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ABSTRACT

Limitations on the energy that can be stored in compact batteries have severely con-

strained the capabilities of wireless networks that operate using battery powered nodes.

Energy harvesting has the potential to solve this challenging problem. We first consider

an energy harvesting channel with fading, where only the transmitter harvests energy

from natural sources. We bound the optimal long term throughput by a constant for a

class of energy arrival distributions. The proposed method also gives a constant approx-

imation to the capacity of energy harvesting channel with fading.

Next, we consider the a more general case where both the transmitter and the receiver

employ energy harvesting to power themselves. In this case we show that finding an

approximation to the optimal long term throughput is far more difficult in the general

case. We then identify several specific cases where and bound the optimal long term

throughput. We also propose policies which are proved to give optimal/near optimal

long term throughput.

Towards the end, we look at a Simultaneous Wireless Information and Power Trans-

fer system where two multi antenna stations perform separate Power Transfer (PT) and

Information Transfer (IT) to a multi-antenna mobile that dynamically assigns each an-

tenna for either PT or IT. The antenna partitioning results in a tradeoff between the

MIMO IT channel capacity and the PT efficiency. The optimal partitioning for maxi-

mizing the IT rate under a PT constraint is a NP-hard integer program. We prove this

problem to be one that optimizes a sub-modular function over a matroid constraint.

This structure allows the application of two well-known greedy algorithms that yield

solutions with guaranteed performances.
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CHAPTER 1

Introduction

Limitations on the energy that can be stored in compact batteries have severely con-

strained the life-time of wireless networks that operate using battery powered nodes,

the problem being that once these nodes are out of energy, they need to be replaced.

While it is difficult in some cases to replace nodes time and again, there are several ap-

plications like space communication, etc. where replacing nodes is not feasible. These

constraints have motivated several approaches to increase the life time and reliability of

such networks.

The ability to harvest energy from natural sources like solar, wind, vibration and ther-

moelectric effects has the potential to solve this problem. Unlike the conventional bat-

tery powered nodes that die once their battery drains out, an energy harvesting node

can harvest energy from the environment and become available for transmission later.

Thus, energy harvesting has the potential to provide a maintenance free operation. Such

system are also environment friendly, and hence receiving an increasing attention from

academia as well as industry.

Finding optimal power/energy transmission policies to maximize the long-term through-

put in an energy harvesting (EH) communication system is a challenging problem and

has remained open in full generality. The finite horizon problem to maximize average

data throughput of a single transmitter, starting with a fixed amount of energy, send-

ing data over a fading channel has been studied in Fu et al. (2006). These results can

be extended to the case of an energy harvesting transmitter with some modifications.

While one can theoretically obtain the optimal power allocation strategy for this case,

it is numerically very expensive. Under the assumption of discrete power consumption



strategy, there are results obtained in Vaze and Jagannathan (2014). For the case of in-

finite horizon, where the objective is to maximize long term throughput, Goldsmith and

Varaiya (1997) is a classic paper giving an energy allocation strategy for a single trans-

mitter operating over a fading channel with an average power constraint. These results

can be extended to the case of energy harvesting transmitter when the battery capacity is

assumed to be infinite, as shown in Khairnar and Mehta (2011). However, for the more

practical case of a finite battery capacity to store the harvested energy, these policies

need to be revamped. For the finite battery case, structural results are known for the

optimal solution in Sinha and Chaporkar (2012). However, explicit solutions are only

known for a sub-class of problems, for example, binary transmission power Michelusi

et al. (2012), discrete transmission power Vaze and Jagannathan (2014), etc. Recently,

some progress has been reported in approximating the per slot throughput (or long term

throughput) by a universal constant in Dong et al. (2014), for an AWGN channel. In

this work, we take up this problem of energy harvesting communication system and

extend the existing work to more general cases.

In chapter 1, we consider the case of discrete rate adaptation, as compared to the con-

ventional continuous rate adaptation where th transmitter can only choose from a pre-

determined set of modulation and coding schemes, each with it’s own fixed rate. We

assume that the Bit Error Rate (BER) has to be lesser than a given threshold for a suc-

cessful transmission. For this case, we observe that the rate function is a step function

instead of the normal concave function, which begets water-filling strategies. We find

the optimal energy allocation policy for this case, where the objective is to maximize

average throughput over a finite horizon. We observe that unlike the case of continu-

ous rate adaptation, this case is more difficult and characterizing the optimal policy is

much harder. Also, we observe that the assumption of discrete energy consumption, as

assumed in Vaze and Jagannathan (2014) will be highly sub-optimal for this case.

In chapter 2, we approximate the per-slot throughput of the EH system with fading

by a universal constant for a class of energy arrival distributions. The fading chan-
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nel problem is more challenging than the AWGN case, since the energy/power trans-

mitted per-slot depends on the realization of the channel unlike the AWGN problem.

Thus, finding an upper bound on the long term throughput is hard. We take recourse

in Cauchy-Schwarz inequality for this purpose, and then surprisingly using a channel

independent power transmission policy we show that the upper and lower bound on the

per-slot throughput differ at most by a constant. Using the techniques of Dong et al.

(2014), we also show that our universal bound also provides an approximation of the

Shannon capacity of the energy harvesting channel with fading upto a constant.

In chapter 3 we consider a more relevant or practical scenario, when energy harvesting

is employed at both the transmitter and the receiver. The EH setting at the receiver

is simpler than at the transmitter, since the only decision the receiver has to make is

whether to stay on or not. In the on state, the receiver consumes a fixed amount of

energy, while in the off state, no energy is consumed. We refer to this model as Binary

Energy Consumption model. We begin with the case of average power constraint at the

receiver, and propose an optimal policy for that case.

Next, we extend that result to the case of energy harvesting receiver, but with an infinite

battery capacity to store the harvested energy. For the more practical case of finite

battery capacity, there is an inherent lack of information about the receiver energy levels

at the transmitter and vice-versa. One can show that the optimal policy at both the

transmitter and the receiver is of threshold type, but the thresholds depend on both the

energy states in a non-trivial way. Because of the common fading channel state that

is revealed to both the transmitter and receiver for each slot, both the transmitter and

the receiver have some partial statistical information about others’ energy state which

is important for finding the optimal policy.

We show that, in general, it is difficult to bound the gap between the upper and lower

bound when EH is employed at both the transmitter and the receiver for the case of

when the transmitter and receiver do not have access to each others’ energy levels. Sub-
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sequently, we identify several interesting cases and prove results for them. In specific,

we identify a special case of unit battery capacity at both the transmitter and the receiver,

and where the transmitter operates with binary transmission power, for which we pro-

pose a strategy that achieves at least half of the upper bound on the per-slot throughput,

giving a ratio bound.

In chapter 4, we take a recourse by considering a centralized scheduler i.e. both the

transmitter and the receiver have complete knowledge about each others’ energy levels.

Even for this problem, the maximum achievable throughput, and the capacity, is difficult

to find in general. Therefore, we restrict ourselves to discrete energy consumption at

the transmitter. Under this assumption, we are able to explicitly find optimal energy

allocation schemes. We also prove some structural properties of the optimal policy in

terms of the channel fade state and the energy arrival parameters which may be useful

in designing simple heuristics for this case.

Having looked at the case of a single transmitter-single receiver system, we next move

on to a MIMO system in chapter 5. The arguably most desirable new feature for mo-

bile devices is wireless power transfer, which eliminates the need of recharging using

cables and avoids interruptions of mobile services due to dead batteries. With rapid ad-

vancements in microwave technologies, microwave power transfer has emerged to be a

promising solution for wirelessly powering mobiles due to its long transfer ranges (up to

hundreds of meters) and support of mobility Huang and Zhou (2014). In contrast, non-

radiative technologies for wireless power transfer e.g., inductive coupling and resonant

coupling, suffer from extremely short ranges (less than a meter). Using microwaves as

carriers, wireless power transfer and information transfer can be seamlessly integrated,

which has resulted in the emergence of an active research area called simultaneous wire-

less information and power transfer (SWIPT) Zhang and Ho (2013); Huang and Zhou

(2014). The research on SWIPT, however, requires thorough revamping of classical the-

ories for wireless communications and networking to achieve not only high information

transfer rates but also high power transfer efficiencies.
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Power Transfer (PT) and Information Transfer (IT) concern two different aspects of data

bearing microwaves, namely their information content and absolute power, respectively.

As a result, PT can tolerate much less propagation loss and support much shorter trans-

mission distances than IT. Furthermore, depending on the channel and energy states,

a mobile may choose to operate in either the IT, PT, or SWIPT modes. Consideration

of such factors in realizing SWIPT calls for the design of new algorithms/protocols for

MIMO transmissions Zhang and Ho (2013), multiple access Ju and Zhang (2014), re-

source allocation Huang and Larsson (2013); Ng et al. (2013), mobile transceivers Liu

et al. (2013) and network architectures Huang and Lau (2014).

A simple design of a SWIPT enabled mobile receiver is to combine a conventional

information receiver and an RF energy harvester. The form factor of this design can

be reduced by sharing antennas between the receiver and harvester where the output

of each antenna is split for data processing and energy harvesting Zhou et al. (2013).

However, the addition of a power splitter with an adjustable splitting ratio for each

antenna increases the receiver complexity. A simpler SWIPT-receiver design that al-

lows antenna sharing but requires no splitting, is to partition the set of antennas into

two sets, one dedicated for IT and other for PT. This design builds on the classic an-

tenna selection technique for MIMO communications Heath et al. (2001) and requires

a small number of RF chains, leading to a high-efficient mobile design. The problem of

optimal antenna assignment/partitioning for the special case of SWIPT with a single-

input-multiple-output IT channel has been explicitly solved in Liu et al. (2013) for a

simplified objective function. However, the problem for the general case with a MIMO

IT channel is much more challenging to solve that depends on the eigenmodes of the

channel matrix. To be specific, the problem is an NP-hard integer program.

Our contribution here is to connect the general SWIPT antenna-partitioning problem to

the rich field of efficient sub-optimal integer-programming algorithms with guaranteed

performance. This important connection is established by analyzing the structure of

the antenna-partitioning problem. Specifically, the problem is shown to be equivalent
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to maximizing a sub-modular function with a matroid constraint. For a sub-modular

function, the incremental gain of adding a new element diminishes with increasing set

size. The proven structure allows two well-known greedy algorithms to be applied for

solving the antenna-partitioning problem. Moreover, the resultant solutions are shown

to be equal to the optimal ones with the scaling factors of (1− 1/e) and 1/2. Sim-

ulation results reveal that the performance of the said antenna-partitioning algorithms

substantially outperform the derived worst-case bounds.
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CHAPTER 2

Discrete Rate Adaptation in Finite Horizon

In this chapter, we consider the finite horizon problem for a single transmitter1 oper-

ating over a fading channel. We also consider a slotted time system, where each time

slot spans over T seconds. The time slots are indexed by k. At the start of each time

slot, a channel realization, denoted by hk (hk ≥ 0), independent of the previous channel

realizations, is revealed to the transmitter. The channel state is assumed to be constant

throughout the time slot. In our subsequent discussions, we shall deal with the case

where hk has identical distribution denoted by ϕ for every time slot k. However, the re-

sults obtained in the above case can be easily generalized to cases where the distribution

of hk is non-identical (but independent). We shall now define certain notations, which

we will be using henceforth. Let the energy available at the source and the energy spent

by the source, at time slot k, be denoted by Uk and Fk respectively. Therefore, we can

see that the available energy at the source evolves according to the following relation,

Uk+1 =Uk−Fk (2.1)

Let the rate achieved at time slot k be denoted by Rk.

Unlike related literature, we focus on the practically relevant case of discrete rate adap-

tation. At each time slot, the source can choose only from a pre-determined set of

modulation and coding schemes, each with it’s own fixed rate. For simplicity, we

shall consider the situation where the transmission rate is determined solely by the

constellation used. Let M = {m1,m2, . . . ,mM} be the set of constellation sizes avail-

able to the source for transmission with m1 = 1 corresponding to no transmission and

1We use the terms transmitter and source interchangeable.



m1 < m2 <,. . . ,< mM < ∞. The corresponding transmission rates are therefore given

by log2(m1) = 0, log2(m2), . . . , log2(mM). The choice of M depends on the hardware

complexity of the system. We impose no further constraints on M .

It has been shown in Goldsmith (2005) that when a node transmits using a constellation

of size m, with power P and channel gain h, the Bit Error Rate (BER) is given by the

equation,

BER = c1exp
(

−c2hP
N0Ω(mc3− c4)

)
, (2.2)

where c1,c2,c3 and c4 are modulation specific constants. For example, for an M-ary

Quadrature Amplitude Modulation (M-QAM), c1 = 2,c2 = 1.5,c3 = 1 and c4 = 1. In

our case, duration of each time slot is T secs, therefore substituting P = Fk
T in (2.2), the

BER for time slot k is given by

BERk = c1exp
(

c2hFk

T N0Ω(mc3− c4)

)
(2.3)

Let the minimum BER required for successful transmission be denoted by Pb. Equating

the above BER formula to Pb, we see that the source transmitting with a constellation

of size m j needs to spend a minimum energy Fmin(h,m j) given by

Fmin(h,m j) =
d j

hk
(2.4)

where d1 = 0 and

d j =
log
(

c1
Pb

)
c2

T N0Ω(mc3
j − c4) for 2≤ j ≤M (2.5)

Note that d1 = 0 implies that when the channel is in a deep fade, the node sets its rate

and energy to zero as it cannot transmit reliably.

One can intuitively see that for a given constellation size m j and channel state h, an opti-

mal strategy would use only Fmin(h,m j) energy, as using energy greater than Fmin(h,m j)
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will not increase the throughput in the current time slot but instead reduce the energy

available for future transmission consequently giving a lesser throughput in future. We

will prove this formally in the next section.

We consider the finite horizon problem, where the expected throughput over n slots is

P = E

[
n
∑

k=1
Rk

]
. We refer to this as expected sum throughput or simply, payoff.2 We

are interested in finding the optimal energy utilization Fi that maximizes the expected

total throughput summed over n time slots with finite modulation rates available to the

transmitter and a per slot BER constraint. We pose this problem in the language of

optimization as follows -

Maximize E

[
n

∑
k=1

Rk

]

subject to
n

∑
k=1

Fk ≤ E0;

Fk ≥ 0 ∀ k;

BERk ≤ Pb ∀ k (2.6)

where E0 is the energy available to the transmitter at t = 0 (initial energy).

2.1 Optimal Policy for non Energy Harvesting Node

In this section we derive the optimal energy utilization policy for the case of a non

energy harvesting node (non EH node) i.e. The system starts off with a certain amount

of energy, say E0, and does not obtain energy during the entire transmission period

of n time slots. At any time slot k, depending on the channel fade state and current

battery energy level, the source has to choose one of the available modulation rates

and a corresponding transmission energy to maximize the expected sum throughput

2We use these terms interchangeably.
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constrained to the fact that BER for any slot cannot exceed Pb.

It is important to note here that the payoff function in this case for a particular channel

fade state h will be a discontinuous curve with finite jumps whenever an energy enough

to transmit at a higher constellation size ensuring BER constraint is spent. Thus instead

of the concave payoff function assumed in most of the related work that begets the di-

rectional water-filling solution, we have a non concave payoff functions with finite dis-

continuities. However, the payoff function is non-decreasing in the energy spent. Also,

discretizing the battery energy level and restricting to discrete energy consumption will

be highly sub-optimal due to discrete rate adaptation and per slot BER constraint. To

see this, consider a simple case of n= 2 time slots. At time slot 1, let the channel gain be

h1. Given h1, say the source chooses a constellation of size m j. Thus, it needs to spend

Fmin(h1,m j) of energy to ensure BER constraint. However, due to discrete energy con-

sumption,if the transmitter spends an integer amount of energy less than Fmin(h1,m j)

the BER constraint will be violated. On the other hand, if it spends an integral amount

of energy greater than Fmin(h1,m j), it spends more than required energy without any in-

crease in throughput. This is unlike the conventional payoff function where an increase

in energy spent implies an increase in throughput.

However, we see that the dynamic programming algorithm can be used to find an opti-

mal policy for this problem. As usual in dynamic programming we introduce the value

function, Jk(x,h), which provides the measure of the desirability of the transmitter hav-

ing an energy of a units given that the current channel fade state is h at time k. Also, let

G(x,h) denote the set of constellation sizes which can be used to transmit with energy

lesser than or equal to x, satisfying the BER constraint, given that the channel fade state

is h. Mathematically,

G(x,h) =
{

m ∈M | Fmin(h,m)≤ x
}

(2.7)

Note that the number of elements in G(x,h) will be finite for any choice of x and h as
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it is upper bounded by M . The functions Jk(a,h) for each stage k are related by the

dynamic programming recursion as follows:

Base case : Jn(x,h) = max
m∈G(x,h)

log2 m, (2.8)

For k < n : Jk(x,h) =

max
m∈G(x,h)

[
log2 m+ Jk+1

(
x−Fmin (h,m)

)]
(2.9)

where Jk(x) = E
[
Jk (x,h)

]
, the expectation being taken over the channel fade state dis-

tribution ϕ . The first term in the right hand side of the equation (2.9) represents the

rate obtained in the present time slot by consuming Fmin (h,m) units of energy. The

available energy in the next stage is then x−Fmin (h,m) and the second term represents

the maximum payoff that can be obtained in future given x−Fmin (h,m) units of energy.

Now, the task left is to obtain Jk(x) using the available information.

2.1.1 Average throughput - Jk(x)

The usual method to obtain the functions Jk(x) ∀ k, is to obtain the pay-off vs. energy

function for a particular channel fade state and then take expectation over channel fade

state distribution, but this computation is two-fold. In this subsection we shall give an

intuitive method to compute Jk(x) for k = n, which accomplishes the same task in a

much simpler way. This method can be easily adapted to compute Jk(x) for k < n and

therefore it is left to the reader.

The method is as follows. Divide the real line for channel fade state in the following

manner. In the last slot, the source will transmit with the maximum constellation size

possible that satisfies the BER constraint as saving energy for future is of no use.

Define H j(x) as

H j(x) =

{
h ∈ R | max

m∈G(x,h)
= m j

}
. (2.10)
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For every energy level x, we can see that H j(x) will be a semi-closed semi-open interval

on the real line. Now integrating ϕ (channel distribution) over this interval, we obtain

P(H j(x)). Therefore, the function Jn(x) is given by

Jn(x) =
M

∑
j=1

P(H j(x)) log2 m j. (2.11)

Note that we can come up with a closed form function Jn(x) by following the above

stated method. Subsequently, Jn−1(x,h) can be obtained by using the recursion in (2.9)

and we can obtain Jn−1(x) by integrating Jn−1(x,h) over the channel fade state distri-

bution ϕ . Following this recursively, one can obtain Jk(x) ∀ k < n. We refer to these

functions as optimal reward functions.

An important observation in the above method is that the optimal reward functions

can be pre-computed since they solely depend on the probability distribution of the

channel fade state ϕ and the number of time slots available for transmission. Also, the

maximization in equation (2.9) is over a finite number of choices for m and hence easy

to compute.

We now state, and give a proof outline, of an intuitive result which we will use to derive

the optimal energy utilization policy.

Theorem 2.1.1. The optimal reward functions Jk(x) are non decreasing for every k.

Essentially, ∀k, we have Jk(a+)≥ Jk(a−) whenever a+ ≥ a−.

Proof: Consider energy states a+ and a− where a+ ≥ a−. Let T = Jk(a−) be the

optimal expected sum throughput if the source has a− units of energy at time slot k.

Also let F∗i (a
−),k ≤ i≤ n be the optimal energy utilization policy for the same.

Let Fi(a+) be defined as follows:

Fi(a+) = F∗i (a
−)+(a+−a−) for i = k (2.12)

Fi(a+) = F∗i (a
−) for k+1≤ i≤ n (2.13)
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The energy utilization policy Fi(a+) uses an additional (a+−a−) units of energy in the

kth time slot as compared to F∗i (a
−) and exactly follows F∗i (a

−) in the subsequent time

slots. As the source starts with an extra (a+− a−) energy and F∗i (a
−) is feasible, we

see that Fi(a+) is also feasible.

Also, the payoff functions are non-decreasing in energy spent for every channel fade

state h. As a result, we see that Fi(k,a+) achieves at least as much throughput as

F∗i (k,a
−) in the kth and exactly same throughput for subsequent time slots. Thus, we

have a feasible energy utilization policy Fi(k,a+) which gives expected sum throughput

of at least T . Hence the optimal sum throughput if the source starts with a+ units of

energy is lower bounded by T . So,

Jk(a+)≥ T (2.14)

Jk(a+)≥ Jk(a−) (2.15)

which is what we wanted to prove.

2

In fact, one can show by similar arguments that the optimal reward functions Jk(x) are

strictly increasing in the available energy.

Theorem 2.1.2. Let the source have an energy of a units at time slot k and hk be

the channel state realization revealed to the transmitter before transmission. The op-

timal transmission policy transmits with a constellation of size m∗ and an energy of

Fmin(hk,m∗) where m∗ is given by

m∗ = arg max
m∈G(a,hk)

[
log2 m+ Jk+1(a−Fmin(hk,m))

]
(2.16)

Proof: We start by observing that in one of the the optimal policies, the source, trans-

mitting with a constellation of size m j spends an energy of Fmin(hk,m j). We prove
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this in the following way. Let the source have a units of energy in the kth time slot

and the optimal policy transmits with a constellation of size m j using an energy of

F(hk,m j) 6= Fmin(hk,m j) units. To ensure that the BER does not exceed Pb, we have

F(hk,m j)> Fmin(hk,m j) (2.17)

The available energy with the source at (k+ 1)th time slot is then a−F(hk,m j). Thus

the expected sum throughput for this policy is

T1 = log2 m j + Jk+1(a−F(hk,m j)) (2.18)

Next, consider a policy that transmits with a constellation of size m j using Fmin(hk,m j)

units of energy. By definition of Fmin(hk,m j), the BER will not exceed Pb. In this

case, the available energy with the source at (k+1)th time slot is a−Fmin(hk,m j). The

expected sum payoff for this policy is thus given by

T2 = log2 m j + Jk+1(a−Fmin(hk,m j) (2.19)

From (2.17), we have a−Fmin(hk,m j)> a−F(hk,m j). As Jk+1(x) is a non decreasing

function,

Jk+1(a−Fmin(hk,m j))≥ Jk+1(a−F(hk,m j)) (2.20)

From (2.18),(2.19) and (2.20),

T2 ≥ T1 (2.21)

Hence, we have a feasible policy giving at least as much payoff as the optimal policy

proving that it is optimal.

We now prove the theorem using the above observation. Let ck−1,k = 1,2, ...,n be the

carried over energy from time slot k−1 to time slot k. Hence we have Uk = ck−1 with
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c0 = E0 and ck =Uk−Fk.

Then the optimization problem can be posed in the dynamic programming format, by

writing the payoff at time slot k = 1,2, ...,n as

Jk(ck−1,hk) = max
Fmin(hk,m):m∈G(ck−1,hk)

[
log2 m+ Jk+1(ck)

]
(2.22)

where Jk+1(x) = E
[
Jk+1(x,hk+1)

]
and ck = ck−1−Fmin(hk,m).

In order to obtain the optimal solution Fk, when the source has a units of energy (i.e.

Uk = ck−1 = a), we compare the arguments inside the maximization of (2.22). As there

are only a finite number of elements in G(a,hk), we can compute the function value for

all the choices of m and find maximum by brute force. In particular, we get

Fk = Fmin(hk,m∗) (2.23)

where

m∗ = arg max
m∈G(a,hk)

[
log2 m+ Jk+1(a−Fmin(hk,m))

]
(2.24)

which completes the proof.

2

2.2 Optimal Policy for Energy Harvesting node

In this section, we consider a single node that harvests energy from the environment.

At each time slot, the node harvests an energy Ek, which follows a distribution fk(·).

Without loss of generality, let the source start with zero energy. We assume that the

energy harvested at time slot k is available for utilization from the kth time slot itself. We

consider a finite battery capacity of B, as is the case for most of the practical scenarios.

For ease of notation, we have henceforth assumed fk(.) to be i.i.d across the time slots
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and the distribution is denoted by f (·). However, our solution can be easily extended to

the case where fk(·)s aren’t identical for different time slots (but independent).

As one may guess, the optimal energy utilization policy for this case is motivated from

the solution derived in the previous section for a non-EH node. We define the functions

Jk(x,h) recursively as follows -

Jn(x,h) =
∫

max
m∈G(min(x+p,B),h)

[
log2 m

]
f (p)d p

and for k < n (2.25)

Jk(x,h) =
∫ (

max
m∈G(min(x+p,B),h)

[log2 m+ (2.26)

Jk+1(min(x+ p,B)−Fmin(h,m))] f (p)

)
d p

where Jk(a) = E
[
Jk (a,h)

]
, the expectation being taken over the channel fade state

distribution ϕ as before. It should be noted that the functions Jk(x) depend only on

the distributions of the channel fade state, the distribution of energy arrivals and the

number of time slots available for transmission and therefore can be pre-computed.

After obtaining these functions, the optimal energy utilization policy is same as the one

in previous section.

If the source has a units of energy at time slot k after accounting the energy harvested

in the present time slot, follow the same energy utilization policy as in theorem 2.
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CHAPTER 3

Continuous Rate Adaptation under Fading for an

Energy Harvesting Transmitter

As we move towards hand-held devices that use wireless transmitters, there is an ex-

ceeding need to prolong the lifetime of their batteries without having to manually

recharge them on a regular basis. One natural solution to such a problem is to uti-

lize the environment, i.e., have a renewable energy source recharge the battery. This

will enable the system to be self-sustaining. List of renewable sources include solar en-

ergy, wind energy, geothermal energy and ocean energy. Such a node/transmitter which

recharges itself from ambient energy is called an Energy Harvesting (EH) node.

While an EH node has access to potentially unlimited energy over its lifetime, it needs

to grapple with uncertainty in the amount of energy it can harvest at any time and the

times at which this energy is available. This uncertainty depends on the EH source,

and is abstracted in the form of energy profile, which models the energy harvested

as a stochastic process. The operation of an EH node is fundamentally governed by

the Energy Neutrality Constraint, which mandates that, at any point of time, the total

amount of energy utilized must be less than or equal to the sum of initial energy and the

total amount of energy harvested thus far.

In the limiting case, when the battery size is taken to be infinite, the capacity of such

an energy harvesting communication system has been characterized in literature. It is

shown that in this asymptotic case, the capacity of the energy harvesting system is equal

to the capacity of the classical fading channel with an average power constraint equal

to the average energy harvesting rate.

In this discussion we try to obtain similar results for the more realistic case of a finite



battery. We ask for the capacity of an energy harvesting communication system with

a fading channel and finite battery size. Despite significant efforts in this field, we

currently en lack an understanding about the capacity of such a channel. The typical

water filling solution with an average power constraint equal to average energy arrival

rate does give an upper bound on the capacity but it is not clear whether the same is

achievable. Moreover, that strategy is difficult to analyze.

In this discussion we take an alternate path to approximate the capacity of such a com-

munication system with bounded guarantee on the approximation gap. We see that the

bounded gap does depend on the energy harvesting profile and can get bad for some

EH profiles. However, we show that for most of the EH profiles, we can bound this

gap by a constant which is independent of the key system parameter, the battery size.

The discussion henceforth is organized as follows. We describe the system model in

the first section. In the second section, we bound the maximum achievable throughput

of such a communication system. In the third section, we come up with an energy uti-

lization strategy for Bernoulli energy arrivals and compute the gap between throughput

of this achievable strategy and the upper bound on maximum achievable throughput. In

the fourth section, we show how the strategy described in the third section can be ex-

tended to the more realistic uniform energy arrival profiles and the approximation gap

for long term average throughput can be bounded. In the fifth section, we show how

the proposed strategy can be extended to most of the energy arrival processes. We also

indicate that for some energy arrival profiles, this method can fail to provide a bounded

approximation gap to the capacity.

3.1 System Model

We consider slotted time, and a single node that harvests energy from the environment.

Let Et be the amount of energy harvested at time step t which is stored in a battery

of size Bmax. In case the harvested energy exceeds the available space in the battery

23



at time t, the battery is charged to the maximum capacity and the remaining energy

is discarded. We consider a fading channel and ht denotes the channel fade state at

time t. The channel fade state ht is an exponentially distributed random variable with

a mean of unity. We denote the energy available in the battery at time t by Bt , and the

energy utilized for transmission at time t by Xt . This implies that for all t, we need to

satisfy Xt ≤ Bt . The energy harvested at each time step Et is a discrete time ergodic

and stationary random process dictated by the energy harvesting mechanism. The rate

of transmission is assumed to be governed by the classical fading channel rate function

given by

r(t) =
1
2

log(1+htXt). (3.1)

The information theoretic capacity of this energy harvesting system is defined in the

usual way as the largest rate at which the transmitter can reliably communicate with the

receiver under the system constraints.

3.2 An Upper Bound on maximum achievable through-

put

In this section, we upper bound the maximum achievable throughput of the described

communication system by the following theorem.

Theorem 3.2.1. Let Et be an i.i.d. energy harvesting process at the transmitter and ht

be an i.i.d. channel fade state. Let ht be exponentially distributed with a mean of unity.

The maximum achievable average throughput Tmax of any energy allocation policy for

such a communication system is upper bounded by

Tmax ≤
1
2

log
(

1+
√

2
√
E[E2

t ]

)
. (3.2)

Proof:
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Let Xt = Ph(t) be any energy allocation strategy that depends on the channel state h, and

satisfies energy neutrality constraint. Then the maximum long term average throughput,

Tmax, is given by

Tmax = max
Ph(t)

lim
N→∞

1
N

N

∑
t=1

1
2

log(1+htPh(t)) (3.3)

By ergodicity, we have that the average throughput is given by,

Tmax = max
Ph(t)

E
[

1
2

log(1+htPh(t))
]
. (3.4)

By Jensen’s inequality, we have that for any energy allocation policy Ph(t),

E
[
log
(
1+htPh(t)

)]
≤ log

(
1+E

[
htPh(t)

])
. (3.5)

Let P∗h (t) be the energy allocation strategy that achieves the maximum average through-

put. From (3.4) and (3.5), we have

Tmax ≤
1
2

log
(
1+E[htP∗h (t)]

)
. (3.6)

Now the task essentially is to upper bound E[htP∗h (t)].

As P∗h (t) is a channel dependent energy allocation strategy, clearly ht and P∗h (t) are

dependent random variables. Applying Cauchy-Schwarz inequality, we have

(
E[htP∗h (t)]

)2 ≤ E[h2
t ] E[P∗2h (t)] (3.7)

As all the random variables involved are positive valued, we have

E[htP∗h (t)])≤
√

E[h2
t ]

√
E[P∗h (t)

2]. (3.8)
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Let Pht (t),ht , and Et be the energy allocated for transmission at time t by any energy

allocation strategy, channel fade state at time t, and the energy harvested at time t re-

spectively. By energy neutrality constraint, we have,

N
∑

i=1
Phi(i)≤

N
∑

i=1
Ei ∀N,(

N
∑

i=1
Phi(i)

)2

≤

(
N
∑

i=1
Ei

)2

∀N,

1
N

(
N
∑

i=1
Phi(i)

)2

≤ 1
N

(
N
∑

i=1
Ei

)2

∀N,

lim
N→∞

1
N

(
N
∑

i=1
Phi(i)

)2

≤ lim
N→∞

1
N

(
N
∑

i=1
Ei

)2

,

E
[
P2

h (t)
]
≤ E

[
E2

t

]
. (3.9)

where the last step follows as hi and Ei are assumed to be i.i.d. and hence the cross

terms are independent. This is true for every feasible energy allocation strategy and

hence,

E
[
P∗2h (t)

]
≤ E

[
E2

t

]
. (3.10)

Thus, from (5.9), (5.10), and (3.10), we have

Tmax ≤
1
2

log
(

1+
√

E[h2
t ]

√
E[E2

t ]

)
. (3.11)

As ht is an exponentially distributed random variable with a mean of unity, we have that

E[h2
t ] = 2 and (3.11) can be expressed as

Tmax ≤
1
2

log
(

1+
√

2
√
E[E2

t ]

)
. (3.12)

2
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We denote this upper bound on achievable throughput by Tub. We next propose an

energy allocation strategy, and compare the average throughput obtained by it with Tub.

3.3 Bernoulli Energy Arrival

In this section, we focus on a simple Bernoulli energy arrival process, where Et , the

energy arrival at time t is i.i.d. Bernoulli random variable. Thus, we have

Et =

 E w.p. p,

0 w.p. 1− p.
(3.13)

We first look at the case when the battery size Bmax is less than the size of the energy

arrival packets E.

3.3.1 Bmax ≤ E case

Note that when Bmax ≤ E, because the energy must be stored in the battery before it can

be used, the extra energy is wasted, and the system Bmax ≤ E is equivalent to the system

where packet size is exactly of size Bmax. The energy arrival Et is thus modified to

Et =

 Bmax w.p. p,

0 w.p. 1− p.
(3.14)

In this case, according to our system definition, every time a non-zero energy packet

arrives, the battery is charged to full level, and the left over energy is wasted. Since

the system is reset to the initial state of full battery level each time a non-zero en-

ergy packet arrives, each epoch (time interval between two adjacent energy arrivals)

is independent and statistically identical to every other epoch. Motivated by this ob-

servation, we propose to use an energy utilization strategy that depends only on the
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number of time slots since the last time the battery was recharged, and independent of

the channel fade state ht as proposed in Dong et al. (2014) i.e. Ph(t) = P( j) where

j = t−max
{

t ′ : Et ′ = E,∀t ′ ≤ t
}

. Note that j is the number of channel uses since the

last time battery was recharged. Based on the system description, any such energy

allocation policy should satisfy the following constraints,

∞

∑
j=0

P( j)≤ Bmax, (3.15)

P( j)≥ 0 ∀ j. (3.16)

We propose the following energy allocation policy which is similar to Dong et al.

(2014). However that was proposed for an AWGN channel as compared to the fad-

ing channel assumed in this paper.

P( j) = p(1− p) jBmax, for j = 0,1,2, ... . (3.17)

Note that,

∞

∑
j=0

P( j) =
∞

∑
j=0

p(1− p) jBmax = Bmax.

Also,

P( j) = p(1− p) jBmax ≥ 0 for p ∈ [0,1] and Bmax ≥ 0. (3.18)

Thus, the proposed energy utilization policy does satisfy the system constraints (3.15)

and (3.16).

Note that our energy utilization policy does not depend on the channel fade state h, and

hence seems to be highly sub-optimal. It allocates a fraction p of the available energy

for transmission in every time slot irrespective of the channel fade state. The motivation

behind this strategy is that the inter-arrival time for energy packets is a geometric ran-

dom variable with parameter p. We know that geometric random variable is memory
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less and has mean 1/p. Therefore at each time step, the expected number of time steps

to the next energy arrival is 1/p. Furthermore, as the rate function for each channel

fade state h is a concave function, results from Yang and Ulukus (2012),Tutuncuoglu

and Yener (2012) tell us that in order to achieve a higher throughput, we would want

to allocate the energy as uniformly as possible between the energy arrivals, i.e. if the

current energy level in the battery is Bt and we know that the next energy arrival would

be after m time slots, we would allocate Bt/m energy to each time slot (ignoring the

channel fade state). Here, we do not know when will the next packet of energy arrive.

Instead, we use the expected time to the next energy arrival as basis. Since geometric

random variable is memory-less, at each time step, the expected number of time slots

to next energy arrival is 1/p and hence we use a fraction p of the available energy. We

call this policy as Constant Fraction Policy (CFP).

Lemma 3.3.1. The average throughput obtained by Constant Fraction Policy is given

by,

Tlb =
∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(1+hp(1− p) jBmax)e−hdh. (3.19)

Proof: Recall that the system resets to the full energy state every time a non-zero

energy packet arrives. Hence, we can apply renewal reward theorem to find the expected

throughput. Without loss of generality, let the first non-zero energy arrival occur at t = 0.

Let T1 be the time at which the next non-zero energy arrival occurs. By renewal reward

theorem, the time average throughput is given by,
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Tlb =

E

[
T1−1
∑
j=0

1
2 log(1+hP( j))

]
E[T1]

,

(a)
= p

∞

∑
i=1

P(T1 = i)
i−1

∑
j=0

∞∫
0

1
2

log(1+hP( j))e−hdh,

(b)
= p

∞

∑
i=1

(1− p)i−1 p
i−1

∑
j=0

∞∫
0

1
2

log(1+hP( j))e−hdh,

(c)
= p

∞

∑
j=0

 ∞

∑
i= j+1

(1− p)i−1 p

 ∞∫
0

1
2

log(1+hP( j))e−hdh

(d)
=

∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(1+hP( j))e−hdh,

(e)
=

∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(1+hp(1− p) jBmax)e−hdh. (3.20)

(a) follows because T1 is a geometric random variable with parameter p, and hence

E[T1] = 1/p, (b) follows since for a geometric random variable T1, P(T1 = i) = (1−

p)i−1 p, (c) is obtained by interchanging the order of summations, (d) follows since
∞

∑
i= j+1

(1− p)i−1 p = (1− p) j, and (e) follows from the definition of P( j).

2

From Theorem 1, we know that the maximum achievable average throughput is upper

bounded by,

Tub
(a)
=

1
2

log
(

1+
√

2pBmax

)
,

where (a) follows from theorem 1 by substituting E[E2
t ] = pB2

max for Bernoulli energy

arrivals.

Next, we bound the gap between upper bound on maximum achievable throughput Tub

and the throughput achieved by Constant Fraction Policy Tlb.

30



Lemma 3.3.2. For a given p, the approximation gap between the upper bound on max-

imum achievable strategy Tub and the throughput achieved by the Constant Fraction

Policy Tlb is upper bounded by,

1
2

log
(

1+
√

2p k
)
, (3.21)

where k satisfies

1
2

log
(

1+
√

2p k
)
= 0.54− 1

4
log(p)+

1
2ln2

1√
2p k

+
1− p

2p
log
(

1
1− p

)
. (3.22)

However the approximation gap depends on the value of p and is unbounded for p = 0.

Proof: For Bmax < k,

Tub−Tlb =
1
2

log
(

1+
√

2pBmax

)
−

∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(1+hp(1− p) jBmax)e−hdh,

(a)
≤ 1

2
log
(

1+
√

2pBmax

)
,

(b)
≤ 1

2
log
(

1+
√

2p k
)
,

where (a) follows because
∞

∑
j=0

p(1− p) j
∞∫
0

1
2 log(1+ hp(1− p) jBmax)e−hdh ≥ 0 as the

integrand is always positive, and (b) follows since Bmax < k.
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For Bmax > k,

Tub−Tlb (3.23)

=
1
2

log
(

1+
√

2pBmax

)
−

∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(1+hp(1− p) jBmax)e−hdh,

(a)
≤ 1

2
log
(

1+
√

2pBmax

)
−

∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(hp(1− p) jBmax)e−hdh,

=
1
2

log
(

1+
√

2pBmax

)
−

∞

∑
j=0

p(1− p) j
∞∫

0

1
2

[
log(h)+ log(p)+ j log(1− p)+ log(Bmax)

]
e−hdh,

(b)
=

1
2

log
(√

2
)
+

1
2

log
(√

p
)
+

1
2

log(Bmax)+ log
(

1+
1√

2pBmax

)
−

∞∫
0

1
2

log(h)e−hdh+
∞∫

0

1
2

log(p)e−hdh+
1− p

p

∞∫
0

1
2

log(1− p)e−hdh

+

∞∫
0

1
2

log(Bmax)e−hdh,

(c)
= 0.25+

1
4

log(p)+
1
2

log(Bmax)+ log
(

1+
1√

2pBmax

)
+0.29− 1

2
log(p)

− 1− p
2p

log(1− p)− 1
2

log(Bmax),

(d)
≤ 0.54− 1

4
log(p)+

1
2ln2

1√
2pBmax

+
1− p

2p
log
(

1
1− p

)
,

(e)
≤ 1

2
log
(

1+
√

2p k
)
. (3.24)

where (a) follows from the fact that removing 1 from the second log term results in

an upper bound; (b) follows because
∞

∑
j=0

p(1− p) j = 1 and
∞

∑
j=0

jp(1− p) j = 1−p
p ; (c)

follows because
∞∫
0

e−hdh= 1 and
∞∫
0

log(h)e−h =−0.29; (d) uses the identity ln(1+x)≤

x, and finally (e) follows from (3.22)

g(p) =
1− p

2p
log
(

1
1− p

)
,

is a monotonically decreasing and continuous function for p ∈ (0,1) and is upper
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bounded by lim
p→0

g(p) = 0.72.

2

Thus, we see that for a given value of p (p 6= 0), the gap between maximum achievable

throughput and the throughput obtained by Constant Fraction Policy can be bounded

for all values of Bmax. However this gap becomes large for small p and is unbounded as

p→ 0. However this is only a peculiar case and we can indeed bound this gap for most

of the realistic energy arrival profiles as we show later.

This can be done because for a given p, the gap can be upper bounded by (3.24) for large

Bmax and can be upper bounded by the first term, ignoring the second term (which is

positive) of (3.23) for small values of Bmax. Hence, a universal upper bound, irrespective

of Bmax can be obtained by equating these two terms. However this gap becomes large

for small p and is unbounded as p→ 0. However this is only a peculiar case and we can

indeed bound this gap for most of the realistic energy arrival profiles as we show later.

We now consider the special case of p = 0.5 and show that the gap between the upper

bound on maximum achievable throughput, Tub and the throughput obtained by Con-

stant Fraction Policy, Tlb is upper bounded by 1.41 bits. The reason behind behind

considering this special case will become clear in the subsequent discussion where we

use this result to bound the gap between the Tub and Tlb for other energy arrival profiles.

Lemma 3.3.3. For Bernoulli energy arrivals with p = 0.5, the approximation gap be-

tween the upper bound on achievable average throughput Tub and the throughput achieved

by the proposed strategy is bounded by 1.41 bits.

Proof: Fixing p = 0.5,
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For Bmax ≤ 6.05,

Tub−Tlb =
1
2

log
(

1+
√

2pBmax

)
−

∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(1+hp(1− p) jBmax)e−hdh,

(a)
≤ 1

2
log
(

1+
√

2pBmax

)
,

(b)
≤ 1

2
log(1+Bmax) ,

(c)
≤ 1.41.

where (a) uses the fact that the
∞

∑
j=0

p(1− p) j
∞∫
0

1
2 log(1+ hp(1− p) jBmax)e−hdh ≥ 0

as the integrand is always positive; (b) follows by substituting p = 0.5 and (c) is true

because Bmax ≤ 6.05.
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For Bmax ≥ 6.05

Tub−Tlb =
1
2

log
(

1+
√

2pBmax

)
−

∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(1+hp(1− p) jBmax)e−hdh,

=
1
2

log(1+Bmax)−
∞

∑
j=0

(0.5) j+1
∞∫

0

1
2

log(1+h(0.5) j+1Bmax)e−hdh,

(a)
≤ 1

2
log(1+Bmax)−

∞

∑
j=0

(0.5) j+1
∞∫

0

1
2

log(h(0.5) j+1Bmax)e−hdh,

=
1
2

log(Bmax)+
1
2

log
(

1+
1

Bmax

)
−

∞

∑
j=0

(0.5) j+1
∞∫

0

1
2
[
log(h)+( j+1) log(0.5)+ log(Bmax)

]
e−hdh,

(b)
=

1
2

log(Bmax)+
1
2

log
(

1+
1

Bmax

)
−

∞∫
0

1
2

log(h)e−hdh−2
∞∫

0

1
2

log(0.5)e−hdh

−
∞∫

0

1
2

log(Bmax)e−hdh,

(c)
=

1
2

log(Bmax)+
1
2

log
(

1+
1

Bmax

)
−

∞∫
0

1
2

log(h)e−hdh− log(0.5)− 1
2

log(Bmax),

(d)
≤ 1

2ln(2)Bmax
+1.29,

(e)
≤ 1.41.

where (a) follows from the fact that removing the 1 inside the second log results in

an upper bound, (b) follows because
∞

∑
j=0

(0.5) j+1 = 1 and
∞

∑
j=0

(0.5) j+1( j+ 1) = 2; (c)

follows from the fact that e−h is a probability density function and thus
∞∫
0

e−hdh = 1;

(d) follows from the inequality ln(1+ x) ≤ x and also
∞∫
0

1
2 log(h)e−hdh = −0.29, and

(e) is true since Bmax ≥ 6.05.

2

We now consider the case when the battery size Bmax is greater than the energy arrival

packet size E.
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3.3.2 Bmax > E case

When Bmax > E, the epochs are non-identical as the residual energy from the last epoch

may be different. However, we propose an energy allocation strategy which ensures

that the throughput obtained in every epoch is identical and statistically independent

from every other epoch. We achieve this by the considering the battery size to be E.

Whenever an energy packet arrives, the amount of energy in the battery is the sum of

the residual energy and the arrival energy E. However, our strategy assumes that the

battery size is only E and the remaining energy is wasted. Clearly this is an energy

feasible strategy. Thus, we are essentially assuming that battery size is E which is

less than Bmax. Similar to the last section, we propose an energy allocation strategy

Ph(t) = g′( j) that depends only on the number of channel uses since the last energy

arrival.

g′( j) = p(1− p) jE for j = 0,1,2, . . . , (3.25)

where

j = t−max
{

t ′ : Et ′ = E,∀t ′ ≤ t
}
. (3.26)

Note that this strategy satisfies energy neutrality as
∞

∑
j=0

g′( j) = E. Indeed this energy

allocation policy is quite conservative and clearly wastes energy. This is because every

time a non-zero energy arrives, this strategy ignores the residual energy, and starts as if

the battery energy level is reset to E.

Note that the upper bound on maximum achievable throughput for this case is given by,

Tub
(a)
=

1
2

log
(

1+
√

2pE
)

(3.27)

where (a) follows from theorem 1 by substituting E
[
E2

t

]
= pE2 for Bernoulli energy

arrivals of size E.

Also, the throughput achieved by Constant Fraction Policy, which we denote by Tlb
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can be evaluated as follows. Recall that the system resets to the full energy state every

time a non-zero energy packet arrives. Moreover, the throughput obtained between

consecutive epochs is independent and statistically identical across time. Hence, we

can apply renewal reward theorem to find the expected throughput. Without loss of

generality, let the first non-zero energy arrival occur at t = 0. Let T1 be the time at

which the next non-zero energy arrival occurs. By renewal reward theorem, the time

average throughput is given by,

Tlb =

E

[
T1−1
∑
j=0

1
2 log(1+hP( j))

]
E[T1]

,

(a)
= p

∞

∑
i=1

P(T1 = i)
i−1

∑
j=0

∞∫
0

1
2

log(1+hP( j))e−hdh,

(b)
= p

∞

∑
i=1

(1− p)i−1 p
i−1

∑
j=0

∞∫
0

1
2

log(1+hP( j))e−hdh,

(c)
= p

∞

∑
j=0

 ∞

∑
i= j+1

(1− p)i−1 p

 ∞∫
0

1
2

log(1+hP( j))e−hdh

(d)
=

∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(1+hP( j))e−hdh,

(e)
=

∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(1+hp(1− p) jE)e−hdh. (3.28)

(a) follows because T1 is a geometric random variable with parameter p, and hence

E[T1] = 1/p, (b) follows since for a geometric random variable T1, P(T1 = i) = (1−

p)i−1 p, (c) is obtained by interchanging the order of summations, (d) follows since
∞

∑
i= j+1

(1− p)i−1 p = (1− p) j, and (e) follows from the definition of P( j).

Following the exact steps as Lemma 3 one can obtain that for p = 0.5,
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Tub−Tlb =
1
2

log
(

1+
√

2pE
)
−

∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(1+hp(1− p) jE)e−hdh,

=
1
2

log(1+E)−
∞

∑
j=0

(0.5) j+1
∞∫

0

1
2

log(1+h(0.5) j+1E)e−hdh,

≤ 1.41.

for all E < Bmax.

Thus for a Bernoulli energy arrival profile with p = 0.5, we have a near optimal energy

allocation strategy which is guaranteed to be within 1.41 bits of the upper bound on

the maximum achievable average throughput Tub i.e. the throughput Tlb obtained by

Constant Fraction Policy will satisfy,

Tlb ≥ Tub−1.41,

∴ Tlb
(a)
≥ 1

2
log(1+E)−1.41, for p = 0.5. (3.29)

for ∀E < Bmax where (a) follows by substituting E
[
E2

t

]
= E2

2 for Bernoulli energy

arrival with p = 0.5 and packet size of E in Theorem 1. An equivalent way of saying

the above stated result is,

Lemma 3.3.4. For Bernoulli energy arrivals with p = 0.5 and packet size E < Bmax,

the gap between the upper bound on achievable throughput Tub = 1
2 log(1+E) and

throughput Tlb achieved by Constant Fraction Policy is upper bounded by 1.41.

1
2

log(1+E)−Tlb ≤ 1.41, ∀ E < Bmax and p = 0.5. (3.30)
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3.4 Uniform Energy Arrival

We now consider the case of uniform energy arrival process i.e. Et is uniformly dis-

tributed between 0 and Bmax. We fix a threshold of Bmax/2. It should be noted that the

probability p of having an energy arrival with packet size at least Bmax/2 i.e. P(Et ≥

Bmax/2) is 0.5. We assume that there is no energy arrival when the arrival energy packet

size is smaller than Bmax/2 and we assume that the packet size is Bmax/2 when we re-

ceive an energy packet of size at least Bmax/2. Clearly, this is an energy feasible strat-

egy. We have thus converted the given uniform energy arrival process into a Bernoulli

process with p = 0.5 and E = Bmax/2. However, it may seem highly sub-optimal and

wasteful of the available energy. We next apply the near optimal strategy discussed

in the previous section. From (3.29), we know that the throughput achieved by this

strategy, denoted by T will satisfy

T ≥ 1
2

log
(

1+
Bmax

2

)
−1.41 (3.31)

Also, from (3.12), the maximum achievable throughput of this channel is upper bounded

by,

Tmax ≤
1
2

log
(

1+
√

2
√

E[E2
t ]

)
∴ Tmax ≤

1
2

log
(

1+
√

2
Bmax√

3

)
since E[E2

t ] =
B2

max
3

for uniform energy arrivals

(3.32)

We now bound the difference between the maximum achievable throughput for uniform

arrivals and the maximum achievable throughput for Bernoulli energy arrivals of size
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Bmax/2 and parameter p = 0.5

1
2

log
(

1+
√

2
Bmax√

3

)
− 1

2
log
(

1+
Bmax

2

)

=
1
2

log

1+
√

2Bmax√
3

1+ Bmax
2


(a)
≤ 1

2
log

√2Bmax√
3

Bmax
2


=

1
2

log

(
2
√

2√
3

)

= 0.35

where (a) is true because the numerator is greater than the denominator.

We thus have the following,

1
2

log
(

1+
√

2
Bmax√

3

)
− log

(
1+

Bmax

2

)
≤ 0.35 ∀ Bmax (3.33)

Rearranging (5.19), we get the following,

1
2

log
(

1+
Bmax

2

)
≥ 1

2
log
(

1+
√

2
Bmax√

3

)
−0.35 ∀ Bmax (3.34)

From (3.31) and (5.20), we have the following,

T ≥ 1
2

log
(

1+
√

2
Bmax√

3

)
−1.76 ∀ Bmax (3.35)

We thus have an energy allocation policy which is guaranteed to be within 1.76 bits of

the upper bound on the maximum achievable throughput derived in section III. Hence

we have the following result.

For uniform energy arrival between 0 and Bmax, the throughput achieved by the pro-
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Figure 3.1: Performance of CFP for uniform energy arrivals as compared to the upper
bound on maximum achievable long term throughput for different values of
Bmax. The solid curve represents the upper bound Tub and the dashed curve
corresponds to per slot throughput achieved by CFP Tlb.

posed strategy will satisfy the following

1
2

log
(

1+
√

E[h2
t ]

√
E[E2

t ]

)
−1.76≤ T ≤ 1

2
log
(

1+
√
E[h2

t ]

√
E[E2

t ]

)
∀Bmax

(3.36)

where E[h2
t ] = 2 for exponentially distributed channel fade state with mean 1 and E[E2

t ] =

B2
max
3 for uniform energy arrivals between 0 and Bmax.

3.5 Generalization to other Energy Profiles

The idea that we discussed in the last section was specific to i.i.d. uniform energy arrival

process. In this section, we present a simple way to apply Constant Fraction Policy to
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other energy arrival processes.

Let Et , the energy arrival profile, be denoted by a random variable X with cumulative

distribution function FX(·). We assume X to be a continuous random variable. Let γ

be the energy value such that FX(γ) = 0.5. We will assume that γ ≤ Bmax. The case

γ > Bmax needs some modifications but can be worked out similarly. Thus, we have

γ = F−1
X (0.5). It should be noted that the probability p of having an energy arrival of at

least γ i.e. P(Et ≥ γ) is 0.5.

We now propose to use Constant Fraction Policy as if the energy arrival process were

i.i.d. Bernoulli with packet size γ and p = 0.5. The throughput achieved is denoted as

before by Tlb. By this, we mean that we assume that there is no energy arrival when the

arrival energy packet size is smaller than γ , and we assume that the energy packet size

is equal to γ each time we receive an energy packet of size at least γ . Clearly, this is

an energy feasible strategy for general i.i.d. energy arrival process but may seem highly

sub optimal and wasteful of energy. However, we have the following theorem for the

throughput achieved Tlb.

Theorem 3.5.1. The throughput achieved by the proposed policy Tlb satisfies the fol-

lowing,

Tlb ≥ Tub−1.67− 1
4

log

 E[X2](
F−1

X (0.5)
)2

 , (3.37)

where Tub is as given in Theorem 1 i.e.

Tub =
1
2

log
(

1+
√
E[h2

t ]
√

E[X2]

)
. (3.38)

Proof: The proposed strategy views any i.i.d. energy arrival process as Bernoulli with

packet size γ ≤ Bmax and p = 0.5 and uses the Constant Fraction Policy. By Lemma 4,

we have the following,
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Tlb ≥
1
2

log(1+ γ)−1.41 (3.39)

We next bound the difference between maximum achievable throughput Tub and the first

term on the right hand side of (3.39) as follows,

Tub−
1
2

log(1+ γ)
(a)
=

1
2

log
(

1+
√

E[h2
t ]
√

E[X2]

)
− 1

2
log(1+ γ) ,

(b)
=

1
2

log

(
1+
√

2
√
E[X2]

1+ γ

)
,

(c)
≤ 1

2
log

(√
2
√

E[X2]

F−1
X (0.5)

)
,

= 0.25+
1
4

log

 E[X2](
F−1

X (0.5)
)2

 .

where (a) follows from Theorem 1, (b) follows as ht ∼ exp (1), and (c) follows because

the numerator is greater than the denominator.

Hence, we have the following inequality,

1
2

log
(

1+
√

2
√

E[X2]

)
− 1

2
log(1+ γ)≤ 0.25+

1
4

log

 E[X2](
F−1

X (0.5)
)2

 . (3.40)

Rearranging the terms, one obtains that

1
2

log(1+ γ)≥ 1
2

log
(

1+
√

2
√

E[X2]

)
−0.25− 1

4
log

 E[X2](
F−1

X (0.5)
)2

 . (3.41)
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From (3.39) and (3.41), we have,

Tlb ≥
1
2

log
(

1+
√

2
√

E[X2]

)
−1.67− 1

4
log

 E[X2](
F−1

X (0.5)
)2

 ,

Tlb ≥ Tub−1.67− 1
4

log

 E[X2](
F−1

X (0.5)
)2

 . (3.42)

which proves the theorem.

2

We therefore have a strategy which is guaranteed to be within bounded gap from the

upper bound on maximum achievable throughput obtained in section III.

1
2

log
(

1+
√

2
√

E[X2]

)
−1.67− 1

4
log

 E[X2](
F−1

X (0.5)
)2

≤Tlb≤
1
2

(
1+
√

2
√
E[X2]

)
(3.43)

Lemma 3.5.1. For symmetrically distributed energy arrival profiles i.e. Et is symmet-

rically distributed around the mean, with mean less than Bmax, we have the following

result for the throughput achieved by Constant Fraction Policy (after converting it into

Bernoulli with packet size γ = E[X ] and p = 0.5).

Tlb ≥ Tub−1.67− 1
4

log

 E[X2](
E[X ]

)2

 (3.44)

Proof: Note that for symmetric distributions, we have the following

F−1
X (0.5) = E [X ] .

The lemma then follows from Theorem 2.

44



2

Remark 3.5.1. The proposed strategy provides a bounded approximation gap to the

upper bound on achievable throughput Tub, for energy profiles with finite second mo-

ment. However, it is possible to engineer energy arrival profiles with finite mean but

unbounded second moment. For such cases, we know that the maximum achievable

throughput is bounded but the proposed strategy will fail to provide a bounded gap

from Tub. However, such profiles may not be common in practice.

Thus, we can bound the gap between the maximum achievable throughput and the

throughput achieved by our proposed strategy for most of the energy arrival profiles

with the gap being a function of E[X2]

(E[X ])
2 . However, as mentioned earlier, it is possible

to come up with counter examples for which the proposed method will fail to give a

bounded gap. From (3.44), it is trivial to see that energy arrivals with an infinite sec-

ond moment will fail to give a bounded gap even though the mean is bounded above

by Bmax. One can easily come up with such en energy arrival profile. However, such

profiles may not be common in practice.

3.6 Optimal Policy for Discrete Energy Arrival process

and Discrete Energy Consumption

In this section, we restrict ourselves to discrete energy arrivals as well as discrete energy

utilization at the transmitter i.e., we assume that instead of the transmitter having the

choice to select from a continuum of energy, it can only select a discrete amount of

energy to transmit in each time slot. Keeping in mind the discrete transmission policy,

we allow only a discrete energy arrival process in this section.

Like before, we consider slotted time. The node is assumed to have a finite battery of

size Bmax to store the harvested energy. Let Bk be the battery energy level, Ek be the

amount of energy harvested, and Fk be the energy allocated for transmission at time k.

45



For each time step, a realization of the channel hk ≥ 0 is revealed to the transmitter and

the payoff function is assumed as before, rk = log(1+hkFk).

As mentioned before, we assume a discrete energy arrival process Ek, where Ek = i with

probability pi for i = 1,2, . . . ,Bmax.

For such a system, it has been shown that the optimal energy allocation policy (for max-

imizing the average long term throughput) is stationary, and monotonic in the battery

energy level as well as the channel fade state. Owing to discrete energy consump-

tion, this result can be transformed to the fact that the optimal energy utilization for

each battery level will be a staircase like function with respect to the channel fade

state hk. For example, if the battery energy level is Bk, there will be thresholds hBk,i,

for i ∈ {1,2, . . . ,Bmax}, with hBk,0 = 0 and hBk,Bmax+1 = ∞, so that F∗k (Bk,hk) = i if

hk ∈ (hBk,i,hBk,i+1).

This in turn can be transformed into

P(using i units of energy when battery level is Bk) =

hBk ,i+1∫
hBk ,i

ϕ(x)dx, (3.45)

where ϕ(·) is the probability density function of the channel fade state hk.

Using this knowledge, the evolution of the battery energy level can be modeled as a

finite state Markov chain with the transition probabilities in terms of the thresholds hBk,i

for k∈ 1,2, . . . ,Bmax and i∈ 1,2, . . .Bmax, and the energy arrival process probabilities pi.

In turn, the average throughput can be obtained by solving the steady state probabilities

of the Markov chain. Consequently, the optimal thresholds can be found by optimizing

the average throughput.

While it seems easy to solve for this case, even solving it for small cases is non-trivial

owing to the non-convex nature of the optimization problem at hand.
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CHAPTER 4

Transmitter-Receiver Energy Harvesting link with

Distributed Control

Till now, we assumed that the payoff obtained is only a function of the transmit power

and the channel fade state. We assumed that the receiver is always on. It should be

noted that the receiver too has to spend energy to remain on, receive the information

and decode it. While the receiver always on assumption may be true if the receiver

has an access to unlimited un-interrupted power source, in certain cases this assumption

may not be justified. In cases like space communication, or sending data to remote

locations, the receiver too has energy constraints ans should spend energy judiciously.

Unlike the transmitter, the energy consumption at receiver is much simpler. We assume

the following energy consumption model at receiver.

• “On” state : If the receiver is in on state, we assume that the throughput achieved
is given by the rate transmission function assumed earlier. Consequently, the
receiver spends a fixed amount of energy to stay on and decode data.

• “Off” state : If the receiver is in off state, it cannot receive and decode the data
sent by the source and the throughput obtained is zero irrespective of the energy
spent by the transmitter. In this state, the receiver does not spend any energy.

We refer to this energy consumption model at receiver as Binary receiver Energy Con-

sumption model for obvious reasons. Based on this model, when transmitter spends

Ph(t) amount of energy and the channel fade state is ht , the throughput obtained is

given by,

r(t) = 1R(ht , t) log
(
1+htPh(t)

)
, (4.1)



where 1R(ht , t) is the indicator random variable corresponding to the receiver being on

or off i.e.

1R(ht , t) =

 1 if the receiver is on,

0 if the receiver is off.
(4.2)

Unlike the traditional battery powered receiver, an energy harvesting receiver has the

potential to solve the limitations on the lifetime of the communication link. Moreover,

an energy harvesting receiver would be sustainable and environment friendly. As be-

fore, the energy harvesting mechanism is abstracted in the form of an energy profile,

which models the energy harvested as a stochastic process. The receiver has a finite

battery of size B̃max (the quantities at the receiver end are denoted by tilde) to store the

harvested energy. Like the transmitter, in the case when the harvested energy exceeds

the available space in the battery, the battery is charged to the maximum capacity and

the remaining energy is discarded.

4.1 Upper Bound on maximum achievable throughput

with receiver energy harvesting

In this section, we derive an upper bound on the maximum achievable throughput by

any energy allocation strategy at the transmitter and the receiver. We assume that the

transmitter does not have information about the receiver energy level, and vice versa,

for receiver, but they do have the knowledge of the energy arrival distribution at each

other end. Also, both of them see the common channel h to decide Ph(t) and 1R(h, t),

through which they can possibly have an estimate about the energy level at the other

end. Hence, the energy allocation strategy at transmitter and receiver has an interesting

dependence on each other through the common channel information.
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The maximum achievable throughput by any energy allocation policy is then given by,

T̃max = max
1R(h,t),Ph(t)

lim
N→∞

1
N

N

∑
t=1

1R(ht , t) log(1+htPh(t)). (4.3)

Note that energy allocation strategy now refers to a distributed policy at transmitter and

receiver with the knowledge of common channel information and the energy arrival

distribution at both the ends.

By ergodicity,

T̃max = max
1R(h,t);Ph(t)

E
[
1R(ht , t) log(1+htPh(t))

]
. (4.4)

Clearly, the indicator random variable of the receiver 1R(ht , t) is dependent on the chan-

nel fade state ht . Applying Cauchy-Schwarz on the indicator random variable and the

log term, we get

E
[
1R(ht , t) log(1+htPh(t))

]
≤ E

[(
1R(h, t)

)2
]
E
[
log2 (1+htPh(t)

)]
, (4.5)

for any receiver policy 1R(h, t) and transmitter policy Ph(t).

Thus, for any 1R(ht , t) and Ph(t), we have,

T̃ ≤ E
[(

1R(ht , t)
)2
]
E
[
log2 (1+htPh(t)

)]
. (4.6)

Let 1∗R(ht , t) and P∗h (t) be the optimal energy allocation strategy at the receiver and the

transmitter respectively. Then,

T̃max ≤ E
[(

1∗R(ht , t)
)2
]
E
[
log2 (1+htP∗h (t)

)]
. (4.7)

Note that the second moment of the indicator random variable at receiver, 1∗R(ht , t),

cannot exceed the second moment of the receiver energy arrival Ẽt . Also, the second
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term can be upper bounded by using Jensen’s inequality and then Cauchy-Schawrz by

following the exactly same steps as in Theorem 1 . We thus get,

T̃max ≤ 2
√

E
[(

Ẽt
)2
]

log
(

1+
√
E
[
(ht)2

]√
E
[
(Et)2

])
. (4.8)

As we have assumed an exponentially distributed channel with a mean of unity, E
[
h2

t

]
=

2. Thus,

T̃max ≤ 2
√

E
[(

Ẽt
)2
]

log
(

1+
√

2
√
E
[
(Et)2

])
. (4.9)

The term on the right hand side of (4.9) serves as an upper bound on the achievable

throughput by any energy allocation strategy. We denote it by T̃ub.

Next we consider a simple case of receiver energy harvesting being Bernoulli. The

receiver receives one unit of energy with probability q and does not receive any energy

with probability 1−q. We then have E
[
Ẽ2

t

]
= q. Equation (4.9) then becomes

T̃ub = 2
√

q log
(

1+
√

2
√

E
[
(Et)2

])
. (4.10)

Let us consider a simple energy allocation policy at the receiver,

1R(ht , t) =

 1 if the receiver has energy,

0 otherwise.
(4.11)

Using the Constant Fraction Policy at the transmitter, the throughput achieved is given

by,

T̃lb = q
∞

∑
j=0

p(1− p) j
∞∫

0

1
2

log(1+hp(1− p) jBmax)e−hdh. (4.12)

which follows from Lemma 1.

Note that T̃ub = 2
√

q Tub and T̃lb = qTlb where Tub, and Tlb are the upper bound on max-
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imum achievable throughput, and the throughput achieved by Constant Fraction Policy

respectively without receiver energy harvesting as defined before. From Theorem 1,

Tub−Tlb is bounded but because of the
√

q dependence in T̃ub and q dependence in T̃lb,

the difference T̃ub− T̃lb is unbounded. Also, T̃ub
T̃lb

= 2√
q

Tub
Tlb

goes unbounded for q→ 0.

This is because for E[Et ]→ ∞, Tub → ∞ and as Tub− Tlb is bounded, we also have

Tlb→ ∞. Thus, T̃ub
T̃lb

= 2√
q

Tub
Tlb
→ 2√

q which goes unbounded for q→ 0. For other energy

arrivals at receiver, it becomes even more complicated. It is not clear how to use the

common channel information to get a higher throughput.

While the most general case with receiver energy harvesting is difficult to solve, we

look at certain specific cases providing interesting results.

4.2 Finite Horizon problem with Discrete Energy ar-

rival process

We first consider the case of Bernoulli energy arrivals and binary energy consumption

model. The Bernoulli parameter at the transmitter is p and that at receiver is q. Also we

assume that the transmitter and receiver has complete knowledge of the channel fade

state and the battery energy level at the other end. Owing to binary energy consumption,

we denote by rk the reward obtained if both the transmitter and receiver spend one unit

of energy at time step k with the channel fade state being hk.

Theorem 4.2.1. Under Bernoulli energy arrivals and binary energy consumption model,

the optimum transmission policy is given by the following threshold rule.

1T (ht , t) = 1R(ht , t) =

 1 if rk + γ
m−1,n−1
k+1 > γ

m,n
k+1,

0 otherwise
(4.13)

where m and n is the energy available at transmitter and receiver respectively at time k.
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The thresholds are given by

γ
0,0
n = pqE[rn],

γ
i,0
n = qE[rn] for i > 0,

γ
0, j
n = pE[rn] for j > 0,

γ
i, j
n = E[rn] for i, j > 0.

For k < n,

γ
m,n
k = (1− p)(1−q)E

[
max{rk + γ

m−1,n−1
k+1 ,γm,n

k+1}
]

+ p(1−q)E
[
max{rk + γ

m,n−1
k+1 ,γm+1,n

k+1 }
]
+(1− p)qE

[
max{rk + γ

m−1,n
k+1 ,γm,n+1

k+1 }
]

+ pqE
[
max{rk + γ

m,n
k+1,γ

m+1,n+1
k+1 }

]
,

where γ
m,n
k =−∞ if either m < 0 or n < 0.

Proof: The proof of this theorem is on the same lines as (Vaze and Jagannathan, 2014).

It is a result obtained by modeling the given problem as a Dynamic program.

2

Note that the thresholds depend only on the distribution of the channel fade state and

the number of slots available for transmission, and can be computed before hand.

We next consider a more general scenario, where both the energy arrival and transmitted

energy can take any discrete value between 0 and Bmax. Here too, we can explicitly

characterize the optimal finite horizon throughput maximizing policy. Assume i units

of energy arrive during each slot with probability pi, i = 1,2, . . . ,Bmax, and that this is

i.i.d. across time.

Theorem 4.2.2. Suppose m and n units of energy are available at transmitter and re-
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ceiver respectively at time k. Then the optimal policy is to transmit F∗k = q units of

energy, where q = argmax
j∈(0,1,...,m)

[
log(1+ jhk)+ γ

m− j,n−1( j>0)
k+1

]
.

Proof: The proof of this theorem is same as the last one and is left to the reader.

2

As before, the thresholds depend only on the distribution of energy arrivals and channel

gains and can be pre-computed. Note that the number of thresholds goes as B2
max for

each time step k.

This solution can be extended to the case of multiple nodes. We assume that at each

time slot, an i.i.d. channel realization is revealed to each of the transmitter-receiver pair,

and all the nodes harvest energy from environment governed by their respective energy

arrival profiles. We also assume that at most one of the nodes is allowed to transmit

in a particular time slot. For such a system, the optimal energy consumption policy

and scheduling of the communication links for finite horizon can again be characterized

using pre-computable thresholds. However, in this case the number of thresholds for

each time step goes as
(

B2
max

)n
where n is the number of transmitter-receiver pairs.

The number of thresholds grows very rapidly as the number of communication link in-

creases. To avoid this problem, we propose a sub-optimal policy for the case of multiple

nodes. The sub-optimal policy takes decoupled decisions at each node, considering that

it were the only node. In case more than one node is to remain on through the decou-

pled decisions, choose the one with the highest channel fade state and transmit using

that communication link (shutting off the other ones). For this sub-optimal policy, the

number of thresholds to be computed grows linearly in the number of communication

links and simulations show that it performs very well in practice. However, no theoretic

bounds on the performance could be obtained.
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4.3 Infinite Horizon Case

Having looked at the finite horizon case, we next move on to the infinite horizon case,

where the objective is to maximize the long term throughput. Recall that the rate func-

tion taking into account the receiver is given by

r(t) = 1R(ht , t) log
(
1+htPh(t)

)
. (4.14)

We start by looking at the case where the receiver is battery powered, imposing an

average power constraint at the receiver end. Later, we will look at the case where

the receiver also harvests energy from the environment. Before going into the case of

receiver, let us recall the optimal power allocation policy for the case of fading channel

and an average power constraint at the transmitter. The following is a well known result.

Theorem 4.3.1. Let the probability density function of the channel fade state h be given

by f (h) and let there be an average power constraint at the transmitter upper bounding

the maximum allowable average power transmit to P. Moreover, assume that the rate

obtained by consuming Ph amount of power when the fade state is h is given by

r(h,Ph) = log(1+hPh). (4.15)

Then the optimal power allocation policy is given by

P(h) =


1
γ
− 1

h if h≥ γ,

0 otherwise,
(4.16)

where γ can be obtained by solving

P =

∞∫
γ

P(h) f (h)dh. (4.17)
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Note that the maximum average throughput is thus given by

T̃ub =

∞∫
γ

log

(
1+h

(
1
γ
− 1

h

))
f (h)dh

=

∞∫
γ

log
(

h
γ

)
f (h)dh.

Next, we start looking at the case where there is a similar constraint at the receiver end

i.e. the average power allowed to be consumed at the receiver is given by PR. From

here on, we denote the average transmit power by PT . It should be easy to see that if

PR ≥ 1, the receiver can always remain on and the problem converts to the one where

only average transmit power is the constraint.

Note that T̃ub (the maximum achievable throughput without the receiver constraint) is

trivially an upper bound on the maximum achievable throughput for this case as well.

Theorem 4.3.2. If PR ≥ P [h≥ γ], then the optimal power allocation policy is given by

Transmitter

P(h) =


1
γ
− 1

h if h≥ γ,

0 otherwise,
(4.18)

Receiver

1R(h) =

 1 if h≥ γ,

0 otherwise.
(4.19)

Proof: The given power allocation policy consumes an average power of P [h≥ γ] at

the receiver, which is less than PR hence it is a feasible policy. Also it achieves an

average throughput of T̃ub proving it is optimal.

2

We now move on the case where PR is such that PR < P [h≥ γ].
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Theorem 4.3.3. For an average power constraint at both the ends, the optimal energy

policy will not allow (or allow only for a finite number of times) instances where Ph(t)>

0 but 1R(t) = 0.

Proof: This can be easily proved by contradiction. The complete proof is left upon the

reader but we provide a brief outline. If the event mentioned above happens recurrently,

then the given policy can be improvised by shifting the power used for transmission

when 1R(t) = 0 to instances where 1R(t) = 1 and then arguing that the rate function is

monotonically increasing in transmit power. 2

Theorem 4.3.4. Let PR < P [h≥ γ] and let γ0 be such that P [h≥ γ0] = PR. Then the

optimal power allocation strategy at the receiver is

1R(h) =

 1 if h≥ γ0,

0 otherwise
(4.20)

Proof: The proof of this theorem also follows easily by contradiction and is left to the

reader. 2

It is important to note now that for h < γ0, the receiver will be off. At such instances

no matter what transmit power is consumed, the throughput achieved will be zero. In

other words, with the receiver constraint, all h such that h < γ0 are equivalent to h = 0.

Hence, the channel distribution seen by the transmitter is now a mixed random variable

with a non-zero mass of
γ0∫
0

f (h)dh at h = 0 and distributed according to f (h) for h > γ0.

We denote this modified distribution as f̃ (h). This observation, with the previous two

results leads to the following major theorem.

Theorem 4.3.5. Let the average transmit power be given by PT and let the channel fade

state h be distributed according to the density f (h). Let the average power allowed to

be used at the receiver be PR. Let γ , γ0 and f̃ (h) be as defined before.

• If PR ≥ P [h≥ γ], then the optimal power allocation policy is given by
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Transmitter

P(h) =

{
1
γ
− 1

h if h≥ γ,

0 otherwise
(4.21)

Receiver

1R(h) =

{
1 if h≥ γ,
0 otherwise (4.22)

• If PR < P [h≥ γ], then the optimal power allocation policy is given by

Transmitter

P(h) =

{
1
γ̃
− 1

h if h≥ γ̃,

0 otherwise
(4.23)

Receiver

1R(h) =

{
1 if h≥ γ0,
0 otherwise, (4.24)

where γ̃ is obtained by solving

PT =

∞∫
γ̃

(
1
γ̃
− 1

h

)
f̃ (h)dh. (4.25)

Proof: The proof follows from the previous theorems and the fact that water-filling is

optimal power allocation strategy for any channel state distribution as long as the rate

function is r(h,Ph) = log
(
1+hP(h)

)
.

2

Having looked at the case of average power constraint, we next move on to the case

where both the transmitter and the receiver harvest energy from environment. As before,

the energy arrivals are modeled as discrete stochastic processes. The harvested energy

is stored in a battery with a capacity of Bmax at the transmitter and B̃max at the receiver.

The operation now is fundamentally governed by Energy Neutrality Constraint.

We denote the energy arrival at transmitter by ET with an average E[ET ]. Similarly,

the energy arrival at the receiver is given by ER with an average E[ER]. Note that the

throughput obtained by the policy mentioned in Theorem 7 with PT = E[ET ] and PR =
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E[ER] is trivially an upper bound to the achievable throughput for the case of energy

harvesting. We denote this upper bound by T̃ub.

We now consider the case where Bmax = B̃max = ∞. Let Bk and B̃k denote the battery

levels at transmitter and receiver at time k. The following theorem then describes the

maximum achievable throughput.

Theorem 4.3.6. For every ε > 0, there exists power allocation policy which achieves a

throughput of T̃ub− ε .

Proof: This theorem has a constructive proof. In other words, we construct a policy

which achieves a throughput of T̃ub− ε . Let γ be obtained by the following equation.

E[ET ]−δ1 =

∞∫
γ

P(h) f (h)dh. (4.26)

We start with the case when E[ER] > P [h≥ γ]. Also define γ0 such that E[ER]− δ2 =

P [h≥ γ0]. Note that γ0 ≤ γ for suitably chosen δ2.

Next, consider the following policy.

Transmitter

P(h) =


1
γ
− 1

h if h≥ γ and there is sufficient energy,

0 otherwise
(4.27)

Receiver

1R(h) =

 1 if h≥ γ0 and there is sufficient energy,

0 otherwise,
(4.28)

The idea of this policy is that the throughput obtained by the energy allocation policy

in Theorem 7 is continuous in PT and PR. By using an average power of E[ET ]−δ1 and

E[ER]−δ2, the available energy at the transmitter and the receiver increases with time.

This effectively reduces the randomness in energy harvested as shown in Khairnar and
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Mehta (2011). Also, by making δ1 and δ2 small enough, a throughput arbitrarily close

to T̃ub can be achieved which completes the proof for E[ER]> P [h≥ γ].

Next consider the case of E[ER]< P [h≥ γ]. For this case let γ0 be such that P [h≥ γ0] =

E[ER]−δ2. Also let f̃ (h) be as defined before and γ̃ be obtained by

PT −δ1 =

∞∫
γ̃

(
1
γ̃
− 1

h

)
f̃ (h)dh. (4.29)

Next, consider the following energy consumption policy

Transmitter

P(h) =


1
γ̃
− 1

h if h≥ γ̃,

0 otherwise
(4.30)

Receiver

1R(h) =

 1 if h≥ γ0,

0 otherwise,
(4.31)

By using an average power of E[ET ]− δ1 and E[ER]− δ2, the available energy at the

transmitter and the receiver increases with time. This effectively reduces the random-

ness in energy harvested as shown in Khairnar and Mehta (2011). Also, by making

δ1 and δ2 small enough, a throughput arbitrarily close to T̃ub can be achieved which

completes the proof.

2

Next, we look at the case when Bmax = ∞ and B̃max = 1. Here we have a Bernoulli

energy arrival process at receiver with parameter q = E[ER].

Theorem 4.3.7. For the above mentioned case, the following policy
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Transmitter

P(h) =


1
γ
− 1

h if h≥ γ and there is sufficient energy,

0 otherwise
(4.32)

Receiver

1R(h) =

 1 if h≥ γ0 and there is sufficient energy,

0 otherwise,
(4.33)

can achieve a throughput arbitrarily close to half the maximum achievable throughput.

Here γ0 is given by

P[h≥ γ0] = q. (4.34)

Proof: Note that the time until which you have to wait for an energy arrival at receiver

is geometric with parameter q. Let this be denoted by X1 The waiting time for the event

1h≥γ0 is again geometric with parameter q. Let this be denoted by X2. Owing to the

memory-less property of geometric random variable, the system refreshes whenever X1

or X2 fires. Also it should be noted that the system behaves identically to the case where

only transmitter has energy constraint (receiver is always on) as long as X1 ≤ X2 which

happens with probability 1
2 proving the theorem.

2

4.4 A special case with Bmax = B̃max = 1

In this section, we consider a special case of Bmax = B̃max = 1 and binary energy trans-

mission policy at transmitter. Also, the energy arrivals at the transmitter and the receiver

are assumed to be Bernoulli. For this case, we first obtain an upper bound on the max-

imum achievable throughput by any energy allocation strategy at the transmitter and

the receiver. Next, we propose an energy utilization policy for the transmitter and the
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receiver for which we can universally bound the ratio of the throughput achieved by the

proposed strategy and the upper bound on maximum achievable throughput.

For this system, the throughput obtained when the channel fade state is ht , is given by,

r(t) = 1T (ht , t)1R(ht , t) log(1+ht), (4.35)

where 1T (ht , t), and 1R(ht , t), are the indicator random variables corresponding to the

energy usage at transmitter and receiver respectively.

1T (ht , t) =

 1 if the transmitter spends one unit of energy,

0 otherwise.
(4.36)

The maximum achievable throughput is given by,

T̃max = max
1T (ht ,t),1R(ht ,t)

lim
N→∞

1
N

N

∑
i=1

1T (hi, i)1R(hi, i) log(1+hi). (4.37)

By egotist,

T̃max = max
1T (ht ,t),1R(ht ,t)

E
[
1T (ht , t)1R(ht , t) log(1+ht)

]
. (4.38)

Next, we obtain an upper bound on the maximum achievable throughput for this case.

Lemma 4.4.1. Let the energy arrival process at transmitter and receiver be Bernoulli

with parameters p and q respectively. Also, Bmax = B̃max = 1. Then the maximum

achievable throughput by any distributed energy allocation policy with discrete energy

usage at transmitter is upper bounded by,

T̃ub = min{p,q}
∞∫

γ∗

log(1+h) f (h)dh, (4.39)

where f (h) = e−h is the probability density function of the channel fade state and γ∗ =
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− ln(min{p,q}).

Proof: Let us assume that p > q. Next, assume that the transmitter always has energy

to transmit i.e. at each time t, 1T (ht , t) = 1. Clearly, this will result in an upper bound

on the maximum achievable throughput. The throughput obtained is then given by,

r(t) = 1R(ht , t) log(1+ht). (4.40)

For such a system, for B̃max = 1, the optimal transmission policy has been shown to be

of threshold type in Michelusi et al. (2012), Sinha and Chaporkar (2012) i.e.

1R(ht , t) =

 1 if ht > γ and B̃t = 1,

0 otherwise.
(4.41)

Next, we argue that the optimal threshold γ∗ will satisfy P(h > γ∗) = q. This is true

because of the following reasons:

• If the threshold is greater than γ∗, the energy arrival rate at the receiver is greater
than the energy usage at the receiver, and essentially there is a wastage of energy
owing to unit battery size resulting in sub-optimality.

• If the threshold is less than γ∗, the receiver remains on for not so good channel
fade state while it could have obtained a better throughput by remaining on for a
higher channel gain.

Note that P(h > γ∗) = q implies γ∗ =− lnq as h is exponentially distributed with mean

1.

Thus the maximum achievable throughput of such a communication system is upper

bounded by,

T̃ub = q
∞∫

γ∗

log(1+h) f (h)dh. (4.42)

This proves the Lemma for p> q. The other case, q> p, can be proved by interchanging

the role of the transmitter and the receiver.
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2

Next, we propose the following energy allocation policy. We call it Common Threshold

Policy.

• Transmitter Policy : The transmitter simulates an i.i.d. Bernoulli random variable
for each slot with parameter q. The corresponding epochs are then geometrically
distributed with parameter q. We call this random variable X1. The transmitter
waits till X1 happens and thereafter transmits whenever ht > γ∗ if Bt = 1 and saves
energy for future use if ht < γ∗.

• Receiver Policy : The receiver remains on whenever ht > γ∗ if the receiver battery
level, B̃t = 1, and saves energy for future use if ht < γ∗, where γ∗=− ln(min{p,q}).

Theorem 4.4.1. The throughput achieved by Common Threshold Policy, T̃lb, satisfies,

T̃lb ≥
1
2

T̃ub. (4.43)

Proof:

Consider the case of p > q. Let the transmitter simulate an i.i.d. Bernoulli random

variable for energy arrivals at each time slot with parameter q. The corresponding inter

arrival time for energy packets is now a geometric random variable, X1, with parameter

q. Note that the actual energy arrival at transmitter is Bernoulli with parameter p > q

and the actual energy packet arrives before X1. The channel fade state is assumed to

be i.i.d. exponential and hence 1ht>γ∗ is Bernoulli with parameter q as P(ht > γ∗) = q.

The corresponding epochs are geometric random variable with parameter q. We call

this random variable X2. Finally, the energy arrivals at receiver are i.i.d. Bernoulli

with parameter q. Hence, the corresponding inter arrival time are energy packets is a

geometric random variable with parameter q. We call this random variable X3. Note

that X1,X2, and X3 are i.i.d. random variables.

We now compare the throughput obtained by Common Threshold Policy T̃lb with the

upper bound on maximum achievable throughput T̃ub. Note that the system is reset to

the initial state each time the event 1ht>γ∗ occurs owing to the memory-less property
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of geometric random variable. By this we mean the following. Let the system start at

t = 0 and let t0 = min{t : ht > γ∗}. Then the time taken after t = t0 for the next energy

arrival at transmitter, for the channel fade state to be better than γ∗, and the next energy

arrival at receiver are again i.i.d. geometric random variables with parameter q. Thus,

the system is reset to the initial state of t = 0 and each epoch corresponding to the event

ht > γ∗ is independent and statistically independent to every other epoch. Hence, it

suffices to compare T̃ub with T̃lb for one particular epoch.

Without loss of generality, let us compare T̃ub with T̃lb in the first epoch. Let the system

start at t = 0. The time taken for the first energy arrival at transmitter, the first time

channel fade state is greater than γ∗, and the first energy arrival at receiver are indeed

X1,X2, and X3.

Lemma 4.4.2. The policy used for upper bounding the maximum achievable through-

put and Common Threshold Policy will perform identically if X1 ≤ X2.

Proof: Note that the receiver is following the same energy allocation policy under

Common Threshold Policy as the policy used for upper bounding the maximum achiev-

able throughput. If X1 ≤ X2 i.e. the transmitter gets an energy packet before t = t0, the

transmitter holds on the energy under Common Threshold Policy and uses it at t = t0

when ht0 > γ∗. Thus, both the policies obtain the same throughput of 1
2 log

(
1+ht0

)
.

2

Next we lower bound P(X1 ≤ X2).

Note that X1 and X2 are i.i.d. random variables. By symmetry, we have,

P(X1 > X2) = P(X1 < X2). (4.44)

Also, we have,

P(X1 > X2)+P(X1 = X2)+P(X1 < X2) = 1. (4.45)
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Figure 4.1: Performance CTP as compared to to the upper bound on maximum achiev-
able long term throughput for different values of q. The solid curve repre-
sents the upper bound T̃ub and the dashed curve corresponds to the per slot
throughput obtained by CTP T̃lb. The dotted curve is 1

2 T̃ub.

From (4.44) and (4.45),

P(X1 ≤ X2) = P(X1 < X2)+P(X1 = X2)≥ 0.5. (4.46)

We now get the desired multiplicative bound of 1
2 from Lemma 7 and (4.46).

This proves the Theorem for p > q. The other case can be proved by interchanging the

role of the transmitter and the receiver.

2
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CHAPTER 5

Transmitter-Receiver Energy Harvesting link with

Centralized Control

5.1 System Model

In this chapter, we consider a single transmitter-receiver pair, where both the transmitter

and receiver harvest energy from the environment. Let Et be the amount of energy

harvested at the transmitter at time t and Ẽt be the amount of energy harvested at the

receiver at time t. The battery capacity to store the harvested energy are denoted by

Bmax and B̃max at the transmitter and the receiver respectively. At each time t, the fading

channel between the transmitter and the receiver is ht , where ht is i.i.d. distributed

across the time slots. Let Bt be the battery energy level at the transmitter at time t and

let Ph(t) ≤ Bt be the energy consumed for transmission at time t. The energy state at

the transmitter thus evolves as follows,

Bt+1 = min{Bt−Ph(t−1)1Ph(t−1)≤Bt ,Bmax} (5.1)

Compared to the transmitter, the receiver decision structure is simpler; it only has to

decide whether to stay on or off in any given slot. When the receiver is on, it consumes

a fixed amount of energy. In the off state, it cannot receive any data and the throughput

obtained is zero. In this state, the receiver does not consume any energy. Let 1R(ht , t) =

1 if receiver is on at time t, otherwise 0. Then the rate obtained at time t is

r̃(t) = 1R(ht , t) log
(
1+htPh(t)

)
, (5.2)



and long-term throughput is given by

T̃ = lim
N→∞

1
N

N

∑
t=1

r̃(t). (5.3)

Our objective is to find optimal Ph(t) and 1R(ht , t), given the energy neutrality constraint

Ph(t)≤ Bt , and 1R(ht , t)≤ B̃max, that maximizes T̃ , i.e.

T̃ ? = max
Ph(t)≤Bt ,1R(ht ,t)≤B̃max

T̃ . (5.4)

It has been shown that with receiver energy harvesting, the problem of approximating

T̃ ? is very hard and finding the difference of the lower bound and upper bound is chal-

lenging for the case when transmitter and receiver are separated and do not have access

to each others’ energy availability information.

In this chapter, we take a recourse by considering the case where we have a centralized

system and the transmitter and receiver have complete access to each others’ energy

state. We also assume a discrete energy arrival process at the transmitter and the re-

ceiver, and impose a discrete energy consumption constraint at the transmitter. With

these assumptions, we shall see that an explicit characterization of the optimal energy

allocation strategy becomes possible. We also derive some structural properties of the

optimal policy which may be of vital importance in understanding the kind of algo-

rithms and approximations needed in real-life scenarios.

5.2 Unit Battery Capacity at Transmitter and Receiver

5.2.1 Binary Channel

In this section, we start with a simple case where Bmax = B̃max = 1. With a battery capac-

ity of 1, we can assume a Bernoulli energy arrival at the transmitter and receiver without

67



loss of generality. Let the Bernoulli parameters at the transmitter and the receiver be

p and q respectively. We assume p,q > 0. With the discrete energy consumption con-

straint, the rate function is given by

r(t) = 1R(t)1T (t) log(1+ht) , (5.5)

where

1T (t) =

 1 if Ph(t) = 1,

0 if Ph(t) = 0.
(5.6)

To begin with, we assume that the channel fade state has only two states h1 < h2 i.e.

the channel fade state is h1 with probability p(h1) and h2 with probability with p(h2) =

1− p(h1). We assume p(h1), p(h2) > 0. We model the evolution of such a system as

a Markov decision process. With two energy states at transmitter, two energy states at

receiver and two channel fade states, we have a total of 8 states.

• 00h1

• 00h2

• 01h1

• 01h2

• 10h1

• 10h2

• 11h1

• 11h2

In our notation, the first entry denotes the energy level at the transmitter, the second

entry denotes the energy level at the receiver, and the third entry denotes the channel

fade state. For instance, a state “10h1 corresponds to Bt = 1, B̃t = 0 and channel fade

state h1. Since we are looking at a centralized controller, it is easy to see that in states

68



where Bt = 0 or B̃t = 0, irrespective of the channel fade state, the optimal energy uti-

lization strategy would be 1T (t) = 0 and 1R(t) = 0. This is because r(t) > 0 only if

1T (t) = 1R(t) = 1 which is not possible with Bt = 0 or B̃t = 0. With this observation,

we can combine 00h1 and 00h2 into one state, which we denote now by 00. Similarly

01h1 and 01h2 can be combined into 01, and 10h1 and 10h2 can be combined into 10.

This leaves us with the following state space, and we number them in the following way

for ease of notation.

• 00→ 1

• 01→ 2

• 10→ 3

• 11h1→ 4

• 11h2→ 5

Owing to a centralized controller, note that the only possible action for the optimal

policy in the states 1,2, and 3 is 1R(t) = 1T (t) = 0. In the states 11h1 and 11h2, there

are two possible decisions, or two possible actions according to the MDP literature.

These are

• 1→ 1T (t) = 1R(t) = 0.

• 2→ 1T (t) = 1R(t) = 1.

Note that the other two actions, namely 1T (t)= 0 and 1T (t)= 1, and 1T (t)= 1 and 1T (t)=

0 are clearly sub-optimal and hence we eliminate them. Let r(s,a) be the reward ob-

tained by taking action a in state s. We then have

• r(4,1) = 0

• r(4,2) = log(1+h1)

• r(5,1) = 0

• r(5,2) = log(1+h2)
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Observe that the actions taken in states 4 and 5, will have corresponding transition

probabilities. For example, under section 2 in state 5, we have p51 = (1− p)(1− q),

p52 = (1− p)q, p53 = p(1−q), p54 = pqp(h1) and p55 = pqp(h2).

For this simple case, our objective is to find optimal actions in the states 4 and 5 to

maximize the average long-term throughput. It should be noted that the actions at states

4 and 5 maybe random in nature i.e. one may chose to decide to transmit in state 5 with

some probability and not transmit with the remaining probability. This leaves us with

a continuum of feasible policies at states 4 and 5 any one of which can potentially be

optimal.

We now go on to find the optimal policy. We denote the unconditional steady state

probability of being in state s and taking action a by x(s,a). With only one possible

actions in states 1,2 and 3, we are left to find x(4,1),x(4,2),x(5,1) and x(5,2) that

maximize the long-term throughput.

Therefore, our objective now is to find the optimal state action frequencies. These can

be obtained as follows. Let x(s,a) be the unconditional probability of being in state s

and taking action a, and let r(s,a) be the reward obtained by taking action a in state

s. Then the solution to the following linear program will give the optimal state action

frequencies.

Maximize ∑
s∈S

∑
a∈As

x(s,a)r(s,a)

subject to

∑
a∈A j

x( j,a)−∑
s∈S

∑
a∈As

p( j|s,a)x(s,a) = 0, ∀ j ∈ S

∑
s∈S

∑
a∈As

x(s,a) = 1

where S is the state space and As is the set of all possible actions in state s.

Note that once we have these optimal unconditional probabilities, they can be trans-
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formed into an energy utilization policy in the following way.

• P [Taking action 1 given state 4] = x(4,1)
x(4,1)+x(4,2)

• P [Taking action 2 given state 4] = x(4,2)
x(4,1)+x(4,2)

• P [Taking action 1 given state 5] = x(5,1)
x(5,1)+x(5,2)

• P [Taking action 2 given state 5] = x(5,2)
x(5,1)+x(5,2)

We now prove some structural properties of the optimal energy utilization policy. The

following is a well known result in MDP literature.

Theorem 5.2.1. There exists an optimal energy allocation policy with x(4,1)x(4,2)= 0

and x(5,1)x(5,2) = 0

Proof:

To prove this theorem, we need the following lemma which is a well known result in

MDP literature.

Lemma 5.2.1. For an MDP that is either unichain or communicating, there exists a

stationary deterministic policy that achieves the optimal average reward.

Note that our MDP is unichain with p,q, p(h1), p(h2) > 0. There are 4 deterministic

policies possible for the MDP at hand.

(P1) Do not transmit in states 4 and 5.

(P2) Transmit in state 4 but not in 5.

(P3) Transmit in state 5 but not in 4.

(P4) Transmit in state 4 as well as 5.

Note that either x(4,1) or x(4,2) is zero for all the four policies. Similarly, either x(5,1)

or x(5,2) is zero for all the four policies. This is because in all the four policies we have

a deterministic action to be taken in states 4 and 5. For instance in the policy which

transmits in state 5 but does not transmit in state 4, we have x(5,1) = 0 and x(5,2)> 0,
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and x(4,1)> 0 and x(4,2) = 0. From lemma 1, we know that one of the above 4 policies

is optimal which completes the proof.

2

Knowing that one of the stationary deterministic policy is optimal, we restrict ourselves

only to those from now on.

Observe that the long-term throughput achieved by policy P1 is zero as it never chooses

to transmit. On the other hand, throughput obtained by P2,P3 and P4 is greater than

zero. This is because under each of these policies, all the 5 states (00,01,10,11h1 and

11h2) are recurrent and hence there is a non-zero steady state probability of being in

each of these states. This in turn ensures a non-zero long-term throughput obtained in

at least one of the two states (00h1 and 00h2) under P1, P2 or P3.

Theorem 5.2.2. Energy consumption policy P2 cannot be optimal for any choice of the

parameters p,q,h1,h2, p(h1) and p(h2)

Proof:

We prove this theorem by contradiction. Let us assume there exists p,q,h1,h2, p(h1)

and p(h2) such that P2 is optimal. Since the energy arrival process is assumed to be

independent of the channel fade state, we can also look at the system evolution as a 4

state Markov chain based on the energy states at the transmitter and the receiver i.e. the

sates are 00,01,10 and 11. Once the system is in state 11, it looks at the channel fade

state ht . Under policy P2, if ht = h1, it chooses to transmit. This event occurs with

probability p(h1). With probability p(h2) = 1− p(h1), it chooses not to transmit and

remain in the state 11. Under P1, the throughput obtained is given by

T (P1) = π4 p(h1) log(1+h1) , (5.7)

where π4 is the steady state probability of being in state 11 under P1.
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Assume p(h2) ≥ p(h1). We now propose the following energy allocation policy P̃. In

the state 11, do not transmit if the channel fade state is h1. If the channel fade state is h2,

generate a Bernoulli random variable X with success probability p(h1)
p(h2)

, independently of

the channel fade state and transmit if X = 1. Note that under P̃, the overall probability of

transmission once the system is in 11 state is P [ht = h2 and X = 1] = P [h2]P[X = 1] =

p(h2)
p(h1)
p(h2)

= p(h1). This is same as the transmit probability in state 11 under policy P1.

This ensures that the steady state probability of being in state 11 under P̃ is same as the

steady state probability of being in state 11 under P2.

Next observe that the long-term throughput obtained by P̃ is given by

T (P̃) = π4 p(h2)
p(h1)

p(h2)
log(1+h2) = π4 p(h1) log(1+h2) . (5.8)

Since P2 is optimal T (P2)≥ T (P̃) which results in

π4 p(h1) log(1+h1)≥ π4 p(h1) log(1+h2)

log(1+h1)≥ log(1+h2)

h1 ≥ h2

This is a contradiction as we started with h1 < h2.

Now consider the case when p(h2) < p(h1). We now propose the following energy

allocation policy P̃. In the state 11, transmit if the channel fade state is h2. If the

channel fade state is h2, generate a Bernoulli random variable X with success proba-

bility p(h1)−p(h2)
p(h1)

, independently of the channel fade state and transmit if X = 1. Note

that under P̃, the overall probability of transmission once the system is in 11 state is

P [ht = h1 and X = 1] + p(h2) = P [h1]P[X = 1] + p(h2) = p(h1)
p(h1)−p(h2)

p(h1)
+ p(h2) =

p(h1). This is same as the transmit probability in state 11 under policy P1. This ensures

that the steady state probability of being in state 11 under P̃ is same as the steady state

probability of being in state 11 under P2.
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Next observe that the long-term throughput obtained by P̃ is given by

T (P̃) = π4

[
p(h1)

p(h1)− p(h2)

p(h1)
log(1+h1)+ p(h2) log(1+h2)

]
= π4 p(h1) log(1+h1)+ p(h2)

(
log(1+h2)− log(1+h1)

)
.

Since P2 is optimal T (P2)≥ T (P̃) which results in

π4 p(h1) log(1+h1)≥ π4 p(h1) log(1+h1)+ p(h2)
(
log(1+h2)− log(1+h1)

)
p(h2)

(
log(1+h2)− log(1+h1)

)
≤ 0

h1 ≥ h2

This is a contradiction as we started with h1 < h2.

2

Remark 5.2.1. From theorem 1, we know that at least one energy consumption pol-

icy among P1,P2,P3 and P4 is optimal. The throughput obtained by P1 is zero while

theorem 2 proves that P2 cannot possibly be optimal. Thus either P3 or P4 will be

throughput optimal. In turn, if we can evaluate system performance, comparing P3 and

P4 would result in an optimal energy utilization policy.

Theorem 5.2.3. If the optimal policy for some p,q,h1,h2, p(h1) and p(h2) is P4, then

for every h′1 > h1 with the same distribution for channel fade state and the energy arrival

process, the optimal policy P4. In essence, if we were to fix all the system parameters

except h1, PT (h1) is monotonically increasing in h1.

Proof: We prove this by contradiction. Assume that there exists h1 and h′1 that violate

the theorem. Observe that by choosing to transmit at both h1 and h2 (P4), we get a cor-

responding x∗(4,2),x∗(5,2)> 0. Let x(4,1),x(5,2)> 0 be the state action frequencies
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under policy P3 (transmit at h2 but not at h1). As P4 is optimal, we have

x∗(4,2) log(1+h1)+ x∗(5,2) log(1+h2)≥ x(5,2) log(1+h2) (5.9)

Now, with h′1 > h1 and the same distribution for channel fade state, we have that P3 is

optimal. Note that the policy P3 will give the same state action frequencies as before i.e.

x(4,1),x(5,2) > 0 because all the transition probabilities of the MDP are unchanged.

In the same way, policy P4 will give the same state action frequencies as before i.e.

x∗(4,2),x∗(5,2)> 0. Assuming the contrary, we have that P3 is optimal for the case of

h′1. Hence we have

x(5,2) log(1+h2)≥ x∗(4,2) log
(
1+h′1

)
+ x∗(5,2) log(1+h2) (5.10)

From (5.9) and (5.10), we have

x∗(4,2) log(1+h1)+ x∗(5,2) log(1+h2)≥ x∗(4,2) log
(
1+h′1

)
+ x∗(5,2) log(1+h2)

(5.11)

which implies h1 ≥ h′1 which is a contradiction.

2

Theorem 5.2.4. Let p,q,h2, p(h1) and p(h2) be fixed. As we vary h1 from 0 to h2, we

have the following.

1. There exists a unique 0 < h0 < h2, such that P3 is optimal for h1 ≤ h0 and P4 is

optimal for h1 > h0.

2. Let XT and XR be geometric random variables with parameters p and q respec-

tively. Then h0 can be determined by the following equation

log(1+h2)

E[Z]+ 1
p(h2)

=
p(h1) log(1+h0)+ p(h2) log(1+h2)

E[Z]
, (5.12)
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where Z = max{XT ,XR}.

Proof: To prove this theorem, we look at the average throughput obtained by P3 and

P4 as we vary h1 from 0 to h2.

Let us first fix the policy P3. Recall that under P3, we choose to transmit in 11 state

only if the channel fade state is h2. Thus, the throughput obtained is given by

T (P3) = π4
(

p(h2) log(1+h2)
)
. (5.13)

Note that the steady state probability π4 does not depend on h1. It varies only with p,q

and the transmit probability in the state 11 (which is p(h2) under P3). Thus we see

that T (P3) does not vary with h1. It remains the same as we vary h1 from 0 to h2. In

essence, the plot of T (P3) vs. h1 is a horizontal line.

Next, let us fix the policy P4. Recall that under P4, we choose to transmit in the 11 state

for both h1 and h2. The throughput obtained by P4 is thus given by

T (P4) = π
′
4
(

p(h1) log(1+h1)+ p(h2) log(1+h2)
)

(5.14)

where π ′4 is the steady state probability of being in state 11 under energy consumption

policy P4. Observe that as before, π ′4 is a function of p,q and transmit probability in

the state 11 (which is 1 under P4). It does not vary with h1. Therefore, we see that the

throughput obtained is a monotonically increasing function of h1.

Lemma 5.2.2. At h1 = 0, T (P3)> T (P4).

Proof: For h1 = 0, from (5.13) and (5.14), we have

T (P3) = π4
(

p(h2) log(1+h2)
)
. (5.15)
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and

T (P4) = π
′
4
(

p(h2) log(1+h2)
)
. (5.16)

Next, from Blackwell’stheorem, we know that π4 = 1
T 11

and π ′4 = 1
T ′11

. Let the time

taken for an energy arrival at the transmitter be denoted by XT . Note that XT is geometric

with parameter p. Similarly, let the time taken for an energy arrival at the receiver be

denoted by XR, which is a geometrically distributed random variable with parameter q.

The time taken to reach state 11 from 00 is now given by Z = max{XT ,XR}. Note that

the minimum value Z can take is 1 and hence E[Z] > 1. By linearity of expectations,

we now have

T11 = p(h1)×1+ p(h2)×E[Z]. (5.17)

Similarly,

T ′11 = E[Z] (5.18)

As E[Z]> 1, we have T11 < T ′11 resulting in π4 > π ′4. This, along with (5.15) and (5.16)

proves the lemma.

2

Lemma 5.2.3. At h1 = h2, T (P3)< T (P4).

Proof: For h1 = h2, we have only a single fade state possible. P3 then translates into

a random policy which chooses to transmit in the state 11 with probability p(h2). Note

that the evolution of the energy states is a stochastic process. At every instant when the

state 00 is achieved, the system refreshes. We consider these instances as epoch.

Let T denote the time between epochs under P3. We then have E[T ] = E[Z] + 1
p(h2)

.

The second term 1
p(h2)

comes because under P3, once in the state 11, we have a random

policy with waiting time being a geometric random variable with parameter p(h2).

Next, let T ′ denote the time between epochs under P4. We then have E[T ′] = E[Z]+1.

Under P4, we always transmit in the 11 state.
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From renewal reward theory, we have

T (P3) =
E[R]
E[T ]

=
log(1+h2)

E[Z]+ 1
p(h2)

(5.19)

Similarly,

T (P4) =
E[R]
E[T ]

=
log(1+h2)

E[Z]+1
(5.20)

As we assumed p(h1)> 0, we have p(h2)< 1 resulting in T (P3)< T (P4), completing

the proof.

2

From lemma 3 and lemma 4, we have T (P3) > T (P4) for h1 = 0 and T (P3) < T (P4)

for h1 = h2. Moreover, we know that T (P3) is constant with h1 while T (P4) is a con-

tinuous function in h1. By intermediate value theorem, there exists a 0 < h0 < h1 such

that at h1 = h0, T (P3) = T (P4). Also, since T (P4) is a strictly increasing function in

h1, we have that for h1 ≥ h0, T (P3) ≥ T (P4), and for h1 > h0, T (P4) > T (P3). The

first part of the theorem then follows as we have already established that one of P3 or

P4 is optimal.

Also, observe that we have T (P3) = T (P4) at h1 = h0. We then have the second part of

the theorem from (5.19) and (5.20).

2

We next prove the monotonicity of the optimal energy consumption policy with respect

to the energy arrival parameters p and q. To prove this, we need a the following result
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from probability.

Lemma 5.2.4. Let X be a geometric random variable with parameter p and Y be a

geometric random variable with parameter q. Let Z = max{X ,Y}. Also, let X ′ and Y ′

be geometric random variables with parameters p′ and q′ respectively such that p′ > p

and q′ > q. Again, let Z′ = max{X ′,Y ′}. Then we have

E[Z′]> E[Z]. (5.21)

Proof: The proof of this lemma is left to the reader.

2

Theorem 5.2.5. Monotonicity in energy arrival parameters: If the optimal policy

for system parameters p,q,h1,h2, p(h1) and p(h2) is P4. The optimal policy for every

p′,q′,h1,h2, p(h1) and p(h2) such that p′ > p and q′ > q is P4.

Proof:

From renewal reward theory, we know that the throughput obtained by P3 and P4 for

system parameters p,q,h1,h2, p(h1) and p(h2) is given by

T (P3) =
log(1+h2)

E[Z]+ 1
p(h2)

T (P4) =
p(h1) log(1+h1)+ p(h2) log(1+h2)

E[Z]+1
,

where Z = max{XT ,XR} and XT ,XR are geometric random variables with parameters p

and q respectively.

As P4 is optimal, we have

p(h1) log(1+h1)+ p(h2) log(1+h2)

E[Z]+1
≥ log(1+h2)

E[Z]+ 1
p(h2)

. (5.22)
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Next, for the system parameters p′,q′,h1,h2, p(h1) and p(h2), the throughput obtained

by P3 and P4 is given by

T ′(P3) =
log(1+h2)

E[Z]−δ + 1
p(h2)

T ′(P4) =
p(h1) log(1+h1)+ p(h2) log(1+h2)

E[Z]−δ +1
,

where δ = E[Z′]−E[Z]. Observe that E[Z′] ≥ 1 (the minimum value Z′ can take is 1)

and we have δ ≤ E[Z]−1. From lemma 4, we know that δ > 0. Next, we have

T ′(P4)−T (P4)=
(

p(h1) log(1+h1)+ p(h2) log(1+h2)
)
× δ(

E[Z]+1
)(

E[Z]−δ +1
) .

(5.23)

Similarly,

T ′(P3)−T (P3) = log(1+h2)×
δ(

E[Z]+ 1
p(h2)

)(
E[Z]−δ + 1

p(h2)

) . (5.24)

Using simple algebra, one can show that

T ′(P4)−T (P4)≥ T ′(P3)−T (P3) (5.25)

As we started with T (P4)≥ T (P3), we have the required result.

2

5.2.2 n-Fade state channel

Having looked at the case of binary channel, we now move on the case of discrete

channel fade state where ht = hi with probability p(hi) for i = 1,2, . . . ,n. Without loss

of generality, we assume 0 < h1 < h2 < · · · < hn and p(hi) > 0∀i. Our objective, as
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before, is to find the optimal action in the state 11. Recall that we look only at the the

class of stationary deterministic policies as we are assured of optimality through at least

one of them.

Theorem 5.2.6. Monotonicity in channel fade state: The optimal energy consump-

tion policy is of the form 1T (hi) = 1R(hi) = 1 for i ≥ m and 1T (hi) = 1R(hi) = 0 for

i < m for some m ∈ {1,2, . . . ,n}.

Proof: The proof of this theorem is on the same lines as that of theorem 2 and is hence

left upon the reader.

2

Remark 5.2.2. There are a total of 2n deterministic stationary policies possible with a

n− fade state system. Theorem 6 proves that one needs to only check n policies of the

form specified above to obtain optimality. In turn, if it were possible to evaluate system

performance, comparing these n policies will return the optimal energy consumption

policy.

Theorem 5.2.7. For a n− fade state channel, if the optimal policy for energy parameters

is p and q is 1T (hi) = 1R(hi) = 1 for i≥ m and 1T (hi) = 1R(hi) = 0 for i < m, then the

optimal policy for energy parameters p′ and q′ such that p′ > p and q′ > q, the optimal

policy will be 1T (hi) = 1R(hi) = 1 for i ≥ m′ and 1T (hi) = 1R(hi) = 0 for i < m′ such

that m′ ≤ m.

Proof: The proof of this theorem is on the same lines as theorem 5 and is hence left on

the reader to complete.

2
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CHAPTER 6

Simultaneous Wireless Information and Power Transfer

system

In this chapter, we move on to the case of a Multiple Input Multiple Output system.

We consider a practical SWIPT system where two multi-antenna stations perform sep-

arate PT and IT to a multi-antenna mobile that dynamically assigns each antenna for

either PT or IT. The antenna partitioning results in a tradeoff between the MIMO IT

channel capacity and the PT efficiency. The optimal partitioning for maximizing the

IT rate under a PT constraint is a NP-hard integer program. We propose solving it via

efficient greedy algorithms with guaranteed performance. To this end, we prove that the

antenna partitioning problem one that optimizes a sub modular function over a matroid

constraint. This structure allows the application of two well known greedy algorithms

that yield solutions no smaller than the optimal one scaled by factors (1 - 1/e) and 1/2,

respectively.

Consider the system where a mobile is receiving information/data from the basestation

and power from a power beacon. Let Nt , Nr, and Np, denote the numbers of antennas

at the base station, at the mobile, and at the power beacon, respectively. The MIMO

channel from the base station to the mobile is represented by the complex Nr×Nt matrix

H. Power is beamed from the power beacon to the mobile and the beamforming vector

is denoted as f. Let H′ denote the MIMO channel from the power beacon to the mobile.

The effective MISO channel after beamforming is defined as g = H′f.

Let sn ∈ {0,1} indicates whether the n-th receiver antenna of the mobile is assigned

for information transfer (sn = 1) or power transfer (sn = 0). For ease of notation, the

indicator variables are grouped into a vector s = [s1,s2, · · · ,sNr ]
†. Let S be a Nr ×



Base Station Power Beacon

Mobile

Data Power

Figure 6.1: A system supporting simultaneous wireless information and power transfer

Nr diagonal matrix with Sii = 1 if si = 1 and Sii = 0 if si = 0. We first consider the

CSIR case, where the transmitter does not have the knowledge of the channel state H.

The case of CSIT is discussed in Section 6.4. With CSIR, without loss of generality,

assuming equal power allocation over all transmit antennas, the mutual information can

be written as

MI= logdet
(

I+
P
Nt

SHH†S†
)
. (6.1)

Note that the MIMO channel matrix SH used in (6.1) selects the rows from H corre-

sponding to receiver antennas assigned for information transfer.

Given the antenna assignment specified by s, maximum-ratio combining is applied at

the mobile to maximize the received power that is written as

Pr =
Nr

∑
n=1

(1− sn)|gn|2 (6.2)

where gn is the n-th element of g. The power Pr is required to exceed the threshold

pc > 0 that represents fixed circuit-power consumption.

6.1 Problem Formulation

Under this model, the problem is to partition the set of receiver antennas of the mobile

into two parts, the set of antennas dedicated for information transfer that maximizes the

rate of information transfer or mutual information from the base station to the mobile,

while the remaining antennas satisfy the circuit power constraint. Formally, we are
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interested in solving the following optimization problem, where the objective function

is the mutual information.

(P1)

max
{s}

logdet
(

I+
P
Nt

SHH†S†
)

s.t. sn ∈ {0,1}, n = 1,2, · · · ,Nr

Nr

∑
n=1

(1− sn)|gn|2 ≥ pc.

This is an integer programming problem which is typically NP-hard to solve. Next,

we show that there is a lot of structure to the problem that makes it simpler to solve

or approximate, compared to a typical integer programming problem. In the next two

sections, we describe how to use that structure to find a provably approximate optimal

solution.

Remark 6.1.1. If we relax the problem (P1) to allow sn ∈ [0,1], it corresponds to al-

lowing dynamic power splitting of the received signal at all antennas for the purposes

of information transfer and power transfer. However, it is worth noting that dynamic

power splitting is challenging to incorporate in practice. Moreover, with sn ∈ [0,1],

problem (P1) is a concave program since logdet(.) is a concave function, and the cir-

cuit power constraint is linear. Hence the relaxed problem can be solved efficiently.

The dynamic power splitting problem for the case of single antenna at the base station

and the mobile (SISO) has been solved in Liu et al. (2013). In addition, for the single

antenna at the base station and multiple antennas at mobile (SIMO) case, solution to a

simplified objective function for the antenna selection problem with binary constraint

sn ∈ {0,1} has been found in Liu et al. (2013).

6.2 1−1/e-Approximate Solution

In this section, rather than finding an optimal solution to problem P1, we work towards

finding algorithms that have efficient approximation ratio, that is defined as follows.
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Definition 6.2.1. An algorithm A is defined to have an approximation ratio of a ≤ 1,

if for any instance (input values) of the problem, the ratio of the objective function OBJ

evaluated at the output a of the algorithm is at least a times the optimal value OPT, i.e.,

a≤mininput
OBJ(a)
OPT .

Remark 6.2.1. All the derived results in this paper on the approximation ratios are

worst case, and hence do not depend on the distribution of channel matrix H.

To proceed further, we need some preliminaries.

Definition 6.2.2. Let f be a set function defined over all subset of U , f : 2U → R+.

Then f is called monotone if

f (S∪{a})− f (S)≥ 0,

for all a ∈U,S⊆U,a /∈ S. In addition, f is called a sub-modular function if it satisfies

f (S∪{a})− f (S)≥ f (T ∪{a})− f (T ),

for all elements a ∈U,a /∈ T and all pairs of subsets S⊆ T ⊆U .

Essentially, for a sub-modular function the incremental gain from adding an extra ele-

ment in the set decreases with the size of the set. Our interest in sub-modular function

is because of the sub-modularity of the mutual information expression.

Lemma 6.2.1. The mutual information expression (6.1) is sub-modular in the number

of mobile receiver antennas.

Proof: See Theorem 4 Vaze and Ganapathy (2012). 2

We now describe an algorithm to obtain a solution to problem P1 that has a provable

approximation ratio.

Definition 6.2.3. Multi-Linear Extension: Let S be a set of cardinality n, and consider

a function that assigns value to each subset of S as f : 2S→R+. For each subset T ⊆ S,
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let xT = [x1 . . .xn] be the n-length vector, where xi = 1 if the ith element of S is contained

in T and xi = 0 otherwise. Thus, we can think of f as a function assigning value to each

vertex of {0,1}n hypercube. The multi-linear extension F extends f to whole of [0,1]n

such that for x ∈ [0,1]n

F(x) = E{ f (x̂)}= ∑
R⊆S

f (R)∏
i∈R

xi ∏
j/∈R

(1− x j),

where the sum is over all subsets R of S, and x̂ denotes the random vector whose jth

coordinate is independently 1 with probability x j and 0 otherwise.

Note that S is our case is the set of receiver antennas [1 : Nr] with cardinality n = Nr.

Definition 6.2.4. Matroid: Consider a set S of n elements. An independence family

I ⊆ 2S of subsets of S is called a matroid M (S,I ) if i) X ⊆Y , and Y ∈I then X ∈I

and ii) X ∈I , and Y ∈I with |X | ≤ |Y |, then ∃ {e} ∈ Y\X such that X ∪{e} ∈I .

Consider the following optimization problem P2 :

max
x∈C(M )

f (x),

where f is a monotone sub-modular function, and C(M ) = convex hull {1I : I ∈I },

where 1I is the indicator vector of length |S|, where 1I( j) = 1 if j ∈ I. Thus, P2 is to

maximize a sub-modular function over the convex hull of a matroid.

Using the following Lemma 6.2.2, we show that problem P1 is of the form P2.

Lemma 6.2.2. The linear circuit power constraint of P1 is a matroid.

Proof: The linear circuit power constraint of P1 is equivalent to −∑
Nr
n=1(1− sn)|gn|2 ≤

−pc. Thus, if −∑
Nr
n=1(1− sn)|gn|2 ≤ −pc is true for a set of receiver antennas S, then

clearly it is true for a subset T ⊆ S, thus satisfying axiom i) of matroid definition. Axiom

ii) can also be verified immediately.

2
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Definition 6.2.5. Weight of an independent set: Consider a set S of n elements and a

matroid M = (S,I ) of subsets of S. Let w j for j = 1,2, . . . ,n be the weights of the

elements of S. Let T ∈M and let xT = [x1 . . .xn] be the n-length vector, where xi = 1 if

the ith element of S is contained in T and xi = 0 otherwise. The weight of the subset T

is then given by

w(T ) =
n

∑
i=1

wixi (6.3)

Given a set S, a matroid M = (S,I ), and the weights of the elements w j ∀ j, the

maximum weight independent set is given by argmax
I∈I

w(I).

Consider the following greedy algorithm (GREEDY) for finding the maximum weight

independent set problem Schrijver (2003). GREEDY

1. Rearrange the elements of S and obtain S = {e1,e2 . . . ,en} such that we1 ≥ we2 ≥

·· · ≥ wen .

2. Initialize X ← /0.

3. For i = 1 to n, do

if (X + ei ∈M ) and w(X + ei)≥ w(X) then X ← X + ei.

4. Output X .

Lemma 6.2.3. The greedy algorithm outputs the optimal solution to the maximum

weight independent set problem Schrijver (2003).

From hereon, we concentrate our attention on solving P2 and obtaining theoretical

bound on the approximation ratio.

To solve P2 : a continuous greedy algorithm has been proposed in Vondrák (2008), that

is described as follows.

The Continuous Greedy Algorithm:

Given matroid M = (S,I ), and a function f .
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1. Let δ = 1
n2 , where |S|= n. Start with t = 0 and x(0) = (xt(1) . . .xt(n)) = 0.

2. Let Rt be a vector of size n, where Rt( j) = 1 independently with probability

xt( j). For each j ∈ S, estimate ω j(t) = E{ fR(t)( j)} say by taking the average of

n5 samples, where

fR(t)( j) = f (R(t) ∪{ j})− f (R(t)).

3. Let I(t) be a maximum weight independent set in M computed by GREEDY,

according to weights ω j(t). Let x(t +δ ) = x(t)+δ .1I(t).

4. Increment t := t +δ if t < 1, go to Step 2. Otherwise, return x(1).

Lemma 6.2.4. Vondrák (2008) The fractional solution x of the optimization problem

P2 found by the continuous greedy algorithm satisfies

F(x) = E{ f (x̂)} ≥
(
1−1/e

)
OPT

with high probability, where OPT is the optimal value of P2.

Note: All high probability results in this paper mean the error falls exponential in n.

The solution x output by the continuous greedy algorithm may be fractional. Hence

an additional rounding method called the pipage rounding (described below) is used to

obtain an integer solution from x.

Pipage Rounding:

We now discuss the pipage rounding technique, developed by Ageev and Sviridenko

Ageev and Sviridenko (2004), and adapted for the matroid polytope by Calinescu et al.

Calinescu et al. (2007), to convert the fractional solution obtained by the continuous

greedy algorithm to an integral solution.

Lemma 6.2.5. Given a matroid M = (S,I ), and a monotone sub modular function
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f : 2S → R+, and a fractional solution x ∈ C (M ), there exists a polynomial time

randomized algorithm, which returns an independent set X ∈ I of value f (X ) ≥

(1− o(1))F(x), where F is the multi-linear extension, and the o(1) term can be made

polynomially small in n = |S|.

Given a y ∈ [0,1]n, we say that i is fractional in y if 0 < yi < 1, and for y ∈ C (M ),

define y(A) = ∑i∈A yi. Then, a set A ⊆ S is defined to be tight if y(A) = rM (A), where

rM (A) = max{|I| : I ⊆ A and I ∈I } is the rank function of the matroid.

The pipage rounding algorithm is described below.

Input : the fractional solution y.

1. Find A, the minimal tight set containing at least 2 fractional variables i, j.

2. Let yi j(ε) be the vector obtained by adding ε to yi, subtracting ε from y j and

leaving the other values unchanged. Define ε
+
i j (y) = max lbraceε ≥ 0 | yi j(ε) ∈

C (M )} and ε
−
i j (y) = min{ε ≤ 0 | yi j(ε) ∈ C (M )rbrace.

3. If F(yi j(ε
+
i j ))> F(yi j(ε

−
i j )), then y← yi j(ε

+
i j ) else y← yi j(ε

−
i j ).

4. If y is fractional, go to step 1. Otherwise, return y.

Lemma 6.2.6. Ageev and Sviridenko (2004) The integer solution xint for problem P2

obtained by applying pipage rounding to the fractional output x of the continuous greedy

algorithm satisfies F(xint)≥
(
1−1/e

)
OPT with high probability.

Finally, we describe the main result of this section as follows.

Theorem 6.2.1. The pipage rounded solution xint of the fractional solution x found by

the continuous greedy algorithm for the antenna partitioning problem P1 satisfies

f (xint)≥
(
1−1/e

)
OPT

with high probability, where OPT is the optimal value of the mutual information in P1.
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Proof: From Lemma 6.2.1 and 6.2.2, problem P1 is a special case of problem P2, and

the result follows from Theorem 6.2.1.

2

Thus, exploiting the sub-modularity of the mutual information expression and matroidal

circuit power constraint, the pipage rounding + greedy continuous algorithm gives us

a guaranteed worst case approximation ratio of
(
1−1/e

)
. Even though the guarantees

obtained by the pipage rounding + greedy continuous algorithm are good, the time com-

plexity of running both the algorithms is significant. The continuous greedy algorithm

starts with t = 0 and increments in the direction of the maximum weight independent

set with a size of 1
n2 (n = Nr). In each increment, the weights of elements are found

by taking average of n5 independent samples. Thereafter, finding the maximum weight

independent set has a time complexity of O(n logn). This results in an overall time

complexity of O(n2(n5(n)+ n logn)) = O(n8). Subsequently, the pipage rounding al-

gorithm takes n2 iterations to convert the fractional solution given by the continuos

greedy algorithm into an integral solution. Thus, the overall time complexity of the

1−1/e algorithm is O(n8).

Next, we propose a simpler greedy algorithm and show that it achieves a 1/2 approxi-

mation to P1.

6.3 1/2-Approximate Solution

Greedy Algorithm (GA): Start with set s0 = 0. At step i, si = si−1 +[0 . . .0 1︸︷︷︸
i?

0 . . .0],

where

i? = argmax
i∈{1,2,...,Nr}

logdet
(

I+
P
Nt

SiHH†S†
i

)
,

where si = si−1+[0 . . .0 1︸︷︷︸0 . . .0] and Si is the diagonal matrix corresponding to si as

mentioned before. If si? satisfies
n
∑
j=1

(1− si?)|gn|2 ≥ pc, repeat for i = i+1, else, output
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si−1.

The following result is known for using greedy algorithms for maximizing monotone

sub-modular functions with matroid constraint.

Theorem 6.3.1. Nemhauser et al. (1978) For a non-negative, monotone sub-modular

function f and a matroid constraint, let subset S be obtained by selecting elements one

at a time, each time choosing an element that provides the largest marginal increase in

the function value that is feasible with respect to the matroid constraint. Let S? be a set

that maximizes the value of f over all subsets of the matroid. Then f (S)≥ 1
2 f (S?).

Theorem 6.3.2. The objective function of problem P1 evaluated at the greedy algorithm

GA’s output ≥ OPT/2, where OPT is the value of the optimal solution.

Proof: From Lemma 6.2.1, we know that the objective function of P1 is monotone and

sub-modular. Moreover, the linear circuit power constraint is a matroid from Lemma

6.2.2. Thus, using Theorem 6.3.1, we have that the greedy algorithm gives a 1/2 ap-

proximation to P1.

2

If S has n elements, the 1/2 approximate algorithm will terminate in a maximum of n

iterations, as a new element is included in every iteration. In each iteration, the element

with the highest marginal gain can be obtained by finding the maximum of n entries.

This results in a running time complexity of O(n2).

Thus, even though, the continuous greedy algorithm gives a better bound on perfor-

mance than the greedy algorithm, it has a running time complexity of O(n8) as com-

pared to O(n2) for the greedy algorithm. Hence, both the algorithms have their own

significance and which algorithm to be used depends on the problem at hand.

In this section, we considered the CSIR case, where only the receiver has CSI and uses

it judiciously to obtain an efficient solution to the antenna splitting problem. Next, we

discuss the more general scenario where the base station also has CSI, typically referred
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to as the CSIT.

6.4 CSIT

In this section, we assume that the base station has CSIT for the channel H towards the

mobile. As before, let sn ∈ {0,1} indicates whether the n-th receiver antennas at the

mobile is assigned for information transfer (sn = 1) or power transfer (sn = 0). With

CSIT, the power allocation (input covariance matrix) at different antennas of the base

station depends on receiver antenna assignment vector s, and the capacity is given by

C = max
Q,tr(Q)≤P

logdet
(

I+SHQH†S†
)
,

= max
pi,∑

Nr
i=1 pi≤P

Nr

∑
i=1

log(1+ siλi(s)pi), (6.4)

where λi(s) are the eigen-values of the submatrix H(s) of H which is obtained by keep-

ing all rows of H for which si = 1, and without loss of generality we have assumed that

Nt ≥ Nr. The power allocation pi at the basestation depends on the receiver antennas

allotted for data transfer, i.e., pi depend on si, and the optimal power allocation is given

by waterfilling.

Compared to (6.1), the expression inside the max in (6.4) is simple (sum of Nr parallel

channels), however, together with the max, the overall capacity expression is more com-

plicated. Moreover, note that the choice of si and pi depend on each other. So solving

the CSIT case, is far more non-trivial than the CSIR case.

The power received from the power beacon is same as in the CSIR case, given by

Pr =
Nr

∑
n=1

(1− sn)|gn|2, (6.5)

where Pr is required to exceed the threshold pc > 0 that represents fixed circuit-power

consumption.
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So the integer program P3 is

(P3)

max
{s}

max
pi,∑

Nr
i=1 pi≤P

Nr

∑
i=1

log(1+ siλi(s)pi)

s.t. sn ∈ {0,1}, n = 1,2, · · · ,Nr

Nr

∑
n=1

(1− sn)|gn|2 ≥ pc.

Even though the capacity expression (6.4) involves a maximization, it is still a sub-

modular function as shown in Thekumparampil et al. (2014). We summarize the result

of Thekumparampil et al. (2014) as follows.

Theorem 6.4.1. For a set S, and fixed si, i ∈ S, the rate

R(S) = max
pi,∑i∈S pi≤P

∑
i∈S

log(1+ siλi(s)pi),

obtained with a set S of parallel Gaussian channels using the optimal waterfilling algo-

rithm is a sub-modular function over the set of channels S.

It is easy to show that (6.4) is a monotone function, since adding more receiver antennas

cannot decrease the rate. Thus, we have that similar to the CSIR case, P3 is a special

case of problem P2, and we get results on solving P3 as described below.

Theorem 6.4.2. The pipage rounded solution xint of the fractional solution x found by

the continuous greedy algorithm on P3 satisfies

f (xint)≥
(
1−1/e

)
OPT

with high probability, where OPT is the optimal value of the mutual information in P3.

Theorem 6.4.3. The objective function of problem P3 evaluated at the greedy algorithm

GA’s output ≥ OPT/2 for solving P3, where OPT is the value of the optimal solution

of P3.
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6.5 Simulation Results

In this section, we illustrate the numerical performance of the two approximation al-

gorithms presented in this paper to maximize the mutual information while satisfying

the circuit power constraint. For the CSIR case, in Fig. 6.2, we plot the throughput

(mutual information) as a function of receiver antennas Nr for fixed Nt = 5 and circuit

power constraint of 0.2Nr with total transmit power P = 5W = 6.9dB under a Rayleigh

fading assumption on the channel matrix H. We scale the circuit power constraint with

Nr since larger the number of receiver antennas more is the power required for their

operation. As can be seen from Fig. 6.2, both the continuous greedy and the greedy

algorithm perform better than their worst case bound of 1−1/e and 1/2, respectively.

The continuous greedy algorithm performs better than the greedy algorithm, however,

its running complexity is also much higher and typically of the order N8
r , while greedy

algorithm runs in N2
r time.

In Fig. 6.3, we plot the throughput as a function of receiver antennas Nr for the CSIT

case, with identical parameters used for Fig. 6.2. Once again we see that the continuous

greedy and the greedy algorithm perform better than their worst case bound of 1−1/e

and 1/2. An important observation one can make from Fig. 6.2 and Fig. 6.3, is that

the greedy algorithm outperforms the continuous greedy + pipage rounding algorithm,

even though, the worst-case performance guarantees of the continuous greedy + pipage

rounding algorithm is better than the greedy algorithm.
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Figure 6.2: Mutual information comparison with different algorithms for CSIR
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