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ABSTRACT 

 

Most of the computer architecture research in academia is centered on using architectural 

simulators to evaluate and benchmark new techniques. This sometimes does not give an accurate 

picture of performance as throughput is dependent clock frequency too, not just on IPC. Only 

possible way to know about the impact of any architectural technique on clock speed is to actually 

implementing it in the hardware.  This project aims at design and implementation of an out of 

order superscalar processor aimed at industrial control / general purpose applications running at 

200 MHz – 1 GHz which can also be used as a generic out-of-order platform for evaluating new 

techniques. It is implemented in Bluespec systemverilog, a high level functional hardware 

description language which offers very good parameterization capability and fast development 

time so that it will be easy to add new hardware features. This processor is a part of open source 

processor cores development (named as I-class processor as it is aimed at industrial applications) 

at RISE Lab, IIT Madras. It is based on RISCV instruction set architecture which is an open source 

ISA.  

Following features are implemented: a) Fetch width is 2 b) Renaming using merged register 

file c) Parametrized pipeline and Issue Queue d) Has two ALUs, one MUL/DIV unit, a Load Store 

and a branch unit (Issue width is 5) e) Has a speculative Load Store unit which issues both the 

loads and stores out of order. f)  Bypass network to forward the results between functional units 

g) Branch predictor. h) Single cycle mispredict recovery mechanism.   

 

 

Keywords: I-Class, Superscalar processor, out-of-order, speculative load-store unit, merged 

register file renamer, tournament branch prediction 
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CHAPTER 1 INTRODUCTION 

 

     INTRODUCTION 

 

 

Computer has become the essential part of human lives now a days. Microprocessor is the 

central component of any computer. Since its advent, microprocessor throughput has been 

increasing continuously. It’s either because of technology scaling or the advancement of 

architectural techniques which exploit the workload structure. Transistor density on a chip is 

approximately doubled every two years due to technology scaling, this is often referred to as 

Moore’s law. With every new generation process node, the transistors get smaller, faster and 

more power efficient. This results in increase of processor clock speed without increasing 

power or area.  

On the other hand, processors adapt to new workloads which evolve over time. For 

example, many new architectural features have been added to current day processors because 

of the tremendous increase in multimedia applications in recent years. 

1.1 MICROARCHITECTURE CLASSIFICATIONS 

Processor microarchitectures can be classified in different orthogonal dimensions. The most 

common classifications are the following. 

1.1.1 Pipelined/Non-Pipelined Processors 

A pipelined processor splits the instruction execution into different phases and allow multiple 

instructions to be processed in different phases simultaneously. Pipelining increases 

instruction level parallelism (ILP) and simple to implement. All the practical processors now 

a days are pipelined. 

1.1.2 In-order/Out-of-order Processors 

An in-order processor processes the instructions in the order they appear in binary code. 

Whereas in an out-of-order processor, instructions need not be executed in their order in the 

binary code. Instructions which do not depend on the previous ones can be sent for execution 
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earlier. It increases the instruction level parallelism (ILP) by allowing the hardware to choose 

the instructions to processes in a given cycle. But, it adds a large amount of extra logic and 

higher power consumption compared to the in-order ones. 

1.1.3 Scalar/Superscalar Processors 

A scalar processor processes one instruction in each stage of the pipeline in each cycle. So, 

the maximum achievable instructions per cycle (IPC) from a scalar processor is 1. Whereas, 

a superscalar processor can process more than one instruction in each stage of the pipeline in 

one cycle. This allows the maximum possible throughput to be greater than 1 instruction per 

cycle. 

A very large instruction word (VLIW) processor is one type of superscalar processor 

which processes multiple instructions in each stage of the pipeline. Following features make 

a superscalar processor VLIW. 

 It executes instruction in-order. 

 Instructions which have to be executed in parallel are indicated in binary code. 

 Execution latencies are exposed to the programmer and are the part of ISA itself. 

Programmer should maintain the proper distance between the instructions to ensure 

correct execution. 

These constraints makes the hardware simple as it doesn’t have to check for operand 

availability at run time and doesn’t have to choose which instructions to be sent to execution. 

But, the programmer should know the hardware of VLIW processor (latencies of functional 

units) to write the code. So, a code written for one processor may not be compatible with the 

other. 

1.1.4 Vector processors 

A vector processor includes significant number of instruction in its ISA to operate on vectors. 

Traditionally, vector processors operate on vectors of very large lengths. Many of the recent 

processors also included these kind of instructions as the part of their ISAs but with small 

vector lengths of 4 to 8. These instruction are commonly known as SIMD instructions 

(examples are Intel AVX and ARM Neon instructions). According to the definition, many 

processors now a days can be called as vector processors. 
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1.1.5 Multicore Processors 

A core is a unit which processes a sequence of instructions (usually called as thread). A 

processor can have one or more cores. Many of the current day processors are in fact 

multicore. A multicore processor can process multiple threads simultaneously using different 

hardware resources for each thread and includes support for synchronization and 

communication among the threads under the control of programmer.  This support typically 

includes some type of interconnect between the cores and some primitives to communicate 

through this interconnect. 

1.1.6 Multithreaded processors 

A multithreaded processor is the one which has the support to execute multiple threads on the 

same core. Both the multicore and multithreaded processors can execute multiple threads 

simultaneously. The key difference is that a multicore processor uses entirely different 

hardware resources to execute different threads whereas most of the hardware resources are 

shared among different threads in a multithreaded processor. 

1.2 PROCESSOR CLASSIFICATION BASED ON MARKET SEGMENTS 

Processors characteristics also depend on the market segments they are intended to work. 

 Servers: Refers to high performance systems used in data centers, which are shared by 

many users and have large number of processors. Parameters of interest for these 

processors are processing power and power dissipation. 

 Desktops: Refers to home computers, normally used by a single user. Important 

parameters are processing power and noise of cooling solution. 

 Mobiles: Refers to processors in notebooks, tablets and smartphones whose main 

feature is mobility. Power consumption is the parameter of most importance in these 

class of processors because of limited battery power. But, processing power is 

important too. 

 Embedded: Refers to the processors in embedded systems. The processing power and 

power consumption requirements vary depending upon the nature of job the given 

system is performing. Another important parameter is the cost as many embedded 
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systems require less computing power, hence the processor’s cost should be minimal 

so as not to affect the overall product cost. 

All of the present day high performance processors have all the features mentioned in 

section 1.1. The processor we aim to implement is pipelined, out-of-order and superscalar, 

remaining features can be added in the future. It is named as I-Class processor which is a part 

of open source cores project at RISE Lab, IIT Madras.  
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CHAPTER 2 BACKGROUND 

 

     BACKGROUND 

 

 

This chapter explains the basic material required to understand the architecture of modern day 

processors.  

The function of any processor is to take instructions and data from memory, perform some 

operation and store it back into the memory. As discussed in introduction, its 

throughput/performance is rapidly increasing since its invention. Throughput of a processor 

is defined as the number of instructions it can execute per unit time. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝐼𝑃𝐶 × 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

Where IPC stands for ‘instructions per cycle’ executed. Throughput of a processor hence can 

be increased by either increasing the frequency or IPC. Another important parameter in 

measuring the performance of the processor is power consumption. As we will see, the above 

three terms are actually interdependent, increasing one term affects the other two. The only 

independent contributors for frequency and power consumption are advancements in 

semiconductor manufacturing technology and gate level implementation of hardware.  

 In this chapter, we start with basics of instruction set architecture and then discuss various 

techniques to increase IPC. 

2.1 INSTRUCTION SET ARCHITECTURE 

Instruction set refers to the set of operations processor can perform on given data and their 

formatting. It is the portion the computer visible to the programmer. Every instruction has two 

parts, one to describe operands and another is the type of operation performed on the given 

operands. Following are the main features of instruction set architectures: 

 Class of ISA: Most of the today’s ISA are general purpose register architectures where 

the operands are either register or memory locations. Again, there are two popular 

version of this class: 
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o Register-memory ISAs in which many instructions access memory as a part of 

instructions. These type of ISAs are referred to as CISC (complex instruction 

set computing) architectures. Ex: 80x86  

o Load-store ISA in which there are separate instructions to access memory. This 

kind of architectures are also called RISC (Reduced instruction set computing) 

architectures. Ex: ARM, MIPS, RISCV. 

 Memory addressing: All the present day architectures use byte addressing to access 

memory. Some architectures like ARM and RISCV requires memory addresses to be 

aligned i.e., an access to object of size 𝑠 at memory address 𝐴 requires 𝐴%𝑠 = 0. 

Whereas 80x86 doesn’t require memory alignment but non-aligned access is normally 

slower.  

 Addressing modes: Refers to the way the addresses to memory objects are specified. 

RISC ISAs like ARM and RISCV use register (when an operand is in register), 

immediate (operand is an immediate field in instruction) and displacement (operand is 

in a memory location defined by register value + immediate offset) addressing modes 

whereas 80x86 has extra addressing modes.  

 Types and sizes of operands: Most of the ISAs supports operand sizes of byte (8 bits), 

half-word (16 bits), word (32 bits) and double-word (64 bits). 

 Operations: There are mainly three types of operations that can be performed by 

instructions a) ALU/FPU operations b) data transfer operations and c) control 

operations. 

 Control flow instructions: All the ISAs implement control flow instructions which 

include conditional branches, unconditional jumps, procedural calls and returns. Also, 

all of the ISAs use PC (program counter) relative addressing where the jump address 

is specified by PC added to a signed offset value. 

 ISA encoding: Refers to how an instruction is represented in bits. Normally, RISC 

architectures use fixed length encoding which simplifies decode logic. CISC 

architectures normally use variable length instruction encoding. 

Any instruction is verbally represented in the form in this thesis 

OPERATION DEST OP1 OP2/IMM 
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Where ‘OPERATION’ means the type of operation needs to be performed on operands, 

‘DEST’ stands for destination register, ‘OP1’ for operand 1 and ‘OP2/IMM’ for operand 2 or 

the immediate value. For example ADD R3 R2 R1 means the instruction operation is ‘Add’, 

the source operands are the values in registers R2 and R1 and the destination register is R3.  

As we are implementing a processor based on RISCV ISA which belongs to RISC 

architecture, we focus on the architectural aspects related to this ISA. 

2.2 PIPELINING BASICS 

Pipelining is a technique used by all the processors to increase processor frequency where 

multiple instructions are overlapped in execution. It takes advantage of parallelism that exists 

among the different actions needed during executing an instruction. More are the stages of 

pipeline, lesser will be the average execution time of instruction. Following are the typical 

pipeline stages of a processor 

 Instruction fetch: Fetches instruction from instruction memory by sending PC. 

 Instruction decode/operand fetch: Decodes instruction to find the type of operation to 

be performed and extract immediate operands. If the register operands stay in fixed 

position for every instruction, then the register access can be done in parallel in the 

same cycle. 

 Execute/Effective address calculation: Perform the ALU/FPU operation on the 

operands in the case of arithmetic instructions or calculate effective address in the case 

of memory access instructions.  

 Memory access: Access data memory in the case of load/store instructions.  

 Write-back: Write back the calculated result/accessed memory value on to the 

destination register. 

Figure 2.1 shows the implementation details of five stage pipeline described above. Table 

2.1 shows the overlapping of instructions in the pipeline. Column at clock cycle 5 shows the 

overlapping of 5 instructions in different stages of their execution. 



8 

 

Table 2.1: Pipeline flow diagram for five stage pipeline 

Instr. No. 
Clock cycles 

1 2 3 4 5 6 7 8 9 

1 IF ID EX MEM WB     

2  IF ID EX MEM WB    

3   IF ID EX MEM WB   

4    IF ID EX MEM   

5     IF ID EX MEM WB 

 

 

 

Figure 2.1: Five stage pipeline implementation (source: wikipedia) 

 

If there are no stalls in the pipeline, the number of cycles taken for executing N instructions 

for an M cycle pipeline is M-1+N. For a large N, average execution time of each instruction 

is almost 1. As only a part of an instruction execution takes place every cycle, the processor 

now can run at higher frequency. This results in the great reduction of average execution time 

of an instruction in pipelined processors.  

http://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Pipeline_MIPS.png/500px-Pipeline_MIPS.png
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We cannot keep increasing the pipeline stages to get better performance because of the 

following reasons. 

 Pipeline overhead: Pipeline overhead is caused due to the delay in inter-stage buffers 

(setup time of the registers) and clock skew (maximum delay between the clock 

arrivals at two registers). As we increase the number of pipeline stages, pipeline 

overhead delay becomes more dominant and limits the maximum frequency that can 

be achieved. 

 Pipeline latency: As the frequency is always decided by the combinational path with 

maximum delay, no further pipelining in other parts the processor is useful. 

 Pipeline stalls: Pipeline stalls/flushes in deep pipelines incur huge penalties in the case 

of mispredictions and dependencies. 

A pipeline stall stops the instruction pipeline because of hazards which are discussed in the 

next section. 

2.3 PIPELINE HAZARDS 

A hazard is a situation where an instruction is prevented from execution in its designated clock 

cycle. There are three types of hazards: 

1. Structural hazards: A structural hazard arises due to hardware resource conflicts i.e., 

when two instructions are trying to access same hardware. For example, it can occur 

in a processor with a multiple cycle latency functional unit which is not fully pipelined.  

When two consecutive instructions use that functional unit, second instruction must 

wait till the execution of the first is completed. This results in a pipeline stall. 

2. Data hazards: Pipelining allows multiple instructions to execute simultaneously by 

overlapping different stages of their execution. This leads to data hazards which arise 

due to difference in read/write access order to registers (operands) from their access 

order in sequential execution. For example, look at the following instruction sequence: 

i. DIV R3 R1 R2 

ii. ADD R5 R3 R1 

iii. SUB R6 R3 R2 
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If DIV instruction takes multiple cycles to give out the result, ADD instruction must 

wait in ID stage of the pipeline till the result from that instruction is available. This 

stops SUB instruction to stall in IF stage and no other instruction in the sequence can 

be fetched until DIV instruction result is written into the destination register. 

3. Control hazards: Control hazards arise due to jump/branch instructions. There are two 

types of branch instructions a) Conditional and b) Unconditional. A conditional branch 

instructions normally compares two operands and jumps to a target PC value based on 

the comparison result. Unconditional branch instructions directly change PC value to 

some target value without checking for any condition. As the result of the comparison 

is not known till the EXE stage of the pipeline, simplest method to deal with branches 

is to stall the execution of next instruction till then. 

As the result of hazards, number of cycles per instruction (CPI) now increases and given by 

𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝐶𝑃𝐼 = 𝑖𝑑𝑒𝑎𝑙 𝐶𝑃𝐼 + ∑ ℎ𝑎𝑧𝑎𝑟𝑑 𝑠𝑡𝑎𝑙𝑙𝑠 

Where ‘ideal CPI’ refers to the maximum attainable CPI by an implementation and ‘hazard 

stalls’ is the sum of stalls due to all the three hazards discussed above. 

All the modern day processors use different techniques to exploit the workload structure to 

decrease ideal CPI and hazard stalls. The qualities of workloads that can be made use of are 

classified into three types, they are: 

a) Instruction level parallelism: Measure of how many instruction executions can 

be overlapped. Every application has some level of instruction level parallelism that 

can be exploited. 

b) Data level parallelism: When a same operation is performed on large set of 

independent data, for example performing an operation like increasing intensity of all 

the pixels in an image. Other types of operations that can give rise to data level 

parallelism are the operations on vectors, matrices and arrays. 

c) Thread level parallelism: When there are independent threads running 

simultaneously. These types of applications are often found in the machines that have 

high workload, like web servers. 



11 

 

Now we discuss different techniques that actually exploit the above mentioned 

workload structures to improve IPC of the processors. 

2.4 EXPLOITING INSTRUCTION LEVEL PARALLELISM 

Key idea behind exploiting instruction level parallelism is determining how one instruction is 

dependent on another. If it is known, all the functional units can be kept busy by executing 

instructions (not necessarily in program order) whose operands are already available 

simultaneously. Even if the instructions are dependent and must execute sequentially, they 

can be partially overlapped. In both the cases, it is needed to determine whether an instruction 

is dependent on another one. Different types of dependences are: 

i. Data dependency: An instruction i is data dependent on an instruction j if one of the 

following condition holds 

a. If result of instruction j is used by instruction i. 

b. If the result of instruction j is used by another instruction k whose result is used 

by instruction i. 

An instruction is said to be data dependent on another if there exists a chain of data 

dependencies between them. Instructions which are data dependent must execute 

sequentially (in the program order) and cannot execute simultaneously. These 

dependencies are also called true data dependencies. 

ii. Name dependency: Two instructions are said to be name dependent if both of them 

use same memory location/register address (called a name), but there is no dataflow 

between them. Two types of name dependencies are: 

a. Anti-dependency: Anti-dependency is said to exist between two instructions i 

and j if instruction i writes a memory location/register location and instruction 

j reads it. Original program order must be preserved so that instruction j reads 

the correct value. 

b. Output dependency: An output dependency is said to exist between the 

instructions i and j if both of them use same destination register or memory 

location. Original program order must be preserved so that final value written 

into the destination register is correct. 
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Both the above dependencies are not true dependencies as no value is transferred 

between the instructions. So, they can be executed simultaneously or reordered if the 

names of the registers/memory locations are changed. 

iii. Control dependency: It determines the ordering of an instruction i with respect to a 

branch instruction. An instruction that is control dependent on a branch instruction 

cannot be moved out of the branch as its execution is no longer controlled by the 

branch now. In the same way, an instruction before a branch should not be moved after 

the branch. 

We must ensure that all the dependencies are maintained for correct execution of any 

program.  

A data hazard exists between two instructions that are either data dependent or name 

dependent. Hazards are named by the ordering in the program that must be preserved by the 

pipeline. Data hazards are classified into following types. 

Consider two instructions i and j in which i appears first in program order. 

i. RAW – (read after write) When j tries to read the source before it is written by i, then 

it reads the wrong value. This hazard corresponds to true data dependency and is the 

most common type of hazard in pipeline. 

ii. WAR – (write after read) When j writes the destination register before it is read by 

instruction i. This corresponds to anti-dependence. It occurs when the instructions are 

reordered in the pipeline. 

iii. WAW – (write after write) When j tries to write the destination register before it is 

written by i. This corresponds to output dependence. It occurs in the pipelines in which 

more than one stage can write the register file. 

2.4.1 Result Forwarding/bypassing: 

As we have seen in the previous section, data hazards stall the pipeline till the result of the 

producer instruction (an instruction whose result is used by subsequent instructions) is written 

into the register file. Instead of waiting for this to happen, result calculated in the EXE or 

MEM stages of the pipeline can be passed to ID stage of consumer instruction in the same 
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cycle. This is called as result forwarding/bypassing. Result bypassing in a simple five stage 

pipeline is shown in the figure 2.2.  

 

Figure 2.2: Result bypassing 

 

Advantage: Reduces potential data hazards. 

2.4.2 Simple branch scheduling 

The simplest method to execute conditional branches (control hazards) is to stall the pipeline 

till the branch outcome is known. As the branch instructions are quite frequent in all kinds of 

workloads (with the share of around 10%), reducing the stalls due to control hazards is very 

important to get high performances. Following are the simple techniques to deal with 

branches: 

i. Treat every branch as not taken: Fetch the subsequent instructions assuming that the 

branch is not taken, flush the wrongly fetched instruction in the pipeline if the branch 

result is taken. 

ii. Treat every branch as taken: Fetch the instructions from the target address assuming 

that the branch is taken, flush the wrongly fetched instructions in the pipeline if the 

branch outcome is not taken. 
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iii. Insert branch delay slots: Branch delay slot is an extra instruction inserted by the 

compiler after every conditional branch instruction as shown in the pipeline flow 

diagram below. Job of the compiler is to make the instruction in branch delay slot 

useful. 

Table 2.2: Branch delay slot in pipeline 

Branch instruction (i) IF ID EXE MEM WB   

Branch delay slot  IF ID EXE MEM WB  

Target address or (i+1)   IF ID EXE MEM WB 

 

For example, the instruction sequence ADD R3 R2 R1; BNE R2 R1 #5 can be reordered by 

the compiler to BNE R2 R1 #5; ADD R3 R2 R1 in which case ADD instruction is executed 

in branch delay slot. This doesn’t result in pipeline flush/stall because the new instruction after 

branch is fetched only after the branch outcome is known. But, inserting useful branch delay 

slot is not possible in all the cases. 

Advantage: Reduces stalls due to control hazards. 

2.4.3 Branch prediction 

As the pipelines got deeper, necessity to predicting whether the branch is taken or not has 

grown high. General property of the workloads is that the branches are bimodally distributed 

i.e. a branch is highly biased towards either taken or not taken. This property of the workloads 

can be used to predict branches with high accuracy. Branch prediction can be classified into 

two types: 

i. Static branch prediction: It is done during compile time of a program using the 

workload profile information from the previous runs. Profile based predictors have 

higher misprediction rates for integer instructions which typically have higher 

conditional branch frequency. 

ii. Dynamic branch prediction: Dynamic branch prediction is done in hardware which is 

a table (memory) in which entries are indexed by the program counter of branch 

instructions. Contents of each entry is a state (prediction) which says whether branch 
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is taken or not. This state can be changed by the processor depending on the prediction 

result. Most of the processors use 2 bit prediction schemes which are shown to be 

optimum for different workloads. A two bit predictor is a state machine shown in the 

figure 2.3. 

 

Figure 2.3: Two bit predictor state machine [1] 

 

Advantage: reduces stalls due to control hazards. 

2.4.4 Basic compiler pipeline scheduling 

All the stalls due to RAW hazards are because of the data dependencies between them. To 

keep the pipeline full, parallelism among the instructions must be exploited and instructions 

must be ordered by compiler in such a way that stalls are lesser. Such stalls in the pipeline can 

be avoided if the producer-consumer instructions are separated by the number of cycles equal 

to the latency of producer instruction. 

Advantage: Reduces stalls due to data hazards 

2.4.5 Dynamic scheduling 

A simple statically scheduled pipeline fetches and issues instructions unless there is a 

dependency between the instructions already in the pipeline and the newly fetched instruction.  
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But, if there are data dependencies that cannot be hidden by compiler or forwarding/bypassing, 

the pipeline will be stalled until they are resolved.  

In this section, a technique used in all the modern day high performance processors called 

dynamic scheduling is discussed. In dynamic scheduling, hardware reorders the instructions 

and sends them to execution to reduce the stalls while maintaining data-flow and exception 

behavior. It has several advantages over the compile time scheduling, they are 

a. Now, the code need not be recompiled for different processor architectures. This 

advantage is significant as much of the software now a days is made by third parties 

and is distributed in binary form. 

b. Enables handling the cases when the dependencies are unknown at compile time. 

c. Enable the processor to tolerate unpredictable delays, like the cache misses, by 

allowing other independent instructions to execute while waiting for the cache 

response. 

A major limitation of simple pipelining is that the instructions are issued and executed in 

the program order. That is the major source of stalls in pipeline due to hazards. If one 

instruction in the pipeline is stalled, no other instructions can proceed. In the processors with 

multiple functional units to reduce structural hazard stalls, data hazards cause the functional 

unit to stay idle till the hazards are resolved.  For example, in the code below 

DIV R4 R1 R2 

ADD R5 R4 R3 

SUB R6 R2 R1 

‘SUB’ instruction will be stalled even though it has both the operands available until the 

high latency DIV is done execution. This limitation can be eliminated if the instructions are 

allowed to execute out-of-order. In the five stage pipeline discussed in section 2.2, instruction 

issue was done in ID stage where it waits till both the structural and data hazards are resolved.  

To begin executing ‘SUB’, instruction issue must be divided into two stages. First, it should 

be checked for structural hazards and then in the next stage, wait till the data hazards are 

resolved. Thus, the instructions are still issued in program order but allowed to execute out-
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of-order. This results in out-of-order completion of instructions which gives rise to the 

following complications in the pipeline: 

a. Possibility of WAR and WAW hazards. As the instructions are now completed out-

of-order, there is a possibility that an instruction lower in program order writes a 

register before it is read/write by an instruction above in program order. This can be 

taken care of by renaming the instructions. 

b. Out-of-order completion may result in imprecise exceptions i.e., processor state when 

an exception is raised is not exactly the same as if the instructions are executed in strict 

program order. This can be resolved by delaying the notification of exception till all 

the instructions above the instruction generated exception are completed. A processor 

is said to ensure precise exceptions when an exception raised is exactly same as if the 

instructions are executed in program order. 

c. Handling speculative instructions. In the processors with branch predictors, all the 

instructions issued after a branch are speculative till the branch outcome is known. 

Register file must be updated only when the instruction is no longer speculative to 

maintain precise exceptions. This can be handled by making instructions update the 

register file in the program order. This stage of instruction execution is called 

‘instruction commit’. 

Now, we look in detail how these are actually implemented in hardware. 

Register renaming 

Register renaming is done to eliminate WAW and WAR hazards, each destination register is 

given a new register name. Look at the example code below 

DIV R2 R1 R0 

ADD R3 R2 R1 

STR R3 10(R0) 

SUB R1 R7 R8 

MUL R3 R5 R1 

WAW hazard pairs: ADD, MUL  

WAR hazard pairs: ADD, SUB; MUL, STR 
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After renaming, the instructions look like 

DIV R2 R1 R0 

ADD X R2 R1 

STR X 10(R0) 

SUB Y R7 R8 

MUL R3 R5 Y 

Where X and Y are temporary registers to store the results of ADD and SUB instructions. 

Destination register of ADD which is R3 is now renamed to a temporary register X. Also, all 

the instructions below it which uses R3 as source are now renamed to X. Renaming sources 

to X should be done till another instruction which has the same destination register is 

encountered (MUL in this example). Renaming R3 to X in ADD instruction removed WAW 

hazard between ADD, MUL instructions and also a WAR hazard between STR, MUL. 

Similarly, renaming destination register of SUB instruction to Y removed the WAR hazards 

between ADD, SUB pairs.  

Instruction commit 

An instruction must not write to register file until it becomes non-speculative. Results of these 

instructions after out-of-order execution must be stored in a temporary registers until they are 

written to register file. So, instructions must commit in program order to maintain precise 

exceptions. 

 As we’ve seen from the above discussion, both the register renaming and instruction 

commit need temporary locations. An extra register set whose indices can be used as rename 

registers as well as to store the speculated results of instructions can serve this purpose. This 

is called as ‘reorder buffer’. Another buffer is also needed to store the instructions which are 

waiting for data hazards to get resolved. This is called as ‘reservation station’ or ‘instruction 

queue’.  

Different pipeline stages of out-of-order execution scheme are as follows. 

i. Instruction fetch: This is same as that of simple five stage pipeline where PC is sent to 

instruction memory and the instruction is fetched into an inter-stage buffer. 
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ii. Instruction decode: This is also same as that of simple five stage pipeline where 

instruction semantics are understood. 

iii. Instruction dispatch/rename:  

a. Each instruction is allotted an entry in re-order buffer whose index is used as a new 

renamed register for its destination register.  

b. Then, it is put in issue queue where the instruction waits till the data dependencies 

are cleared.  

c. Instruction should be dispatched only when there is an empty entry in both re-order 

buffer and issue queue. 

d. If an operand is available, read it from register file and put it in issue queue entry. 

Otherwise, store the ROB tag of the producer instruction. 

iv. Instruction wakeup: Once the result of the producer instruction is calculated, its tag is 

then broadcasted on a common data bus to tell its consumer instructions to mark their 

operands as ‘ready’ and get the data. 

v. Instruction issue: If both the operands of an instruction are ‘ready’ and the functional 

unit is available i.e., when both the data and structural hazards are resolved, instruction 

is sent for execution to functional units. 

vi. Execute/write result: Execute the instruction and broadcast the ROB tag of instruction 

on common data bus once execution is finished to inform its consumer instructions. 

This stage may take multiple cycles to complete execution. Also, mark the ROB entry 

as valid and the corresponding issue queue entry as free/available. 

vii. Instruction commit: An instruction commits only after all the instruction above it are 

completed and done execution. There are three types of actions in this stage depending 

on the type of instruction committing. 

viii. Normal action during commit is to write the result in re-order buffer to register file 

and remove the entry from re-order buffer. 

a. For committing store instruction, same thing is done except writing the register 

file. 

b. For wrongly speculated branch, ROB and IQ are flushed and the instructions from 

correct PC are fetched. 
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Figure 4 shows the typical hardware of an out-of-order execution engine. Only floating point 

units (FPU) and load store unit are shown in the figure. Also, note that there are different 

reservation stations for each of the functional unit which are filled during rename stage of the 

instruction pipeline. Information stored in reorder buffer and reservation are described below. 

 

 

Figure 2.4: Out-of-order execution hardware [1] 

Re-order buffer 

Data structure of a reorder buffer entry is of the form 

Valid Data Destination Register 

 

 Valid: valid field is a Boolean value indicating whether the outcome of the instruction 

is calculated. This filed is filled with ‘False’ during the rename stage of an instruction 

and made ‘True’ when the result is broadcasted by functional unit. Note that result 

should be broadcasted along with the ROB tag of the instruction. 
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 Data: This field stores the calculated result of the instruction till all the instructions 

above it are committed. Filled during broadcast by functional unit. 

 Destination reg: It holds the destination register of the instruction. It is the address of 

the register file to which the result has to be written after instruction commit. Filled 

during the rename stage of the pipeline. 

Reservation station 

Data structure of reservation station/instruction queue entry is follows 

Valid Operation 
Op1 data/ 

ROB # 

Op1 

ready 

Op2 data/ 

ROB # 

Op2 

ready 

Destination 

ROB # 

 

 Valid: Tells if the reservation station entry is valid. 

 Operation: Contains functional unit type and the operation to be performed on the 

operands. 

 Op1 data/ROB #: Holds the data of operand 1. If it is not yet calculated, it stores the 

ROB index of the producer instruction. 

 Op1 ready: Tells if the above field is holding operand data or ROB number. 

 Op2 data/ROB #: Holds the data of operand 2 (or immediate value). If it is not yet 

calculated, it stores index of the producer instruction. 

 Op2 ready: Tells if the above field is holding operand data or ROB number. An 

instruction is sent to execution if there is no structural hazard and both Op1 ready and 

Op2 ready fields are ‘True’. 

 Destination ROB #: Holds the renamed destination address  

This out-of-order execution scheme is invented by Robert Tomasulo, hence it is often called 

as Tomasulo algorithm.  

 There can also be hazards in memory which should be taken care of during out-of-

order execution. Loads and stores have the latency of more than one cycle. Effective address 

is calculated in the first cycle and memory access is performed in the next cycles. One way of 

dealing with the memory hazards is as follows. As the stores are always written to memory 
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during the commit stage of the pipeline, they happen in the program order. Hence, WAW and 

WAR hazards are eliminated. RAW hazards can be dealt with as follows: 

 Not allowing the loads to execute their second stage if any active ROB entry is 

occupied by a store whose effective address is same as that of load.  

 Effective addresses of loads are computed in the program order with respect to all 

the previous stores. 

Above two restrictions ensure that the loads that memory location written by an earlier in-

flight store instruction cannot perform memory access till the store instruction is writes the 

memory. 

Advantages: Reduces stalls due to data, control and structural hazards. 

2.4.6 Multiple issue 

All the techniques above can be combined to achieve a maximum IPC of 1 by eliminating the 

hazards. Such kind of processors are called ‘scalar processors’ which issue only one 

instruction per cycle. To further improve the performance, CPI (clocks per instructions) 

should be made less than 1. Multiple issue in a processor allows issuing more than one 

instruction per cycle. Processors which issue more than one instruction per cycle are called 

‘superscalar processors’.  There are three primary approaches in superscalar processor design. 

1. Statically scheduled superscalar processors: Which instructions to issue 

simultaneously is decided by compiler and they are executed in program order in the 

pipeline. Number of instructions issued per cycle is not necessarily the same every 

cycle. Ex: Some embedded processors like MIPS and ARM cortex A8. 

2. VLIW processors: As discussed in section 1.1, VLIW processors are like statically 

scheduled superscalar processors except that the fixed number of instructions are 

issued every cycle. Ex: Signal processing processors like TI C6x 

3. Dynamically scheduled superscalar processors: These processors normally issue 

fixed number of instructions every cycle, but the execution is done out-of-order. Ex: 

Most of the high performance modern day processors like Intel core i series, AMD 

bulldozer and IBM power 8. 
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Most important complication arises due to superscalar execution is handling the dependencies 

among the instructions to be issued in the same cycle. In statically scheduled superscalar 

processors and VLIW processors, compiler ensures no dependencies among the instructions 

issued in same cycle. But, in the case of dynamically scheduled superscalar processors, 

hardware should take care of these dependencies. 

Advantages: Reduces Ideal CPI 

Although exploiting instruction level parallelism increases performance of the processor 

significantly, it has the following limitations: 

1. Number of instructions in-flight is limited and is dependent on the size of issue queue 

and reorder buffer. Increasing the size of these buffers increase the hardware 

complexity, thereby reducing the clock frequency and increasing power dissipation. 

2. Branch predictors cannot be made one hundred percent perfect. 

3. It is not possible to do perfect memory address alias analysis (eliminating memory 

hazards) for a huge instruction window as it adds up high hardware complexity. 

These above constraints makes it difficult to utilize complete instruction level parallelism of 

any application. 

2.5 EXPLOITING DATA LEVEL PARALLELISM 

All the applications which uses vectors and matrices have data level parallelism where same 

operation is performed on all their elements. Examples of this kind of applications are 

scientific computing and multimedia processing. 

To exploit data level parallelism, same operation must be performed on all the independent 

data simultaneously. This can be done by adding an extra functional unit which takes a vector 

of data and operate on all the elements in parallel. Such kind of functional units are called 

SIMD units (single instruction multiple data).  By the increase in the use of multimedia 

application now a days, most of the ISAs incorporated SIMD instructions. Examples are Intel 

AVX and ARM NEON. Graphic processing units are another class of computing resources 

which are built to handle the applications with high data level parallelism. 
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2.6 EXPLOITING THREAD LEVEL PARALLELISM 

Thread level parallelism implies the existence of multiple instruction sequences which have 

to be run simultaneously. Instruction level parallelism thus can be primarily exploited through 

MIMDs (multiple instructions multiple data). Two different techniques in the processors 

which execute MIMDs are: 

 Multithreaded processors: Different threads make use of same hardware resources of 

the processor to keep it busy. 

 Multicore processors: Entire processor is replicated and used to run multiple threads. 

Most of the modern day high performance processors use both the above techniques to exploit 

TLP. 

The processor we aim to implement uses all the techniques described in the section 2.4 to 

exploit instruction level parallelism to the highest extent possible. 
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CHAPTER 3 ARCHITECTURAL  DESIGN  AND IMPLEMENTATION 

 

ARCHITECTURAL DESIGN AND IMPLEMENTATION 

 

 

This chapter explains the architectural design, design decisions and implementation details of 

the I-Class processor. We begin with short descriptions about RISCV instruction set 

architecture and Bluespec systemverilog in which the whole design is implemented. Then, we 

move on to detailed architecture description and implementation details. 

3.1 RISCV ISA 
 

RISC-V is a new instruction set architecture (ISA) that was originally designed to support 

computer architecture research and education which has a good potential to become a standard 

open architecture for industry applications. RISC-V was developed in the Computer science 

division of EECS department at the University of California, Berkeley. Following are main 

features of RISCV ISA [2].  

 It is completely open ISA that is freely available to academia and industry unlike the 

commercial ISAs like x86 and ARM. 

 It is suitable for direct native hardware implementation, not just simulation or binary 

translation. 

 This ISA avoids ‘over-architecting’ for a particular microarchitecture style (eg., 

microcoded, in-order, out-of-order) or implementation technology (eg., full-custom, 

ASIC, FPGA), but allows efficient implementation in any of these. 

 It supports extensive user-level ISA extensions and specialized variants. 

 It has 32, 64 and 128-bit address space variants for applications, operating system 

kernels and hardware implementations. 

 It has a support for highly-parallel multicore or manycore implementations. 

 All the instructions are 32 bit wide and there is a scope for variable length encoding 

too.  
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RISC-V ISA is defined as a base integer ISA and optional extensions to it. Base ISA is 

restricted to the minimal set of instructions sufficient to provide a reasonable target for 

compliers, assemblers, linkers and operating systems. Currently there are two variants of base 

integer ISA based on the width of integer registers and address space, RV32I and RV64I. 

RV32I provides user address space of 32 bits and RV64I provides 64 bits of user address 

space. There is also RV128I which is a 128 bit version of base integer ISA. 

3.1.1 Overview of base integer ISA 

Base integer ISA has following types of instructions: 

 Integer computational instructions: Contains all the arithmetic operations except 

‘multiply’ and ‘divide’ instructions. One of the operand in these instructions can be an 

immediate field. 

 Integer load store instructions: Instructions to loads from the data memory and stores 

to the data memory. Load and store instructions in RISCV ISA are of the form 

Load/Store Size of access Destination register Base register Offset 

 

o Where ‘size of access’ means the size of the memory access which can be any of 

‘byte, half word, word and double word’. 

o Destination register is the index of register file to which loaded memory value is 

written. In the case of store instruction, this field stores the index of register file 

whose contents should be written to the memory. 

o Base register is the index of register file whose content is base address. It is added 

to the offset (signed addition) to get the effective memory address. 

 Control flow instructions: Comprises of both unconditional jumps and conditional 

branch instructions. Conditional branch instructions compare contents of two registers 

and add an offset to program counter depending on the comparison result. 

3.1.2 Extensions to base integer ISA 

Following are the current extensions to base integer ISA: 

 M Standard extension: Adds all the multiply and divide instructions on integers. 
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 A Standard extension: Adds instructions that atomically read, modify and write 

memory for inter-processor synchronization. 

 F Standard extension: Adds floating point registers, single-precision computational 

instructions and single-precision loads and stores. 

 D Standard extension: Expands the floating-point registers, and adds double-precision 

computational instructions, loads and stores. 

Processor implemented as a part of my thesis implements RV64I (64 bit address space and 

integer register width) along with M standard extension (all the multiply, divide instructions) 

except fence and system calls. 

3.1.3 Memory model 

Memory supported by RISCV ISA is byte addressable and little endian i.e., least significant 

bytes of an integer are stored in the lower memory locations. Base ISA supports multiple 

concurrent threads of execution within a single user address space. RISCV threads can 

synchronize and communicate with other threads either through calls to execution 

environment or directly through shared memory system. 

3.2 BLUESPEC SYSTEMVERILOG
 

Bluespec systemverilog [3] (BSV) is a high level hardware design language based on 

systemverilog. This language is based on a new model of computation for hardware, where 

all the hardware behavior is described as a set of rewrite rules, or guarded atomic actions. 

BSV borrows powerful abstraction mechanisms from advanced programming languages such 

as rich user-defined polymorphic types and overloading, strong basic type-checking, first class 

parameterization, high-order programming and object-oriented interfaces. Core BSV tool 

synthesizes BSV code into high-quality RTL (Verilog) which can be further synthesized into 

netlists for ASICs and FPGAs. 

Advantages of Bluespec over the other available hardware description languages are [4]: 

 Design implementation time: Because of its high level nature and library modules, it 

is easier and faster to code a design in Bluespec than any other HDLs like VHDL and 

Verilog. 
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 Test and debug: Bluespec generates a standalone simulator named Bluesim as an 

alternative to the Verilog modules which can be used to run the design on clock cycle 

basis. Bluesim is much faster than Verilog/VHDL simulators which makes verification 

faster. 

 Modulariy: Bluespec offers more powerful parameterization for types, modules and 

functions allowing for better reuse and more modular designs. 

 Flexibility: Adding extra features to the design is much simpler in Bluespec because 

it takes much fewer lines of code when compared to Verilog or VHDL for 

implementing a design. 

Although it has many advantages over other HDLs in the above mentioned ways, it does have 

drawbacks in terms of design area, timing and power consumption. Even though Bluespec 

claims that it produces high quality Verilog code, not all designs are proved to be as efficient 

as hand written Verilog/VHDL in terms of area and timing [5]. 

3.3 ARCHITECTURAL OVERVIEW 

Specs of the processor implemented are as follows: 

 Fetch width 2: Fetch width means the number of instructions fetched from instruction 

memory to the processor per cycle. This makes the processor superscalar. 

 Branch predictor: Tournament branch predictor used. 

 Merged register file renamer: As we discussed in section 2.4.5, renaming instructions 

eliminates name dependencies. 

 Parameterized issue queue: Holds the instructions in flight, parameter is the length of 

issue queue. 

 Issue width 5: Issue queue can issue up to 5 instruction per cycle to execution units. 

 Functional units: 2 ALUs, 1 Multiply divide, 1 Load store and 1 branch unit. 

 Bypass network: To bypass the results from one functional unit to another. 

 Speculative LS unit: Uses CAM based speculative load store unit. 

Block diagram of the out of order engine is shown in the figure 3.1. Broadcast wires, branch 

predictor unit internals, inter-stage buffers and load store queues are not shown in the figure 

for simplicity. Following are the pipeline stages of the I-Class processor. 
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 Instruction fetch 

 Instruction decode 

 Instruction rename/map 

 Instruction issue (may take more than one cycle) 

 Data read 

 Execute (may take more than one cycle) 

 Commit 

 

 

Figure 3.1: Overview of I-class processor pipeline 

Design tradeoffs and implementation details of each of the pipeline stages are described in the 

rest of the chapter. All the code for above figure except ALUs, branch unit, BPU is written 

by myself. 
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3.4 INSTRUCTION FETCH UNIT 

Instruction fetch unit is responsible for feeding the processor with the instructions to execute, 

hence is the first block where the instructions are processed.  

Instruction fetch unit sends program counter to instruction cache and receives the 

instructions. Fetch width of I-class processor is 2, two instructions must be fetched from 

instruction cache every cycle. As the instructions are being fetched every cycle, calculating 

next PC should be done along with cache access. Significant complexity is introduced by 

branch instructions as the target address to jump is not known until it completes execute stage 

of the pipeline. Branch predictor helps here predicting the next PC to fetch. 

So, the fetch unit takes the predicted PC from branch unit and sends request to instruction 

cache whose line width is 64 bits (each line holds two instructions with consecutive PC 

values). Instruction cache responds with instruction packet which contains two consecutive 

instructions. For example, if fetch unit requests i-cache with PC 0, i-cache returns a packet of 

instructions with PC=0 and PC=4. Last three bits of PC are made zero in i-cache request as 

the line width is 64 bits and the memory is byte addressable. Data structure of IF/ID inter-

stage buffer is  

Instr0 Instr1 Valid1 

 

Following bookkeeping actions must be performed on the instruction packet received before 

it is sent to next stage. It is also showin in the figure 3.2, packet[0] corresponds to lower 32 

bits of cache response and packet[1] corresponds to higher 32 bits in the figure. 

 If the PC is not a multiple of 8 i.e., if the last three bits of PC are not zeros, packet[1] 

from instruciton packet must be discarded. 

 If packet[0] of instruction packet is a branch which is predicted as taken, then discard 

packet[1]. 

Valid instruction is always in instr0 field. Whereas instr1 may be valid or invalid. Keeping 

the instructions this way makes rename stage of the pipeline simpler. 
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Figure 3.2:  Dual instruction fetch 

Branch predictor used is a tournament branch predictor which takes decisions based on both 

global and bimodal predictors. 

3.5 INSTRUCTION DECODE UNIT 

The purpose of instruction decode logic is to understand the semantics of an instruction and 

to define how this instruction should be executed by the processor. It identifies: 

 Type of instruction: arithmetic, memory, control etc. 

 Operation to be performed: ADD, SUB, bit-wise operations etc. in the case of 

arithmetic instructions, BNE,BEQ etc. in the case of control instructions and LB, LW, 

SB, SW etc. in the case of memory instructions. 

 Resources the instruction requires: what the input operands and destination operand 

are. 

Unconditional jump instruction JAL (jump and link) is specially processed in instruction 

decode stage. JAL changes the program counter by an offset and stores PC+4 in the destination 

register specified. If a JAL instruction is encountered in the decode stage target PC value is 

calculated and written to program counter register. Data structure of decode packet is same as 
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that of instruction packet in the fetch stage except that it contains decoded version of 

instructions. 

Decoded instr0 Decoded instr1 Valid1 

 

If instr0 is a JAL instruction, decoded instr1 should be made ‘Invalid’ in the decode packet. 

3.6 INSTRUCTION RENAME AND DISPATCH 

This stage of the pipeline as the name indicates performs two actions: rename the instructions 

to get rid of name dependencies and reserve the entries in instructions queue and related 

buffers. Pipeline should be stalled if issue queue or related buffers are full. 

There are three ways of renaming instructions. 

 Renaming through reorder buffer: This is discussed in section 2.4.5 where a buffer 

is used to store the results of in-flight instructions and also to rename them. 

 Renaming through rename buffer: Good number of instructions in any application 

do not produce output (unconditional branches and stores in RISCV ISA). This 

results in wastage of reorder buffer entries for such instructions. This scheme is 

same as that of previous one except that the results are stored in a separate buffer 

and a link (pointer) to that buffer is stored in rename buffer. 

 Renaming through merged register file: It is the renaming approach implemented 

in I-class processor. It is described below. 

3.6.1 Renaming through merged register file 

This scheme maintains a single register file which is named merged register file or physical 

register file to hold both the architectural registers and the results of non-committed in-flight 

instructions. Size of this register file is bigger than the number of architectural registers. Each 

register in this register file can either be free or allotted. List of all the free register is stored 

in another buffer called ‘free register queue’ (FRQ). Allotted register can be in any of the 

following states: 

 Holds a committed value which means it is an architectural register. 
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 Holds a speculative value when result of the instruction is available but it is not 

committed yet. 

 Holds no value if an in-flight instruction result is not yet available. 

A map is maintained to store the indices of physical register file to which architectural 

registers are mapped.  

The free register queue (FRQ) can be implemented as a circular buffer whose contents are 

indices of all the available registers in merged register file. A register is removed from the 

head of the circular buffer to rename the destination operand of an instruction. If FRQ 

becomes empty, pipeline is stalled. 

Mapping can be implemented as a simple table of length equal to number of architectural 

registers. When an instruction is renamed, map table is looked up to find the mappings of 

source operands. Also, a register (index of a free register in merged register file) from FRQ is 

removed and used as a renamed register and the map table is updated to reflect this change. 

Merged register file implementation is shown in the figure 3.3. ‘Valid’ bit in physical register 

file indicates whether the instruction has completed execution. 

 

Figure 3.3: Merged register file 

A physical register is freed when no instruction is going to use it anymore. Ideally, this 

should be done when the last instruction that uses this register commits. But, it’s not possible 

for hardware to identify it. Hence a safe, conservative approach is used. Let us consider a 

destination register Ri of an instruction i is renamed to Ti. Ti is freed only when the first 
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instruction below instruction i which uses Ri as a destination operand is committed because it 

is guaranteed that every instruction below it uses new map of Ri.  Table 3.1 shows an example 

of how it is done. Let us assume that the initial mapping is Ri=Ti and free register queue has 

the register indices starting from T8. At every commit, physical register which has the map 

from previous instruction with same destination architectural register is added back to FRQ. 

This is done in the commit stage of pipeline. 

Table 3.1: Example of merged register file renaming 

Instructions before mapping Instructions after mapping Register freed at commit 

ADD R3 R2 R1 ADD T8 T2 T1 T3 

SUB R4 R3 R2 SUB T9 T8 T2 T4 

MUL R5 R3 R4 MUL T10 T8 T9 T5 

DIV R5 R5 R2 DIV T11 T10 T2 T10 

OR R6 R5 R1 OR T12 T11 T1 T6 

 

As the mapping table changes with rename of every instruction, it needs to be reverted back 

to the previous state in case of mispredictions. This can be done by maintaining another 

rename table which is delayed version of the main one and updating it only during the commit 

stage of the instructions. We name them FRAM (frontend RAM) and RRAM (retirement 

RAM). So, RRAM contents are the of all the architectural register indices. While the entries 

which are there in FRAM but not in RRAM are indices in PRF holding the results of in-flight 

non committed instructions. 

3.6.2 Register file read 

Register file read is another aspect which has implications on key design aspects. Register file 

can be read either before issuing instruction for execution or before it.  

If the register file is read before issue, the operand data should be stored inside issue queue. 

This takes up a lot of area especially in the processors which use large register widths. Also, 

there will be many replicated copies of same data in the issue as the same operands can be 

present in more than one instruction.  
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If the register file is read after issue, only the identifiers to the operands should be stored 

in the issue queue, not the entire data. But, it requires more number of read ports in register 

files because multiple number of instructions can be issued in one cycle. 

Design decision 

Now we have four choices which are the combination of two renaming styles (considering 

first two methods use same approach) and two ways of register file read. ROB based renaming 

requires a FIFO structure to store the speculative results. Every instruction is allotted an entry 

at tail of ROB and an entry at head is freed when the instruction completes execution. On the 

other hand, merged register file based renaming requires more complex mechanism. It has 

following advantages over ROB based renaming: 

 Results are written only once in this scheme. Whereas in ROB based renaming, results 

are first written into the ROB and then into register file during commit. This results in 

extra power consumption. 

 In merged register file based renaming, operands come from a single location (merged 

register file) whereas in the other case, operands can come either from architectural 

register file or ROB. This increases the amount of interconnect needed. 

In the case of ROB based renaming, read before issue is more appropriate. If the pointer to 

ROB or architectural register file is stored, we need to do associative search every time an 

instruction commits and change the pointer value from ROB number to architecture register 

file index which results in complex hardware. 

In the case of merged register file based renaming, either the read before issue or read after 

issue can be used. As the read after issue saves area in issue queue, it is more attractive choice. 

Because of these advantages, merged register file based renaming with read after issue is 

chosen for I-class processor implementation. 

 After renaming the instructions, they wait in the instruction queue till data and structural 

hazards are resolved. Data structure of instruction queue is: 
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Table 1.2: Issue queue data structure 

Field Purpose 

Operation, functional unit details 
Holds the operation type, functional unit 

details 

Op1 Operand 1 pointer 

Op1 ready Whether Op1 is available 

Op2 Operand 2 pointer 

Op2 ready Whether Op2 is available 

Imm valid If instruction has immediate field 

Imm buffer index Pointer to immediate buffer 

Destination architectural register To add back registers to PRF 

Memory queue index 
Holds the instruction position in load/store 

queues 

Prediction 
Prediction bit in the case of branch 

instruction 

Program counter Needed for branch and AUIPC instructions 

 

Immediate fields can be up to 20 bits wide in RISCV ISA (LUI, AUIPC and JAL instructions). 

Normally, only one third of instructions have immediate field. Storing these values in a 

separate buffer and using pointers to the buffer in issue queue saves area. Hence, a separate 

buffer named immediate buffer is used to store the immediate fields. The field ‘Imm valid’ 

indicates if an instruction uses immediate field.  

If the instruction is a memory access instruction, it is allotted an entry in load/store queues 

too which are described in the later sections. Its index is stored in ‘Mem queue index’ field. 

Updating Op1 ready and Op2 ready 

As we have seen in section 2.4.6, destination tag is broadcasted on to issue queue to say that 

producer instruction has completed execution and the consumer instructions mark their 

operand as ‘ready’. This also sets the ‘Valid’ bit in PRF. But, if a consumer instruction is in 

rename stage when the destination tag of producer instruction is broadcasted, ‘ready’ field 
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will not be updated correctly. To avoid this, the destination tag is also broadcasted to map 

stage. 

3.6.3 Renaming multiple instructions 

In superscalar processors, multiple number of instructions should be renamed each cycle. In 

I-class processor two instructions are renamed each cycle. While renaming multiple 

instructions in a single cycle, dependencies between these instructions must be checked. Now, 

two registers are taken from FRQ and two entries are allotted in issue queue if the second 

instruction is valid. Additional bookkeeping actions that must be performed when renaming 

two instructions per cycle (instr0 and instr1) are: 

 If a source operand of instr1 is same as that of destination operand of instr0, then 

change its identifier and mark the ‘ready’ field as ‘False’. 

 If the destination operand of instr0 is same as that of destination operand of instr1, 

FRAM is updated only by instr1.  

 Take care of the inter-dependencies when memory access instructions are involved. 

This will be discussed later in this chapter. 

3.7 INSTRUCTION ISSUE 

This stage of the pipeline is responsible for issuing instructions to execution units. It is the 

key component that determines the amount of instruction level parallelism that an out-of-order 

processor can exploit.  

3.7.1 Issue queue 

As we’ve discussed in sections 2.4.5 and 3.6, instruction queue holds the instructions which 

are waiting for the data dependencies to resolve. In I-class processor, instructions enter issue 

queue in the program order but they are issued for execution out-of-order. Entry in the 

instruction queue is freed when that instruction commits which again happens in the program 

order. Hence, it can be implemented as a circular buffer. 

Issue queue can be implemented in two ways: One is unified issue queue and another is 

distributed issue queue. They are shown in figure 3.4. 
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 Unified issue queue: It is a single issue queue to store all the instructions of the 

program. Issue stage should have a logic to figure out to which functional unit an 

instruction should be sent. This logic increases with the size of issue queue and the 

number of functional units. 

 

Figure 3.4: Distributed and unified issue queues 

 Distributed issue queue: Multiple issue queues are maintained which are bound to 

one or more functional units. In this case, rename/dispatch stage does the job of 

differentiating the instruction type and enqueue into respective issue queue. This 

reduces the logic in the more critical issue logic. 

If different issue queues are used for each type of functional unit, all the other issue queues 

lay unused when the workloads are not balanced (when one type of instructions dominates) 

which is the case with many general purpose workloads. This problem doesn’t arise in unified 

issue queue.  Hence, we decided to go with unified issue queue in I-class processor. 

Instruction issue logic lies in the critical path of the pipeline which decides the clock 

frequency of the processor. Instruction issue is a multi-cycle operation which comprises of 

following stages: 
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3.7.2 Instruction Wakeup 

When a producer instruction completes execution, its destination operand tag is broadcasted 

to all the instructions in the issue queue. Each instruction compares that tag with the tags of 

its source operands. If there is a match, source operand is marked ‘ready’ by setting Op1 ready 

or Op2 ready bit in issue queue entry. Figure 3.5 shows the wakeup logic implementation. 

 

Figure 3.5 Wakeup logic [6] 

 

Note that there will be multiple broadcast buses from different functional units, tag 

matching should be done with each of these buses. ‘Ready’ bit is set if one there is a match 

with one broadcast tag. As each instruction is allotted a unique destination operand from FRQ, 

each broadcast bus broadcasts unique tag. So, if there is a tag match, it happens with only one 

broadcast bus.  

Delay of wakeup logic increases with increase in number of functional units and issue 

queue size. 
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3.7.3 Instruction select 

Instruction select is in charge of selecting instructions from a poll of ‘ready’ instructions to be 

sent for execution i.e., instructions whose all operands are available. There should be a select 

logic because the number of ‘ready’ instructions in issue can be more than the number of 

available functional units. Inputs to the select logic are requests form instructions in issue 

queue. This is named as ‘request vector’ with is an array of bits with size of the array equal to 

number of entries in issue queue. If an instruction in the issue has both the operands ‘ready’ 

and it is not yet selected for execution, then the bit of the request vector in the corresponding 

location is set. Outputs of select logic are the grant signals named as grant vector which also 

has the size equal to issue queue size. It indicates if an entry in issue queue is granted a 

functional unit. A selection policy should be used to decide which of the ‘ready’ instructions 

should be granted functional units. There are mainly two kinds of selections policies: 

 Age based: Older instructions in the issue queue are given more priority i.e., the 

instructions which entered the issue queue earlier. Implementing age based 

selection policy requires more hardware to keep track of age information. 

 Position based: Instructions in the top of issue queue are given more priority. This 

policy is relatively simple to implement as it only requires priority encoders. 

As this stage of the pipeline lies in the critical path, design decision should be made based on 

the final throughput which largely depends on the kind of workloads the processor is running. 

As we don’t have the workload data, it is designed in such a way that the selection policy can 

be set in the compile time. 

Position based policy can be implemented using a simple priority encoder based arbiter. 

An encoder is a combinational circuit with 2N inputs and N outputs. The output of the encoder 

is the binary representation of the input position activated. In priority encoder, each position 

has a weight. In the case of several inputs are set, the position with highest weight is codified 

in the output. Priority encoder based arbiter is shown in the figure 3.6a. It takes request vector 

and enable as the inputs and outputs grant vector. This circuit has the number of levels equal 

to the size of issue queue resulting in the delay linearly dependent on the size of issue queue. 
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Figure 3.6: Select logic implementation [7] 

Another approach which is much more efficient in terms of delay is shown in the figure 

3.6b. It uses a tree based priority logic named as encoder tree works this way. Each block in 

the tree is a priority encoder shown in 3.6a with N=2. Requests from the top level are first sent 

to the root of the tree. This is done by ‘any’ output of the PE block which is set in any one of 

the bits of request vector are set. ‘Enable’ to the root PE is the functional unit status, it is ‘set’ 

if the functional unit is free. Grants from the root are used as ‘enable’ inputs of the PEs in the 

next higher level. This way, the grants are passed back to the branches. In this implementation, 

number of levels of logic is log2N. Hence, the select logic delay is logarithmically dependent 

on the size of the issue queue. Tree based select logic is used in I-class processor 

implementation. 

Instructions in the I-class processor enter issue queue in the program order and leave the 

issue queue in program order. Hence, the instructions nearer to the head of issue queue are the 

older compared to the ones which are farther from it. To implement age based selection policy, 

the request vector is rotated down by the amount which is equal to the head position. And the 

grant vector from the select logic is again rotated up by the same amount. As this requires 

rotation by arbitrary amount, two barrel shifters is required to perform this operation, one for 
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rotating request vector and another for rotating grant vector. Adding them to the select logic 

significantly increases the delay in that path. 

 There are as many number of encoders as the number of functional units in the processor. 

As I-Class processor implemented with 2 ALUs, a multiply divide unit, a load store unit and 

a branch unit four encoder trees, five encoder trees are needed. Also, four request vectors are 

made one for each type of functional unit. 

Select logic for multiple ALUs: 

I-class processor has 2 ALUs. Up to 2 ALU instructions can be selected for execution every 

cycle. Select logic should make sure that the same instruction is not selected for execution in 

both ALUs. This is done as shown in the figure 3.7. 

 

Figure 3.7: Select logic for multiple ALUs [7] 

Grant from ALU0 is negated and bitwise and operation is performed with original request 

vector. This result is used as the request vector for encoder tree of ALU1. The same logic 

extends if there are more functional units. 

Selected instructions are enqueued into the inter-stage buffers (select/data-read buffer). If 

both the source operands of the instruction are ‘ready’ before entering the issue queue, there 

is no need to wake up the operands. Such instruction will proceed to the next stage of the 

pipeline once all the instructions which use same functional unit above it are selected. To keep 

track of which instructions are selected for execution, a Boolean array with size of issue queue 

is maintained. Once an instruction is selected for execution, corresponding entry in that array 

is made ‘True’ and it is will no longer generates the request.  
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3.8 INSTRUCTION DATA READ 

As discussed in section 3.6 instructions read register file after issue. Selected instructions are 

taken from the select/data-read inter stage buffer and the register file is read. I-class processor 

can issue up to 5 instructions per cycle which results in 10 read ports for physical register file.  

Immediate fields of instructions are stored in separate location (immediate buffer) and the 

pointer to the immediate buffer location is stored in issue queue entry. If the instruction has 

‘imm valid’ field set, then the immediate buffer is accessed to get the immediate field data.  

Instructions along with the data are enqueued into the next inter-stage buffer (data-

read/drive buffer). 

3.9 INSTRUCTION EXECUTE 

This is the stage where the instruction execution takes place. This stage may take multiple 

cycles depending on the type of operation. Once the result is calculated, it is broadcasted to 

all the instruction queue and rename stage to update the status of source operands. Branch unit 

also broadcasts the training packet, the branch result (whether prediction is correct or not) and 

the value to which PC should jump when there is a branch misprediction (named as squash 

program counter). Branch result and the squash program counter are stored in separate array 

(named as squash vector) of size equal to the size of issue queue. Squash program counter 

field is filled with program counter value in the rename stage which is used in committing 

load instructions as we will see in next section. 

As discussed in section 2.4.6, data dependencies through memory cannot be identified in 

the rename stage. A memory data dependency exists between two instructions if both of them 

access the same memory location i.e., when there exists an aliasing or collision between two 

memory addresses. These dependencies can be checked only once these instructions have 

been issued to execution and the effective address is computed. The mechanism in charge of 

handling data dependencies through memory is called ‘memory disambiguation policy’. There 

are two types of memory disambiguation policies: Speculative memory disambiguation and 

non-speculative memory disambiguation. First scheme does not allow executing memory 

operation until we are sure that it doesn’t have dependencies with any previous memory 
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operation. On the other hand, speculative memory disambiguation schemes predict whether a 

memory operation will have dependence on other in-flight memory operations. 

As around 30% of instructions in general purpose workloads are memory accesses. 

Implementing a conservative memory disambiguation mechanism may produce unnecessary 

serialization that could significantly limit the instruction level parallelism that can be 

exploited. Next section explains the architectural details of load store unit implemented in I-

class processor. 

3.10 CAM BASED SPECULATIVE LOAD STORE UNIT 

In the conservative memory disambiguation schemes, both the loads and stores are issued for 

execution in program order. To gain performance improvement, memory access instructions 

should be executed out-of-order without violating memory data dependencies. Memory 

models impose certain constraints on out-of-order execution of these instructions by the 

processor. To facilitate the recovery from exceptions, stores to the memory must be done in 

the program order. By executing stores in the program order, WAW and WAR data hazards 

through the memory are eliminated. Only RAW hazards should be handled by processor’s 

load store unit. The approach used to handle these dependencies is similar to result 

bypassing/forwarding in five stage pipeline discussed in section 2.4.1. 

3.10.1 Load bypassing and load forwarding 

In load bypassing, if a load instruction is not dependent on the trailing stores in the pipeline, 

it is sent to execution. This enforces a constraint that a load instruction can be issued for 

execution only after all the in-flight stores are issued. This is because, for the load to check 

for aliases with in-flight store instructions, their effective addresses for stores must have 

already been computed. 

In load forwarding, store data is forwarded to load instruction if there is an aliasing with 

an earlier store. It is also called as store forwarding since the store data is forwarded. We still 

need to execute the load only after all the earlier stores are issued. Implementing this in the 

hardware requires separate buffer which holds all the store results and the effective addresses. 

When a load is sent for execution, it associatively check that buffer and get the value directly 

from it if there is a match. One complication in this scheme arises in the case when there is 
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more than one match during associative search i.e. when there is more than one store in the 

pipeline which access the same memory location as that of load. One needs to have extra 

hardware to ensure that the load is forwarded with latest aliased store.  

Using these two techniques, loads can be executed out of order with instructions other than 

stores. Although implementing these techniques takes extra hardware resources, performance 

gain of up to 25 % can be achieved [8]. 

3.10.2 Speculative load execution  

If the loads are executed out-of-order with stores when using above techniques, we may fail 

to forward the store because the effective address of that store might not have been calculated 

yet. But, both aliasing with a previous store and the load being issued earlier than that store 

happens very rarely in any practical workloads. This fact is used to further exploit the 

instruction level parallelism among memory access instructions.  

 In this scheme, load is issued even if the in-flight stores earlier in the pipeline are not yet 

issued. This is called speculative load execution because as we predict that no memory 

violation occurs because of that load. Memory violation occurs when the load is not forwarded 

or when it is forwarded from wrong store. If a memory violation occurs, the entire pipeline 

should be flushed and the instructions starting from the mispredicted load are executed again. 

Hardware implementation details of this scheme are described below. 

Two buffers are maintained to hold the memory disambiguation status of load store 

instructions, one for loads and one for stores. Every memory access instruction is allotted an 

entry in these buffers. Allotted entry is freed only during commit stage of that instruction. As 

these buffers are filled and freed in program order, they are named as load/store queues. Data 

structures of load and store queue entries are given the tables 3.3 and 3.4. Here is how load 

and store instructions are processed in rename and issue stage of the pipeline: 

 An entry in load/store queue is allotted in the rename stage of the pipeline and ‘Filled’ 

bit is set and ‘Valid’ bit is reset in the entry. If the queue is full, pipeline is stalled. In 

the case of load instruction, store mask field is filled. Store mask is a bit vector of the 

size equal to the size of issue queue. As all the instructions are renamed in program 

order, all the in-flight stores that the load being renamed depends on can be found from 
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the ‘Filled’ field in store queue. Store mask field is just a copy of ‘Valid’ bit array in 

store queue. While renaming multiple instructions in a cycle, store mask should be 

appropriately updated if the first instruction is store. 

 Index of load/store queues is stored in the field ‘memory queue index’ along with the 

instruction in issue queue. 

 Instructions are issued to load store unit once all the data and structural dependencies 

among registers are resolved. Maximum of one memory instruction can be issued for 

execution in each cycle. In the load store unit, store and loads are handled separately. 

Table 3.3: Load queue data structure 

Field Purpose 

Filled Tells if an entry is allotted to a load instruction 

Valid If the data is load queue is valid 

Store mask List of all stores a load is dependent on 

Load address Memory access location of load instruction 

Load size Size of access (B,HW,W,DW) 

Forwarded To indicate if a store forwarding has happened for a load 

Forward acknowledge To indicate if the aliased store has committed  

Aliased Indicates that a memory violation has occured 

 

 

Table 3.2: Store queue data structure 

Field Purpose 

Filled To indicate if the store queue entry is allotted 

Valid To indicate if the filled entry has valid data 

Store address Memory location address to which the data should be stored 

Store data Data to be stored 

Store size Size of memory access (B,HW,W,D) 
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Figure 3.8: CAM based speculative load store unit 

 

Load and store execution 

Block diagram of CAM based speculative load store unit implemented in this thesis is shown 

in the figure 3.8. Store instruction execution is finished in one cycle whereas a load instruction 

can take any number of cycles depending on cache hierarchy. First cycle of execution for both 

load and store is effective address calculation in which signed offset is added to the value in 

base register. After effective address calculation, store instruction updates valid (is set), store 

address, store data and store size fields of the store queue. Note that the index of the store 

queue comes from issue stage where memory queue index is stored. 

After effective address calculation, load instruction updates Valid (is set), load address fields. 

Also, the instruction is enqueued into an inter-stage buffer. In the next cycle, associative 
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search is performed on store queue to check for address match. Search is performed only on 

the store queue entries which are there in store mask of the load instruction. If there is a match, 

that result is broadcasted to issue queue and ‘forwarded’ bit in load queue is set. If there is no 

match, read request is sent to data cache. 

Instruction commit 

Main part of memory disambiguation is done in the commit stage of the instruction. In the 

commit stage store sends the write request to data cache. Along with it, it checks if any in-

flight loads aliased with it and update this information in load queue. A flow chart of how this 

is done is shown in the figure 3.9. 

 

Figure 3.9: Store commit flowchart 

‘Alias’ bit in the load queue is set in the following cases: 

 If there is address match but the store forwarding has not happened. 

 If more than one store has memory data dependency with a load instruction. As age 

based forwarding is not done, a more conservative approach is taken to ensure no 

memory violation, pipeline is flushed and the load is re-executed that case. ‘forward 



49 

 

acknowledge’ bit is used to find such cases. First aliased store sets ‘forward-

acknowledge’ bit during commit. If another aliased store commits, it sees ‘forward-

acknowledge’ bit set and sets ‘alias’ bit because the wrong store might have forwarded. 

Load commit is relatively simple, load queue entry is invalidated and pipeline flush signal 

is sent (corresponding bit in the squash vector is set) to processor if the ‘aliased’ bit is set. 

Handing multiple access sizes 

A conservative approach is followed. Store is forwarded only when both the address and 

access size are matched.  

3.11 RESULT FORWARDING/BYPASS NETWORK 

As the issue stage normally lies in critical path of the pipeline, it is pipelined as much as 

possible to reduce its complexity. Dividing issue stage into two cycles, namely wakeup and 

select stages has implication on IPC.  

 

Figure 3.10: Pipeline bubble  

 

As shown in the figure 3.10.A, a three cycle bubble results in pipeline when producer and 

consumer instructions are back to back in the program because the consumer instruction 

is woken up only at the broadcast stage of the pipeline. As we are executing instructions 

out-of-order, other ‘ready’ instructions can be executed in this time. But, if a work load 
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has significant number of producer consumer pairs consecutively, IPC is noticeably 

reduced. 

 To eliminate three cycle bubble, consumer instructions can be notified thee cycles in 

advance to the result broadcast stage. If producer instruction is of single cycle latency, 

instruction select and wakeup must happen in the same cycle to avoid pipeline bubble as 

shown in figure 3.10.B. As both the wakeup and select logic have high hardware 

complexity, it further increases critical path delay in the processor. Also, extra hardware 

should be added in other parts of the pipeline to keep track of when the result of the 

producer result will be broadcasted. 

 

Figure 3.11 Wakeup logic for issue stage with bypass network [9] 

 

Now, instead of having a bit for ‘Operand ready’ and ‘Valid’ fields in PRF, block shown 

in figure 3.11 is used. Idea here is to use a shift register which counts the number of cycles 

after an instruction is issued for execution. Note that the consumer instructions of loads 

cannot be woken up earlier because of their variable execution latency. We know the 

latencies of all the instructions except loads, this latency is stored in ‘delay’ field. This 

delay is coded in inverted radix-1 value, in which 1 is 11..10, 2 is 11…100 etc. We want 

to wake up the consumer instructions three cycles before the result of producer is available. 

If an instruction has latency N, delay field is filled with N-1 in inverted radix-1 
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representation. When an instruction is selected for execution, its tag is broadcasted on to 

all the instructions in issue queue and rename stage. If there is a tag match with any source 

operands, then the delay is loaded into the ‘shift’ field and match bit (represented by M) 

is set which acts as an enable for shift operation. The least significant bit of the shift 

register is used as the ‘ready’ field for the operands. Now, source operands consumer 

instructions of single cycle latency producer instruction are made ‘ready’ in the same cycle 

it is selected. By using this approach, consumer may be in the data read stage by the time 

result of the producer instruction is broadcasted. This value is directly passed between the 

functional units by a bypass network. Bypass network is a set of wires connecting all the 

possible pairs of functional units. Bypass network for two functional units is shown in the 

figure 3.12. 

 

Figure 3.12: Bypass network between two functional units 

Bypass network complexity increases exponentially with number of functional units and is a 

potential contributor for critical path delay in modern day processors. 

 I-class processor is implemented in two versions, one with bypass network and one 

without it. 

3.12 INSTRUCTION COMMIT 

It is the final stage of the instruction in the pipeline. To preserve the precise exception 

behavior, all the instructions are committed in the program order. All the instructions in issue 

queue are stored in program order. The job of the commit logic is to look at the oldest 

instructions i.e. the instructions at the head of issue queue and do all the bookkeeping actions 
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if they have finished execution. This is known by maintaining an array of bits with size equal 

to the size of issue queue. When an instruction tag is broadcasted, the bit corresponding to the 

issue queue entry with the same destination operand is set. Following bookkeeping actions are 

performed by commit logic: 

 Add back the register to free register queue in the way described in section 3.6.1. In I-

class processor, even the instructions which do not produce any result (conditional 

branches and stores) are allotted a free registers from FRQ. They are used to just mark 

the instruction as ‘execute done’ by broadcasting the tag. For these instructions, the 

free registers allotted are added back to FRQ in commit stage. 

 If an instruction uses an immediate field, it is allotted an entry in immediate buffer. 

Immediate buffer is freed in commit stage for such instructions. 

 If the instruction is a memory access instruction, perform the actions described in 

section 3.10. 

 Update RRAM index of destination architectural register with the destination operand 

(the free register it is allotted during rename) for all the instructions which produce 

result (all instructions except stores and conditional branches). 

 If the instruction being committed is a mispredicted branch, send a signal to flush the 

pipeline. 

 If the instruction being committed is a wrongly speculated load, signal the pipeline 

flush. Note that this load should be re-executed. 

3.12.1 Committing multiple instructions 

I-class processor can commit up to two instructions per cycle. Additional actions that have to 

be performed which committing two instructions per cycle are: 

 If the first instruction is a mispredicted instruction, do not commit second instruction. 

 If the first instruction is store, then do not commit the second instruction if it is a store 

or load. We assumed that cache can take only one write request per cycle. If we commit 

a load and a store in a single cycle memory dependency between these two have to be 

checked in the same cycle which is not done to keep the design simple. 

 If the destination architectural registers of both the instruction in commit are same, 

then only the second instruction will update RRAM. 
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3.12.2 Recovery mechanism 

Processor state must be reverted back when an instruction is mispredicted. Reverting the 

processor state involves following steps: 

 Clear all the inter-stage buffers in the processor. 

 Empty load and store queues (invalidate all the entries and change head and tail to 

zero). 

 Empty issue queue (invalidate all the entries in issue queue and change head and tail 

to zero). 

 Copy RRAM contents to FRAM to restore the previous mapping. 

 As each instruction in the pipeline is allotted one free register, flushing the entire 

pipeline should add back all the registers to FRQ. As FRQ is implemented as circular 

buffer, all we need to do is to mark all the FRQ entries as valid and change tail and 

head to zero. 

 Change the program counter to the value present in squash program counter of the 

mispredicted instruction. For conditional branches, this value is broadcasted by branch 

unit. In the case of wrongly speculated load instructions, instructions from that load 

should be re-executed. As the squash program counter is filled by the instruction 

program counter in rename stage, it can be used as new PC. 

As all these operations just update register values, recovery takes single cycle. 

In RISCV ISA spec, R0 is always hardwired to zero. The map of R0 in FRAM and RRAM 

are always maintained constant (R0→T0 in PRF). If an instruction has R0 as destination 

operand, do not update FRAM and RRAM maps in rename and commit stages respectively.  
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CHAPTER 4 VERIFICATION,RESULTS  AND CONCLUSIONS 

 

VERIFICATION, RESULTS AND CONCLUSIONS 

 

 

This chapter explains how I-class processor is verified and the performance results. 

4.1 VERIFICATION FRAMEWORK 

All the modules of I-class processor are written in Bluespec systemverilog. It has separate 

memories for storing instructions and data. Interface between processor and caches is shown 

in the figure 4.1. 

 

Figure 4.1 Interface of I-Class processor 

  

Instructions from automatic test case generator (also called as automatic program 

generator, APG) are first loaded into the instruction cache. Initial memory state is also 

generated by APG which is loaded data cache. Instructions in i-cache are fed into the 

processor. Instruction and data caches are single level caches with load-to-use latency of one 

cycle. After commit of each instruction, the contents of register file along with the program 

counter are dumped into an output file. Also, the contents of different buffers in the processor 

are also dumped into output logs every cycle for debugging purposes.  
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The register dump is then compared with the register dump generated by instruction set 

simulator (ISA). ISA takes the same instructions and data memory initialization files from 

APG, simulate the output in software and dump the register contents after each instruction 

execution into a dump file. Both the register dumps are then compared to see if there is any 

mismatch. Simulation environment is shown in the figure 4.2. 

 

Figure 4.2 Verification environment 

 

As APG generates large number of instructions with random operations, source and 

destination operands, all possible combinations of instruction are expected to be covered. 

Several hundreds of test cases were run on processor and the processor core was debugged 

successfully. All the corner cases of memory disambiguation are verified manually as the 

memory space is vast and there is less chance that all those cases are covered by APG 

generated test cases. Also the instructions (Multiply and divides) which were not working on 

ISS are verified manually. 
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Same verification has been carried out after converting Bluespec codes to Verilog modules. 

Verilog simulations are done in Xilinx ISA. 

4.2 RESULTS 

One of the main advantages of Blusepec systemverilog over other hardware languages is that 

it is more flexible and supports extensive parameterization. Any architectural feature can be 

added to the existing code without much effort as Bluespec takes care of generating all the 

control logic. Impact on performance of the processor for different configurations is tested. 

Parameters that can be varied are the issue queue size, selection policy used and the bypass 

network. 

4.2.1 IPC 

Same framework shown in the figure 4.2 is used for measuring the IPC (instructions per cycles 

committed) of the processor. Along with the register dump, number of cycles taken and 

statuses of different processor buffers are also dumped into a file. As the actual benchmarks 

were not available in machine readable format, hence IPC is measured with APG test cases. 

APG generates random instructions from the set of RV64I instructions which are integer 

arithmetic instructions, variable size loads and stores, conditional and conditional branches. 

Load and store instructions have latency of two cycles whereas all the other instructions have 

latency of single cycle. Percentage of each type of instructions can be set in APG. Distribution 

of instructions was set to be 30% percent loads and stores, 60% arithmetic instructions and 

10% branch instructions which is the case with general purpose workloads. But APG doesn’t 

guarantee the generation of same kind of instruction dependencies as that of general purpose 

workloads. Also, branches generated by APG instructions jump to random addresses which 

results in poor branch prediction. Hence, running APG instructions is not the actual measure 

of attainable IPC. 

Size of instruction queue decides the size of in-flight instruction window. More is the size 

of instruction window, more is the exploitable instruction level parallelism. Figure 4.3 shows 

the IPC variation with size of the issue queue in the processor with no bypass network and 

position based selection policy. IPC increases with the increasing the size of issue queue.  
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Figure 4.3: IPC vs Issue queue size 

Now, the selection policy is changed for all the sizes of issue queue sizes. Age based 

selection policy should have higher IPC as it resolves the data dependencies quicker than 

position based selection policy. Its impact on IPC of the processor is shown in figure 4.4. As 

we can see, there is no noticeable improvement in IPC with selection policy being used for 

APG test case. 

 

Figure 4.4: IPC improvement with selection policy 
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As discussed in section 3.11, bypass network eliminates three cycle bubble between 

producer and consumer instructions. Impact of bypass network on IPC in the processor with 

position based selection policy is shown in the figure 4.5. Huge IPC improvement can be seen 

with bypass network. 

 

Figure 4.5: IPC improvement with bypass network 
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the processor in all the configurations with the APG test case with no branches. It can be seen 

that IPC almost reaches theoretical maximum of 2 (1.996) for issue queue size of 32, age 

based selection policy and with bypass network. 

4.2.2 Clock Frequency 

Impact of different architectural techniques on maximum attainable clock frequency of the 

processor is tested. As discussed in chapter 3, the maximum attainable frequency is limited 

by the logic in critical path which is normally the issue stage of the pipeline or the bypass 
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by running Cadence RTL compiler on the Verilog netlist. 65 nm UMCIP Standard cell library 

with operating conditions 1.32 V supply voltage and 110 0F is used. 

 

Figure 4.6: IPC in different processor configurations for APG test case without branches 

  

 

Figure 4.7: Frequency vs Issue queue size 
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Figure 4.7 shows the impact of issue queue size on clock frequency of the processor with 

position based selection policy and without bypass network. For the issue queue sizes of 16 

and 32, critical path does not lie in the issue stage of the pipeline (it is in decode stage), hence 

the issue queue size did not affect the clock frequency. But, in the case of issue queue with 

size 32, critical path lies in issue queue and hence the frequency came down from 1.47 GHz 

to 1.19 GHz. 

As discussed in chapter 3, two barrel shifters are added to the select logic which increases 

delay in that path. Figure 4.8 shows the impact of selection policy on processor’s clock 

frequency. In all the three cases with age based selection policy, critical path lies in the issue 

stage of the pipeline. Hardware complexity of barrel shifter is increases with increase in issue 

queue size. That’s why frequency degradation worsens as the size of issue queue is increased.  

 

Figure 4.8: Frequency vs Selection policy used 
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Figure 4.9: Impact of bypass network on frequency 

In all the three cases with bypass network, critical path lies in the issue logic (select + wakeup) 

and the frequency is decreasing with increasing issue queue size. 

 Age based selection policy improved IPC by 1.3% and decreased clock frequency by 
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completely different. 

Again, IPC was evaluated using APG test cases which is not the accurate measure of 

performance. 

4.3 CONCLUSION 

In this thesis, a parameterized superscalar out-of-order processor is designed, implemented 

and verified. A CAM based speculative load store unit is designed, implemented and verified.  

Number of ALUs, issue queue size, immediate buffer size and memory queue sizes are 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8 16 32

Fr
eq

u
en

cy
 in

 G
H

z

Issue queue size

Frequency degradation with bypass network

Without bypass With bypass



62 

 

parameterizable. Impact of architectural techniques (selection policy and bypass network) on 

IPC and clock is evaluated. As the entire core was written in Bluespec which has good 

flexibility and parameterization support, it can also be used as a generic out-of-order platform 

for trying out new architectural techniques and evaluate their performance. 

4.4 FUTURE WORK 

Following features can be added to the processor designed and implemented in this thesis: 

 Multi-level cache. 

 Multi-threading and multi-core support. 

 Extra functional units like FPU and SIMD unit. 

 Memory management unit. 

 Do functional unit clustering after new functional units are added to reduce the issue 

logic complexity. 

 Run the actual benchmark programs and do the necessary optimizations to increase 

the throughput. 
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