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Abstract

The purpose of this project is to investigate different image restoration algorithms and their applications and

implications. The study is done on the techniques of restoration of shift-invariant blurred images which are

corrupted by noise.

The first part of the project deals with various optimization methods used in image processing. The techniques

evaluated are tested on different parameters and then used in the algorithms described further. This part also deals

with Wiener filtering and an introductory mathematical formulation of Richardson-Lucy algorithm.

The thesis then deals with the aforementioned Richardson-Lucy algorithm. The algorithm was compared against

other blind image restoration algorithm. The convergence of the Richardson-Lucy algorithm is dealt with details

on gray-scale and colored images alike. The convergence of the algorithm is observed in noisy-blurred images

and also in separate cases. Finally the thesis compares the performance of MATLAB’s implementation and the C++

implementation of the algorithm.

Index terms— Image Processing, Richardson-Lucy Algorithm, C++ implementation, data analysis
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Chapter 1

Introduction

In many imaging applications, the measure image is a degraded version of the true (or original) image that ideally

represents the scene. The degradation may be due to

• Atmospheric distortions (including turbulence and aerosol scattering)

• Optical aberrations (such as diffraction and out-of-focus blur)

• Sensor blur (resulting from spatial averaging of photosites)

• Motion blur (resulting from camera shake or the movements of objects in the scene)

• Noise (such as shot noise and quantization)

Image restoration algorithms aim to recover the true image from degraded measurements. This inverse problem

is typically ill-posed, meaning that the solution does not satisfy at least one of the following: existence, uniqueness,

or stability. Regularization techniques are often adopted to obtain a solution with desired properties, indicating a

knowledge of prior information.

Image restoration is widely used in almost all technical areas involving images; astronomy,remote sensing,

microscopy, medical imaging, photography, surveillance, and HDTV systems to name a few. For example, license

plate may appear illegible due to motion blur; photographs captured under low-light conditions may suffer from

noise; out-of-focus photographs may look blurry; standard TV signals may not be sufficiently sharp for high-



definitions TV sets; archived movies may be corrupted by artifacts and noise; atmospheric distortions may degrade

the quality of images in remote sensing. In these examples and in many more scenarios, the importance of image

restoration ranges from beneficial to essential.

Deblurring is commonly referred to restoration of images degraded by blur. Although the degradation process

is in general non-linear and spatial varying, a large number of problems could be addressed with a linear shift-

invariant(LSI) model (Section ??). Because the output of an LSI system is the convolution of the true image with

the impulse response of the system, the point spread function(PSF), image restoration in LSI systems is called

image deconvolution. When the impulse response of the system is a delta function and there is only noise, the

restoration process becomes image denoising. If the PSF is unknown, then the problem is referred to as blind

image restoration.[1]

The past three decades have brought significant progress in the development of efficient methods for classical

deconvolution in both single and multi-image scenarios. Most of the earlier work was concentrated on the Space

Invariant (SIV) blurring.[2]

The subsequent chapters deal in details the LSI model (Section 2.1) of image degradation. Then we will look

into different Image restoration algorithm (Section 2.2) with inclination towards SIV blurred images and their

restoration. Also the optimization algorithm (Algorithm 1 and Algorithm 2)used will be discussed. We will then

shift our focus towards Bayesian Image Restoration (Section 2.3) and analyze the methods when we have a priori

information.

The main focus of this thesis is Richardson-Lucy algorithm which we discuss in much detail in Chapter 3. We

will look through the MATLAB implementation of the algorithm, understand the working of it (Section 3.2) and

then convert the code into a working C++ code. We compare the results from MATLAB implementation and the

C++ implementation.
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Chapter 2

Image Restoration

2.1 Linear Shift-Invariant Degradation Model

Suppose that f(x,y) is the true image that we would like to recover from the degraded measurement g(x,y), where

(x,y) are the spatial coordinates. For a linear shift-invariant system, the imaging process can be formulated as

gpx, yq � hpx, yq � fpx, yq � npx, yq, (2.1)

where ”*” is the convolution operation, h(x,y) is the PSF of the imaging system, and n(x,y) is the additive noise.

The imaging formulation can also be done in matrix-vector form or in frequency domain. Defining g,f and n as

the vectorized versions of g(x,y),f(x,y) and n(x,y),respectively,the matrix-vector formulation is

g = Hf + n, (2.2)

where H is a two-dimensional sparse matrix with elements taken from h(x,y) to have the proper mapping from f

to g. The vectorization could be done in a number of ways, including raster-scan, row-major, and column-major

order.

On the other hand, the Fourier-domain version of the imaging model is

Gpu, vq � Hpu, vqF pu, vq �Npu, vq (2.3)

where G(u,v), H(u,v), F(u,v), and N(u,v) are the Fourier transforms of g(x,y), h(x,y), f(x,y), and n(x,y), respectively.



Figure 2.1: Linear shift-invariant image degradation model

Since recorded images are of finite spatial extent, the support of the PSF goes beyond the borders of the degraded

image; this boundary value problem may create artifacts affecting the entire restored image[3]. The simplest way

of extending an image is zero padding, assuming all pixels outside measured region have zero values. With

this extension, the blur matrix H has a Block Toeplitz with Toeplitz Block (BTTB) or simply Doubly Block

Structure.[4] Another common method is periodic extension,in which case the blur matrix H is Block Circulant

with Circulant Block (BCCB).Because a BCCB matrix can be diagonalized by discrete Fourier transform, periodic

extension is the implicit method in Fourier domain solutions.

The PSF h(x,y) is the impulse response of the imaging system; it is the image of a point from the scene and es-

sentially tells the smallest image detail an imaging system can form. It’s Fourier transform H(u,v) is the frequency

response of the imaging system and is called the optical transfer function(OTF). In general, frequency domain

analysis of an imaging system provides additional insight about the behavior of the system. Also, when there are

multiple subsystems, we can multiply the individual transfer functions to get the overall transfer function. This

method is easier than the repeated convolution of the impulse responses and allows for easy visualization and

understanding of the performance of the overall system.

The major factors contributing to the image degradation are as follows.

• Diffraction: Because of the wave nature of the light, an optical system can form a point image. Even

when there is no other degradation (such a system is called a diffraction-limited system), an optical system

will have a characteristic minimum blur,which is determined by the aperture of the system. For a circular

aperture of diameter D, the diffraction PSF has a specific shape known as the Airy Disk. The well-known

Rayleigh resolution limit to discern two discrete points, 1.22λfD , is approximately the distance between the

maximum and the first minimum of the Airy disk.

• Atmospheric Blur: Atmospheric distortion are caused mainly by turbulence and aerosol scattering/absorp-

tion. A turbulent medium causes wavefront tilt, resulting in local or global image shifts. The MTF of

the atmospheric turbulence typically has an exponential decay, with dependence on various parameters, in-
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cluding medium characteristics, path length,and exposure time. Aerosol effects, on the other hand, cause

diffusion and are modeled well with a Gaussian MTF. It is possible to estimate these parameters and restore

images.

• Out-of-focus Blur: The out-of-focus PSF takes the shape of the camera aperture. For a circular aperture,

the PSF is a disk, which is sometimes referred to as the circle of confusion. For a thin-lens model, it can be

shown that the diameter of the disk is Dp|d1 � d|{d1qm,where D is the diameter of the disk, f is the focal

length, d is the distance between the lens and the in-focus plane, d1 is the distance between the lens and the

out-of-focus plane, and m is the lens magnification.

• Motion Blur: Motion blur occurs when the scene is not static and the exposure time is not small enough

with respect to the motion in the scene or the camera. In such a case the projected imagery is smeared over

the sensor according to the motion.

• Sensor Blur: A sensor integrates light over a photosensitive are, which is typically a rectangular area form-

ing the PSF of the sensor. If there is a micro-lens array in front of the sensor, then the sensor PSF takes the

shape of the micro-lens.

• Anti-Aliasing Filter: Aliasing happens if the spatial sampling rate is less than the Nyquist rate. To prevent

aliasing, an anti-Aliasing filter should be applied before the image plane. The anti-aliasing filter should be

designed accordng to the photosite pitch and the color filter array.

• Optical Abberation: An optical system may introduce additional aberrations, including spherical aber-

ration,chromatic aberration and geometric distortion. blur caused by optical aberrations could be space

varying and color channel dependent.

• Noise: In addition to the blurring effects, the image could also be corrupted by noise. There are different

sources of noise, including dark current, shot noise, read noise and quantization.

2.2 Image Restoration Methods

2.2.1 Least Square Estimation

The inverse problem of estimating f from the observation g = Hf is typically not well-posed because of non-

existence, non-uniqueness, or instability of solution. The least squares estimation minimizes the sum of squared

5



differences between the real observation gpx, yq and the predicted observation hpx, yq�fpx, yq. The cost function

to be minimized can be written as
°

px,yq |gpx, yq � hpx, yq � fpx, yq|2 in spatial domain,
°

px,yq |Gpu, vq �
Hpu, vqF pu, vq|2 in Fourier domain, and ||g �Hf ||2 in matrix-vector notation.[5] The solution in matrix-vector

notation is

f̂ � argmin
f
||g � Hf||2 � H�g, (2.4)

where H+ is known as the pseudo-inverse of H. For an over-determined full-rank system, the pseudo-inverse

is H+�(HTH)-1HT , which can be derived by setting the derivative of the cost function to zero: B
Bf ||g � Hf||2 �

2HTHf � 2HT g � 0.

2.2.2 Steepest Descent Algorithm

It is one of the most widely used method for convex optimization and convergence.The prime factor for it’s

popularity being that it is un-dissembling and very easy to implement. The steepest descent method updates an

initial estimate iteratively in the reverse direction of the gradient of the cost function Cpfq. An iteration of the

steepest descent method is

fpi�1q � fpiq � α
B
Bf
Cpfq (2.5)

where:

α is the step size

fpiq is the ith estimate

In our case where cost function is defined as Cpfq � p1{2q||g � Hf||2, and also changing matrix-vector notation

to indexing notation the iteration step is

f pi�1qpx, yq � f piqpx, yq � αhT px, yq � pgpx, yq � hpx, yq � f piqpx, yqq (2.6)

The iteration are repeated until the stopping criterion, which can be either number of maximum iteration possi-

ble, or the rate of change in the estimated signal ||fpi�1q � fpiq||{||fpiq|| or in the cost function. The step size i.e. α

should be small enough to ensure converge and large enough so that the rate of convergence is fast.
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Algorithm 1 Steepest Descent Algorithm

δ Ð value near minima of fpxq
fix a random start point x0

choose α

if fpxq ¥ δ then

calculate ∇fpxq|x0

search in �∇fpxq
update xi�1 � xi � α � di // di is the direction of fall of gradient

end if

2.2.3 Conjugate Gradient Algorithm

This method is a much more efficient than the steepest descent algorithm, and it assumes that the gradient of the

cost function is calculable at every step, and that this information can be used to improve the search for the global

minimum.This method uses the conjugate gradients for traversing downhill, in place of the gradient of the cost

function. As a result, the solution is quick and reached in comparatively fewer iterations.[5]

Algorithm 2 Conjugate Gradient Algorithm

δ Ð value near minima of fpxq
fix a random start point x0

choose α

if fpxq ¥ δ then

calculate ∇fpxq|x0

search in �∇fpxq
update α such that fpx� αpiq � diq   fpx� α � diq // di is the direction of fall of gradient

update xi�1 � xi � α � di
end if

2.2.4 Wiener Filtering

The Wiener estimator looks for an estimate in the form f̂ � Wg�b that minimizes the mean square error between

the true image and the estimated image, Etpf � f̂qTpf � f̂qu where Et.u is the expectation operator. The optimal

W and b values can be obtained using the orthogonality principle[6], which specifies two conditions : (1) the

expected value of the estimate must be equal to the estimated value of the true image, that is, Etf̂u � Etfu; and

(2) the restoration error must be orthogonal to the observation about it’s mean, that is Etpf� f̂qpg�EtguqTu � 0..

7



From the first condition, the bias term can be written as

b � Etfu � WEtgu, (2.7)

and by substituting the bias term and f̂ � Wg � b into the second condition, the restoration matrix is found to be

W � QfgQ�1
g , (2.8)

where Qfg � Etpf�Etfuqpg�EtguqT u is the cross-covariance matrix between the true image and the observation,

and Qg � Etpg � Etguqpg � EtguqT u is the covariance matrix of the observation. Simplifying further for the

case of LSI system and using the assumption that true image and noise are uncorrelated, the Wiener filter(3.8) is

W � QfH
T pHQfH

T � Qnq�1, (2.9)

where Qf and Qn are the covariance matrices of the true image and noise. The bias term is zero only when

expected values of true and observed image are zero. But we can avoid the bias term by mean normalizing the

observed and estimated images before applying the filter (3.8), and finally adding the true image mean to obtain

the solution.

The Wiener filter in Fourier domain provide further insight to the solution. It is given as,

W pu, vq � H�pu, vq
|Hpu, vq|2 � Snpu,vq

Sf pu,vq
, (2.10)

where Snpu, vq and Sf pu, vq are power spectral densities of noise and true image respectively. Thus, estimated

image is given as F̂ pu, vq �W pu, vqGpu, vq. In absence of any blur i.e. H � 1, the filter takes form

W pu, vq � Sf pu, vq
Snpu, vq � Sf pu, vq (2.11)

which at low frequencies, take form W pu, vq � 1 i.e. allow all the information to pass, and at high frequencies

becomes SNR. In absence of noise the filter goes to the other extreme and behave as an inverse filter W pu, vq �
1

Hpu,vq .

8



Algorithm 3 Wiener Filtering (G,f)
for k Ñ 0 to 2 do

calculate Ĥ � 1
1�k

calculate estimate F̂ � HG

find F̂ such that
b
|f � f̂ |2 is minimum

output F̂

end for

Experiments and Results

The original images in Figure 2.2(left), Figure 2.4(left), and Figure2.6(left) were degraded by white Gaussian

blur and white Gaussian noise with σb1 � 1.2 and σn1 � 15, σb2 � 1.0 and σn2 � 10, and σb3 � 0.5

and σn3 � 15 respectively. The resulting images in Figure2.2(right), Figure2.4(right), and Figure2.6(right) thus

obtained were passed through Wiener filter implemented in MATLAB using algorithm 3. The results Figure2.3(left),

Figure2.5(left), and Figure2.7(left) were compared to the results of in-built MATLAB1s function wiener2 Figure2.3(right),

Figure2.5(right), and Figure2.7(right) respectively.

Figure 2.2: Gray-scale Lena image used for the experiment
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Figure 2.3: Result of my implementation of Wiener filter and MATLAB in-built option

Figure 2.4: Grayscale image used for the experiment
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Figure 2.5: Result of my implementation of Wiener filter and MATLAB in-built option

Figure 2.6: RGB mandarin image used for the experiment

11



Figure 2.7: Result of my implementation of Wiener filter and MATLAB in-built option
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2.3 Bayesian Image Restoration

Bayess law states that the posterior probability is proportional to the product of the likelihood and the prior

probability i.e. P pA|Bq � P pB|AqP pAq
P pBq , where for proposition A and evidence B

P pAq is the prior,

P pA|Bq is the posteriori,

P pB|AqP pBq is the support of A,

The likelihood encompasses the information contained in the new data. The prior expresses the degree of certainty

concerning the situation before the data are taken. Bayesian estimation provides an elegant statistical perspective

to the image restoration problem. The unknown image, noise, and PSF(in case of blind deconvolution) are all

treated as random variables.

In most image restoration problems, image noise is modeled to be zero-mean independent identically distributed

(iid) Gaussian random variable: ppnpx, yqq � 1?
2πσn

exp
�
� 1

2σ2
n
pnpx, yqq2

	
. Thus conditional probability of the

observed image is

ppg|fq �
¹
x,y

1?
2πσn

exp

�
� 1

2σ2
n

pgpx, yq � hpx, yq � fpx, yqq2



� 1�?
2πσn

�M exp

�
� 1

2σ2
n

||g � Hf||22


,

(2.12)

where σn is noise standard deviation andM is the total number of pixels in the observed image. But in many cases

where the noise is modeled as Poisson random process then the conditional probability of the observed image is

ppg|fq �
¹
x,y

phpx, yq � fpx, yqqgpx,yq exp p�phpx, yq � fpx, yqqq
gpx, yq! (2.13)

The Equation 2.13 when using ML estimator approaches the well-known iterative Richardson-Lucy algorithm[7][8],

f pi�1qpx, yq �
�

gpx, yq
hpx, yq � f piqpx, yq � h

T px, yq
�
� f piqpx, yq (2.14)

Richardson-Lucy or RL algorithm can be used both for non-blind,in which we assume the blurring operator

to be known, and blind,in which we assume the blurring operator is unknown, deconvolution. The problem in

non-blind restoration is the PSF of the image is rarely known with certainty and if otherwise it’s not accurate.

This gives rise to PSF mismatch, which in-turn leads to poor deblurring results. The presence of noise further

intensifies the problem.[17]
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Chapter 3

Richardson-Lucy Algorithm

In the section 2.3, R-L algorithm was introduced briefly. We will now discuss the same in details. The iterative

R-L algorithm is based on Bayesian restoration and uses the fact that we have apriori knowledge of the PSF

kernel. Also we will assume that the size of the estimated image, degraded image and the original image is same,

which makes the iterations simpler.

3.1 Pseudo-code

Algorithm 4 Iterative R-L Algorithm

degraded image g and kernel k

initial estimate f0 � g 
 k

for iteration 1 to 10 do

Subtract from blurred image b � f � fi 
 k

Add the error corrected image a � b� fi

Set image for next iteration fi � a

end for



3.2 MATLAB code explanation

Given an image I, which is blurred and noisy, an initial estimate of kernel h.Find the best estimate of the

de-convolved image J.[9, 10]

3.2.1 Definitions

DECONVLUCY J � deconvlucypI, PSFq deconvolve image I using Lucy � Richardson algorithm, return-

ing deblurred image J. The assumption is that the image I was created by convolving a true image with a

point-spread function PSF h and possibly by adding noise.

• NUMIT (optional) number of iterations the algorithm runs through. Default value is 10.

• READOUT (optional) Additive noise.Default value is 0.

• SUBSMPL (optional) is used when the PSF finer than the image. Default is 1.

3.2.2 Code Interpretation

Preparing PSF

sizeOTF(numNSdim) = SUBSMPL *sizeI(numNSdim);// If sampling rate of PSF is not same as that of im-

age. H = psf2otf(PSF,sizeOTF);// Changing from time domain to frequency domain. i.e. H � DFT pPSF q

Preparing Parameter for Iterations

wI = max(WEIGHT.*(READOUT + J1),0);// Generate wI matrix such that the positivity constraints are satis-

fied. i.e. wI � 0 or wI � noisy pixel value ¡ 0

scale = real(ifftn(conj(H).*fftn(WEIGHT(idx:)))) + sqrt(eps);// Scaling factor based on the

weight matrix and how the flat-field of the image is defined.
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3.2.3 L-R Interations

for k = 1:NUMIT// Loop over the number of iterations

Image predictions for the next iteration Y = max(J2 + lambda*(J2 - J3),0);// difference between the

last two iterations of the algorithm. Basically this generates the error correction matrix. Also enforces positivity

constraints.[10]

Core for the L R interations CC = corelucy(Y,,H,DAMPAR22,wI,READOUT,SUBSMPL,idx,vec,num);//calling

the in-built function which performs the basic Lucy algorithm.

J3 = J2; //previous � next

J2 = max(Y.*real(ifftn(conj(H).*CC))./scale,0); //Jt2u � y b �hT b CC
�

in time domain.

J4 = [J2(:)-Y(:) J4(:,1)]; // Implementation related iterations. This is related to optimization technique

of MATLAB internally.

Corelucy

Resampling and Reshaping ReBlurred = real(ifftn(H.*fftn(Y))); // Reblurring the image get an

initial estimate i.e. y b h.

if SUBSMPL ˜= 1,

ReBlurred = reshape(ReBlurred,vec);

for k = num,

vec(k) = [];

ReBlurred = reshape(mean(ReBlurred,k),vec);

end

end;

Explanation: This code snippet reshapes ReBlurred matrix on number of non� singleton dimensions
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Estimation for next Iteration

ReBlurred = ReBlurred + READOUT; // Adding noise to image if present.

ReBlurred(ReBlurred == 0) = eps; // Positivity constraint.

AnEstim = wI./ReBlurred + eps; // solving the equation Ax � B for each element in the ReBlurred to get

an estimate of the output image. eps is used to maintain the positivity constraint.

if DAMPAR22 == 0,% No Damping

ImRatio = AnEstim(idx{:});

else % Damping of the image relative to DAMPAR22 = (N*sigma)ˆ2

gm = 10;

g = (wI.*log(AnEstim)+ ReBlurred - wI)./DAMPAR22;

g = min(g,1);

G = (g.ˆ(gm-1)).*(gm-(gm-1)*g);

ImRatio = 1 + G(idx{:}).*(AnEstim(idx{:}) - 1);

end;

f = fftn(ImRatio); // return the image generated by the function

3.3 Convergence of RL Algorithm

R-L algorithm starts usually from an initial model of constant density distribution that apparently has maximum

entropy as well as being perfectly smooth, then it modifies the estimates step by step by collecting information

from the observational data until a reasonable fit is reached. This approach is opposite to that of any regulariza-

tion methods, which searches for best fitted models subject to constraints like smoothness or flatness. Since the

likelihood of model fitting is improved after each step while an infinite number of iterations is neither possible

nor useful, we need to figure out when to stop the iterations. This become increasingly more important especially

when a priori knowledge about the signal is not available or the signal-to-noise ratio is poor.[14]
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3.3.1 Experimental Observations

The algorithm was tested under different conditions to check the convergence and find an optimal number of

iterations. The test images in each of the experiments are gray-scale.

Figure 3.1: MSE error of an estimated image and original image vs log of iteration of R-L algorithm performed

We started off by performing large number of iterations for the R-L algorithm on images that have been degraded

by Gaussian blur kernel and white Gaussian noise. The algorithm was thought to be asymptotically convergent,

but the results were not in agreement with the theory. The behavior of my implementation of the algorithm

and MATLAB1s were identical. From Figure 3.1 it is evident the algorithm diverges as the number of iterations

increases. A decrease in MSE was observed between 5 to 100 iterations region. Most of the experiments were

then performed only for the aforementioned iterations region only.

In the subsequent experiments we tried to figure out the cause for the divergence of the MATLAB1s implementa-

tion of the algorithm. SIV blurring with white Gaussian noise was applied to gray-scale images and RL algorithm
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iterations were performed.

In Graph3.2 and Graph3.3, the square root of MSE was recorded and compared between my implementation of

the algorithm and that of the MATLAB. It is can noted that till 10 iterations the error is reasonable. Also it can be

seen that my implementation closely follows the MATLAB1s implementation.

Figure 3.2: Comparison of performance of my

implementation and MATLAB1s implementation for

15 iterations

Figure 3.3: Comparison of performance of my

implementation and MATLAB1s implementation for

10 iterations

Then the experiments were performed to find out the convergence of blind and non-blind RL algorithm (MATLAB)

respectively. The initially the number of iteration were kept a little a high to find out that when does the algorithm

starts to diverge.

The experiment was performed on gray-scale images which were only blurred by Gaussian blur kernel. No

noise was added to the test images. The results showed that the algorithm first starts to converge and then diverge.

Graph3.4 shows the results as recorded.

When only noise (WGN) was applied to the test images the results were entirely different. The MSE error just

kept on increasing with each iteration. Graph3.5 shows the recorded results.
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Figure 3.4: Convergence of deconvlucy blind and

nonblind for only blurred image

Figure 3.5: Convergence of deconvlucy blind and

nonblind for only noisy image

The experiment was then repeated with going on till only 10 iterations. From Graph3.6 we can infer that it

is reasonable to run the algorithm for upto 10 iterations to gain significant results when the image is only SIV

blurred.

Whereas on the other hand from Graph3.7, we can infer that if the image only affected by WGN, the error keeps

on increasing even for small number of iterations.

Figure 3.6: Convergence of deconvlucy blind and

nonblind for only blurred image

Figure 3.7: Convergence of deconvlucy blind and

nonblind for only noisy image
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The experiments were then repeated to benchmark my implementation of the algorithm against the MATLAB1s

implementation. The images were only subjected to SIV Gaussian blur and MSE was recorded for the 20 and 10

iterations respectively. Graph3.8 and Graph3.9 show the recorded results respectively.

From the result it is evident that my implementation closely follow the MATLAB1s implementation. Also the

deviation is with the range of error. We can thus safely assume to run the algorithm for 10 iterations. The RL

algorithm performs better on images which are not corrupted by noise and are only blurred.

The experiments performed gave an in-sight to the working of the RL algorithm. They showed the performance

of algorithm in different conditions and iterations. The main objective of the experiments was to study the con-

vergence of the RL algorithm. Since the Algorithm4 is a difference algorithm the reason for divergence can be

the addition of the MSE error to the estimated image over and over again after the best match is found. Thus it is

recommended to run the algorithm for upto 10 iterations, as that will give the best results.

Figure 3.8: Comparison of convergence of

deconvlucy blind for only blurred image

Figure 3.9: Comparison of convergence of

deconvlucy blind for only blurred image

3.4 Effect of kernel size on Image and PSF estimation

After performing experiments to see the convergence of the RL algorithm (Algorithm 4), effect of other parameters

on the restoration of images were studied. One such parameter was kernel estimation and size.[2]
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Figure 3.10: MSE in Blind image restoration using RL algorithm at different kernel sizes in image estimation

Figure 3.11: MSE in Blind image restoration using RL algorithm at different kernel sizes in kernel estimation
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As the size of kernel increases the estimated image deviates from the original image. Also the kernel estimation

for the RL algorithm becomes increasingly difficult. Graph 3.10 provides us an insight as to how the image

estimation is affected by the kernel size. The MSE decreases for odd value of kernel size for smaller values. This

is a direct implication of the fact that the Gaussian kernel size is chosen to be t6 � σu� 1, which indeed be always

be odd. This further is an implication of the fact of the 99% confidence interval.

Graph 3.11 shows that the kernel estimate has minimum effect due to the change in size of the kernel. As the

kernel size increases, that is the energy of the kernel spreads, the estimation gets better.

3.5 C++ Implementation

For converting the MATLAB implementation of the RL algorithm initially MATLAB1s C coder was used. But since

the use of some MATLAB1s image processing toolbox function, which do not have a direct conversion to C++, the

output needed was not obtained. We then used opencv image processing modules to implement the Algorithm 4.

The implementation was straight forward with the opencv functions available. The implementation uses legacy

image storing matrices IplImage though as they have better documentation compared to newer available cv::Mat.

Also the code initially ran only on Linux platforms but after the inclusion of windows.h, the code was made to

run on Windows platforms as well.

In Figure 3.12 (right) , the original image (Figure 3.12 (left)) was blurred using a Gaussian blur kernel. The

output of the C++ implementation (Figure 3.14) and deconvlucy MATLAB (Figure 3.13) are shown. The results are

comparable and the difference in the output not so distinguishable to naked eye.

The image in Figure 3.15 (left) was blurred with a motion blurring kernel(Figure 3.15 (right)) . The output

of the C++ implementation (Figure 3.14) and deconvlucy MATLAB (Figure 3.13) are shown. The output of the

deconvlucy MATLAB is better than the C++ output because of the implementation of edgetaper which reduces the

ringing around the edges[11].

The last experiment was performed on RGB images. As earlier the original RGB image was converted to YCbCr

image and then the blur kernel was applied on the Y component (luminance). The output of the deconvlucy

MATLAB and C++ implementation are visibly similar. The difference in the color rendering is not different either.
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Figure 3.12: Original image(left) and degraded image(right)

Figure 3.13: Output of deconvlucy MATLAB
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Figure 3.14: Output of C++ implementation of RL

Figure 3.15: Original image(left) and degraded image(right)

26



Figure 3.16: Ouput of deconvlucy MATLAB Figure 3.17: Output of C++ implementation

Figure 3.18: RGB text image(left) and degraded image(right)
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Figure 3.19: Output of deconvlucy MATLAB Figure 3.20: Output of C++ implementation
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