
High Resolution Property of Group Delay and its

Application to Musical Onset Detection on Carnatic

Percussion Instruments

A Project Report

submitted by

P A MANOJ KUMAR

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2015



THESIS CERTIFICATE

This is to certify that the thesis titled High Resolution Property of Group Delay and

its Application to Musical Onset Detection on Carnatic Percussion Instruments,

submitted by P A Manoj Kumar, to the Indian Institute of Technology, Madras,

for the award of the degree of Master of Technology, is a bona fide record of the

research work done by him under our supervision. The contents of this thesis, in full or

in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

Prof. C S Ramalingam
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Prof. Hema A Murthy
Research Guide
Professor
Dept. of Computer Science
IIT-Madras, 600 036

Place: Chennai

Date:



ACKNOWLEDGEMENTS

The contents of this thesis would not have been possible without my guide Prof. Hema

A Murthy. Her immense enthusiasm kept me motivated whenever research seemed a

difficult endeavour. She has always been ready to hear out her students’ ideas, some-

thing which enabled me a lot of freedom while pursuing my research. Amidst a tight

schedule, she also has time to spare whenever I approached for my research. Whatever

progress I have made from someone oblivious to the world of research to this moment,

I attribute it directly and indirectly to her. I thank my committee members, especially

Prof. C S Ramalingam, who introduced me to Prof. Murthy and gave me the liberty to

chose a project of my choice.

I am grateful to my friends at DON Lab for the wonderful time and support, especially

Raghava Krishnan who stayed with me in the lab through my first conference paper.

Last but not least, I thank my parents for letting me pursue my interests including the

decision for PhD, which unfortunately have always happened at the cost of time we

could have spent together. I always received never ending support from home through-

out my college and research life, a privilege that few people have.

i



ABSTRACT

KEYWORDS: Phase based processing; Group delay functions; High resolution

property; Musical onset detection; Music Information Retrieval;

Carnatic percussion instruments

Spectral analyses of speech and music processing have largely looked at the magnitude

spectrum, while completely ignoring the phase component. The importance of phase

on perception has been established through experiments on human listeners, but the

wrapped form of phase has made it’s processing difficult. More recently, the negative

derivative of phase, or group delay function was successfully applied to various tasks in

speech and music processing. The success of the group delay function and it’s derived

forms is attributed to the additive and high resolution property of group delay.

While the additive property is a well understood phenomenon, relatively little work

has gone into understanding the high resolution property of group delay functions.

In this thesis, a proof for the high resolution property is presented. It is shown that

the group delay functions for various configurations of a single-resonator system have

sharper peaks when compared to the magnitude spectra. Specifically, the strength of

group delay function at the ndB bandwidth of magnitude spectrum is always lesser.

This property is validated by numerical measures that quantify the peakedness of group

delay functions - kurtosis and spectral flatness. A specific case is considered using the

3dB bandwidth and extended to multi-pole systems through numerical computations.

In the second part of the thesis, a novel method for musical onset detection is pro-

posed. Onset detection is concerned with locating instants of significance in a musical

recording, and is a key low-level description task in Music Information Retrieval (MIR).

The proposed algorithm employs the high resolution property proven in the thesis. The

music signal is treated as an amplitude-frequency modulated waveform, and the in-

formation about onsets are postulated to lie in the message signals. A demodulation

technique using Hilbert transform is applied to extract the envelope. Minimum-phase

group delay of the envelope is computed and a global peak picking threshold is applied
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to locate the onsets.

Experiments are performed on a large and varied database of Carnatic percussion

instruments created through the course of this work. The proposed algorithm is shown

to have an. F-measure of 0.93, and performs comparable to the state of the art machine

learning technique. Later a method to reduce the parameter dependency of the algorithm

without affecting the performance, is presented. Finally, the possibility of extending

group delay processing to a more generic onset detection algorithm is explored.
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CHAPTER 1

Overview of Thesis

1.1 Introduction

Due to time varying properties of vocal characteristics associated with speech signals,

it becomes necessary to divide a speech utterance into overlapping frames. Commonly

known as short-term processing, it forms the beginning step for almost all speech and

music processing applications. The speech signal is assumed to possess the same

spectro-temporal characteristics within a frame - this is known as the quasi-stationarity

property. Most applications in speech technology begin with spectral analyses that have

considered the magnitude spectrum (or equivalently, the power spectrum) of the frame

after a suitable windowing operation. For instance, filter bank energies computed from

the magnitude spectrum and cepstral coefficients derived from filter bank energies are

two commonly used features for speech recognition and verification tasks.

While research in speech technology has been primarily directed towards the pro-

cessing of amplitude of the different frequency components (magnitude spectrum), the

phase spectrum is often ignored. The question of whether or not phase spectrum plays

a dominant role is to be addressed, but atleast for a minimum-phase signal, the phase

spectrum has been shown to contain the same information as the magnitude spectrum

([37]). Closer to speech, the importance of phase in automatic speech recognition has

been established in [1] through experiments on human listeners. The intelligibility of

speech synthesised purely using magnitude spectrum or phase spectrum was found to

be the same for shorter utterances and more for phase spectrum for longer utterances.

[46] showed under various signal-to-noise ratios that having random phases for each fre-

quency significantly altered the recognition rate as compared to true (and reconstructed)

phase. Later, [20], [41] and [6] extracted features from the frequency derivative of phase

spectrum and employed it in speech recognition.

In spite of the importance of phase being known, the main reason for the properties

of phase not been fully exploited lies in the difficulty of processing it’s wrapped nature



(restricted within the principal values [−π, π]) ([49]). The problem of recovering the

true phase given the wrapped form is an ill-posed problem if phase continuity is not

considered. [53]. This problem can be overcome when the frequency derivative of

phase is considered (specifically, the negative frequency derivative), more commonly

known as group delay functions. In the last 30 years, the group delay function in it’s

original as well as derived forms as the minimum-phase group delay function ([35])

and the modified group delay function ([32]) have been exploited in tasks like pitch and

formant estimation, syllable segmentation, speech recognition, speaker verification, etc

[33] and shown to perform comparably and sometimes better than traditional magnitude

spectrum based approaches. Two reasons have been presented to support the superior

performance - the additive property and the high spectral resolution of group delay

functions.

For a cascade of resonators, the resultant phase spectrum is a sum of the individual

phases, while the magnitude spectrum is multiplicative:

h(t) = h1(t) ∗ h2(t) (1.1)

where h1(t) and h2(t) denote the individual response functions and h(t) is the combined

response function. In the frequency domain

|H(ω)|e 6 H(ω) = |H1(ω)|e6 H1(ω)|H2(ω)|e6 H2(ω) (1.2)

Equivalently,

6 H(ω) = 6 H1(ω) + 6 H2(ω) (1.3)

The above property is relevant in the context of speech, where the resonances in vocal

tract are modelled as formants in the frequency spectrum. The additive nature is argued

to assist in discriminating the peaks in the spectrum and is a relatively well understood

phenomenon.

While the additive property of phase explains the discriminating power between

multiple poles, the implicit peakedness of each peak (similarly, of an isolated peak) has

not been proven in existing literature. This is explored in the first part of the work.
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1.2 High Resolution Property of Group Delay

The peakedness 1 of group delay function is illustrated using the magnitude spectrum for

comparison. Frequency analysis has always been carried out using the magnitude spec-

trum, hence it forms an ideal measure for comparison purposes. We consider peaks due

to system poles, and argue that the discriminating power of magnitude spectrum/group

delay is inversely related to the bandwidth of the peaks.

First, a single-resonator system is considered, and it is proved that the group delay

function has lesser ndB bandwidth than the magnitude spectrum, irrespective of the

pole location. The result assures that at any frequency starting from the resonance, the

group delay function will be lesser in strength than the magnitude spectrum. The proof

is validated using numerical measures for a single (kurtosis and spectral flatness) as

well as multi-pole system (numerical 3dB and acceleration). Effect of windowing on

the spectrum is also studied, and it is shown that the discriminating power of group

delay functions is unaltered for all configurations of the poles.

1.3 Musical Onset Detection using Group Delay

In the second part of the work, a novel application of group delay functions is proposed,

which directly employs the high spectral resolution and makes use of it’s minimum-

phase equivalent form. A new onset detection algorithm is presented, specifically for

the case of Carnatic2 accompaniments. Similar to syllable segmentation, events are

required to be located with high temporal accuracy in onset detection. The proposed

method is evaluated on a large dataset of Carnatic percussion instruments and shown

to perform comparable to a state of the art algorithm involving machine learning tech-

nique.

In the following section, a brief introduction to Carnatic music is presented along-

with the major percussion accompaniments. The task of onset detection is formally

defined and the need for an algorithm with high accuracy is motivated.

1The terms peakedness and high resolution property will be used interchangeably in the rest of this
work

2South Indian classical
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Percussion Instruments in Indian Classical Music

Percussion instruments play an important role in many genres of world music. In ad-

dition to keeping track of rhythm, they have been developed to produce individual per-

formances rich in artistic quality. Carnatic music constitutes one of the sub-genres

of Indian classical music, the other being Hindustani music. A Carnatic performance

(concert) comprises of an ensemble of the vocalist, and percussion and non-percussion

accompaniments. Although most compositions are meant to be sung and the emphasis

is on the vocalist, accompaniments have been used in complementing the vocalist as

well as in exhibiting improvisations during the tani-avarthanams (solo percussion).

The major percussive accompaniments to Carnatic music include the mridangam,

ghatam, kanjira, morsing and the thavil. The choice between these instruments is made

based on the rapport between the lead and accompanying artists and nature of the per-

formance itself. The thavil, for example, is widely found in musical performances

associated with traditional festivals and ceremonies as well as in professional musical

concerts.

Excerpts from the above instruments, each ≈ 3 seconds in duration are presented in

Fig. 1.1. Mridangam is observed to have the slowest tempo 3. A typical mridangam

tani avarthanam contains a large number of silent strokes. Combination strokes exist,

in which the left and right sides of mridangam are (expected to be) struck at the same

instant. Ghatam strokes do not show significant amplitude variation but are played at a

faster tempo. Morsing strokes lack a sharp onset. Being a wind percussion instrument,

the vocal cavity is involved as the resonator in sound production. Kanjira is played at

the fastest tempo among all the instruments - one possible reason being the smaller size

and lighter weight of kanjira, thus enabling it to be struck the fastest. A brief description

about each of these intruments can be found in Appendix A.

Task Motivation

A study of Carnatic percussion instruments on the lines of Music Information Retrieval

(MIR) will be aimed at understanding the patterns involved in the performance - beat

tracking, stroke classification, phrase/syllable classification etc. The information ob-

3On an average
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(a) Mridangam

(b) Ghatam

(c) Morsing

(d) Kanjira

(e) Thavil

Figure 1.1: Waveforms of Carnatic percussion instruments with onsets marked

tained can be further extended to study higher level problems such as tāla classification,

sama detection, artist and song recognition and so on.

As a first step towards automating the above tasks, it becomes necessary to accu-

rately pinpoint the location of each of the strokes produced. For instance, the time

instants thus obtained can enable the discovery of patterns/cycles that characterise the

5



tāla or artist and mark the end of a tani-avarthanam (mohra). In another application,

waveforms can be segmented into strokes and used for training using Baum Welch re-

estimation in isolated-style model for stroke recognition. Another idea would be to

cluster strokes into patterns and perform pattern clustering on the output stroke tran-

scription. A reliable onset detector forms the pre-processing step in such applications.

Task Definition

A percussion stroke in isolation can be divided into three parts - onset, attack and decay

(Fig 1.2). The onset signifies the exact beginning of stroke activity and is a time instant.

The attack and decay denote the rise and fall of activity respectively and are time peri-

ods. In the context of MIR, Onset detection is concerned with locating the onsets of an

accompaniment - percussion, wind or string instruments. This thesis introduces onset

detection to Indian classical percussion instruments. In the process, a novel algorithm

employing signal demodulation is introduced, and improvisations that compete with

and complement existing techniques are suggested.

 

 

Music waveform

Envelope

Onset

Attack Decay

Figure 1.2: Components of an isolated stroke - onset, attack and decay. Illustration
adapted from [3]
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1.4 Overview of Thesis

In Chapter 2, two attempts to study the high resolution property of group delay functions

are presented. It is shown that both works consider only the region closer to resonance,

and conclusions are made directly from observations. The need for a formal proof is

motivated. This is followed by a brief review of existing relevant approaches to onset

detection task - magnitude based and phase based. In the backdrop of these approaches,

the proposed algorithm is shown to use information from both magnitude and phase

components.

The high resolution property for a single-resonator (pole/zero) minimum-phase sys-

tem is proved using the concept of ndB bandwidth in Chapter 3. The group delay

function is shown to have a lesser bandwidth than the magnitude spectrum for all pole

configurations. The peakedness is validated using numerical measures like kurtosis and

spectral flatness. Next, the peakedness property is argued to hold true for multi-pole

systems too, and verified using numerical 3dB computation and acceleration measures.

Chapter 4 explains the algorithm, beginning with the characteristics of Carnatic

percussion waveforms that motivated an amplitude-frequency modulation (AM-FM)

approach. The database and evaluation measures are discussed, and results are shown

where the proposed algorithm matches closely in performance with a state of the art al-

gorithm. Two improvisations to the proposed algorithm are then proposed. Conclusion,

criticisms and directions for future work are presented in Chapter 5.

1.5 Contribution

The main contributions of this thesis are as follows:

• A theoretical proof is presented, wherein the group delay response for a single-
resonator minimum-phase system is shown to possess more peakedness in com-
parison to the magnitude spectrum.

• Three numerical measures are chosen to validate the proof. The analysis is ex-
tended to multi-pole systems, and shown to be true for all possible pole configu-
rations.

• A novel onset detection algorithm is presented, that makes use of the high reso-
lution of group delay functions. The algorithm is shown to perform comparably
with state of the art algorithms.

7



• The dependence of the proposed algorithm on a windowing parameter that con-
trols it’s smoothness is removed by using the entire range of parameter values and
producing a multi-resolution group delay function.

• A fairly large annotated dataset consisting of five Carnatic percussion instruments
was developed. The audio comes along with label information as well as onset
times.
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CHAPTER 2

Previous Work

In this chapter, a brief review of previous work pertaining to use and study of the high

resolution property of group delay functions is presented. The motivation for current

work is developed in this context. Later, the major constituents of an onset detection

algorithm - extraction of detection function and peak picking are explained. A survey

of existing onset detection methods is then presented.

2.1 On the resolution of group delay functions

Equations (1.1-1.3) can be extended to a cascade of N resonators. The overall phase

response of the cascade is a summation of the individual phase responses. This property

is commonly referred to as the additive property of phase. In the context of an all-

pole model of speech production, the individual resonators can be thought of as the

formants while the output from the cascade as the speech signal. Additive property

is a relatively well understood phenomenon. It served as a basis for proposing a non

parametric method for formant estimation in [12]. In [52], this property was employed

to extract spectral information even in the presence of noise. In [21], the ability of

group delay to resolve closely spaced peaks was studied in detail and proposed to assist

in automatic segmentation of speech into ’syllable-like’ units. It was shown that nearby

peaks are well discriminated in the group delay domain even when all peaks are not

present in the magnitude spectrum.

The high resolution property although stated in most of earlier applications involv-

ing group delay and derived functions, has not been well explained or proven.

In earlier efforts to justify this property, the group delay function was studied in the

vicinity of resonances. In [51], where formant estimation was attempted from the linear

prediction phase spectra, a cascade of resonators was considered. For a constrained

location of the poles, it was shown that squared magnitude behaviour of the group delay



function around the resonance leads to its high resolution property. The magnitude

spectrum for a cascade of N poles αi ± βi is given as :

|H(ω)|2 =
N∏
i=1

1

(α2
i + β2

i − ω2)2 + 4ω2α2
i )

(2.1)

The corresponding group delay spectrum is :

θ′(ω) =
N∑
i=1

2αi(α
2
i + β2

i − ω2)

(α2
i + β2

i − ω2)2 + 4ω2α2
i )

(2.2)

For β2
i >> α2

i , the group delay can be approximated as

θ′(ω) =
N∑
i=1

Ki

(α2
i + β2

i − ω2)2 + 4ω2α2
i )

or

θ′(ω) =
N∑
i=1

Ki|H(ω)|2 (2.3)

Hence most of the group delay strength was argued to lie around the resonance, and

closely spaced formants could be better differentiated. Clearly, the proof places a sig-

nificant constraint on the pole, that it must be close to the imaginary axis and have a

small bandwidth. Later [4] considered a parallel connection of resonators while work-

ing on pitch histograms that resembled a non-constant Q factor for each of the peaks.

An example of two resonators in parallel was considered, and once again, the group

delay response was approximated as squared version of the magnitude spectrum around

the peaks.

The above observations attempt to explain the high resolution property in the vicin-

ity of the peaks. The choice of analysis (cascade or parallel resonators) is adapted

based on the application considered. In this work, we take the case of a generic, single-

resonator system. We prove that the peakedness of the group delay response is always

greater than that in magnitude spectrum, irrespective of the pole location in the z-plane.

Specifically, the strength of the group delay function at the ndB bandwidth of the mag-

nitude spectrum is always less than the magnitude spectrum. Since both group delay

and magnitude spectrum are found to possess a common maxima value at resonance, the

result implies that at any point in the spectrum, the peakedness of group delay function

is greater. Detailed analysis is present in the following chapter.
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2.2 Approach to an Onset Detection algorithm

A number of techniques have been proposed to detect onsets. They can be classified

based on the class of detection functions used - temporal, spectral, probabilistic, ma-

chine learning based, etc. Alternatively, they may be classified into online (real-time)

algorithms, or offline algorithms. However, all of them consist of two major steps :

• Extraction of detection function : The raw waveform is transformed/reduced to
a function that emphasises the onsets. Computation of the detection function (or
novelty function) may involve noise removal, pitch removal or any other process-
ing depending on the nature of the data.

• Thresholding : Onsets are located on the detection function by means of a thresh-
old. This threshold may involve peak/valley picking and zero crossing detection.
Generally, a global threshold is observed to be difficult to optimise, hence most
algorithms tend to employ adaptive thresholds.

The performance of the algorithm depends largely on the choice of the detection

function, which facilitates the thresholding step. In this section, we discuss the major

approaches in literature, focussing specifically on magnitude and phase based algo-

rithms. Each of the approaches emphasise information from different components of

the Fourier transform, and the proposed algorithm attempts to use both components in

the computation of the detection function.

2.3 Major Approaches

Magnitude based

Energy based methods look at significant rise in signal energy in the vicinity of an onset.

This is achieved by dividing the waveform into smaller units (short-term processing)

and computing the frame-wise energy, or by extracting the amplitude envelope. Early

methods included the derivative of energy, which tend to result in sharper peaks at the

onsets when compared to energy. Later approaches looked at filtering specific bands

in the spectrum ([18]), and separating the transients from steady states ([27]). Energy

based methods perform well for sharp onsets, especially for percussion instruments, but

tend to suffer in the presence of noise and for instruments with softer onsets (string and

wind types).
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Since spectral methods analyse the Fourier spectrum, and are based on the premise

that regions of transience manifest as broadband changes in the spectrum, different

weighing functions that act on the spectrum have been proposed. The most widely used

function is the HFC (High Frequency Contact) that uses linear weights. A generic form

for the detection function D[n] would be :

D[n] =
∑
k

W [k]|X[n, k]|2 (2.4)

where n and k are the temporal and spectral indices respectively, andW [k] is the weigh-

ing function. Analogous to the energy difference, the spectral difference or spectral flux

is defined to be the geometric distance between successive frames. A number of forms

exist, based on the choice of the distance. In [15] for example, the following definition

is used :

SF [n] =
∑
k

H(|X[n+ 1, k]| − |X[n, k]|)2 (2.5)

where H(x) is the unit step function. This is added to include only for the bins with

positive energy change. Another common implementation by [31] uses the L1 norm, as

opposed to the L2 norm.

Phase based

Information about the temporal structure of the signal is also encoded in the phase

spectrum. Phase based methods look at approximating the instantaneous frequency (IF)

at a bin by change in phase spectrum between successive frames.

f [k, n] ∝ φ[k, n]− φ[k, n− 1] (2.6)

During steady state regions, the IF is expected to be fairly constant and a significant

change is expected at the onsets. Hence a suitable choice for the detection function

would be a derivative of the IF, or the second-order difference of phase.

δφ[k, n] = φ[k, n+ 1]− 2φ[k, n] + φ[k, n− 1] (2.7)

While phase based approaches can detect softer onsets when compared to the energy

based detectors, they are susceptible to phase distortions from noisy components.
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Complex Domain

In [13], a new method for onset detection using both the magnitude spectrum and phase

spectrum was proposed. The detection function was formed from the error between tar-

get STFT (Short Time Fourier Transform) and predicted STFT bins which are complex

valued.

Let Sk(m) denote the target (observed) value for the kth STFT bin at frame m.

Sk(m) = Rk(m)eφk(m) (2.8)

The predicted value is constructed as follows : The magnitude is taken as that of the

previous frame |Sk(m − 1)| and the phase is the sum of previous phase and the phase

difference with it’s previous frame (φk(m−1)) + (φk(m−1)−φk(m−2)). The reason

being the prediction captures deviations in magnitude as well as the phase spectrum.

Hence

S̃k (m) = |Sk(m− 1)|eprincarg(2φk(m−1)−φk(m−2)) (2.9)

The error for the kth bin at mth frame is computed as the geometrical distance between

Sk(m) and S̃k(m). The detection function is this error value summed over the bins in a

particular frame.

D(m) =
∑
k

|Sk(m)− S̃k(m)| (2.10)

The above detection function was observed to be sharper than those derived from mag-

nitude only and phase only based approaches. Similar to complex domain, we propose

an approach that also takes into account magnitude and phase deviations albeit in a

slightly different manner.

Other approaches

All the above methods were common in the sense that they worked upon the time-

frequency aspects of the audio signal. Probabilistic methods for onset detection con-

sider the waveform as observations from a single/multiple model(s), and either look for

instants where the model is switched between the two, or a surprise instant with respect

to a single global model. Recently, linear prediction analysis has been used in onset

13



detection, with the error function as a possible detection function.

E[n] = X[n]−
p∑

k=1

X[n− k] (2.11)

where p is the order for the LP analysis. Onsets are expected to give a large error

function since they denote a significant change in signal evolution with respect to the

previous samples. The state of the art algorithms that have been recently proposed

involve training a (deep) neural network - recurrent and convolutional. Typically, the

magnitude spectrogram or filter bank energies of onset frames alongwith context are

used for training. However, these algorithms not only require large amounts of data

for training but are also computationally intensive. [3], [10] and [5] discuss the major

approaches in onset detection over the years and evaluate some of them.

An illustration of some of the common algorithms on a relatively clean (bereft of

noise) mridangam recording is presented in Fig. 2.1.

The mridangam waveform is chosen so as to contain onsets with significantly vary-

ing amplitudes. In the second subplot, energy based detection function is observed to

have the largest dynamic range, followed by spectral flux. A large dynamic range neces-

sitates fine tuning of the peak picking parameters (global and local). Linear weighing of

the frequency scale results in a much more robust detection function in HFC. In the final

subplot, phase based detection function is observed to be extremely noisy, although it

possesses a very high precision1. Complex domain and Kullback Leibler approaches

result in almost similar detection functions, although a faster decay is seen for the com-

plex domain method.

2.4 Summary

This chapter discusses previous investigations of the high resolution property of group

delay functions, and it was noted that both approaches were made only in the vicinity of

poles, and did not prove this property. A survey of existing onset detection algorithms

is then presented. Both theoretically and experimentally, the complex domain method

for onset detection is found to be a superior signal processing algorithm, suggesting

1An evaluation measure defined in Chapter 4
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Figure 2.1: Detection functions of some common onset detection algorithms evaluated
on a mridangam tani avarthanam clip
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that a combination of magnitude and phase is a good choice for approaching an onset

detection problem.
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CHAPTER 3

Group Delay Analysis

In this chapter, we provide a theoretical basis to compare the peakedness of group delay

functions and magnitude spectrum for a single-resonator minimum-phase system. This

analysis of the group delay function gives an insight into the reason for the rapid de-

cay around a resonance that leads to its high-resolution property. This is corroborated

through the estimation of kurtosis, spectral flatness, and acceleration measures; and

compared for various configurations of single and multi-pole minimum-phase systems

for both the group delay spectrum and the magnitude spectrum.

First, an elementary single-resonator minimum-phase system is considered. The

choice of this system is to allow the possibility of a closed form expression, comparing

the strengths of the magnitude spectrum and group delay response at the ndB bandwidth

of the magnitude spectrum. The ndB bandwidth for an isolated peak is an indication of

the band of frequencies that are associated with a damped sinusoid. If the bandwidth

is large, and the gain-bandwidth product constant, the location of the peak cannot be

determined accurately from the magnitude spectrum. Specifically, it is observed that at

the 3dB bandwidth corresponding to the magnitude spectrum, the strength of the group

delay function significantly decreases away from the resonance, falling off to much less

than 1√
2

of the peak strength.
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Figure 3.1: (left) Group delay and (right) (Magnitude spectrum) spectra for a
minimum-phase system with poles at 0.7ej0.2π and 0.6ej0.6π. Large band-
width in the case of magnitude spectrum results in the peaks moved from
their true locations



3.1 A single-resonator minimum-phase system - Theo-

retical Approach

Consider a causal, discrete-time signal x[n] with one pole whose location in the z-plane

is given as z0 = rejω0 , or z0 = e−σ0+jω0 . σ0 represents the bandwidth of the pole and

ω0 the angle with respect to the abscissa. The Z-transform of the above system is:

X(z) =
1

(z − z0)(z − z∗0)
(3.1)

When evaluated at the unit circle:

X(ω) =
1

(ejω − e−σ0+jω0)(ejω − e−σ0−jω0)
(3.2)

The expression for the magnitude spectrum is given as:

|X(ω)| = P ×Q (3.3)

where

P =
1√

1 + e−2σ0 − 2e−σ0cos(ω − ω0)
(3.4)

Q =
1√

1 + e−2σ0 − 2e−σ0cos(ω + ω0)
(3.5)

Considering (3.4) alone, the maximum value of 1
1−e−σ0 occurs at ω = ω0. To compute

the ndB bandwidth, we determine the angular frequency (ω1) at which the magnitude

spectrum falls to 1
N

of its maximum value, i.e

1√
(1 + e−2σ0 − 2e−σ0cos(ω1 − ω0))

=
1

N(1− e−σ0)
(3.6)

Here, N = 10
n
20 . Solving for ω1,

ω1 = ω0 ± cos−1(N2 +
1−N2

2
(eσ0 + e−σ0)) (3.7)

The ndB bandwidth is the interval with ω0 at the center, and is given by

ωndB = 2 cos−1(N2 +
1−N2

2
(eσ0 + e−σ0)) (3.8)
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We repeat this analysis for the group delay spectrum. The phase spectrum for the

system defined by (3.2) is given by

θ(ω) = − tan−1
(

sin(ω)− e−σ0 sin(ω0)

cos(ω)− e−σ0 cos(ω0)

)
− tan−1

(
sin(ω) + e−σ0 sin(ω0)

cos(ω)− e−σ0 cos(ω0)

)
(3.9)

The group delay is defined as the negative derivative of the phase spectrum and is given

by

GD(ω) =
1− e−σ0cos(ω − ω0)

1 + e−2σ0 − 2e−σ0cos(ω − ω0)
+

1− e−σ0cos(ω + ω0)

1 + e−2σ0 − 2e−σ0cos(ω + ω0)
(3.10)

Differentiating the first term in (3.10) and equating to zero, we find that it displays the

same abscissa and ordinate for the maxima as the magnitude spectrum. Solving for the

ndB frequency,

1− e−σ0 cos(ω1 − ω0)

1 + e−2σ0 − 2e−σ0cos(ω1 − ω0)
=

1

N(1− e−σ0)
(3.11)

ω1 = ω0 ± cos−1
(

(1−N) +Ne−σ0 + e−2σ0

Ne−2σ0 + e−σ0(2−N)
‘

)
(3.12)

Hence, the ndB bandwidth is given as

ωndB = 2 cos−1
(

(1−N) +Ne−σ0 + e−2σ0

Ne−2σ0 + e−σ0(2−N)
‘

)
(3.13)

Since ndB bandwidth need not exist for all possible pole locations, we discuss its exis-

tence for the case of group delay and magnitude spectrum separately. The arguments of

cos−1 function in (3.8) and (3.13) are constrained to lie within [−1, 1]:

Magnitude spectrum:

−1 ≤ N2 +
1−N2

2
(eσ0 + e−σ0) ≤ 1 (3.14)

eσ0 being positive, the expression is always lesser than 1.

N2 +
1−N2

2
(eσ0 + e−σ0) ≥ −1 (3.15)

Solving the quadratic equation in e−σ0 ,

e−σ0 ∈ [
N − 1

N + 1
,
N + 1

N − 1
] (3.16)
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σ0 being positive, the effective range of e−σ is reduced to [N−1
N+1

, 1]

Group delay spectrum:

−1 ≤
(

(1−N) +Ne−σ0 + e−2σ0

Ne−2σ0 + e−σ0(2−N)
‘

)
≤ 1 (3.17)

The inequality gives rise to two quadratic equations:

(N + 1)e−2σ0 + 2e−σ0 + (1−N) ≥ 0 (3.18)

(1−N)e−2σ0 + (2N − 2)e−σ0 + (1−N) ≤ 0 (3.19)

The common range of e−σ0 in both of them being:

e−σ0 ∈ [
N − 1

N + 1
,∞] (3.20)

Equations (3.16) and (3.20) result in σ0 ∈ [N−1
N+1

, 1] as the interval for consideration of

ndB bandwidth.

We now consider the value of the group delay function at the ndB bandwdith of the

magnitude spectrum. Substituting for (3.7) in the first term of (3.10),

τ(ω) =

(
(1 +N2) + e−2σ0(N2 − 1)− 2N2e−σ

2[N2(1 + e−2σ0)− 2N2e−σ0 ]

)
(3.21)

The magnitude spectrum at the same frequency was shown to have a value of 1
N(1−e−σ0 )

in (3.8). The difference between this value and that of the group delay spectrum in

(3.21) is given by:

1

N(1− e−σ0)
− (1 +N2) + e−2σ0(N2 − 1)− 2N2e−σ

2[N2(1 + e−2σ0)− 2N2e−σ0 ]
(3.22)

As the denominator is positive, the numerator is a quadratic expression positive in

the interval e−σ0 ∈ [N−1
N+1

, 1], which is the same for the existence of ndB bandwidth.

Thus, it is proved that group delay is smaller in strength and greater in peakedness than

the magnitude spectrum at all points in the frequency spectrum. Figure 3.2 shows the

phenomenon explained in this section for a particular σ0 in (3.22).
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Figure 3.2: Illustrating the ndB analysis using 3dB as an example. Faster decay of
group delay in comparison to magnitude spectrum is shown by the differ-
ence at half power of magnitude spectrum

Before validating the above statement in the following section, a few points must be

noted:

• The above analysis has been carried out on the positive half of the spectrum. The
effect due to the conjugate term in (3.2) has not been considered, although the
additive property of group delay only increases it’s spectral resolution.

• The same analysis can be extended to a single-zero system, in which case the
magnitude spectrum is inverted, and the group delay function is negated in sign.
Identical expressions for ndB bandwidths (3.8) and (3.13) can be derived. Except
for group delay, the value will be less negative at the ndB point compared to that
of the magnitude spectrum.

• The system is assumed to be minimum-phase. Although real systems are not
necessarily minimum-phase, it is possible to derive a minimum-phase system
from a mixed-phase system [28].

• Two different window sizes have been used for experiments - 512 samples, con-
sidering a typical speech frame 25ms long sampled at 16KHz/44.1KHz yields
400/1103 samples, respectively. Another window of 128 samples has also been
used to illustrate the property for very short utterances too.

3.2 Numerical Analysis

For the above system, kurtosis and spectral flatness are chosen to extend the peaked-

ness comparison. The analyses take the entire frequency spectrum into account, unlike

the previous works. Kurtosis is defined as a scaled version of the fourth standardised
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moment about the mean of a distribution.

k =
E[X − µ]4

σ4
(3.23)

Since we do not model the group delay and magnitude spectrum using a pre-defined

distribution, we replace the kurtosis measure with sample kurtosis measure defined as

follows:

k ≈ Σ(Xi − X̄)4)/n

(Σ(Xi − X̄)2/n)2
(3.24)

A distribution with a higher kurtosis value has been argued to represent both higher

peakedness and heavy tailedness ([9]). We employ this property to show the peakedness

of group delay spectrum for a single pole system. For multi-resonator systems the

responses resemble a multi-modal distribution, hence a single kurtosis value cannot

quantify the peakedness of individual peaks.

Spectral flatness is defined as the ratio of the geometric mean to the arithmetic mean

of a power spectrum ([23]). It has been used to characterize how noise-like (or tone-

like) a waveform is ([24, 11]). An Additive White Gaussian Noise (AWGN) signal has

a completely flat spectrum and has the maximum possible spectral flatness value of 1.

The more the peakedness, the less the spectral flatness.

The results for kurtosis and spectral flatness by varying the bandwidth (σ0) and the

angular frequency (ω0) are summarized in Figure 3.3. The behaviour of kurtosis and

spectral flatness measures are observed to be similar irrespective of the pole positions.

Both magnitude spectra and group delay converge asymptotically to a spectral flatness

of 1 as the bandwidth increases (the pole moving closer to origin), as expected. The

difference in peakedness is emphasized for pole locations with low bandwidths.

In the case of multi-pole system, the resonant frequency and bandwidth of indi-

vidual poles determine the effect on each other in the spectrum and hence individual

analysis is more relevant than a global measure. Further, in an ndB analysis, the sys-

tem can be analysed as multiple single-resonator systems as long as the difference in

resonant frequencies is atleast twice the ndB bandwidth. Owing to the group delay de-

caying exponentially away from the resonance, this statement is observed to be true in

experiments. In this work, we compute numerically the 3dB bandwidth over all possi-

ble configurations (σ ∈ (0.05, 0.8), ω ∈ (0.3π, 0.8π)) of the two resonances. Further,
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Figure 3.3: Demonstrating the peakedness of group delay functions (blue) over log-
magnitude spectrum (red). Kurtosis measures over a bandwidth range of
[0.1,0.4] are shown in (a),(b),(c). Spectral flatness measures for the same
bandwidth range are shown in (d),(e),(f). Dotted lines correspond to the
windowed response.

we use the average acceleration measures of group delay and magnitude spectrum (as a

function of frequency) at the vicinity of the poles to directly compute the rate of rise and

fall around the peaks. The pole locations are varied between the same ranges as those in

the ndB bandwidth computations. Both numerical 3dB and acceleration measures are

reported in Table 3.1. The peakedness property is clearly preserved for both measures.

Table 3.1: Evaluations illustrating lower 3dB bandwidths and higher acceleration mea-
sures of Group delay (GD) over Magnitude Spectrum (MS) for a double pole
system

Measure
GD MS

pole1 pole2 pole1 pole2
3DB (bins) 135.29 106.57 237.79 184.29

Acc.(×10−2) 2.28 2.26 1.13 1.25

The results are also reported by selecting a few representative configurations for the

two poles and varying the bandwidth of the second pole in Figure 3.4. Pole 1 is fixed

at an angular frequency of 0.3π (ω1) in all cases. Bandwidth of Pole 1 (σ1) and angular

frequency of Pole 2 (ω2) are varied across the various examples, and the bandwidth of

Pole 2 (σ2) is varied within each case. The magnitudes of normalized slopes at each
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of the two peaks for log-magnitude and group delay spectra are shown. For configura-

tions where the two peaks are not distinguishable in the magnitude spectrum, the results

could not be reported for the entire range of σ2 (Fig 3.4a, 3.4b, 3.4c). It is observed that

windowing operation reduces the acceleration measures for both magnitude spectrum

and group delay. This is because the sinc functions of a window increase the band-

width of both functions upon convolution. Yet, group delay continues to possess higher

acceleration around the peaks, implying faster decay than the magnitude spectrum.
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(b) ω2 = 0.4π, σ1 = 0.36
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(c) ω2 = 0.4π, σ1 = 0.36
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(d) ω2 = 0.6π, σ1 = 0.22
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(f) ω2 = 0.6π, σ1 = 0.22
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(g) ω2 = 0.8π, σ1 = 0.11
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(h) ω2 = 0.8π, σ1 = 0.11
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(i) ω2 = 0.8π, σ1 = 0.11

Figure 3.4: Comparison of acceleration magnitudes for group delay (blue) and log-
magnitude spectrum (red). Top half of each figure corresponds to Pole 1
while bottom half corresponds to Pole 2. ω1 of Pole 1 is kept constant at
0.3π for the entire experiment. σ2 is varied from 0.44 to 0.05 in each plot.
Dotted lines correspond to the windowed response.
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3.3 Summary

In this chapter, examples of single-resonator and multi-resonator systems are considered

and the resolution of group delay and magnitude spectrum are studied. The high reso-

lution property that lends the superior performance to group delay functions is proved

for the above systems and argued to be extended for any generic pole-zero system.

Expressions for the ndB bandwidth are derived in the case of single-resonator sys-

tem, and it is proved that the group delay has lower strength at ndB bandwidth. Next,

the peakedness is quantified using numerical measures. The results are consistent for

various pole configurations and with the application of window of small duration.
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CHAPTER 4

Proposed Algorithm

In this chapter, a novel algorithm for onset detection on percussion instruments that em-

ploys the high spectral resolution of group delay functions is presented. The approach

is based purely on signal processing, and is agnostic to the data. The motivation for the

algorithm is discussed using syllable segmentation, followed by a brief review of AM-

FM demodulation and minimum-phase group delay processing. The significance of the

algorithm is explained in detail using a test clip. The dataset used for evaluation is pre-

sented and the performance metrics are explained. It is observed that the performance

almost matches that of the state of the art.

Syllable Segmentation

In this thesis, onset detection for MIR has been inspired by syllable segmentation for

ASR and TTS applications. The constituents of an isolated stroke - onset, attack and

decay were found to be similar to that of a syllable - onset, nucleus and cuda (Figure

4.1).

Figure 4.1: Break-up of a syllable

The syllable is considered as the fundamental unit of speech production and is found

to be a better unit than the phoneme for ASR systems due to it’s relatively better rep-

resentational and durational stability [50]. Segmentation at the syllable level followed

by isolated style recognition was found to improve performance when compared to a

flat-start based recognition [26].



The syllable structure can be defined as C*VC* (C - Consonant, V - Vowel). The

vowel at the centre is sometimes referred to as the nucleus between an onset and coda.

The energy of a syllable is lower in the consonant and higher in the vowel parts. Hence,

a syllable segmentation task would look for regions of low energy, while in the method

proposed in this work, regions of high energy are chosen as onset (The attack region in

percussion instruments can be considered smaller than tolerance limit or negligible).

The music signal is treated to be an amplitude-frequency modulated (AMFM) wave-

form. The amplitude of the difference signal is estimated in order to emphasise both

amplitude and frequency components. The envelope of this signal is extracted which

shows peaks at regions of high energy. Finally, minimum-phase group delay processing

is applied on the estimated envelope to give onsets of high temporal resolution.

4.1 Resemblance to AM-FM

In the context of communications, a message signal m(t) is encoded with a high fre-

quency carrier signal s(t) before transmission. Modulation is performed to reduce trans-

mitter and receiver antennae sizes, and to multiplex different message signals. Various

modulation schemes exist, and are characterized by the influence ofm(t) on s(t). In the

case of amplitude-frequency modulation (AM-FM), both the amplitude and frequency

of the carrier signal are influenced by two message signals m1(t) and m2(t). The basic

representation of an AM-FM signal is :

x(t) = m1(t)cos(ωct+ kf

∫
m2(t)dt) (4.1)

where m1(t), m2(t) represent the message signals, kf is the frequency modulation con-

stant and ωc is the carrier frequency. Figure 4.2(a) presents an example using sinusoids

in place of m1(t) and m2(t).

It is observed that most percussive strokes in Carnatic music can be modelled by an

AM-FM signal, based on the variations in amplitude and frequency in the vicinity of an

onset. Figure 4.2 illustrates this resemblance by comparing a carrier signal modulated

using sinusoidal message signals with individual strokes of mridangam, ghatam, kan-

jira, morsing and thavil. In all the instruments, the onset is characterised by changes in
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both amplitude and frequency. We propose that the messages m1(t) and m2(t) contain

information necessary to pinpoint the location of onsets. A demodulation technique is

necessary to extract this information before proceeding to locate the onsets.
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Figure 4.2: Resemblance of Carnatic percussion strokes (with ground truth marked) to
an Amplitude-Frequency modulated waveform

4.2 Demodulation and Envelope Detection

Differentiating the AM-FM signal in (4.1) with respect to time :

x′(t) ≈ −e(t)sin(ωct+ kf

∫
m2(t)dt) (4.2)

where

e(t) = m1(t)(ωc + kfm2(t)) (4.3)
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The term m′1(t)cos(ωct + kf
∫
m2(t)dt) has been ignored in (4.2) since ωc can be as-

sumed large. Both the message signals are now part of the amplitude in (4.2). We

postulate that all the information about an onset is now contained within the envelope

function e(t). e(t) is extracted from x′(t) using the Hilbert transform :

Any real-valued signal S(t) with Fourier transform S(w) can be represented by its

analytic version (as introduced in [17]) and is given by

Sa(t) = 2

∫ ∞
0

S(w)ej2πwtdw (4.4)

From (4.4), it is the inverse Fourier transform of the positive frequency part alone. In

terms of input signal S(t),

Sa(t) = S(t) + iSH(t) (4.5)

where, SH(t) is the Hilbert Transform of S(t). The real part of this analytic signal rep-

resents the actual signal and the imaginary part it’s Hilbert Transform. The magnitude

of the analytic signal gives an estimate of the envelope. An example of the envelope

estimated by the above method is plotted in Fig 4.3.

Figure 4.3: An example of a music waveform and Hilbert envelope
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4.3 Minimum-phase group delay processing

Let x[n] be a discrete-time signal, whose continuous phase spectrum is given by θ(ω).

The group delay function τ(ω) is defined as

τ(ω) = −d(θ(ω))

dω
(4.6)

An alternate form to compute the same directly from magnitude spectrum exists:

τ(ω) =
XR(ω)YR(ω) +XI(ω)YI(ω)

|X(ω)|2
(4.7)

where the subscriptsR and I represent real and imaginary parts of the Fourier spectrum

respectively. X(ω) and Y (ω) denote the discrete time Fourier transforms of x[n] and

nx[n] respectively.

For a cascade of resonators, the group delay function exhibits high spectral reso-

lution due to the additive property of phase - Figure 4.4 illustrates this phenomenon

by considering two minimum-phase systems, complex conjugate poles at (i) (0.8ej0.1π,

0.8ej0.3π) and (ii) (0.8ej0.1π ,0.8ej0.5π). The peaks are not resolved in the case of the

magnitude spectrum for system (i). Moreover, the peak locations do not coincide ex-

actly with the poles in both the systems, while the ability of group delay function to

clearly differentiate between the poles is visible.

It was also shown that for minimum-phase signals, the group delay function and

the magnitude spectrum resemble each other [51]. This property, alongwith the high

spectral resolution has since been used in group delay based feature extraction [21, 39,

38]

Zeroes outside the unit circle appear as peaks in the group delay domain. This

makes it difficult to differentiate them from poles inside the unit circle, which exhibit

the same phenomenon in the group delay domain. This results in a drawback of group

delay functions for representing non minimum-phase signals. As practical signals are

rarely minimum-phase, and zeroes in the vicinity of the unit circle are common, the

group delay function cannot be applied for estimation or segmentation analysis in it’s

original form. [36] showed that it is possible to derive a minimum-phase equivalent

from any non minimum-phase signal using the root cepstrum method. The causal por-
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Figure 4.4: Resolving power of the group delay function (Top) Pole-Zero plots for two
minimum-phase systems. (Center) Corresponding magnitude spectra with
the resonant frequencies marked (Bottom) Group delay spectra.

tion of the inverse Fourier transform of the squared magnitude spectrum (in fact, to any

power γ) was proved to be minimum-phase. This property has since been exploited for

segmentation of speech into syllables [40, 35, 34].

4.4 Implementation and Results

The music signal s(t) is considered as an AM-FM signal. Information about the onsets

is postulated to lie in the message signals m1(t) and m2(t) which are extracted in the

final detection function. First, the difference operation is applied, which brings both

message signals in the envelope (4.1). Next, the analytic function is computed for the

resulting signal using the Hilbert transform. The absolute value results in the envelope

function. As it is, the envelope function is quite noisy, and a median smoothing of
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window 10ms is applied.

The smoothed envelope function e(t) is considered as one half of the magnitude

spectrum for a hypothetical signal x(t). The assumption is valid as e(t) is a positive

function. x(t) is evaluated using the inverse Fourier transform after making e(t) sym-

metric. x(t) is windowed using a one-sided Hanning/Hamming window to remove

high frequency components. Group delay of x(t) is computed using (4.7) since x(t)

is always a minimum-phase signal. The resultant group delay spectrum is termed as

minimum-phase group delay function and is considered as the detection function in this

thesis.

A brief overview of the algorithm is presented :

Onset Detection Algorithm
1: Differentiate the music signal s(t) to obtain s′(t).
2: Compute the analytic signal s′a(t) = s′(t) + s′H(t).
3: Obtain the envelope e(t) = |s′a(t)|.
4: Compute x(t) = F−1(e(t) + e(−t)). x(t) is necessarily minimum-phase.
5: Compute detection function d(t) = Group delay of x(t) using (4.7).

The working of the algorithm is illustrated with an example in Figure 4.5. A phrase

of mridangam tani is shown, with intermediate outputs from the algorithm along with

the detection function. Notice a silent stroke at 1,20,000 samples in the original signal

which gets amplified by the difference operator, and the subsequent envelope detection

and group delay processing steps.

Datasets

No annotated datasets exist for Carnatic music in literature, and a new one has been

created during the course of this work. Tani-avarthanam recordings have been collected

for mridangam, ghatam, kanjira, morsing and thavil instruments. The recordings have

been split into meaningful phrases in the case of mridangam by professional musicians.

For all other instruments, segments measuring 20s in length have been used in this

work. All recordings are sampled at 44.1KHz. The details are provided in Table 4.1.
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Figure 4.5: a) Music excerpt of Mridangam tani. b) Difference signal of (a). c) Esti-
mated envelope of (b). d)Group delay function of the inverse Fourier trans-
form of (c)

Table 4.1: Details of dataset used for evaluation

S No Instrument Duration Onsets
1 Mridangam 18:41 5982
2 Ghatam 4:14 2616
3 Kanjira 3:11 1377
4 Morsing 6:35 2184
5 Thavil 4:39 2904
6 Ensemble 5:00 2529

Total 42:20 17592

Performance Measures

An onset is treated as correct (True Positive) if it is reported within a threshold (±50ms)

of the ground truth. The tolerance is introduced to account for errors in manual anno-

tation. A False Positive does not fall within the threshold of any of the time instants in

the ground truth whereas a False Negative is a missed onset. The following metrics are

used to evaluate the algorithm :

Precision(P ) =
NTP

NTP +NFP

(4.8)
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Recall(R) =
NFN

NTP +NFP

(4.9)

F -measure =
2PR

P +R
(4.10)

where NTP , NFP and NFN represent the number of True Positives, False Positives and

False Negatives respectively. Previous evaluations of onset detection algorithms [16, 5]

merged closely spaced onsets (most commonly, within 30ms) and treated them as one,

based on pyscho-acoustical studies of human perception of onsets [19]. In such cases,

the arithmetic mean of consecutive onsets was taken to replace the multiple onsets.

We do not perform the above step since it becomes impossible to differentiate between

simple and composite 1 strokes, the latter being quite common in mridangam, kanjira

and thavil. Further, we have not considered the case of multiple onset outputs within the

threshold of a target and a single onset output within the threshold of multiple targets.

They are treated as false positives and false negatives respectively.

Comparison is made with a state of the art algorithm [44] based on convolutional

neural networks (CNNs). The network is trained with 80-band Mel filter banks scaled

logarithmically in magnitude from spectrograms of multiple resolutions. 102 minutes of

monophonic and polyphonic instrumental recordings are used for training the network.

The output activation function is smoothed and a local threshold is used to detect onsets.

By varying the thresholds in the proposed algorithm as well as in [44], we report the

optimum results in Fig 4.6.

It is observed that the proposed algorithm performs comparably with the state of the

art approach. It outperforms in the case of mridangam, suggesting that silent strokes are

better detected by the algorithm. The proposed algorithm, however has a significantly

lower F-measure than the CNN based detector in the case of kanjira and thavil, suggest-

ing that strokes in regions of very high tempo cannot be differentiated sufficiently by

the proposed method.

Through the example in Figure 4.5 and results in Figure 4.6, it is seen that group

delay processing performs comparably with the state of the art machine learning tech-

niques, and can be successfully applied as an onset detection algorithm for music sig-

nals. Onset detection using group delay function also serves as another application for

1Composite refers to both left-right strokes occurring together in mridangam, and strokes which in-
volve multiple fingers in case of kanjira and thavil
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Figure 4.6: Comparison of F measures with Convolutional Neural Network (state of the
art) based Onset Detection algorithm

the high resolution properties of group delay signals.

The following section discusses two modifications/improvisations to the proposed

algorithm. Firstly, multi-resolution analysis is introduced, which reduces the parame-

ter dependency. Although this modification has been evaluated with only the proposed

algorithm, it can be applied in all applications where group delay processing is em-

ployed. Secondly, the possibility of extending group delay functions to a more generic

onset detection algorithm is explored. Through various existing onset detection imple-

mentations, it is suggested that the group delay of the original detection function is a

better detection function.

4.5 Window Scale Factor - Multi Resolution

Almost every approach to onset detection involves a threshold-based peak picking on

the detection function. The choice of threshold greatly influences the performance of

the algorithm, and most commercial implementations (Aubio : [7], onsetDS : [48],

Note Onset Detector : [14]) leave it to the user to set the threshold. The algorithm

proposed in this work consists of two parameters - Window Scale Factor WSF (adjusts

the windowing of x(t)) and Threshold. While the dependence of Threshold was less

straightforward to understand, an attempt is made to remove WSF from the algorithm.
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WSF determines the number of samples to be retained in x(t) (Algorithm 1). Hence,

higher the WSF, lesser number of samples are retained, and a lower cut-off for filtering

the group delay function.

x1(t) = x(t); t <
NFFT

WSF

= 0; t ≥ NFFT

WSF
(4.11)

Hence an optimum WSF is required to achieve a trade-off between a noisy and over-

smoothed detection function. Fig. 4.7a and 4.7b illustrate both the phenomena respec-

tively. A low WSF implies a large cut-off frequency for the low pass filter, resulting in

large number of false positives.

Note that some of the peaks get smoothed out when a higher WSF is used. How-

ever, a lower WSF may potentially give rise to false positives which render setting an

optimum threshold a difficult task. Previous implementations of group delay processing

which computed the minimum-phase group delay of short term energy (STE) functions

[34, 25], have retained WSF as a parameter for each dataset and set peak picking thresh-

old to 0. Later, [45] considered slightly larger windows for STE computation. Hence,

STE was more smoothed out and the dependence on WSF was brought down to within

an order of magnitude (3-8).

In the previous section, both WSF and Threshold for peak were optimised. Here,

the dependence on WSF is removed completely. The smoothness of a higher WSF and

the higher resolution of a lower WSF are combined by simply adding the group delay

response element-wise from WSF= 5 to WSF= 45. The choice of upper and lower

bounds on the WSF are made so as to cover the maximum possible variation in the

group delay response due to WSF. The resultant response is observed to capture most

of the true positives from the lower WSF while not giving rise to false positives.

An example using a mridangam excerpt is illustrated in Figure 4.7. The minimum-

phase group delay response corresponding to the lower and upper bounds of WSF are

plotted in Figures 4.7a and 4.7b. Note that WSF plays a significant role in the smoothing

of group delay response. In Figure 4.7c, group delay responses for different WSF are

plotted, and the final response which is a sum of the individual responses, is plotted in

4.7d.
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Figure 4.7: Detection functions computed with different Window Scale Factors
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Figure 4.8: Comparison of performance on Carnatic dataset

For the purpose of evaluation, the same datasets and performance measures are used,

except that optimisation is carried out for only the Threshold, as opposed to both WSF

and Threshold done previously. Overall F-measure is found to remain constant with

slight variations within instruments. This algorithm, with a multi-resolution approach

is argued to be robust in comparison to the single resolution approach.

4.6 Group Delay as Post-Processing

In the algorithm proposed in this thesis, the minimum phase group delay is agnostic

to the AM-FM envelope, in the sense that no assumptions are made on the envelope

other than it being a positive signal. (The envelope is assumed to be the magnitude

spectrum of a hypothetical signal, hence the positivity constraint). The high resolution

of group delay functions could improve the temporal resolution of any suitable detection

function. Hence, the possibility of applying group delay as a post-processing step to

existing detection functions is explored in this section. Since the motive is to extend

group delay processing as a generic algorithm, another dataset consisting of western

instruments has been considered.

The western dataset was introduced in [5] and contains a mixture of various western
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instruments and genres. The audio is combined with datasets used in [3], [22] and [16].

By far the biggest onset-annotated dataset in literature, it is subdivided into 321 files

and consists of 27,774 onsets. The total runtime length of the dataset is ≈ 102 minutes.

Implementations of onset detection algorithms based on energy, spectral difference,

HFC, complex domain, phase and Kullback-Leibler methods are taken from the Aubio

library [7]. The implementations are made available as Vamp plugins, and the Sonic

Annotator [8] tool is used for extraction of the detection functions. The evaluation

setup is as follows - First, the original Aubio implementation is optimised separately

for each of the six methods mentioned. Next, each detection function is taken and made

symmetric so as to resemble magnitude spectrum of a real signal. The inverse Fourier

transform is computed to give a real signal that is minimum-phase. Group delay of

this signal is computed and treated as the new detection function. A thresholding step

is performed to identify the onsets. Results for the both approaches are presented in

Figure 4.9 using the F-measures.

Energy Spectral Flux HFC Complex Phase Kullback−Leibler

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

F
−

m
e

a
s
u

re

 

 

Original

GD processed

Figure 4.9: Group Delay as a post processing step - Comparison of original and GD
processed implementations

The overall F-measures (averaged across the six methods) are presented in Table

4.2. In both cases, the F-measures are lower in comparison to the Carnatic dataset.

This is expected due to the presence of softer onsets and vocal onsets, which do not

possess a sharp attack. However, there is clearly an improvement when group delay
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is introduced as a post-processing step. The improvement is consistent in all methods

except energy based. This shows that even though group delay processing does not

add any new information to the existing detection function, it improves the temporal

resolution enabling an easier thresholding step.

Table 4.2: Overall F-measure before and after application of GD post-processing

Original GD processed
F-measure 0.6475 0.6588

4.7 Summary

In this Chapter, a new algorithm for musical onset detection is proposed. It employs

the resemblance of Carnatic percussion instruments to a generic amplitude-frequency

modulated waveform. A technique is developed that extracts information about onsets

into the envelope of the music signal. The extracted envelope is treated as the mag-

nitude spectrum of a real signal, which is necessarily minimum phase. Group delay

response of this signal is treated as the detection function in this work. The algorithm is

observed to perform better on the mridangam which contains a considerable number of

silent strokes. Later, two improvisations for reducing the parameter dependency of the

algorithm and to extend it as a generic technique are proposed.
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CHAPTER 5

Summary and Future Work

5.1 Summary

Traditional processing of audio signals mostly considered only the magnitude spec-

trum, and ignored the phase spectrum. Experiments were then performed to show the

importance of the phase component. These experiments drew inference from the human

perception with and without the presence of noisy phase. The wrapped nature of phase

has made it difficult to process in it’s direct form. However, the negative frequency

derivative of phase, known as group delay function was found to be a successful mea-

sure for various tasks due to it’s high resolution property and the additive property of

phase.

In this thesis, a proof for the high resolution property is presented in the first part

of the thesis. It is shown via a single-resonator system that, irrespective of the pole

location, the group delay function is always sharper than the magnitude spectrum at

the ndB bandwidth. Better peakedness is argued to assist the discriminating power of

group delay functions in tasks like pitch estimation, formant estimation and syllable

segmentation. The proof is extended to multi-pole systems using numerical measures

that characterise the peakedness of a function. The result is found to be consistent for

all possible pole configurations.

Next, a new algorithm is proposed for the task of musical onset detection, one which

employs the high resolution property of group delay functions discussed in the first part

of this thesis. The music waveform is treated as an amplitude-frequency modulated

waveform, and information about the onsets is proposed to lie in the message signals

which have been modulated. Using Hilbert transform, the message signals are em-

phasised in the envelope of the music signal. Group delay processing is applied on

the smoothed envelope to detect onsets. The proposed algorithm is shown to perform

comparably with a state of the art machine learning approach. Two improvisations are



proposed, one removes the parameter dependency, and the other extends group delay

processing to a more generic onset detection algorithm.

5.2 Criticisms of the Work

• A theoretical proof was proposed to show that the strength of group delay func-
tion at the ndB bandwidth of the magnitude spectrum is always lesser. The proof
applies only to a single-resonator system, since it is not possible to derive generic
expressions for the ndB bandwidth without assumptions about the pole locations
and pole bandwidths. Hence, numerical measures were used to justify the peaked-
ness.

• The proposed algorithm is found to degrade in performance when applied on
softer onsets (eg. string and bowed instruments, vocal onsets). The reason being
such examples were significantly different from an amplitude-frequency modu-
lated waveform. The extracted envelope was found to be inadequate to discrimi-
nate the onsets from steady-state regions.

• Although group delay as a post processing step was found to improve perfor-
mance on a much larger dataset, the F-measures are still way behind the state of
the art techniques.

5.3 Scope for Future Work

• The accuracy of the proposed method by working in tandem with a proven ma-
chine learning algorithm, say (Deep) neural networks ([16, 30, 29]) can be ex-
plored. These methods have been observed to work well in the presence of large
training data. The necessity of training data can be removed by correction with a
data-agnostic signal processing technique like the proposed algorithm.

• Many MIR tasks can be carried forward with a good onset prediction - iso-
lated style training/testing of stroke models for recognition purposes, detection
of salient events in a tani-avarthanam based on cues from stroke instants, tāla
classification based on stroke instants and stroke transcriptions and so on.
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APPENDIX A

Carnatic Percussion Instruments

A.1 Mridangam

Mridangam is the most widely used percussion accompa-

niment in Carnatic music. It resembles a two sided drum

with tightly stretched membranes on either side. The two

sides are unequal in size and a right handed artist positions

the smaller side to his/her right. The tonic is defined as the

base pitch, which is used as a reference for all other higher

harmonics. The strokes can be categorized based on the side of the mridangam being

played (all left side strokes are tonic independent, while some right side strokes are

tonic dependent) and the position, manner and force with which the membranes are

struck. The two sides allow composite strokes (one from the left side and one from the

right side at the same instant) to be created which from an MIR perspective ought to be

treated as one, although they sometimes appear as separate strokes while performing the

onset detection analysis. The first study on mridangam carried out by Nobel prize win-

ning scientist Raman [42] and later by [47] analyzed the harmonics of the strokes and

more recently, [2] employed a non negative matrix factorization to classify the strokes.

Details about the stroke nomenclature can be found in [2] and [43].

A.2 Ghatam

The ghatam is a hollow pot that is placed on the lap of the

artist and struck with the palm and fingers. The mouth is

positioned facing towards the artist, although the direction

is reversed occasionally. It is made of specially burnt clay

with metallic powder for strength and care is taken that the

walls of ghatam are of equal thickness. Distinct ghatam



strokes count lesser in number than mridangam. Tuning of the pitch is possible to

a limited extent by application of play-doh, but mostly another ghatam is chosen to

achieve significant variations. Ghatam strokes also produce a characteristic sound when

struck on the neck of the pot. The artist modulates the sound by altering the size of the

mouth during the performance, by partly or fully closing the area of the mouth with

palms.

A.3 Morsing

Known as Jew’s Harp, the morsing is a wind percussion in-

strument. It resembles a metallic clamp with a thin film (the

tongue) in between them. The instrument is caught by the

hand and placed in the mouth of the artist, the teeth firmly

holding it in place. Sound is produced inside the mouth of

the artist by triggering the tongue of the instrument with the

index finger. The artist’s tongue is also used to produce morsing notes. The instrument

pitch cannot be varied significantly and the artists prefer to carry morsings of different

dimensions for the purpose of fine tuning.

A.4 Thavil

The thavil is similar to the mridangam in the sense that it

is a two sided barrel, with both sides participating in sound

production. However, a right handed artist positions the

larger side to his right, unlike the mridangam. The left side

is struck with a stick while the artist plays the right side

with fingertips covered with thumb caps. The thumb caps

are mostly made of hardened rice flour and give rise to sharp, cracking sounds. The

thavil is played in festivities as much as in professional concerts, and almost certainly

accompanies the nadaswaram (a wind instrument). Variations in pitch are achieved by

tightening the left side of the instrument. Distinct strokes exist, based on the side of the

instrument struck and the number of fingers involved in production (for the right side).
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Specifically, Ta and Di involve four fingers, but are still treated as a single stroke.

A.5 Kanjira

The kanjira is a one-sided percussion instrument and is

small enough to be held with one hand. The instrument

is made of monitor lizard belly skin stretched across a cir-

cular wooden frame made from the jackfruit tree. High

pitched sound is produced by striking the circular face with

the palm and fingers of the free hand. Unlike the mridan-

gam, the face of the kanjira is not loaded with any paste. The pitch can be varied to

an extent by applying pressure on the face using the hand holding the kanjira or by

sprinkling water on the kanjira skin from behind.
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GLOSSARY

Carnatic Concert A typical concert consists of a number of segments (items). It

begins with a varnam - the opening song, and followed by compositions, where the

vocalist renders a solo performance initially followed by the melodic and rhythmic

accompaniments. The last parts feature a solo percussion (tani avarthanam) which

forms the focus of the onset detection task. A more detailed discussion about a concert

can be found in [43].

Figure A.1: General structure of a Carnatic music concert. Solid lines indicate paths
that are mandatory and dotted lines indicate optional paths which are not
mandatory. (From [43])

Tani avarthanam The artistic skill of the percussionist is displayed in this segment

towards the end of the concert. The rhythmic cycles conform to a tala, which determine

the number of beats per cycle.

Mohra Special patterns characteristic to the tala which signify the end of a tani

avarthanam. Having a dictionary of mohra can help in identification of tala provided a

good stroke recognition system is in place.
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