQL and java

application to solve the differential equation using the Runge Kutta method.

 4

CHAPTER 2

Cloud Computing – Overview and OpenStack Setup

2.1. Overview and Characteristics

Over the last few years clouds have become the buzzword in computing. But ask

someone what cloud computing is and they’re likely to give you a very different answer

to the person standing next to them. Cloud computing covers anything that involves

delivering hosted services over the internet.

Cloud computing involves application systems which are executed within the cloud

and operated through internet enabled devices. Cloud computing relies on sharing of

resources to achieve coherence and economies of scale, similar to a utility (like the

electricity grid) over a network. At the foundation of cloud computing is the broader

concept of converged infrastructure and shared services. Cloud computing, or in simpler

shorthand just "the cloud", focuses on maximizing the effectiveness of the shared

resources. Cloud resources are usually not only shared by multiple users but are also

dynamically reallocated per demand.

The characteristics of cloud computing are

 Self-service Provisioning: The cloud allows users to deploy their own sets of

computing resources (machines, network, storage, etc.) as needed without the

delays and complications typically involved in resource acquisition.

 Dynamic Provisioning: The provisioning of resources can be done as per the

SLA.

 Elasticity and Scalability: Unlike the individual users for whom the usage is

typically fluctuating, a cloud can easily accommodate rapid increase or

 5

decrease in resource demand. Thus the user can utilize as per the usage and

avoid the cost of idle infrastructure.

 Network Access and Storage Virtualization: Cloud services can be accessed

from anywhere via the Internet and from any type of device. They also provide

storage capability independent of device and location.

 Metered Services: The usage of resources is metered and the customers are

billed accordingly.

Clouds enable access to leased computing power and storage capacity from your

desktop. Clouds are a proprietary technology. Only the resource provider knows exactly

how their cloud manages data, job queues, and security requirements and so on. Small to

medium to large commercial businesses or researchers with generic IT needs gets

benefited from the cloud. Some of the benefits are

 Flexibility: Users can quickly outsource peaks of activity without long term

commitment

 Reliability: Provider has financial incentive to guarantee service availability

(Amazon, for example, can provide user rebates if availability drops below

99.9%)

 Ease of use: Relatively quick and easy for non-expert users to get started but

setting up sophisticated virtual machines to support complex applications is

more difficult.

 Optimization Benefits: The cloud can maximize the usage and increase the

efficiency of existing infrastructure resources. This can help to reduce capital

expenditure and extend infrastructure lifecycle.

Talking about some of the disadvantages of using cloud services, here are some of the

drawbacks

 Generality: Clouds do not offer many of the specific high-level services

currently provided by grid technology.

 6

 Security: Users with sensitive data may be reluctant to entrust it to external

providers or to providers outside their borders.

 Opacity: The technologies used to guarantee reliability and safety of cloud

operations are not made public.

 Rigidity: The cloud is generally located at a single site, which increases risk of

complete cloud failure.

 Provider lock-in: There’s a risk of being locked in to services provided by a

very small group of suppliers.

2.2. Deployment Model Classification

Depending on the deployment models, clouds are classified as

1. Public Cloud: A public cloud can be accessed by any user with an internet

connection and is intended for public use.

2. Private Cloud: A private cloud is established and operated solely by a specific

group or organization and access is restricted to that group.

3. Community Cloud: A community cloud is shared among several organizations

with community concerns and similar cloud requirements.

4. Hybrid Cloud: A hybrid cloud is a combination of several clouds, where the

clouds are a mixture of public, private or community cloud.

2.3. Service Model Classification

Depending on the service models, clouds are classified as

1. Software as a Service (SaaS): In this model he user purchase the ability to use a

software application or service on the cloud. Eg: Google Docs

 7

2. Platform as a Service (PaaS): In this model the user purchase access to

platforms, enabling them to deploy their own application on the cloud. Eg:

Google App Engine

3. Infrastructure as a Service (IaaS): In this model, the user is delivered

infrastructure, namely servers, networks and storage. The user can deploy

several Virtual Machines and run specific Operating Systems on them. Eg:

Amazon EC2, Windows Azure etc.

 Figure 2.1: Service Models

 8

2.4. OpenStack – Open Source Cloud Computing

OpenStack is a set of software tools for building and managing cloud computing

platforms for public and private clouds. OpenStack lets users deploy virtual machines and

other instances which handle different tasks for managing a cloud environment on the fly.

It makes horizontal scaling easy, which means that tasks which benefit from running

concurrently can easily serve more or less users on the fly by just spinning up more

instances.

OpenStack is a free and open-source cloud computing software platform. The

technology consists of a series of interrelated projects that control pools of processing,

storage, and networking resources throughout a data center which users manage through

a web-based dashboard, command-line tools, or a RESTful API.

Users primarily deploy OpenStack as an infrastructure as a service (IaaS) solution.

Providing infrastructure means that OpenStack makes it easy for users to quickly add

new instance, upon which other cloud components can run. Typically, the infrastructure

then runs a "platform" upon which a developer can create software applications which are

delivered to the end users.

2.5. OpenStack Architecture

OpenStack services that make up the OpenStack architecture are: Horizon, Nova,

Neutron, Swift, Cinder, Keystone, Glance, Ceilometer and Heat. Swift and Cinder falls in

Storage services, Keystone, Glance and Ceilometer comes under Shared services and

Heat is a Higher-level service.

To design, install, and configure a cloud, cloud administrators must understand the

logical architecture. OpenStack modules are one of the following types:

 Daemon: Runs as a daemon. On Linux platforms, a daemon is usually installed

as a service.

 9

 Script: Installs and tests of a virtual environment. For example, the run_tests.sh

script installs and optionally tests a virtual environment for a service.

 Command-line interface (CLI): Enables users to submit API calls to

OpenStack services through easy-to-use commands.

Basic architecture with legacy networking:

 The controller node runs the Identity Service, Image Service, dashboard, and

management portion of Compute. It also contains the associated API services,

MySQL databases, and messaging system.

 The compute node runs the hypervisor portion of Compute, which operates

tenant virtual machines. By default, Compute uses KVM as the hypervisor.

Compute also provisions and operates tenant networks and implements security

groups. We can run more than one compute node.

Basic architecture with OpenStack Networking (Neutron):

 The controller node runs the Identity Service, Image Service, dashboard, and

management portions of Compute and Networking. It also contains the

associated API services, MySQL databases, and messaging system.

 The network node runs the Networking plug-in agent and several layer 3

agents that provision tenant networks and provide services to them, including

routing, NAT, and DHCP. It also handles external (internet) connectivity for

tenant virtual machines.

 The compute node runs the hypervisor portion of Compute, which operates

tenant virtual machines. By default, Compute uses KVM as the hypervisor.

The compute node also runs the Networking plug-in agent, which operates

tenant networks and implements security groups. You can run more than one

compute node.

 10

2.6. Description of the Services

Horizon

Horizon is the dashboard behind OpenStack. It is the only graphical interface to

OpenStack, so for users wanting to give OpenStack a try, this may be the first component

they actually “see.” Developers can access all of the components of OpenStack

individually through an application programming interface (API), but the dashboard

provides system administrators a look at what is going on in the cloud, and to manage it

as needed. In simpler words it provides a web-based self-service portal to interact with

underlying OpenStack services, such as launching an instance, assigning IP addresses and

configuring access controls.

Nova

Nova is the primary computing engine behind OpenStack. It is a "fabric controller,"

which is used for deploying and managing large numbers of virtual machines and other

instances to handle computing tasks. It manages the lifecycle of compute instances in an

OpenStack environment. Responsibilities include spawning, scheduling and

decommissioning of machines on demand.

 Neutron

Neutron provides the networking capability for OpenStack. It helps to ensure that each

of the components of an OpenStack deployment can communicate with one another

quickly and efficiently. Enables network connectivity as a service for other OpenStack

services, such as OpenStack Compute. It provides an API for users to define networks

and the attachments into them. Has a pluggable architecture that supports many popular

networking vendors and technologies.

Swift

Swift is a storage system for objects and files. Rather than the traditional idea of a

referring to files by their location on a disk drive, developers can instead refer to a unique

 11

identifier referring to the file or piece of information and let OpenStack decide where to

store this information. This makes scaling easy, as developers don’t have the worry about

the capacity on a single system behind the software. It also allows the system, rather than

the developer, to worry about how best to make sure that data is backed up in case of the

failure of a machine or network connection. Stores and retrieves arbitrary unstructured

data objects via a RESTful, HTTP based API. It is highly fault tolerant with its data

replication and scale out architecture. Its implementation is not like a file server with

mountable directories.

Cinder

Cinder is a block storage component, which is more analogous to the traditional notion

of a computer being able to access specific locations on a disk drive. This more

traditional way of accessing files might be important in scenarios in which data access

speed is the most important consideration. It provides persistent block storage to running

instances. Its pluggable driver architecture facilitates the creation and management of

block storage devices.

Keystone

Keystone provides identity services for OpenStack. It is essentially a central list of all

of the users of the OpenStack cloud, mapped against all of the services provided by the

cloud which they have permission to use. It provides multiple means of access, meaning

developers can easily map their existing user access methods against Keystone. It

provides an authentication and authorization service for other OpenStack services. It also

provides a catalog of endpoints for all OpenStack services.

Glance

Glance provides image services to OpenStack. In this case, "images" refers to images

(or virtual copies) of hard disks. Glance allows these images to be used as templates

when deploying new virtual machine instances. It stores and retrieves virtual machine

disk images. OpenStack Compute makes use of this during instance provisioning.

 12

Ceilometer

Ceilometer provides telemetry services, which allow the cloud to provide billing

services to individual users of the cloud. It also keeps a verifiable count of each user’s

system usage of each of the various components of an OpenStack cloud. Think metering

and usage reporting. It monitors and meters the OpenStack cloud for billing,

benchmarking, scalability, and statistical purposes.

Heat

Heat is the orchestration component of OpenStack, which allows developers to store

the requirements of a cloud application in a file that defines what resources are necessary

for that application. In this way, it helps to manage the infrastructure needed for a cloud

service to run. It orchestrates multiple composite cloud applications by using either the

native HOT template format or the AWS Cloud Formation template format, through both

an OpenStack-native REST API and a Cloud Formation-compatible Query API.

2.7. OpenStack Framework Setup

2.7.1 System Requirements

Compute Requirements

1. Physical Machines: All OpenStack components must be installed on physical

machines and not on virtual machines.

2. Central Processing Units (CPUs): It is recommended that each machine in your

OpenStack cloud should contain either a Dual Core processor with a minimum

of two, 2 GHz clock.

3. Operating Systems: OpenStack supports Ubuntu 12.04 LTS and some other

Linux distributions.

 13

4. Machine Clocks: Each OpenStack component machine and any other client

machine clock must be synchronized (for example, using Network Time

Protocol) at all the time, not just at installation.

5. Hypervisor: OpenStack Compute supports many hypervisors viz. XEN, KVM,

QEMU, Hyper-V etc. For our work we have configured Xen hypervisor and

have installed the nova-compute service in a para-virtualized VM.

6. Machine Access: Verify that all machines in your network allow root or sudo

access and SSH login.

Storage and Memory Requirements

The following are recommended:

 Each machine in your network needs a minimum of 30 GB of storage.

 Memory of 8 or 12 GB is recommended for the parent machine.

 Disk space is optimized for cost per GB.

 Each machine in your network should have at least 4 GB RAM or above for

improved caching.

Network Requirements

 One network interface card for external network traffic.

 Another card to communicate with other OpenStack nodes.

 All node controllers must have access to a minimum of 1 GB Ethernet Network

connectivity.

 Depending on some configurations, OpenStack requires that you make

available two sets of IP addresses. The first range is private, to be used only

within the OpenStack system itself. The second range is public, to be routable

to and from end-users and VM instances. Both sets must be unique to

OpenStack, not in use by other components or application within your network.

 14

2.7.2 Networking Mode

The architecture with OpenStack Networking (neutron) requires one controller node,

one network node, and at least one compute node. The controller node contains one

network interface on the management network. The network node contains one network

interface on the management network, one on the instance tunnels network, and one on

the external network. The compute node contains one network interface on the

management network and one on the instance tunnels network.

Example 2.1 /etc/network/interfaces

Internal Network

auto eth0

iface eth0 inet static

address 192.168.0.10

netmask 255.255.255.0

External Network

auto eth1

iface eth1 inet static

address 10.0.0.10

netmask 255.255.255.0

After you configure the network, restart the daemon for changes to take effect:

service networking restart

Set the host name of each machine. Name the controller node controller and the first

compute node compute1. The examples in this guide use these host names.

Use the hostname command to set the host name:

hostname controller

To configure this host name to be available when the system reboots, you must specify it

in the /etc/hostname file, which contains a single line with the host name.

 15

Finally, ensure that each node can reach the other nodes by using host names. You must

manually edit the /etc/hosts file on each system. For large-scale deployments, use DNS or

a configuration management system like Puppet.

127.0.0.1 localhost

192.168.0.10 controller

192.168.0.11 compute1

2.7.3 Provisioning

Nova

Nova is the guts of the Orchestration. Scheduling, messaging, API, compute, object-

store etc. are vital. Essex Notes:

 Nova-api accepts and responds to end user compute and volume API calls. It

supports OpenStack API, Amazon’s EC2 API and a special Admin API (for

privileged users to perform administrative actions). It also initiates most of the

orchestration activities (such as running an instance) as well as enforces some

policy (mostly quota checks). In the Essex release, nova-api has been

modularized, allowing for implementers to run only specific APIs.

 The nova-compute process is primarily a worker daemon that creates and

terminates virtual machine instances via hypervisor’s APIs (XenAPI for

XenServer/XCP, libvirt for KVM or QEMU, VMwareAPI for VMware, etc.).

The process by which it does so is fairly complex but the basics are simple:

accept actions from the queue and then perform a series of system commands

(like launching a KVM instance) to carry them out while updating state in the

database.

 Nova-volume manages the creation, attaching and detaching of persistent

volumes to compute instances (similar functionality to Amazon’s Elastic Block

Storage). It can use volumes from a variety of providers such as iSCSI or

Rados Block Device in Ceph.

 16

 The nova-network worker daemon is very similar to nova-compute and nova-

volume. It accepts networking tasks from the queue and then performs tasks to

manipulate the network (such as setting up bridging interfaces or changing

iptables rules).

 The nova-schedule process is conceptually the simplest piece of code in

OpenStack Nova: take a virtual machine instance request from the queue and

determines where it should run (specifically, which compute server host it

should run on).

 The queue provides a central hub for passing messages between daemons. This

is usually implemented with RabbitMQ today, but could be any AMPQ

message queue (such as Apache Qpid).

 The SQL database stores most of the build-time and run-time state for a cloud

infrastructure. This includes the instance types that are available for use,

instances in use, networks available and projects. Theoretically, OpenStack

Nova can support any database supported by SQL-Alchemy but the only

databases currently being widely used are sqlite3 (only appropriate for test and

development work), MySQL and PostgreSQL.

Hypervisor

Below is a list of the supported hypervisors with links to a relevant web site for

configuration and use:

 KVM – Kernel-based Virtual Machine. The virtual disk formats that it supports

it inherit from QEMU since it uses a modified QEMU program to launch the

virtual machine. The supported formats include raw images, the qcow2, and

VMware formats.

 LXC – Linux Containers (through libvirt), use to run Linux-based virtual

machines.

 QEMU – Quick EMUlator, generally only used for development purposes.

 17

 UML – User Mode Linux, generally only used for development purposes.

 VMWare ESX/ESXi 4.1 updates 1 runs VMWare-based Linux and Windows

images through a connection with the ESX server.

 Xen – XenServer 5.5, Xen Cloud Platform (XCP), use to run Linux or

Windows virtual machines. You must install the nova-compute service on

DomU.

Images

The script for this install is Ubuntu Precise Pangolin 12.04 from ubuntu.com. The

default repo is:

http://docs.openstack.org/trunk/openstack-

compute/admin/content/starting-images.html

The images use the EC2 repository for distributions and it seems to get out of sync. I

switch to archive.ubuntu.com and will cover it in the screencast and steps in the post by

editing the /etc/repo.

Storage

For this demo we are just using the default local filesystem for storage. Swift appears

to be lined up to replace this module from the Nova core.

 OpenStack Object Storage – OpenStack Object Storage is the highly-available

object storage project in OpenStack.

 Filesystem – The default backend that OpenStack Image Service uses to store

virtual machine images is the filesystem backend. This simple backend writes

image files to the local filesystem.

 S3 – This backend allows OpenStack Image Service to store virtual machine

images in Amazon’s S3 service.

 18

 HTTP – OpenStack Image Service can read virtual machine images that are

available via HTTP somewhere on the Internet. This store is read only.

Network

Nova-Network is the current module for networking in the Essex build for Layer2

bridging today. The current networking components are probably the least mature of the

modules, since it is relying on the bridging kernel module in Linux.

Demo interfaces:

 Eth0 – NAT under VirtualBox. Leave it DHCP.

 Eth1 – Setup as a Host only. Needs to be done globally in VirtualBox the first

time before you can add it to an instance.

 Eth2 – Compute nodes live here. Vlan100 will be bound to this interface from

the install script and it will appear as br100 from ifconfig.

Nova Network commands and default logs:

cat /var/lib/nova/networks/nova-br100.conf – bridging config

/var/log/nova/nova-network.log – logs

cat /etc/init/nova-network.conf – config load

/etc/init.d/nova-network – upstart / startup config

Currently, Nova supports three kinds of networks, implemented in three “Network

Manager” types respectively: Flat Network Manager, Flat DHCP Network Manager, and

VLAN Network Manager.

2.7.4 Installation

Install VirtualBox. You will have three interfaces as listed above. Eth0 will be left

NATing in VirtualBox, Eth1 (virbr0 in Vbox) is host only 172.16.0.0/16 and Eth2 (virbr1

in Vbox) is 10.0.0.0/8.

 19

We are using Ubuntu 12.04 LTS (Precise Pangolin) daily build.

Once booted optionally update your OS and su root password

#sudo passwd root

#su

#apt-get update; apt-get upgrade

Installing the guest addons found in the VirtualBox ‘Devices’ menu is also

recommended. This will optimize perf depending on the box you are doing this on.

I tend to gut networking managers on a fresh install; you could just stop the service if you

would rather.

#apt-get purge network-manager

Edit your networking to reflect what is below.

#nano /etc/network/interfaces

(beginning)

#Primary interface NAT interface

auto eth0

iface eth0 inet dhcp

#public interface – The API village

auto eth1

iface eth1 inet static

address 172.16.0.1

netmask 255.255.0.0

network 172.16.0.0

broadcast 172.16.255.255

#Private Vlan Land of Compute Nodes

auto eth2

iface eth2 inet manual

up ifconfig eth2 up

(end)

Restart the networking service.

#/etc/init.d/networking restart

 20

Test Inet connectivity. Ping google.com or some Inet host to make sure you have good

connectivity.

Pull down the installer script. Uksysadmin did this script and it worked very well. There

is a bunch out there at the moment most break quickly. This one works very well and

beats compiling each component from scratch just for testing.

Install git from the repos:

#apt-get install git

Clone the installer:

#git clone

https://github.com/uksysadmin/OpenStackInstaller.git

#cd OpenStackInstaller

#git checkout essex

Run the installer, this will add the network interfaces, DHP and addresses you need

automagically:

#./OSinstall.sh -F 172.16.1.0/24 -f 10.1.0.0/16 -s 512 -t

demo -v qemu

Edit nova.conf and add the ‘my_ip’ value to the end of nova.conf:

#nano /etc/nova/nova.conf

#–my_ip=172.16.0.1

Wordpress mangles ‘-‘ There are two of the before ‘my’ e.g. “- – my_ip”

You should see the following processes running at this point. If not start scouring logs or

respawn with

/etc/init.d/ restart.

ps -ea | grep glance

1345 ? 00:00:00 glance-api

1346 ? 00:00:00 glance-registry

 21

ps -ea | grep nova

1340 ? 00:00:21 nova-compute

1341 ? 00:00:16 nova-network

1342 ? 00:00:03 nova-api

1343 ? 00:00:10 nova-scheduler

1344 ? 00:00:00 nova-objectstor

In Ubuntu 12.04, the database tables are under version control, fix it with the following

on a new install to prevent the Image service from breaking possible upgrades:

#glance-manage version_control 0

#glance-manage db_sync

Restart Glance just in case, probably not nessecary:

#/etc/init.d/glance-api restart

#/etc/init.d/glance-registry restart

Download the image. If you don’t see “saved [197289496/197289496]” and see “saved

[]” with an empty vaue the image will not show in the Nova dashboard.

#./upload_ubuntu.sh -a admin -p openstack -t demo -C

172.16.0.1

If you need to have a couple of attempts you may need to delete the image download in

/tmp/__upload/

rm /tmp/__upload/* (**only if you get ubuntu 12.04 x64 now available in Glance

(empty) or nothing in your images menu in Dashboard later in the install**).

Saving to: /tmp/__upload/ubuntu-12.04-server-cloudimg-x64.tar.gz'

100%[======================================>] 197,289,496

610K/s in 5m 31s

2012-04-20 01:49:56 (581 KB/s) - /tmp/__upload/ubuntu-

11.10-server-cloudimg-i386.tar.gz’ saved

[197289496/197289496]

Ubuntu 11.10 i386 now available in Glance (d19924ae-56e7-41bc-9f02-bbc8d7265cdf)

Log into the dashboard at http://172.16.0.1

 22

Username: demo

Password: openstack

Make sure you see “Ubuntu 12.04 x64 Server” under Project -> Images and Snapshot. If

you don’t troubleshoot the image upload and Glance install/config.

Under projects –Demo – Go to Access & Security

And create a keypair and save the key somewhere you can get to it later.

Edit the default rules with:

IP Protocol From Port To Port Source

TCP 22 22 0.0.0.0/0 (CIDR)

ICMP -1 -1 0.0.0.0/0 (CIDR)

TCP 8080 8080 0.0.0.0/0 (CIDR)

TCP 80 80 0.0.0.0/0 (CIDR)

Figure 2.2: Example image to demonstrate Security Group Rules

 23

Launching an Image and Using Instances

Under project -> Images & Snapshot -> click launch -> name the instance, choose the

default security policy. Also, choose the keypair you created from the dropdown.

 Figure 2.3: Example image to show launching of an image

After you launch your instances you should see them provisioned and available in

Dashboard.

Figure 2.4: Instances and Volumes

If that all looks like above then lets connect to the hosts using the key we saved earlier

(get the IP from the dashboard under Instances & Volumes). Use Ubuntu as the login ID.

 24

You can get the IP from the Dashboard or dump arp tables from the new node that was

spun up.

cd into the directory with your key.

#ssh -i demo.pem ubuntu@10.1.0.x

 Figure 2.5: Host connection through terminal

Now we have a self-provisioned abstracted compute node!

2.8. Installing Web Server and MySQL on Compute Node

We have OpenStack running on a couple of nodes now. Let’s install WordPress on

two nodes with web server running Apache on one node and MySQL on another compute

node.

Apache2 web server install on the frontend node named wpressfront

MySQL install on the backend node named wpressback

Connect to a compute node:

#ssh -i wordp.pem ubuntu@10.1.0.5

(Find the address of the compute node from the Nova Dashboard)

#sudo passwd root

#su

 25

Install

#apt-get install libdbd-mysql-perl

#apt-get install mysql-client-core-5.1 mysql-client-5.1

#apt-get install mysql-server

Edit MySql conf file

#nano /etc/mysql/my.cnf

Instead of skip-networking the default is now to listen only on # localhost which is

more compatible and is not less secure.

bind-address = x.x.x.x (or) 0.0.0.0 for all IPs on the host.

Log into MySQL on wpressback:

mysql -u root –p (Then prompted for passwd)

wpressdb = DB name

wpress = username

123 = password

mysql> CREATE DATABASE wpressdb; Query OK, 1 row affected

(0.01 sec)

mysql> CREATE USER wpress; Query OK, 0 rows affected (0.00

sec)

mysql> SET PASSWORD FOR ‘wpress’ = PASSWORD(‘123′); Query

OK, 0 rows affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON wpressdb.* TO ‘wpress’

IDENTIFIED BY ‘123’; Query OK, 0 rows affected (0.01 sec)

mysql> exit

Now let’s connect to the other node wpressfront and setup the Apache web server.

Connect to the second compute node and repeat the initial piece:

#ssh -i wordp.pem ubuntu@10.1.0.6 (find the address of the

compute node from the Nova Dashboard)

#sudo passwd root

#su

#apt-get install apache2 libapache2-mod-php5 php5-mysql

 26

Download first the latest WordPress version using this command from the terminal:

#wget http://wordpress.org/latest.tar.gz

Extract the archive file with this command:

#tar -xzvf latest.tar.gz

Create now a folder for WordPress in the /var/www directory using this command:

#mkdir /var/www/wordpress

Now move all WordPress files to this created folder using this command:

 #cp -r wordpress/* /var/www/wordpress

If you are installing WordPress in a subdirectory not in the root directory (/var/www),

then edit the apache2.conf file with this command:

#nano /etc/apache2/apache2.conf

At the end of the apache2.conf file, insert this line:

AddType application/x-httpd-php .html

I added ‘chmod 777 /var/www/wordpress/’ for the permissions.

chmod 777 /var/www/wordpress/

Then go to http://(wpressfront IP)/wordpress/wp-admin/ or

http://(wpressfront IP)/wordpress/ and tinker around with the web app

until it is how you want it.

 27

CHAPTER 3

VM Setup in XEN Environment

3.1. XEN Overview

Xen is a hypervisor which uses a microkernel design, provides services that allow

multiple computer operating systems to execute on the same computer hardware

concurrently. The Xen Project hypervisor is an open-source type-1 or bare metal

hypervisor, which makes it possible to run many instances of an operating system or

indeed different operating systems in parallel on a single machine (or host). The Xen

Project hypervisor is the only type-1 hypervisor that is available as open source. It is used

as the basis for a number of different commercial and open source applications, such as:

server virtualization, Infrastructure as a Service (IaaS), desktop virtualization, security

applications, embedded and hardware appliances.

As of Ubuntu 11.10 (Oneiric), the default kernel included in Ubuntu can be used

directly with the Xen hypervisor as the management (or control) domain (Dom0 or

Domain0 in Xen terminology).

Xen runs in a more privileged CPU state than any other software on the machine.

Responsibilities of the hypervisor include memory management and CPU scheduling of

all virtual machines ("domains"), and for launching the most privileged domain ("dom0")

- the only virtual machine which by default has direct access to hardware. From the dom0

the hypervisor can be managed and unprivileged domains ("domU") can be launched.

The dom0 domain is typically a version of Linux. User domains may either be

traditional operating systems, such as Microsoft Windows under which privileged

instructions are provided by hardware virtualization instructions or para-virtualized

 28

operating system whereby the operating system is aware that it is running inside a virtual

machine, and so makes hypercalls directly, rather than issuing privileged instructions.

Xen boots from a bootloader such as GNU GRUB, and then usually loads a

paravirtualized host operating system into the host domain (dom0).

Here are some of the Xen Project hypervisor's key features:

 Small footprint and interface (is around 1MB in size). Because it uses a

microkernel design, with a small memory footprint and limited interface to the

guest, it is more robust and secure than other hypervisors.

 Operating system agnostic: Most installations run with Linux as the main

control stack (aka "domain 0"). But a number of other operating systems can be

used instead, including NetBSD and OpenSolaris.

 Driver Isolation: The Xen Project hypervisor has the capability to allow the

main device driver for a system to run inside of a virtual machine. If the driver

crashes, or is compromised, the VM containing the driver can be rebooted and

the driver restarted without affecting the rest of the system.

 Paravirtualization: Fully paravirtualized guests have been optimized to run as a

virtual machine. This allows the guests to run much faster than with hardware

extensions (HVM). Additionally, the hypervisor can run on hardware that

doesn't support virtualization extensions.

3.2. XEN Setup

3.2.1. OS Installation

During the install of Ubuntu for the partitioning method choose "Guided - use the

entire disk and setup LVM". Then, when prompted to enter "Amount of volume group to

use for guided partitioning:" Enter a value just large enough for the Xen Dom0 system,

leaving the rest for virtual disks. Enter a value smaller than the size of your installation

 29

drive. For example 10 GB or even 5 GB should be large enough for a minimal Xen Dom0

system. Entering a percentage of maximum size (e.g. 25%) is also a reasonable choice.

3.2.2. Installing XEN

Install a 64-bit hypervisor. (A 64-bit hypervisor works with a 32-bit dom0 kernel, but

allows you to run 64-bit guests as well.)

sudo apt-get install xen-hypervisor-amd64

As of Ubuntu 14.04, GRUB will automatically choose to boot Xen first if Xen is

installed. If you're running a version of Ubuntu before 14.04, you'll have to modify

GRUB to default booting to Xen.

Now reboot:

$ sudo reboot

And then verify that the installation has succeeded:

$ sudo xl list

Name ID Mem VCPUs State Time(s)

Domain-0 0 945 1 r----- 11.3

3.2.3 Network Configuration

We will use the most common Xen network setup: bridged.

Disable Network Manager

If you are using Network Manager to control your internet connections, then you must

first disable it as we will be manually configuring the connections.

sudo stop network-manager

echo "manual" | sudo tee /etc/init/network

manager.override

Using bridge-utils

 30

sudo apt-get install bridge-utils

In a bridged setup, it is required that we assign the IP address to the bridged interface.

Configure network interfaces so that they persist after reboot:

$ sudo vi /etc/network/interfaces

auto lo eth0 xenbr0

iface lo inet loopback

iface xenbr0 inet dhcp

 bridge_ports eth0

iface eth0 inet manual

Restart networking to enable xenbr0 bridge:

$ sudo ifdown eth0 && sudo ifup xenbr0 && sudo ifup eth0

The brctl command is useful for providing addition bridge information.

3.2.4 Recommended Bridge setting

For performance and security reasons, it's highly recommended2 that netfilter is disabled

on all bridges.

sudo vi /etc/sysctl.conf

net.bridge.bridge-nf-call-ip6tables = 0

net.bridge.bridge-nf-call-iptables = 0

net.bridge.bridge-nf-call-arptables = 0

sudo sysctl -p /etc/sysctl.conf

Note: These settings are created in /proc/sys/net. The bridge folder only appears to be

created after first creating a bridge with the ''brctl' command.

3.2.5 Choice of Toolstacks

One really great feature of the Xen Project hypervisor is that there are several choices of

toolstacks that can be used to manage it. Before the introduction of libxenlight, there was

a complicated and inefficient toolstack situation. The issue was that xend, xapi, libvirt,

 31

etc. all needed to manage many common low-level operations, which led to code

duplication, inefficiencies, bugs, and wasted effort (e.g fixing the same bug in all of the

toolstacks). Further, the default toolstack at the time (xend) was difficult to understand,

modify, and extend.

xl is a lightweight command line toolstack built using libxenlight. xl is shipped along

with Xen and is the default toolstack as of Xen Project 4.1. xl was designed to be

backwards compatible with the xm CLI for xend. It provides a straightforward command

line interface to Xen's facilities for guest creation and management.

The Xen Project management API (xapi) is the default toolstack for XenServer. It is also

used in some installations of CloudStack.

Libvirt is a virtualization API/toolkit used to manage various virtualization technologies.

Originally designed to interface with xm, there is a libxenlight port of libvirt.

XEND is the previous toolstack and continues to be included as part of the Xen source

releases. xl was designed to be command line compatible with the xm CLI to xend and

this should provide the easiest upgrade path.

Note: Xend is the default toolstack in our machine as we are using a former version of

Xen hypervisor.

3.3. Grub Setup to Boot Xen Hypervisor

Setup GRUB to boot the Xen Hypervisor

sudo sed -i 's/GRUB_DEFAULT=.*\+/GRUB_DEFAULT="Xen 4.1-

amd64"/' /etc/default/grub

Disable apparmor at boot

sudo sed –I

's/GRUB_CMDLINE_LINUX=.*\+/GRUB_CMDLINE_LINUX="apparmor=0"/

' /etc/default/grub

Optional: Restrict "dom0" to 1GB of memory and 1 VCPU (example). (Only if you need

to dedicate fix amount of memory for Xen "dom0").

sudo gedit /etc/default/grub

 32

After GRUB_CMDLINE_LINUX="apparmor=0" add the line

GRUB_CMDLINE_XEN="dom0_mem=1G,max:1G dom0_max_vcpus=1"

Update Grub with the config changes we just made

sudo update-grub

Reboot the server so that Xen boots on the server

sudo reboot

Once the server is back online ensure that Xen is running

cat /proc/xen/capabilities should display "control_d"

Note: To stop or start xcp-xapi

sudo /etc/init.d/xcp-xapi stop (or start)

Setup the default toolstack

sudo gedit /etc/default/xen

 -> Set "TOOLSTACK=xapi"

 Disable xend from starting at boot

sudo sed -i -e 's/xend_start$/#xend_start/' -e

's/xend_stop$/#xend_stop/' /etc/init.d/xend

Note: Only xend the deamon needs to be disabled from starting, "/etc/init.d/xend" handles

other things like modules and xenfs. Do not disable it from the runlevel. Disable service

xendomains.

sudo update-rc.d xendomains disable

Fix for "qemu" which emulates the console does not have the keymaps in the correct

location

sudo mkdir /usr/share/qemu; sudo ln -s /usr/share/qemu-

linaro/keymaps /usr/share/qemu/keymaps

3.4. VMM Setup

Virtual Machine Manager or virt-manager is management software which manages

virtual machines. The virt-manager application is a desktop user interface for managing

virtual machines through libvirt. It primarily targets KVM VMs, but also manages Xen

and LXC (linux containers). It presents a summary view of running domains, their live

performance & resource utilization statistics. Wizards enable the creation of new

domains, and configuration & adjustment of a domain’s resource allocation & virtual

 33

hardware. An embedded VNC and SPICE client viewer presents a full graphical console

to the guest domain.

Installing it from the OS distribution

apt-get install virt-manager

Note: Every time we start the Virtual machine manager we need to start the XEN

Toolstack – Libvirt by using the command line.

Xend start

Note: By default we have set the choice of toolstack in Xen to be Xend.

3.5. Setting up VMs

When you create a virtual machine from a blank virtual hard disk, you must configure

the virtual machine so that you can install an operating system from a system CD, from

an ISO image file in the library, or through a network service boot.

To create a virtual machine from a blank virtual hard disk:

 In the Actions pane in the Virtual Machine Manager Administrator Console,

click New virtual machine.

 Complete the New Virtual Machine Wizard.

The wizard pane needs to be setup and the details for Selecting Source, VM Identity,

Hardware Configuration, Destination Selection, VM Host selection, Path Selection, and

additional properties has to be provided.

Installing an OS on the Virtual Machine

For installing an operating system from a system CD, from an ISO image file in the

library, or through a network service boot, the VM must be configured first. For the first

two methods, you must configure a virtual DVD drive to attach to a physical CD drive on

the host or to the image file. For a network installation, you must configure a virtual

network adapter.

 34

We used an image file to install the operating system. For that the image file to the

Virtual Machine Manager library must be added.

After loading the image file in new VM setup, we have to specify the memory, number

of cores and RAM allocation for the new VM. A network setup need to be defined which

is bridged-network in our case. Under Ethernet (MAC) address, specify a dynamic or

static IP address for the virtual machine. With default rest of the setting, we install the OS

(from image file) on the VM in a conventional manner. Once done, the VMs can be

rebooted. For adding multiple virtual machines either we can clone the already existing

virtual machines or follow the similar steps as above.

The virtual machine manager provides a time-saving option to ‘Clone’ the existing

virtual machines. By cloning we can create multiple similar VMs with similar

configurations. But the grub files needs to be configured in each of the new VM.

3.6. Overview Diagram

Figure 3.1: Overview of the VM setup in Xen Environment

 35

CHAPTER 4

A Brief about Xampp and Httperf

4.1. Xampp Overview

XAMPP is a free and open source cross-platform web server solution stack package,

consisting mainly of the Apache HTTP Server, MySQL database, and interpreters for

scripts written in the PHP and Perl programming languages. The XAMPP open source

package has been set up to be incredibly easy to install and to use. The name is acronym

for X (meaning cross platform), Apache HTTP Server, MySQL, PHP and Perl.

The designers intended it for use only as a development tool, to allow website

designers and programmers to test their work on their own computers without any access

to the Internet. XAMPP also provides support for creating and manipulating databases in

MySQL and SQLite among others. Once XAMPP is installed, it is possible to treat a

localhost like a remote host by connecting using an FTP client.

It also comes with a number of other modules including OpenSSL and phpMyAdmin.

Self-contained, multiple instances of XAMPP can exist on a single computer, and any

given instance can be copied from one computer to another.

4.2. Configuring the Xampp Environment

To install the Xampp, chose the flavor of the Linux OS and change the permission of

the installer and then run it. In our case the Xampp server was installed and configured in

all the VMs.

chmod 755 xampp-linux-*-installer.run

sudo ./xampp-linux-*-installer.run

To start or stop the Xampp,

sudo /opt/lampp/lampp start (stop)

 36

There is a graphical tool that you can use to manage your servers easily. You can start

this tool with the following commands:

cd /opt/lampp

sudo ./manager-linux.run (or manager-linux-x64.run)

To make request to the Web Server, start Apache in control panel, type http://localhost

in your web browser. This would bring you a web page that lists XAMPP related details.

To put stuffs in Web folder, under XAMPP root directory there is a folder called

htdocs which stores web site related stuff. For each web site you create, it’s better to

create a folder inside htdocs folder and then put content inside that to avoid conflicts. In

our case the PHP code developed to fetch the query from MySQL database server and

display it in the browser was put up in htdocs folder directly.

4.3. Setting up MySQL Database

Xampp provides a number of modules, one of which is phpMyAdmin. The MySQL

database server can be accessed and managed through it. The entire database can be

created here. In our case multiple database were created and tables were added to it. The

SQL procedures to fetch the query can be created and stored alongside the tables, which

can be used in the java programs (stored in a remote machine) to fetch the values from

the database. The setting up of database server in Xampp is straight forward and can be

done through phpMyAdmin. The setting includes creating (or modifying an existing)

database and adding tables to it and writing SQL queries as per need.

While creating a new database in phpMyAdmin SQL Database server, we need to give

the permission for the root access to users. The entire Xampp server was setup in the

virtual machines in our case. To access it from other networks, primarily from the

frontend, we need to define the user access and set the password for it. The Internet

protocol address needs to be defined at the time of setup to grant access to it over the

network, without which it will fail to connect to the server. In the PHP and Java codes

(for the experimental part), the same IP has to be used to set up a communication for a

remote access. Let us see how to make multiple request to the server thorough Httperf.

 37

4.4. Httperf overview

Httperf is a tool for measuring web server performance. It provides a flexible facility

for generating various HTTP workloads and for measuring server performance. The focus

of httperf is not on implementing one particular benchmark but on providing a robust,

high-performance tool that facilitates the construction of both micro- and macro-level

benchmarks. The three distinguishing characteristics of httperf are its robustness, which

includes the ability to generate and sustain server overload, support for the HTTP/1.1 and

SSL protocols, and its extensibility to new workload generators and performance

measurements.

4.4.1 Configuring Httperf

Httperf is using the standard GNU configuration mechanism. The following steps can

be used to build it:

mkdir build

cd build

SRCDIR/configure

make

make install

In this example, SRCDIR refers to the httperf source directory. The last step may

have to be executed as "root". To build httperf with debug support turned on, invoke

configure with option "--enable-debug".

By default, the httperf binary is installed in /usr/local/bin/httperf and the man-page is

installed in /usr/local/man/man1/httperf. You can change these defaults by passing

appropriate options to the "configure" script. The configure script assumes that the

OpenSSH header files and libraries can be found in standard locations (e.g., /usr/include

and usr/lib). If the files are in a different place, you need to tell the configure script

where to find them. This can be done by setting environment variables CPPFLAGS and

LDFLAGS before invoking "configure". For example, if the SSL header files are

installed in /usr/local/ssl/include and the SSL libraries are installed in /usr/local/ssl/lib,

then the environment variables should be set like this:

 38

 CPPFLAGS="-I/usr/local/ssl/include"

 LDFLAGS="-L/usr/local/ssl/lib"

With these settings in place, "configure" can be invoked as usual and SSL should now

be found. If SSL has been detected, the following three checks should be answered with

"yes":

 checking for main in -lcrypto... yes

 checking for SSL_version in -lssl... yes

 :

 checking for openssl/ssl.h... yes

Note: you may have to delete "config.cache" to ensure that "configure" re-evaluates those

checks after changing the settings of the environment variables.

4.4.2 Building Httperf

It is crucial to run just one copy of httperf per client machine. Httperf sucks up all

available CPU time on a machine. It is therefore important not to run any other (CPU-

intensive) tasks on a client machine while httperf is running. Httperf is a CPU hog to

ensure that it can generate the desired workload with good accuracy, so do not try to

change this without fully understanding what the issues are.

4.4.3 Example

The simplest way to invoke httperf is with a command line of the form:

httperf --server localhost --port 8080

This command results in httperf attempting to make one request for URL

http://localhost:8080/. After the reply is received, performance statistics will be printed

and the client exits.

A more realistic test case might be to issue 1000 HTTP requests at a rate of 10

requests per second. This can be achieved by additionally specifying the --num-conns

and --rate options. When specifying the --rate option, it's generally a good idea to also

 39

specify a timeout value using the --timeout option. In the example below, a timeout of

one second is specified.

httperf --server localhost --port 8080 --num-conns 100 --

rate 10 --timeout 1

The performance statistics printed by httperf at the end of the test might look like this:

 Total: connections 100 requests 100 replies 100 test-duration 9.905 s

 Connection rate: 10.1 conn/s (99.1 ms/conn, <=1 concurrent connections)

 Connection time [ms]: min 4.6 avg 5.6 max 19.9 median 4.5 stddev 2.0

 Connection time [ms]: connect 1.4

 Connection length [replies/conn]: 1.000

 Request rate: 10.1 req/s (99.1 ms/req)

 Request size [B]: 57.0

 Reply rate [replies/s]: min 10.0 avg 10.0 max 10.0 stddev 0.0 (1 samples)

 Reply time [ms]: response 4.1 transfer 0.0

 Reply size [B]: header 219.0 content 204.0 footer 0.0 (total 423.0)

 Reply status: 1xx=0 2xx=100 3xx=0 4xx=0 5xx=0

 CPU time [s]: user 2.71 system 7.08 (user 27.4% system 71.5% total 98.8%)

 Net I/O: 4.7 KB/s (0.0*10^6 bps)

 Errors: total 0 client-timo 0 socket-timo 0 connrefused 0 connreset 0

 Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

There are six groups of statistics: overall results ("Total"), connection related results

("Connection"), results relating to the issuing of HTTP requests ("Request"), results

relating to the replies received from the server ("Reply"), miscellaneous results relating to

the CPU time and network bandwidth used, and, finally, a summary of errors encountered

("Errors").

4.4.4 Selecting Timeout Values

Since the client machine has only a limited set of resource available, it cannot sustain

arbitrarily high HTTP request rates. One limit is that there are only roughly 60,000 TCP

port numbers that can be in use at any given time. Since it takes one minute for a TCP

connection to be fully closed (leave the TIME_WAIT state), the maximum rate a client

can sustain is about 1,000 requests per second.

 40

The actual sustainable rate is typically lower than this because before running out of TCP

ports, a client is likely to run out of file descriptors (one file descriptor is required per

open TCP connection).

By default machine allows 1024 file descriptors per process. Without a watchdog

timer, httperf could potentially quickly use up all available file descriptors, at which point

it could not induce any new load on the server (this would primarily happen when the

server is overloaded). To avoid this problem, httperf requires that the web server must

respond within the time specified by option --timeout. If it does not respond within that

time, the client considers the connection to be "dead" and closes it (and increases the

"client-time" error count). The only exception to this rule is that after sending a request,

httperf allows the server to take some additional time before it starts responding (to

accommodate HTTP requests that take a long time to complete on the server). This

additional time is called the "server think time" and can be specified by option --think-

timeout. By default, this additional think time is zero, so by default the server has to be

able to respond within the time allowed by the --timeout option.

In practice, we found that with a --timeout value of 1 second, machine can sustain a

rate of about 700 connections per second before it starts to run out of file descriptor (the

exact rate depends, of course, on a number of factors). To achieve web server loads

bigger than that, it is necessary to employ several independent machines, each running

one copy of httperf. A timeout of one second effectively means that "slow" connections

will typically timeout before TCP even gets a chance to retransmit (the initial

retransmission timeout is on the order of 3 seconds). This is usually OK, except that one

should keep in mind that it has the effect of truncating the connection life time

distribution.

 41

CHAPTER 5

Development of Simulator in Java Environment

5.1. Simulator Overview

Our primary objective here is to formulate a simulator which deploys applications in

the VMs in the backend when run from the front end OpenStack platform. So we chose to

solve a differential equation using the fourth order Runge-Kutta method as our

application. The constants and coefficients required to solve the DEs are stored in

MySQL Database in Xampp server in VM2 which serves as the backend machine. A java

based approach has been adopted to do the purpose. Earlier we tried to do the same

through the MATLAB script and C programming, but java turns out to be more flexible.

A time bounded running of the application produces the solution to the DEs which is to

be updated back to the database server and this serves the next starting point of the

application. In simpler words, the next instance of application running makes use of the

results of the previously-ran instance of the same application which serves as the new

starting point. Also, each time the simulator communicates to the database server get the

new coefficients and constants and to update the result. Next, the result thus generated is

to be returned to the user in his web browser through the apache web server using the

PHP script. The whole thing can be run as a single script or a bash script.

Thus a user sitting at the front end needs to run the simulator and the request goes to

the backend server which does the job and returns the result to the user in his web

browser on the frontend machine. On a scalability note, we planned to run thousand such

scripts simultaneously using the requests generated through Httperf. Thus our simulator

works in a multi-tier environment where the frontend is OpenStack platform where the

user is based and the backend is Xen environment where all our Virtual machines are

sitting in which the job runs.

 42

 43

The whole process makes use of networking between the different machines and the

virtual machines and also the Xampp server sitting in VMs. Also it communicates both

ways to the MySQL Database Server and Apache Web Server in the VMs. The Java and

PHP script developed does the purpose. The Java script sets up a connection to the

database server and simulates the application and the PHP script communicates to apache

web server to produce the results.

5.2. Simulator Setup

In our multi-tier environment the frontend is OpenStack platform and the backend is

Xen environment. The intra network has been set between the frontend and the backend

machine for the communication. The backend machine in turn has Linux OS residing

over XEN and the virtual machine manager sits inside the OS. Multiple virtual machines

are installed in the VMM for various purposes. Everything is in Linux environment. The

virtual machines communicate to the Xen using Xen-bridge adaptor. Further in the VMs

Xampp has been setup and the servers are configured. In other words our Apache Web

server and MySQL Database server resides in the VMs in the backend machine. However

the results can be produced anywhere in any web browser. The simulator is to be made

available over the network so as to run it from any machine and the results can be

produced in the web browser of the same machine. To increase the scalability of the

simulator, Httperf can be used to generate hundreds of requests

simultaneously.

 44

The simulator code has been written in Java language. The code makes use of stored

SQL procedures which has been written and stored along with the tables in database

server. Procedure fetches the SQL query to the simulator. This is possible only after

successfully setting up the connection with the database server which is again done in the

same Java code. A sample code has been given in Appendix A. Earlier attempt to develop

the simulator in C language and Matlab language were made but Java language proved to

be much more flexible.

5.3. Application – Differential Equation Solver

Differential equations, those that define how the value of one variable changes with

respect to another, are used to model a wide range of physical processes. Our aim is to

solve all type of DEs be it an initial value or two-point boundary problems. We will

develop a class named ODESolver that will define a number of methods used to solve

ODEs. Everything in java is defined within a class, so we need to define a class to

encapsulate the DEs. With an initial value problem (IVP), values for all of the

dependent variables are specified at the beginning of the range of integration.

The solution is marched outward from the initial boundary by integrating the ODE

at discrete steps of the independent variable. The dependent variables are

computed at every step. IVP are simpler to solve because you only have to

integrate the ODE one time. The solution of a two-point boundary value problem

usually involves iterating between the values at the beginning and end of the

range of integration. The most commonly used techniques to solve IVP ODEs

are called Runge-Kutta schemes.

Runge-Kutta family of methods is a step wise integration algorithm which is most

widely used algorithm. Starting from an initial condition, the ODE is solved at discrete

steps over the desired integration range. Runge-Kutta techniques are robust and will give

good results as long as very high accuracy is not required. Runge-Kutta methods are not

the fastest ODE solver techniques but their efficiency can be markedly improved if

adaptive step sizing is used. There are numerous Runge-Kutta schemes of various orders

 45

of accuracy. The most commonly used scheme and the one we will implement in this

chapter is the fourth-order Runge-Kutta algorithm.

5.4. Java Based Approach with MySQL Procedures

Java is a fairly recent Programming language. It became very popular with net-working,

web design, and graphical user interfaces (GUIs). Java is an interpreted language which

is run on a virtual machine. It is a very object-oriented language. Java is an interpreted

language, and it involves run-time type identification (RTTI) and polymorphism. These

properties give the programmer many advantages; however, this can make program

execution slow for some applications. Java has become increasingly popular for many

applications. However, it has not been used for many complex applications in scientific

computing. Although there are a few packages in Java for the numerical methods, there

have not yet been any major packages in java for the numerical solutions of ODEs.

The idea is to have an application running stored in a remote machine, which can be

accessed from anywhere. So our application fetches the query required by it to run from

the MySQL server sitting in the VMs of the remote machine, basically the cloud. To

make this happen we have to first set the connection the database server in our

application code which is written in java. Next, to fetch the queries we have to develop

SQL Procedures which again can be called from the application code. The results are

stored as a temporary variable in the application and then DESolver makes use of these

variables to solve the DEs using Runge-Kutta algorithm. This whole code is developed in

Java language. Next the results are again to be uploaded back to the Database servers.

Again to do so, we have used another SQL Procedure which this time updates the

Database with the results so that the same can be used the next time application is run.

The same results along with the supporting graphs is then send to user and is displayed in

his Web Browser using PHP script. The whole application is developed in Java language

because of its robustness. Next time if we need to add extra component to the simulator,

we just have to add a java class performing the desired function to the main class. The

supporting packages and library files were easily available in java to make the simulator

development easy.

 46

5.5. Expected Results and Conclusion

The working of simulator has been discussed in great details in earlier section. The

expected end-task of the simulator is to upload the results back to the database server and

return the same results along with the supporting graphs back to the user on the front-end

or to the remote location of the user in his web browser. But there are still slight issues

with its working as the simulator overall couldn’t produce the results. Eventually, part by

part working of the simulator was verified and the desired results are expected. So, finally

we have a simulator cum software developed which is partially operational and the issues

can be fixed with an advanced knowledge of working of Java and MySQL query

operating.

The parts of the code developed for the simulator works fine individually and perform

the desired role. But when put together as a bunch, it gives a runtime error in java. The

connection establishment to the database server, calling of the MySQL Procedures,

fetching the queries, solving the DEs, uploading the results back to the Database Server

using another MySQL Procedures everything works fine individually. But when bundled

together to work as a single fully-functional Simulator, it shows some issues. There are

also some issues with the compiler as we are using the Java script for Runge-Kutta which

is ten years old. And the modern day compiler which we have been using shows some

compatibility issues. If these issues were solved, the simulator thus developed will be one

of its kinds which use Java as its base language and also make use of apache and MySQL

servers.

Note: To my knowledge no similar work has been done earlier in this regard and no other

such implementation exists in the public domain. To my knowledge, there has never been

such implementation in Java, a programming language that is very common and growing

more popular every day.

5.6. Future Work

The future work in this project includes solving the issues and going for some scientific

application rather than solving Differential equations. Also, a better time bounded

 47

algorithm can be designed for the application when hundreds of requests are being made

to the simulator. Thus the scalability can be improved and the responsiveness of the

application can be made better by using improved techniques. Also, system identification

can be made for the whole multi-tier system governing the control theory. A control

feedback system can be developed in case of unresponsiveness of server when the

scalability gets enhanced. Utilization-based multi-resource controller can be formulated

for the identified system for our case to enhance the performance. Thus, resource

allocation to the server and the VMs can be made dynamically. Also, further work may

include development of automated mechanism for saving the power consumption using

virtualization.

 48

APPENDIX A

SAMPLE CODES

A.1 Sample PHP Script

The PHP script below is just a sample code used for the purpose to make connections to

the Database server (located in VMs) and fetch simple query from the tables and return

the results in the Web browser. The query in the script could be modified as per the

experimental requirements. Here the script fetches the result from TABLE_3 from ‘test’

database from VM2.

<?php

$dbhost='192.168.122.82:3306';

$dbuser='vm2';

$dbpass='123';

$conn=mysql_connect($dbhost,$dbuser,$dbpass);

if(!$conn)

{

 die("could not connect".mysql_error());

}

echo "Connected";

mysql_select_db("test");

$sql="select * from TABLE_3";

$retval=mysql_query($sql,$conn);

if(!$retval)

{

 die("Could not get Data".mysql_error());

}

echo "<table border='1'>

<tr>

<th> Name </th>

<th> Std code </th>

<th> TelePhone </th>

<th> Mobile </th>

<th> Email </th>

<th> Name </th>

 49

<th> Std code </th>

<th> TelePhone </th>

<th> Mobile </th>

</tr>";

while($row=mysql_fetch_array($retval,MYSQL_ASSOC))

{

echo "<tr>";

echo "<td>" . $row['Nodes'] . "</td>";

echo "<td>" . $row['RT'] . "</td>";

echo "<td>" . $row['Tput'] . "</td>";

echo "<td>" . $row['AB'] . "</td>";

echo "<td>" . $row['CD'] . "</td>";

echo "<td>" . $row['EF'] . "</td>";

echo "<td>" . $row['GH'] . "</td>";

echo "<td>" . $row['UI'] . "</td>";

echo "<td>" . $row['HY'] . "</td>";

}

mysql_close($conn);

?>

A.2 Sample Procedure in MySQL

This procedure was written and configured in the ‘test’ database itself. The procedure

gets the values from table_1 by fetching the input query. This is just a sample procedure

and can be modified as desired. The procedure later was used to develop the java code.

DROP PROCEDURE IF EXISTS showTable_1 $$ //MySQL returned

two column set (with 2 and 3 rows respectively)

CREATE PROCEDURE showTable_1 ()

BEGIN

SELECT * FROM Table_1;

END $$ //MySQL returned two column set (with 2 and 3 rows

respectively)

// the value of the Delimiter at the time of writing the

script should be changed to $$

// to run the procedure # showTable_1 () $$

 50

A.3 Sample Java Script

The java script can be used from the front end machine which makes a connection to the

VM in the backend machine and calls the procedure to run the application (DE solver in

this case). The connection with appropriate IP needs to be defied in the code. Again this

is just a sample code used for our purpose and the modification can be done accordingly.

/*

 * TO RUN THIS CODE FIRST START THE XAMPP SERVER

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

/*

Example of the use of the class RungeKutta demonstrating

the use of instance methods in

solving a set of three ordinary differential equation

describing two consecutive first order processes:

y[0] --(k1)--> y[1] --(k2)--> y[2]

k1= rate constant for first process, k2 = rate constant for

second process

dy[0]/dt = -k1.y[0]

dy[1]/dt = k1.y[0] - k2.y[1]

dy[2]/dt = -k2.y[1]

*/

package desolver;

import java.sql.*;

import java.sql.DriverManager;

//import flanagan.integration.RungeKutta;

import desolver.package1.DerivnFunction;

import desolver.package1.DerivFunction;

import desolver.package1.IntegralFunction;

import desolver.package1.Integration;

import desolver.package1.RungeKutta;

/**

 *

 * @author vm2

 */

 51

public class DEsolver {

/*

* @param args the command line arguments

*/

public static void main(String[] args) {

// TODO code application logic here

try{

 Class.forName("com.mysql.jdbc.Driver");

 Connection conn =

DriverManager.getConnection("jdbc:mysql://localhost/test","

root","");

 CallableStatement cs;

 cs = conn.prepareCall("{call showTable_1}");

 ResultSet rest = cs.executeQuery();

 while (rest.next()) {

 System.out.println(rest.getString("AA") + " "

+ rest.getString("BB") + " " + rest.getString("CC") + "

" + rest.getString("DD")); }

// Create instance of the class holding the derivative

evaluation method

 Derivn1 dn = new Derivn1();

// Assign values to constants in the derivative function

 double k1 = rest.getDouble("BB");

 double k2 = rest.getDouble("BB");

 double k1 = 2.0D;

 double k2 = 5.0D;

dn.setKvalues(k1, k2);

// Variable declarations

int i = 0;

int n = 3; // number of differential equations

double h = 0.01 // step size

double x0 = 0.0D; // initial value of x

double xn = 1.0D; // final value of x

double[] y0 = new double[n]; // initial values of the y[i]

double[] yn = new double[n]; // returned value of the y[i]

at x = xn

 52

// Assign initial values of y[i]

 y0[0] = rest.getDouble("CC");

 y0[1] = rest.getDouble("CC");

 y0[2] = rest.getDouble("CC");

// Create and instance of RungeKutta

 RungeKutta rk = new RungeKutta();

// Set values needed by fixed step size method

 rk.setInitialValueOfX(x0);

 rk.setFinalValueOfX(xn);

 rk.setInitialValuesOfY(y0);

 rk.setStepSize(h);

// Call Fourth Order Runge-Kutta method

 yn = rk.fourthOrder(dn);

// Output the results

System.out.println("Fourth order Runge-Kutta procedure");

System.out.println("The value of y[0] at x = " + xn + " is

" + yn[0]);

System.out.println("The value of y[1] at x = " + xn + " is

" + yn[1]);

System.out.println("The value of y[2] at x = " + xn + " is

" + yn[2]);

System.out.println("Number of iterations = " +

rk.getNumberOfIterations());

// Set values needed by fixed step size method

 rk.setToleranceScalingFactor(1e-5);

 rk.setToleranceAdditionFactor(1e-3);

// Call Fehlberg method

 yn = rk.fehlberg(dn);

// Output the results

System.out.println("\nFehlberg-Runge-Kutta procedure");

System.out.println("The value of y[0] at x = " + xn + " is

" + yn[0]);

System.out.println("The value of y[1] at x = " + xn + " is

" + yn[1]);

System.out.println("The value of y[2] at x = " + xn + " is

" + yn[2]);

 53

System.out.println("Number of iterations = " +

rk.getNumberOfIterations());

// Call Cash Karp method

 yn = rk.cashKarp(dn);

// Output the results

System.out.println("\nCash-Karp-Runge-Kutta procedure");

System.out.println("The value of y[0] at x = " + xn + " is

" + yn[0]);

System.out.println("The value of y[1] at x = " + xn + " is

" + yn[1]);

System.out.println("The value of y[2] at x = " + xn + " is

" + yn[2]);

System.out.println("Number of iterations = " +

rk.getNumberOfIterations());

 }

 catch(SQLException se){

se.printStackTrace();

 }

catch(ClassNotFoundException cnfe){

 cnfe.printStackTrace();

 }

 }

}

// Class to evaluate the three derivatives for given values

of x and the three y[i].

class Derivn1 implements DerivnFunction{

private double k1 = 0.0D, k2 = 0.0D;

public double[] derivn(double x, double[] y){

double[] dydx = new double [y.length];

dydx[0] = -k1*y[0];

dydx[1] = k1*y[0] - k2*y[1];

dydx[2] = k2*y[1];

return dydx;

 }

public void setKvalues(double k1, double k2){

 this.k1 = k1;

 this.k2 = k2;

 }

}

 54

APPENDIX B

REFERENCES

1. http://www.thoughtsoncloud.com/2014/03/a-brief-history-of-cloud-computing

2. Graziano, Charles David, "A performance analysis of Xen and KVM hypervisors

for hosting the Xen Worlds Project" (2011). Graduate Theses and Dissertations.

Paper 12215.

3. Autonomic Cloud Computing: Open Challenges and Architectural Elements

Rajkumar Buyya, Rodrigo N. Calheiros, and Xiaorong Li

4. A survey of mathematical models, simulation approaches and testbeds used for

research in cloud computing Georgia Sakellari, George Loukas

5. An Analytical Model for Multitier Internet Services and Its Applications Bhuvan

Urgaonkar, Giovanni Pacificiy, Prashant Shenoy, Mike Spreitzery, and Asser

Tantawiy

6. Httperf - A Tool for Measuring Web Server Performance. David Mosberger Tai

Jin, HP Research Labs, Hewlett-Packard Co. Palo Alto CA 94304 [ch.4]

7. Automated Control for Elastic n-Tier Workloads based on Empirical Modeling by

Simon Malkowski, Markus Hedwig, Jack Li, Calton Pu, and Dirk Neumman.

8. Sharma, Upendra, "Elastic Resource Management in Cloud Computing

Platforms" (2013). Open Access Dissertations. Paper 763.

9. VM consolidation: A real case based on OpenStack Cloud. Antonio Corradi,

Mario Fanelli, Luca Foschini. Dipartimento di Elettronica, Informatica e

Sistemistica (DEIS), University of Bologna, Italy

10. Experimental Evaluation of OpenStack Compute Scheduler by Oleg Litvinski and

Abdelouahed Gherbi. Department of Software and IT Engineering, École de

technologie supérieure (ÉTS), Montreal, Canada [ch.2]

11. OpenStack Installation Guide for Ubuntu 12.04 (LTS), havana (2014-09-10).

Copyright © 2012, 2013 OpenStack Foundation All rights reserved. [ch.2]

12. http://www.thoughtsoncloud.com/ [ch.2]

13. http://opensource.com/resources/what-is-openstack [ch.2]

 55

14. http://networkstatic.net/openstack-essex-scripted-installation-on-ubuntu-12-04-

part-1/ [ch.2]

15. http://networkstatic.net/openstack-essex-scripted-installation-on-ubuntu-12-04-

part-2/ [ch.2]

16. https://virt-manager.org/ [ch.3]

17. https://technet.microsoft.com/en-us/library/bb963715.aspx [ch.3]

18. https://help.ubuntu.com/community/Xen [ch.3]

19. https://help.ubuntu.com/community/Setting up Xen and XAPI, XenAPI on

Ubuntu Server 12.04 LTS and Managing it With Citrix XenCenter or

OpenXenManager [ch.3]

20. http://www.hpl.hp.com/research/linux/httperf/httperf-man-0.9.pdf [ch.4]

21. http://www.hpl.hp.com/research/linux/httperf/ [ch.4]

22. https://www.apachefriends.org/faq_linux.html [ch.4]

23. Java XAMPP Connect to MySQL database part1 + Stored Procedures

https://www.youtube.com/watch?v=s7uP16F0Y6E [ch.5]

24. http://www.ee.ucl.ac.uk/~mflanaga/java/RungeKutta.html [ch.5]

25. http://www.pearsonhighered.com/assets/hip/us/hip_us_pearsonhighered/samplech

apter/0131018159.pdf [ch.5]

26. Java Connect to Xamp MySQL database

https://www.youtube.com/watch?v=tW86s5u_Cu8 [ch.5]

27. http://www.elithecomputerguy.com/

