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ABSTRACT

KEYWORDS: Atom decomposition, dictionary, sparse representation, K-SVD,

psnr, median filter.

We study the sparse representation of signals using an overcomplete dictionary, in

which signals are being described by linear combinations of dictionary atoms. We use

pursuit algorithms that decompose signals with respect to a given dictionary. We im-

plement an algorithm for adopting dictionaries to achieve sparse representations. Given

a set of training signals, we build the dictionary that leads to the best representation for

each member in the set, under strict sparsity constraints. We implement a new algorithm

named the K-SVD algorithm which is an iterative method that alternates between sparse

coding of the training signals based on the current dictionary and a process of updating

the dictionary atoms to better fit the data. We analyze this algorithm and demonstrate

some results on real image data.

We implement the algorithm and apply it to real world application: filling in missing

pixels. We delete random pixels in the image and fill their values using the various

dictionary atom decomposition. We then apply filter to the dictionary reconstructed

image and corrupted image, calculate their psnr values with respect to original image.

We show that after applying median filter, dictionary built image shows better psnr than

corrupted image.
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CHAPTER 1

INTRODUCTION

Recently there has been a lot of interest towards the sparsity and its applications. The

process of digitally sampling a signal leads to its representation as the sum of delta

functions. This representation is convenient for the purpose of display and is mostly in-

efficient for analysis tasks. We require more meaningful representations which captures

the useful characteristics of the signal.

A dictionary which comprises of the set of elementary signals or atoms is used

to represent a signal. Every signal is uniquely represented as the linear combination

of dictionary atoms, when the dictionary columns forms a basis. In a simple case,

the dictionary is orthogonal, then the representation coefficients can be computed as

inner products of the signal and the atoms. If dictionary forms bi-orthogonal basis,

then the coefficients are equal to the inner products of the signal and the dictionary

inverse. For years, orthogonal and bi-orthogonal dictionaries were used in variety of

signal applications because of their mathematical simplicity. However their limited

expressiveness eventually outweighed their simplicity. This led to the development of

overcomplete dictionaries, having more atoms than the dimension of the signal, with

which we can represent a wide range of signals.

We consider the dictionary D = [d1d2 . . . dK ] ∈ RN×K , where the columns repre-

sent the atoms, and K ≥ N. Representing a signal x ∈ RN using the dictionary can

take one of two paths: (i) analysis path, (ii) synthesis path.

In analysis path, we use a set of linear filters, and the signal is represented using its

inner products with the atoms,

γ = DTx (1.1)



In synthesis path, we use a set of atomic signals, and the signal is represented as a

linear combination of the dictionary atoms,

x = Dγ (1.2)

In the synthesis approach, when D is overcomplete, the solution set satisfying 1.2

is infinitely large, with the degrees of freedom identified with the null-space of D.

This gives the most informative representation of the signal with respect to some cost

function C(γ) :

γ = Argmin
γ
C(γ) subject to x = Dγ (1.3)

Practical choice of C(γ) gives the sparsity of the representation, and we also want

the sorted coefficients to decay quickly. Solving 1.3 is commonly referred as sparse

coding. We can achieve sparsity by choosing C(γ) as some robust function, which

is tolerant to large coefficients but aggressively penalizes small non-zero coefficients.

Examples of cost functions include the Huber function and various `p cost functions

with 0 ≤ p ≤ 1.

Overcomplete dictionaries allow higher sparsity of signal representation than or-

thogonal basis that increase lot of flexibility, compactness and applicability. Appli-

cations that uses sparsity and overcompleteness are compression, feature extraction,

regularization in inverse problems.

Exact determination of sparsest representation is an NP-hard problem. In this the-

sis, we review some of the methods and we address the issue of designing the proper

dictionary under strictly sparsity constraints.
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1.1 Dictionary Designing

An overcomplete dictionary that leads to sparsest representation can either be a set of

prespecified functions or designed by adapting its content to fit a given set of examples.

Using an overcomplete dictionary D ∈ Rn×K where the columns represent the

signal-atoms ,{dj}Kj=1, a signal y ∈ Rn can be represented as a sparse linear com-

bination of these atoms. The representation of y may either be exact, y = Dx, or

approximate, y ≈ Dx, satisfying ‖y − Dx‖p ≤ ε. The vector x ∈ RK contains the

sparse coefficients of the signal y.

A variety of dictionaries were developed from one of the two sources either a math-

ematical model of the data, or a set of realizations of the data. Dictionaries of first kind

are analytic in nature and has fast implementation, while dictionaries of the second type

deliver increased flexibility and the ability to adopt to specific signal data.

Choosing a prespecified dictionary gives simple and fast algorithms for the evalua-

tion of the sparse representation. This include overcomplete wavelets, curvelets, con-

tourlets, short-time Fourier transforms. Those dictionaries succeed in applications in

which how closely they are to sparsely represent the given examples .

1.1.1 A Brief Intro to Analytic Dictionaries

Analytic dictionaries arise from a mathematical model of the signals. Dictionary atoms

generally have analytic formulations and we have to know the mathematical properties

of the signals.

Examples of analytic dictionaries are

Fourier: φk(x) = ei2πkx,

Gabor: φk,n(x) = ω(x− βn)ei2παkx,

Wavelets: φm,n(x) = αm/2f(αmx− βn),

Curvelets: φm,n,l(x) = φm(RΘl
(x− xm,ln ))

There are fast algorithms for computing these transforms but they have limited expres-

siveness.
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1.1.2 A Brief Intro to Trained Dictionaries

These dictionaries arise from a set of examples of the signal data itself. In this case,

dictionary atoms are learned from actual data. These dictionaries quickly adapt to the

trained signals and gives better performance in applications. Examples include MOD,

K-SVD, Generalized PCA etc.

In this thesis, We take a different method for designing dictionaries based on learn-

ing. Our goal is to find the dictionary that yields sparse representation for the training

signals. With ever-growing computational capabilities, computational cost may become

insignificant in importance to the improved performance achievable by methods that

adopt dictionaries for special classes of signals.

1.2 Organization of Thesis

The outline of the thesis is as follows. The chapter on Basic theory presents a brief

description about the optimization problem and gives various algorithms and mathe-

matics involved in the project. The chapter on Dictionary designing methods gives an

in-depth analysis of various methods exists prior to the proposed method. The chapter

on K-SVD algorithm presents the detailed description of the proposed algorithm and

its implementation details. The chapter on Applications to Image processing presents

the results obtained after applying the proposed algorithm to popular method in Image

processing.

At the end of the report, We give a brief description about the future of the project

and how the proposed algorithm can be applied to some of the popular Image Processing

techniques.
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CHAPTER 2

BASIC THEORY

We discuss the basics of some of the Sparse representation algorithms in this chapter to

gain an understanding of the theory behind the project.

2.1 Sparse Representation

Sparse representation refers to the ability to describe the signals as a linear combina-

tions of a few atoms from a prespecified dictionary. Sparse coding is the process of

computing the representation coefficients x based on the given signal y and the dictio-

nary D.

This problem of sparse coding can be either,

min
x
‖x‖0, subject to y = Dx (2.1)

or

min
x
‖x‖0, subject to ‖y −Dx‖2 ≤ ε (2.2)

Where ‖.‖0 is the `0 norm, which is counting the non-zero entries of a vector.



Figure 2.1: The sparse representation of a data vector.

As exact determination of sparsest representation proves to be a NP-hard problem,

Sparse coding is generally done by a pursuit algorithm that finds an approximate so-

lution. The simplest pursuit algorithms are the Matching Pursuit (MP), Orthogonal

Matching Pursuit (OMP), and Order Recursive Matching Pursuit (ORMP). These are

greedy algorithms and select the dictionary atoms sequentially. They are simple and in-

volve the computations like inner products between the signal and the dictionary atoms.
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Figure 2.2: Detailed description of sparse coding

Another method to solve sparse coding is Basis Pursuit (BP). It exploits the property

of convexification of the problems in 2.1 and 2.2, by replacing the `0-norm with an `1-

norm. The Focal Under-determined System Solver (FOCUSS) is very similar, except it

uses the `p-norm with p ≤ 1.

2.2 Orthogonal Matching Pursuit

Orthogonal matching pursuit is a greedy step wise regression algorithm. Assuming dic-

tionary atoms normalized, at each step this method selects the dictionary atom having

the maximal projection onto the residual vector. This means that the algorithm selects

the atom, which gives the maximum information and reduces the error in reconstruc-

tion. The following figure depicts the OMP algorithm pictorially.
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Figure 2.3: Orthogonal Matching Pursuit Algorithm.

Given a signal y ∈ Rn, and a dictionary D with K `2-normalized columns {dk}Kk=1,

start the method by setting r0 = y, k = 1, and follow the steps.

(1) Select the index of the next dictionary element ik = argmaxw |〈rk−1, dw〉|;

(2) Update the current approximation yk = argminyk ‖y − yk‖2
2, such that yk ∈

span{di1,di2, . . . ,dik};

(3) Update the residual rk = y − yk

In the second step of the algorithm, orthogonal projection is used.
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Algorithm 1 Orthogonal Matching Pursuit
function [x] = OMP(y,D, T, ε)
y ⇐ data sample of size n× 1
D ⇐ dictionary matrix of size n×K
T ⇐ sparsity threshold
ε⇐ error tolerance
r0 = y
for k < T do
p⇐ DT rk−1

lk ⇐ add to list index where column |p|i is maximum
Dk ⇐ atoms from D which have entries in lk
xk ⇐ D†ky
rk ⇐ y −Dkxk

if ‖rk‖2
2 < ε then

break;
end if

end for
Return x⇐ xk

Figure 2.4: Orthogonal Projection.

The algorithm can be stopped after a predetermined number of steps, hence after

having selected a fixed number of atoms. OMP can easily be programmed to get a

representation with an a priori fixed number of non-zero entries which is used in the

training of dictionaries.
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2.3 Basis Pursuit

The BP algorithm replaces `0-norm in 2.1 with `1-norm. Hence the problem formulation

in BP becomes

min
x
‖x‖1 subject to y = Dx (2.3)

in the exact representation case and

min
x
‖x‖1 subject to ‖y −Dx‖ ≤ ε (2.4)

in the approximate case. Solution of the above formulation gives rise to linear program-

ming and efficient solvers for such problems exist. Recent work on iterated shrinkage

algorithms provide highly efficient and methods for minimizing approximate case re-

sembles the OMP.
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CHAPTER 3

DICTIONARY DESIGN METHODS

In this chapter we see some of the methods for dictionary design. All of the methods

proposed follows the same outline of two stages namely, the sparse coding stage and

the dictionary update stage. The difference between the methods is in the method used

for the calculation of sparse coefficients and in the procedure used for updating the dic-

tionary matrix.

3.1 The MOD Method

This method closely follows 3.3 outline, with a sparse coding stage that uses either

OMP or FOCUSS followed by an update of the dictionary. The MOD involves simple

way of updating the dictionary. Assuming that the sparse coding for each example is

known, we define the errors ei = yi − Dxi. The overall representation mean square

error is given by

‖E‖2
F = ‖[e1, e2, . . . , eN ]‖2

F = ‖Y −DX‖2
F (3.1)

Where matrix Y is concatenation of all examples yi and similarly the representation

matrix X . The notation ‖A‖F stands for the Frobenius norm, defined as

‖A‖F =
√∑

ij A
2
ij .

Assuming X is fixed, we find an update to D such that the error is minimized.

Taking the derivative w.r.t. D, we obtain,

Dn+1 = Y X(n)T (X(n)X(n)T )−1 (3.2)

The method is simple to implement but it involves computing a complex matrix inver-

sion.



3.2 Unions of Orthonormal Bases

This method takes a dictionary composed as a union of orthonormal bases

D = [D1, D2, . . . , DL]

where Di ∈ IRn×n, i = 1, 2, . . . , L are orthonormal matrices.

The coefficients of the sparse representations concatenated in the matrix X can be de-

composed into L parts, each referring to a different orthonormal basis. Thus

X = [X1, X2, . . . , XL]T

where Xj is the matrix containing the coefficients of the orthonormal basis Di.

The advantage of this algorithm is the relative simplicity of the pursuit agorithm

needed for the sparse coding stage. The coefficients are found using the block coor-

dinate relaxation algorithm where the optimization problem is solved as a sequence of

simple shrinkage steps, such that at each stage Xi is computed while keeping all other

columns of X fixed.

Assuming coefficients are known, the algorithm updates each orthonormal basis Dj

sequentially. The update is done by computing the residual matrix

Ej = [e1, e2, . . . , eN ] = Y −
∑
i 6=j

DiXi (3.3)

Then, using the singular value decomposition of the matrixEjXT
j = UΛV T , the update

of the jth orthonormal basis is done by Dj = UV T . This is obtained by solving a con-

strained least squares problem with ‖Ej−DjXj‖2
F as the cost function, assuming fixed

coefficients Xj and error Ej . This way the proposed algorithm updates each matrix Dj

separately, by considering the data matrix Y in the residual matrix Ej .

12



3.3 K-means Process

A codebook that contains K representatives is used to represent a family of signals

Y = {yi}Ni=1 and N � K by nearest neighbor assignment. This gives efficient com-

pression of those signals as clusters in Rn surrounding the chosen codewords.

Figure 3.1: An example of K-means to three classes

We denote the codebook byC = [c1, c2, c3, . . . , cK ], the codewords being the columns.

WhenC is given, each signal is represented as the closest codeword (under `2-norm dis-

tance). We have yi = Cxi, where xi = ej is a vector from the trivial basis, with all zeros

except a one at the jth position.

Choose j such that

∀k 6=j‖yi − Cej‖2
2 ≤ ‖yi − Cek‖2

2

This is an extreme case of sparse coding where only one atom is allowed to construct

13



signal yi, and the coefficient is forced to be 1. The representation MSE per yi is defined

as e2
i = ‖yi − Cxi‖2

2, and the overall MSE is

E =
K∑
i=1

e2
i = ‖Y − CX‖2

F (3.4)

The VQ training problem is to find a codebook C that minimizes the error E, subject

to the sparse structure of X , whose columns must be taken from the trivial basis, math-

ematically,

min
C,X
{‖Y − CX‖2

F} subject to ∀i, xi = ek

for some k (3.5)

Figure 3.2: Flow chart of K-means process

The K-means algorithm is an iterative method and it is used for designing the op-

timal codebook. There are two stages in each iteration: one for sparse coding that

evaluates X and one for updating the codebook C.

14



3.3.1 Pseudo-code

Algorithm 2 K-Means Process

Task: Find the best possible codebook to represent the data samples {yi}Ni=1 by near-
est neighbor, by solving

minC,X{‖Y − CX‖2
F} subject to ∀i, xi = ek for some k.

Initialization: Set the codebook matrix C(0) ∈ Rn×K , Set J =1.

Repeat until convergence(use stop rule):

. Sparse Coding Stage: Partition the training samples Y into K sets

(R
(J−1)
1 , R

(J−2)
2 , . . . , R

(J−1)
K ),

each holding the sample indices most similar to the column c(J−1)
k ,

R
(J−1)
k = {i|∀l 6= k, ‖yi − c(J−1)

k ‖2 < ‖yi − c(J−1)
l ‖2}

. Codebook Update Stage: For each column k in C(J−1), update it by

c
(J)
k = 1

|Rk|
∑

i∈R(J−1)
k

yi.

. Set J = J+1.

The sparse coding stage assumes a known codebook and evaluatesX that minimizes

the error function E. Similarly, the dictionary update stage fixes X and finds an update

to codebook C so as to minimize the error function E. Clearly, at each iteration, either

a reduction or no change in the MSE is ensured.

3.4 Singular Value Decomposition

The SVD is a factorization of a real(complex) matrix. The SVD of an m× n matrix A

is a factorization of the form

A = U
∑
V ∗

15



where, U is an m×m real(complex) unitary matrix,∑
is an m× n rectangular diagonal matrix,

V ∗ is an n× n real(complex) unitary matrix

and A∗ is complex conjugate transpose of A.

The diagonal entries
∑

i,i are known as the singular values of A.

Figure 3.3: Singular Value Decomposition

Applications that uses SVD are computing the pseudo inverse, least squares fitting

of data, determing the rank, range and null-space of a matrix and Low-rank matrix ap-

proximation.
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CHAPTER 4

K-SVD ALGORITHM

In this chapter, we introduce the K-SVD algorithm for training of dictionaries. The

algorithm is flexible and works with any pursuit algorithm. It is simple and direct gen-

eralization of the K-means process. The algorithm is efficient due to an effective sparse

coding and a Gauss-Seidel-like accelerated dictionary update stage. The algorithm’s

steps are coherent with each other, both working towards the minimization of the over-

all objective function.

4.1 K-SVD–Generalization of the K-means

In sparse representation problem each input signal is represented by a linear combina-

tion of codewords, which are also called dictionary atoms. The coefficient vector is

allowed more than one non-zero entry, and it can have arbitrary values. Now the prob-

lem can be described as searching the best dictionary for the sparse representation of

the example set Y

min
D,X
{‖Y −DX‖2

F} subject to ∀i, ‖xi‖0 ≤ T0 (4.1)

A objective function can be modified as

min
D,X
{
∑
i

‖xi‖0} subject to ‖Y −DX‖2
F ≤ ε (4.2)

for a fixed value of ε. In this thesis, we deal with the first formulation.

We minimize 4.1 iteratively. Fixing D, we will find the best coefficient matrix X . As



finding the optimal X is impossible, we find an approximate solution by using any

pursuit method. Any pursuit method can be used for finding X with a fixed and prede-

termined number of non-zero entries T0.

After the sparse coding stage, in second step we search for a better dictionary. This

stage updates one column at a time, fixing all columns in D except one, dk, and finds

a new column d̂k and calculates new coefficients to best reduce the value of MSE.

Whereas in other methods, we find a better D with fixed X . Here, as we change the

columns of D sequentially, we allow change in the corresponding coefficients.

The process of updating one column of D at a time is solving a problem having so-

lution based on the singular value decomposition (SVD). Since, we are changing the co-

efficients while updating the dictionary columns, the method accelerates convergence,

because the subsequent column updates will be based on more recent coefficient values.

4.2 K-SVD Description

Our objective function is

min
D,X
{‖Y −DX‖2

F} subject to ∀i, ‖xi‖0 ≤ T0 (4.3)

First, Let’s consider the sparse coding stage, where we assume that the dictionary D

is fixed. we will take above optimization problem and solve for sparse representation

coefficients. The cost function can be rewritten as

‖Y −DX‖2
F =

N∑
i=1

‖yi −Dxi‖2
2 (4.4)

Therefore the optimization problem can now be decomposed as N distinct problems of

the form

18



min
xi
{‖yi −Dxi‖2

2} subject to ‖xi‖0 ≤ T0, for i = 1, 2, . . . , N. (4.5)

This problem can be solved using the pursuit algorithms discussed above. If T0

is small enough, the solution is a good approximation to the ideal solution which is

numerically impossible to compute.

The second stage is the process of updating the dictionary along with the non-zero

coefficients. Assuming both X and D are fixed, we solve for one column in the dictio-

nary dk and the sparse coefficients that correspond to it, the kth row in matrix X , which

we denote as xkT . Now, the objective function 4.1 can be written as

‖Y−DX‖2
F = ‖Y−

K∑
i=1

dix
i
T‖2

F = ‖(Y−
∑
i 6=k

dix
i
T )−dkxkT‖2

F = ‖Ek−dkxkT‖2
F (4.6)

where, the matrix Ek is equal to the error for all the N examples when the kth atom is

removed. We have decomposed the multiplication term DX into the sum of K rank-1

matrices. Among them, K-1 terms are assumed fixed, except the one term at the kth

position remain in question.

At this stage, we can apply the SVD algorithm to find new dk and xkT . The SVD

finds the closest rank-1 matrix that approximates Ek, which will eventually minimize

the error function in 4.6. However, in such a solution xkT is very likely to be filled, as

we are not enforcing the sparsity constraint while updating the dictionary column dk.

Figure 4.1: Flow chart of k-svd algorithm
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The solution to the above problem is simple and intuitive. We define ωk as the group

of indices representing examples yi that use the atom dk, i.e., those indices where xkT (i)

is not equal to zero. Thus

ωk = {i|1 ≤ i ≤ K, xkT (i) 6= 0} (4.7)

Algorithm 3 K-SVD Algorithm

Task: Find the best dictionary to represent the data samples {yi}Ni=1 as sparse com-
positions, by solving

minD,X{‖Y −DX‖2
F} subject to ∀i, ‖xi‖0 ≤ T0.

Initialization: Set the dictionary matrix D(0) ∈ Rn×K with l2 normalized columns.
Set J =1.

Repeat until convergence (stopping rule):

. Sparse Coding Stage: Use any pursuit algorithm to compute the representation
vectors xi for each example yi, by approximating the solution of

i = 1, 2, . . . , N, minxi{‖yi −Dxi‖2
2} subject to ‖xi‖0 ≤ T0

. Codebook Update Stage: For each column k = 1, 2, . . . , K in D(J−1), update it by

- Define the group of examples that use this atom, ωk = {i|1 ≤ i ≤ N, xkT (i) 6= 0}.

- Compute the overall representation error matrix Ek, using

Ek = Y −
∑

j 6=k djx
j
T

- Restrict Ek by choosing only the columns corresponding to ωk, and calculate ER
k .

- Apply SVD decomposition ER
k = U∆V T . Choose the updated dictionary column

d̂k to be the first column of U . Update the coefficient vector xkR to be the first column
of V multiplied by ∆(1, 1).

. Set J = J+1.
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Define Ωk as a matrix with ones at (ωk(i), i)th positions and zeros elsewhere. This

matrix will be of size N × |ωk|. We multiply xkT with Ωk, i.e., xkR = xkTΩk. xkR is a row

vector of length ωk and it’s a result of discarding all the zero entries in xkT . Similarly,

after multiplying Y and Ωk, Y R
k = Y Ωk results in a matrix of size n×|ωk| that includes

a subset of examples that are using the dk atom. The same is with ER
k = EkΩk, means

a selection of error columns that correspond to examples that use the column dk.

Now we will solve the problem 4.6 and achieve minimization with respect to both

dk and xkT , and force the solution of x̂kT to have the same support as the original xkT .

This problem is equivalent to solving the minimization of

‖EkΩk − dkxkTΩk‖2
F = ‖ER

k − dkxkR‖2
F (4.8)

and now we can use SVD and achieve sparsity by considering the restricted matrix ER
k ,

SVD decomposes it to ER
k = U∆V T .

We find the solution for the atom d̂k as the first column of U , and the coefficient

vector xkR as the first column of V multiplied by ∆(1, 1). In this solution we have that

(i) the columns of D remain normalized and (ii) the support of all representations either

stays the same or gets smaller by possible nulling of terms.

The K-means process calculates K computations of means to update the codebook, K-

SVD uses K SVD computations to update the dictionary, each column at a time. A full

description of algorithm is presented in 3.
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In the K-SVD algorithm, we go through the columns and always use the recently

updated coefficients as they are calculated from the preceding SVD steps. Parallel ver-

sions of this algorithm can also be considered where all the updates of the previous

dictionary are done using the same coefficient matrix X . Experiments show that while

this version of algorithm also converges, it gives an inferior solution and typically re-

quires more than four times the number of computations.

4.2.1 Convergence of K-SVD

The important question is will the K-SVD algorithm converge? Assuming that sparse

coding stage is perfectly done, resulting in the best approximation to the signal yi that

contains maximum of T0 non-zero coefficients. In this case, and assuming a fixed dic-

tionary, each sparse coding step tries to minimize the total error ‖Y − DX‖2
F . Also,

in the each update step for dk, MSE is either decreased or stays constant, while not

violating the sparsity constraint. After performing a number of such steps the algorithm

ensures a monotonic MSE reduction, and therefore, the algorithm converges to a local

minimum.

4.3 K-Means from K-SVD

When the value of T0 is 1, the problem boils down to the gain shape VQ and the K-SVD

algorithm becomes a method for its codebook training. When T0 =1, the coefficient

matrix X has only one non-zero entry per column. Thus, computing the error ER
k in 4.8

gives

ER
k = EkΩk = (Y −

∑
j 6=k

djx
j
T )Ωk = Y Ωk = Y R

k (4.9)

This is because Ωk takes only those columns in Ek that use the dk atom implying

that ∀j, xjTΩk = 0.
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So, in this particular case where T0 = 1, the SVD is being calculated on the group

of examples in ωk. Also, the K updates of the columns of D become independent of

each other, implying that a sequential process or a parallel process, both lead to same

algorithm. We could further constrain our sparse coding stage and limit the non-zero

entries of X to be 1, which gives us the classical clustering problem. In this case, we

have xkR is filled with ones, i.e., xkR = 1T . Then the K-SVD gives the error matrix as

ER
k = Y R

k by a rank-1 matrix dk.1T . The solution is the mean of the columns of Y R
k ,

which is exactly what the K-means does in clustering problem.
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CHAPTER 5

APPLICATIONS TO IMAGE PROCESSING

The proposed algorithm is applied to natural image data, in order to understand the

practicality of the method and sparse coding.

5.1 Filling in Missing Pixels

The popular open database known as yale database is considered for training. The

database contains gray scale images of 38 persons with each 65 face images taken under

different illumination conditions. The images are of size 192 x 168. We have taken 64

images of one person for training and set aside one image for testing. We down sample

the training set by four to get 256 images of size 48 x 42 for training. We take patches

of size 8 x 7 each time. The dictionary was initialized with data signals. We update the

dictionary for this training set of examples and OMP was used for sparse coding stage

because of its simplicity. The number of non-zero coefficients(T0) in sparse coefficient

matrix is set to 10 and number of iterations for K-SVD algorithm were set to 80.

Y − 56× 256 (5.1)

D − 56× 200 (5.2)

X − 200× 256 (5.3)

We take the test image and for each block the following steps are executed for r in the

range of {0.2, 0.9}

(i) We delete a fraction r of the pixels in each block.



(ii) The coefficients of the corrupted block are constructed using the K-SVD built dic-

tionary using OMP. The projections in OMP includes only the non corrupted pixels, and

for this the dictionary columns are normalized so that the non corrupted indexes in each

element have unit norm. The resulting coefficient vector for the block B is denoted as

xB

(iii) The reconstructed block is chosen as B̂ = DxB

5.1.1 Results

The psnr values in db for different percentage of missing pixels(randomly deleted) for

a fixed dictionary atoms is shown in Table 5.1.

Table 5.1: Variation of psnr values for different missing pixels percentage.

Image 23.2 35.7 53.6 76.7
Corrupted 13.0091 11.3874 9.8739 8.7464
Dictionary 16.6156 17.5919 13.7363 14.9235

Corrupted-median 18.5215 15.0893 10.5837 8.0929
Dictionary-median 16.84 18.3762 13.8923 15.5152

Corrupted-Gaussian 17.3678 15.2354 10.9249 10.8398
Dictionary-Gaussian 16.9933 18.5 14.1658 15.5934

The psnr values in db for different different dictionary atoms for a fixed percentage

of missing pixels is shown in Table 5.2.

Table 5.2: Variation of psnr values for different dictionary atoms.

Image 100 150 200 250
Corrupted 9.0655 10.355 11.3874 10.5059
Dictionary 14.7245 15.0456 17.5919 14.792

Corrupted-median 12.8427 14.0294 15.0893 13.7508
Dictionary-median 14.8619 15.8656 18.3762 14.9926

Corrupted-Gaussian 12.8402 14.1095 13.3 14.1918
Dictionary-Gaussian 14.9995 16.0453 18.5 15.1971
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Figure 5.1: Graph showing variation of psnr values with percentage of missing pixels

Figure 5.2: Graph showing variation of psnr values with varying dictionary atoms
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The following results has been observed when 13 pixels in each block are deleted

resulting in 23.2 percent missing pixels in the test image.

(a) corrupted image (b) corrupted image after applying median filter

(a) dictionary reconstructed image
(b) dictionary reconstructed image after apply-

ing median filter

Figure 5.4: The figure shows reconstruction for 23 percent missing pixels
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The following results has been observed when 20 pixels in each block are deleted

resulting in 35.7 percent missing pixels in the test image.

(a) corrupted image (b) corrupted image after applying median filter

(a) dictionary reconstructed image
(b) dictionary reconstructed image after apply-

ing median filter

Figure 5.6: The figure shows reconstruction for 35 percent of missing pixels
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The following results has been observed when 30 pixels in each block are deleted

resulting in 53.5 percent missing pixels in the test image.

(a) corrupted image (b) corrupted image after applying median filter

(a) dictionary reconstructed image
(b) dictionary reconstructed image after apply-

ing median filter

Figure 5.8: The figure shows reconstruction for 53 percent of missing pixels
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The following are results for patch removal of images.

(a) corrupted image (b) corrupted image after applying median filter

(a) dictionary reconstructed image
(b) dictionary reconstructed image after apply-

ing median filter

Figure 5.10: The figure shows reconstruction for 2x2 patch removal of an image

30



(a) corrupted image (b) corrupted image after applying median filter

(a) dictionary reconstructed image
(b) dictionary reconstructed image after apply-

ing median filter

Figure 5.12: The figure shows reconstruction for 3x3 patch removal of an image
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5.2 Combining with SRC

One of the applications of the algorithm is face recognition using SRC algorithm. Both

corrupted and reconstructed images are sent through SRC algorithm and the following

results have been observed.

Figure 5.13: Figure shows the sparsity coefficients for a Corrupted image

Figure 5.14: Figure shows the sparsity coefficients for a Reconstructed image
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The following bar graph shows the results for different types of corrupted images

using standard SRC algorithm.

Figure 5.15: Bar graph showing recognition rate for various corrupted images using
SRC

It has been inferred that the recognition rate has improved as compared to corrupted

images rate. We can see that the recognition rate is higher in case of reconstructed

image than in corrupted image case.
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CHAPTER 6

CONCLUSION

In this thesis we have extensively studied the sparse representation of signals and dic-

tionary design methods. We have seen methods to solve sparse coding and some al-

gorithms for dictionary design. We have seen a new method K-SVD for the problem

extending the K-means algorithm, a popular method used in clustering schemes. We

have extended the algorithm for applications in Image processing: Filling in Missing

Pixels. We have shown various results to support that the algorithm gives better results.

We have applied the algorithm to patch removed images and got some good results. We

have sent the reconstructed images through the face recognition algorithm(SRC) and

observed that there has been a significant improvement in rate of recognition.

6.1 Future Work

• Exploration of the significance of different pursuit methods when using with K-
SVD algorithm

• Multi-scale approaches and tree-based training where the number of columns K
is allowed to increase during the algorithm

• Handling the scalability problem of the K-SVD when working with larger image
patches.

• A study of the effect of introducing weights to the atoms
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