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ABSTRACT

This report studies the behaviour of current flow across interfaces involving ferromagnetic materials.
The spin-dependence of such a current flow shows various significant properties that are applied in a
lot of recent devices, like Giant Magneto Resistance (GMR), Tunnel Magneto Resistance (TMR), Spin-
Transfer Torque (STT), etc. Also, recently there is a huge demand for the reduction in size of all kinds
of electronic devices including the memory-based systems. So, using quantum wire and quantum dot
based devices seem to offer better alternatives.

We have concentrated on the behaviour of TMR and STT in magnetic tunnel junctions and metal-
ferromagnet interfaces respectively for nanowires (or nanopillars) of various sizes. We have also com-
pared those properties to junctions and interfaces that are spread few orders of magnitude wider than the
de Broglie wavelength of the electrons or holes. Hence, we studied how lateral confinement changes the
spin-dependent properties.

First, the electron wavefunction of the quantum wire was simulated using various methods by solving
the time-independent Schrodinger’s equation. Then, the allowed eigen energies obtained by solving that
equation were used to study the behaviour of various wave vectors that were allowed to flow through the
nanowires. This helped us in analysing the behaviour of several spin-dependent properties.
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CHAPTER 1

Introduction

1.1 Semiconductor nanostructures

1.1.1 Importance and relevance

When one or more of the dimensions of a solid are reduced sufficiently, its physicochemical characteris-
tics significantly change from those of the bulk solid. With reduction in size, novel electrical, mechani-
cal, chemical, magnetic, and optical properties can be introduced, which is what is actually used in a lot
devices nowadays. The resulting structure is then called a low-dimensional structure (or system). The
confinement of electrons and holes to these low-dimensional structures changes a lot of properties. The
size effects are so much that quantum effects need to be taken into account.

Some of the physicochemical properties shown by the low-dimensional materials are not shown by
the corresponding large-scale structures of the same composition. Nanostructures are low-dimensional
structures with one or more of their dimensions falling into nanometer regime or molecular scales.
These nanostructures constitute a bridge between molecules and bulk materials. Suitable control of the
properties and responses of nanostructures can lead to new devices and technologies.

Ever since the discovery/invention by Esaki and Tsu in the 1970s, semiconductor quantum wells and
superlattices have evolved from scientific curiosities to a means of probing the fundamentals of quantum
mechanics, and more recently into wealth-creating semiconductor devices[1].

1.1.2 Classification

Classifying different low-dimensional structures based on the number of dimensions confined (fig 1.1):

Three-dimensional (3D) structure or bulk structure: No quantization of the particle motion
occurs, i.e., the particle is free. Its like just considering a bulk of semiconductor.

Two-dimensional (2D) structure or quantum well: A quantum well is a potential well with al-
lowing only discrete energy values. It confines electrons or holes in one dimension and allows free
propagation in two dimensions. Quantum wells are formed in semiconductors by having a material like
gallium arsenide sandwiched between two layers of a material with a wider bandgap, like aluminium
arsenide.

One-dimensional (1D) structure or quantum wire: In condensed matter physics, a quantum wire
is an electrically conducting wire in which quantum effects influence the transport properties. It confines
electrons or holes in two spatial dimensions and allow free propagation in the third. The carbon nanotube
is an example of a quantum wire.



Figure 1.1: Quantum wells, wires and dots

Zero-dimensional (0D) structure or quantum dot: A quantum dot is a nanocrystal made of semi-
conductor materials that are confined in a space small enough to exhibit quantum mechanical properties.
Specifically, its excitons are confined in all three spatial dimensions. The electronic properties of these
materials are intermediate between those of bulk semiconductors and of discrete molecules.

In this report, we are interested only in modelling the properties influenced by the quantum wire
structures alone. Especially the conducting properties in the presence of electric field with some modi-
fications in the geometry. Influence of magnetic field is not considered here.

1.2 Quantum wires

1.2.1 Properties

A conductor will show ohmic behavior as long as its dimensions are much larger than (1) the electron
de Broglie wavelength, (2) the mean free path, and (3) the phase-relaxation length[2].

Quantum wires are mesoscopic devices which are good conductors in one direction but quantized
in the orthogonal directions, which leads to quantized values of the conductance. It follows from very
general arguments (see [2]) that the conductance per transverse mode per electron is equal to e2

h . Hence,
the conductance of a quantum wire is 2e2M

h where M is the number of modes in the energy range
µ1 < E < µ2 and µ1 and µ1 are the chemical potentials on either side of the conductor. The factor of 2

accounts for the two possible spins of the electron.

1.2.2 Application

1. Optoelectronics, microelectronics, field emission devises, photonics, clothing fabric, and elec-
tronic device applications

2. As photon waveguides, when two quantum wires cross each other the juncture acts as a quantum
dot. It is therefore possible that semiconductor quantum wire crossings will be important to the
future of digital computing.

3. Because of their high aspect ratio, nanowires are also uniquely suited to dielectrophoretic manipulation[3],[4],
which offers a low-cost, bottom-up approach to integrating suspended dielectric metal oxide
nanowires in electronic devices such as UV, water vapor, and ethanol sensors[5]. Though there
are other uses for quantum wires beyond these, the only ones that actually take advantage of
physics in the nanometer regime are electronic.
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CHAPTER 2

Simulating quantum wires

2.1 Quantum modelling

About a century back, it was understood without any doubt that quantum mechanical picture was more
accurate than the classical picture in describing the real life physical phenomena. But, the difference in
accuracy is significant only when spatial dimensions considered are close to the nanometer regime and
at molecular or atomic scales. For example, classical mechanics is enough to calculate the amount of
fuel required to run a vehicle, the water flow rate in a pipe, current through a resistor, etc. Whereas, the
properties of atom, chemical bonds, motion of an electron in a crystal, etc., can only be explained using
quantum mechanical laws.

Moreover, many phenomena exhibited on a macroscopic scale reveal underlying quantum phenom-
ena. It is in this reductionist sense that quantum mechanics is proclaimed as the basis of our present
understanding of all natural phenomena studied and exploited in chemistry, biology, physics, materi-
als science, engineering, etc. Physical behaviour at the nanoscale is accurately predicted by quantum
mechanics, as represented by the Schrodinger’s equation, which therefore provides a quantitative under-
standing of the properties of low-dimensional structures.

Need for quantum modelling at nanoscale

In quantum mechanics, the trajectory of a moving particle loses its meaning when the distance over
which potential energy is varying is on the order of the de Broglie wavelength: λ = 2π√

2mE
~ where ~

is the reduced Planck constant, m is the mass of the particle, and E is its energy. In other words, a
basic characteristic of all matter at the nanoscale is the manifestation of the wave-particle duality - a
fundamental quantum-mechanical principle that states that all matter (electrons, nuclei, photons, etc.)
behaves as both waves and particles. The quantum effects of confinement become significant when at
least one of the dimensions of a structure is comparable in length to the de Broglie wavelength. If at
least one dimension of a solid is comparable to the de Broglie wavelength of the particle, a quantum-
mechanical treatment of particle motion becomes necessary.

Electron wavefunction and Schrodinger’s equation

In the Schrodinger description of quantum mechanics, an elementary particle e.g., an electron, a hole
and a photon or even a physical system such as an atom is described by a wave function ψ(r, t), which
depends on the variables describing the degrees of freedom of the particle (system). The square of the
wave function is interpreted as the probability of finding a particle at spatial location −→r = (x, y, z) and
time t. The wave function contains all of the information that may be obtained about a physical entity



and is sufficient to describe a particle or system of particles. In other words, if the wave function of,
for example, an ensemble of electrons in a device, is known, it is possible in principle - though limited
by computational abilities - to calculate all of the macroscopic parameters that define the electronic
performance of that device[6].

In this project, simulation of the quantum wire was done using Python (2.7.6) programming lan-
guage, implementing various methods for numerically solving the following eigen value equation which
is the time-independent Schrodinger’s Equation (SE):

− ~2

2m∗
∇2ψ + V ψ = Eψ (2.1)

where ~ is reduced Planck’s constant, m∗ is the effective mass of an electron in crystal (here, this
effective mass is approximated to be constant for all potentials),∇ is the Poisson operator (∇ ≡

∑
i
∂
∂xi

where i represents the dimensions considered), E is the energy of an electron, V is the potential applied
in the region of interest and ψ is the probabilty amplitude of the electron wavefunction. |ψ|2 gives the
probability of finding an electron at a point. For simplicity, initially only the case where zero potential
(V = 0) inside the quantum wire region and infinite potential outside, is considered. The wavefunction
is also initialized differently for different methods. Whereas, at the boundaries, it is always maintained
zero ( but only when infinite potential is considered outside). Also, in all the cases below, only the
cross-section of the wavefunction ψ, perpendicular to the axis of the quantum wire is shown in the
figures. First, square symmetric potential is considered, i.e., quantum wire with square cross-section is
considered.

2.2 Simulation using variable separation method

2.2.1 Rectangular quantum wire

Initially SE (2.1) was solved assuming separation of variable for the wave-function ψ i.e., wavefunction
along x-axis is independent to that of the one along y-axis. So,

ψ = ψxψy (2.2)

where ψx is the solution to the above SE (2.3) along x-axis, and similarly ψy is the solution to the
above SE (2.3) along y-axis. Hence, solving the above 2-D Schrodinger’s equation (2.1) (which is also
a particular type of PDE (partial differential equation)) means solving the same SE for the 1-D case
(which actually means solving for quantum well) twice and then extend it to 2-D using (2.2).

Time-independent Schrodinger’s equation for one dimensional case is:

−~2

2m∗
∂2ψ

∂x2
+ V ψ = Eψ (2.3)

4



(a) When nx = 1 and ny = 1 (b) When nx = 1 and ny = 2

(c) When nx = 2 and ny = 1 (d) When nx = 2 and ny = 2

Figure 2.1: ψ for rectangular quantum wire at different energy levels

Solving SE (2.3) for the one-dimensional case is similar to solving an ODE (ordinary differential
equation) with ψ as an unknown. So, for this, "odeint" function from the "scipy.integrate" module
was used. This "odeint" function solves a system of ODEs using "lsoda" from the FORTRAN library
odepack[7],[8]. This is done for both x-axis and y-axis, thereby calculating ψx and ψy respectively. Each
component is initialized, with ψx, ψx = 0 and ∂ψx

∂x = 1 at one end i.e., when x = 0 or when y = 0

and using "odeint" function, SE (2.3) is solved for other region. Similar steps are repeated for the other
component too.

Then, using the relation (2.2) and equations (2.1) and (2.3), ψ is calculated. The cross-section of the
wavefunction ψ, perpendicular to the axis of the rectangular wire for different cases of nx and ny were
calculated and are shown in fig 2.1.

Errors in the solution and its variation

The above solutions were verified with the wavefunctions ((2.4)) obtained by anaytically solving the
above SE (2.1). The analytical solution of 2.1 assuming separation of variables, i.e., 2.2 is:

5



(a) When nx = 1 and ny = 1 (b) When nx = 1 and ny = 2

(c) When nx = 2 and ny = 1 (d) When nx = 2 and ny = 2

Figure 2.2: Relative error in ψ for rectangular quantum wire at different energy levels

ψ =
2√
LxLy

sin

(
πnxx

Lx

)
sin

(
πnyy

Ly

)
(2.4)

Some slight variations could be observed due to various factors like the limitations in discretization,
round-off errors, etc.

The relative error in ψ is plotted for the whole region in fig 2.2. It is actually, ψ−ψact
<|ψact|> , where <

|ψact| > is the absolute mean value of the actual wavefunction over the entire region. The errors indicate
that calculated ψ value seem to have shifted a little towards −ve x-direction and −ve y-direction.

The mean error percentages and maximum error percentages obtained for the above numerical solu-
tions when compared with the anaytical solutions are shown in fig 2.3. This was done for various energy
levels and for increasing number of blocks (discretization) i.e. smaller and smaller step sizes. They are
shown in fig 2.3.

Overall the error decreases as the number of blocks increases, i.e. for decreasing step size. The
error seems to drop down too low suddenly and return back to the trend when the number of blocks is
a mutiple of 4 and drops a lot more, if it is a mutiple of 16. This is because the total length was 4 units
and so when the number of blocks are multiples of 4, it means there are integer number of total blocks

6



(a) Maximum error (b) Mean error

Figure 2.3: Error percentage variation

(i.e., integral frequency), thereby decreasing numerical errors. Errors reduce even more, for number of
blocks that are multiples of 16 because of higher harmonics.

2.2.2 Circular quantum wire

The above solution for time-independent Schrodinger’s equation (SE) (2.1) had only been solved for
the rectangular coordinate system. That would be useful only for systems with rectangular symmetry,
like square or rectangular quantum wire and cubical quantum dots. Whereas, for systems with radial
symmetry like circular quantum wires, cyindrical and spherical quantum dots, SE should be solved in
polar, cylindrical and spherical coordinate systems respectively. Two-dimensional SE (2.1) (assuming
zero potential inside quantum wire region and infinite outside) in polar coordinate system could be
written as:

− ~2

2m∗

[
∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
+

1

ρ2

∂2ψ

∂φ2

]
=

~2k2

2m∗
ψ (2.5)

where ψ ≡ ψ (ρ, φ), and k2 = 2m∗E
~2 =

j2lm
R2 , R is the radius of the wire and klmR = jlm is the mth zero

of the lth order Bessel function Jl.

Also, m = nr is the radial quantum number and l = nφ is the angular quantum number.

Now, similar to the rectangular coordinate system case, the solution for the above equation is as-
sumed to be independent along radial and angular directions i.e., solving SE (2.5) using separation of
variables technique. That is,

ψ (ρ, φ) = ψρ (ρ)ψφ (φ) (2.6)

Substituting equation (2.6) into equation (2.5), we get the following:
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ψφ

[
∂2ψρ
∂ρ2

+
1

ρ

∂ψρ
∂ρ

+ k2ψρ

]
+
ψρ
ρ2

∂2ψφ
∂φ2

= 0

Now, dividing the whole equation by 1
ρ2
ψρψφ, we get,

ρ2

ψρ

[
∂2ψρ
∂ρ2

+
1

ρ

∂ψρ
∂ρ

+ k2ψρ

]
+

1

ψφ

∂2ψφ
∂φ2

= 0

Here, the 1st term, is independent of φ and similarly the second term is independent of ρ. But, they
sum to zero. It means, the first and the second terms have to be equal to constants (that are independent
of ρ and φ). Let those constants be l2 and −l2 respectively. Thus, we get the following two independent
equations to be solved.

ρ2

ψρ

[
∂2ψρ
∂ρ2

+
1

ρ

∂ψρ
∂ρ

+ k2ψρ

]
= l2 (2.7)

and
1

ψφ

∂2ψφ
∂φ2

= −l2 (2.8)

Simulation

For solving the above equations (2.7) and (2.8) numerically, the same Python odeint function, from
the module scipy.integrate was used. It solves a system of ordinary differential equations using lsoda
from the FORTRAN library odepack[7]. This LSODA[8], written by Alan Hindmarsh and L. R. Petzold,
solves systems dy

dt = f with a dense or banded Jacobian when the problem is stiff, but it automatically
selects between non stiff (Adam’s method[9]−[11]) and stiff methods (BDF - Backward Differentiation
Formula[12]). It uses the non stiff method initially, and dynamically monitors data in order to decide
which method to use.

The above equations (2.7) and (2.8) were first solved, with the above mentioned Python odeint
function as follows:

First consider the case of finding ψρ,

ȳρ =

[
∂ψρ
∂ρ

ψρ

]
and

∂ȳρ
∂ρ

=

[
∂2ψρ
∂ρ2
∂ψρ
∂ρ

]
=

[
(l2−ρ2k2)ȳρ[1]

ρ2
− ȳρ[0]

ρ

ȳρ[0]

]

along with the initial conditions ȳρ0 =

[
0

1

]
for l > 0, but ȳρ0 =

[
1

0

]
for l = 0. Similarly, the

process was repeated for ψφ,

ȳφ =

[
∂ψφ
∂φ

ψφ

]
and

∂ȳφ
∂φ

=

[
∂2ψφ
∂φ2
∂ψφ
∂φ

]
=

[
−l2ȳφ[1]

ȳφ[0]

]

8



(a) When m = 1, l = 0 (b) When m = 1, l = 3

Figure 2.4: ψ for circular quantum wire when m = 1

with initial condition ȳφ0 =

[
0

1

]
. Basically, each component is initialized, say for ψρ, ψρ = 0 and

∂ψρ
∂ρ = 1 at one end i.e., at r = 0 and using "odeint" function, SE is solved for other region. Similar

steps are repeated for the other component ψφ too. Then those solutions for ψρ and ψφ were combined
to get ψ (ρ, φ) from equation (2.6). Here, klmR = jlm, where R is the radius of the wire and jlm is the
mth zero of the lth order Bessel function Jl.

One issue in the above procedure is that, the value of jlm is unknown and should match with the
actual value of jlm. So, the simulation (involving just the ψρ) was iterated for increasing values of jlm
from a continuous set of values. For each jlm value, stationary state of the wavefunction is found and the
simulation stops when the stationary state wavefunction has its mth zero crossing at the boundary. The
jlm value got from the simulation, corresponding to this wavefunction matched very closely with themth

zero of the lth order Bessel function Jl. Thus, the simulated normalized wavefunction was expected to
match with the analytical solution of the wavefunction. Hence, Bessel function is not explicitly assumed
as the solution to ψρ. Rather, it turns out to be so, confirming the correctness of the simulation. The
wavefunctions are plotted in figures 2.4 and 2.5.

Errors in the solution and its variation

The analytical solution of 2.1 for circular symmetry systems, assuming separation of variables, i.e., 2.2
is:

ψ =
1√
2π
Jl(kmr) expilφ (2.9)

where l is azimuthal (angular) quantum number (l = 0,±1,±2,±3, ...) and km is related to m (radial
quantum number). km is the mth zero of the Bessel function of the first kind, Jl(kmr), i.e., Jl(kmR) =

0, where R is the radius of the wire1.

1Assuming z = kmr, ψρ ≡ Jl(z) satisfies the equation d2ψρ

dz2
+ 1

z

dψρ

dz
+
(

1− l2

z2

)
ψρ = 0
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(a) When m = 3, l = 1 (b) When m = 3, l = 2

Figure 2.5: ψ for circular quantum wire with m = 3

(a) ψerror% when m = 1 and l = 0 (b) ψerror% when m = 1 and l = 3

Figure 2.6: Error in ψ for circular quantum wire with m = 1

The absolute error of the wavefunction compared to the analytical solution ((2.9)) over the entire
region is shown in figures 2.6 and 2.7.

The maximum and mean relative error percentages w.r.t. the mean value of ψ over the entire region
for different l and m are tabulated in table 2.1. The relative error percentages w.r.t. the actual ψ value
had computational difficulties. Anyway, it is similar to comparing the calculated values to < ψact >,
which is the mean value of ψ over the entire region. In the earlier case, at the regions where ψ value
goes to zero, the errors blow up unnecessarily. So, the error percentages were calculated by comparing
with < ψact > only. So, ψerror% = ψ−ψact

<|ψact|> × 100. The calculated and the actual jlm values and their
relative error percentages are also tabulated in table 2.1.

The mean error is almost below 1% for all the above values ofm and l. In the above simulations, one
should note that, the grids were radial and angular and not rectangular. This causes an uneven spacing
between the grid points causing errors increasing radially in the simulation.
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(a) ψerror% when m = 3 and l = 1 (b) ψerror% when m = 3 and l = 2

Figure 2.7: Error in ψ for circular quantum wire with m = 3

abs (ψcalculated − ψact) Mean error % Maximum error % jcalclm jactlm ∆jlm%

m = 1, l = 0 0.5340 1.1896 2.3908 2.4048 0.5822
m = 1, l = 1 0.2846 1.1538 3.8250 3.8317 0.1749
m = 1, l = 2 0.6676 3.1424 5.1198 5.1356 0.3077
m = 1, l = 3 0.2255 1.1844 6.3748 6.3802 0.0846
m = 2, l = 0 0.0686 0.1559 5.5182 5.5201 0.0344
m = 2, l = 1 0.1461 1.8326 7.0122 7.0156 0.0485
m = 2, l = 2 0.4492 1.8766 8.4066 8.4172 0.1259
m = 2, l = 3 0.8476 3.8027 9.7412 9.7610 0.2028
m = 3, l = 0 0.2891 0.6668 8.6456 8.6537 0.0936
m = 3, l = 1 0.5654 3.0544 10.1596 10.1735 0.1366
m = 3, l = 2 0.2548 1.0179 11.6137 11.6198 0.0525
m = 3, l = 3 0.3026 1.2723 13.0081 13.0152 0.0546

Table 2.1: Errors in the simulation

2.3 Simulation using finite difference method

In both the above cases of solving time-independent SE (2.1) in rectangular or polar coordinates, solu-
tion was assumed to be separable for either rectangular or cylindrical symmetry systems respectively.
Similarly, variable separation method could be used to solve for ψ for systems with potentials of various
symmetries[13]. Now, for a general case we need to solve SE (2.1) for any arbitrary potential.

2.3.1 Rectangular quantum wire

The time-independent SE (2.1) in finite difference form for rectangular coordinate system would be:

ψi+1,j − 2ψi,j + ψi−1,j

(∆x)2 +
ψi,j+1 − 2ψi,j + ψi,j−1

(∆y)2 + k2ψi,j = 0 (2.10)
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(a) When nx = 1, ny = 1 (b) When nx = 1, ny = 2

(c) When nx = 2, ny = 1 (d) When nx = 2, ny = 2

Figure 2.8: Normalized ψ for rectangular quantum wire at different energy levels

where ψi,j ≡ ψi,j (x[i], y[j]), and k2 = 2m∗E
~2 = k2

x + k2
y , kx = 2π

Lx
nx and ky = 2π

Ly
ny. Here both Lx

and Ly are divided into N pieces and for square quantum wire case Lx = Ly.

Based on the values of nx and ny, the wavefunction is initialized to +1 where the wavefunction is
supposed to reach maximum and initialized to −1 where the wavefunction is supposed to reach min-
imum, i.e initialize symmetrically with +1 and −1 based on the values of nx and ny inside the wire
region. Also, at the boundaries, ψ is maintained at 0 as long as the potential outside is infinite.

It is then solved by iterating many times, making sure of convergence. The central difference for-
mulas are used here for solving SE (2.10).

Also, ψ (ρ, φ) has to be normalized for every iteration. So, ψ = ψ√´
A dAψ

∗ψ
so that

´
A dAψ

∗ψ = 1

is satisfied. In discrete sense, it means ψ = ψ√
1
A

∑
i,j ψ

∗
i,jψi,j

so that 1
A

∑
i,j ψ

∗
i,jψi,j = 1 is satisfied,

where A is the area of the wire region considered.

The normalized electron wave function after about 1000 iterations is plotted for different values of
nx and ny in fig. 2.8.
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(a) When nx = 1, ny = 1 (b) When nx = 1, ny = 2

(c) When nx = 2, ny = 1 (d) When nx = 2, ny = 2

Figure 2.9: Error in ψ for rectangular quantum wire at different energy levels

Error in the solution and its variation

After normalizing ψi,j , it was compared with the analytical solution obtained from the variable sepa-
ration method ((2.4)). The error which is the difference between the actual analytical solution and the
solution got from the above analysis is shown in fig 2.9.

The figures in 2.9 show that the error is more at the regions where the ψ value itself becomes
maximum. Also, close to one of the edges (and corners), the error becomes more, because, while
numerically solving the Schrodinger’s equation, the algorithm goes in one particular direction, thereby
resulting in directional deviation in error.

The maximum and mean errors for different number of iterations for nx = 1 and ny = 2 is also
plotted in fig 2.10. It is actually, the maximum and mean error of all values of ψ over the entire region
for each iteration.

One can see that both the maximum and mean error decreases as the number of iterations increases.
This shows that the solution is actually converging, which means that the simulation was stable.
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(a) Maximum error (b) Mean error

Figure 2.10: Maximum and mean error in ψ for different no. of iterations, for rectangular quantum wire
when nx = 1, ny = 2

2.3.2 Circular quantum wire

The time-independent SE (2.1) in finite difference form for polar coordinate system would be:

ψi+1,j − 2ψi,j + ψi−1,j

(∆ρ)2 +
ψi+1,j − ψi−1,j

2 (4ρ) ρi
+

1

ρ2
i

ψi,j+1 − 2ψi,j + ψi,j−1

(∆φ)2 + k2ψi,j = 0 (2.11)

where, (ρi, φj) ≡ (i, j) and 1 ≤ i ≤ M ; 1 ≤ j ≤ N , because radius of the (quantum) wire was
divided into M pieces and angle (here totally it is 2π) into N pieces.

Based on the values of nρ or m and nφ or l, the wavefunction was initialized to +1 where the wave-
function was supposed to reach maximum and initialized to −1 where the wavefunction was supposed
to reach minimum, i.e initialize symmetrically with +1 and −1 based on the values of nρ and nφ inside
the wire region. Also, at the boundaries, ψ was maintained at 0 as long as the potential outside was
infinite.

Similar to the rectangular quantum wire case, here too ψi,j was normalized every iteration and
convergence of the solution was checked.

The normalized electron wave function after about 1000 iterations is plotted for different values of
nρ = m and nφ = l in fig 2.11.

Error in the solution and its variation

After normalizing ψi,j , it was compared with the analytical solution obtained from the variable sepa-
ration method ((2.9)). The error which is the difference between the actual analytical solution and the
solution got from the above analysis is shown in fig 2.12.

Similar to the rectangular coordinate case, the errors reach maximum values, mostly in the regions
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(a) When nρ = 1, nφ = 1 (b) When nρ = 1, nφ = 2

(c) When nρ = 2, nφ = 1 (d) When nρ = 2, nφ = 2

Figure 2.11: Normalized ψ for circular quantum wire at different energy levels
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(a) At nρ = 1, nφ = 1 (b) At nρ = 1, nφ = 2

(c) At nρ = 2, nφ = 1 (d) At nρ = 2, nφ = 2

Figure 2.12: Error inψ for circular quantum wire at different energy levels
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Figure 2.13: Maximum and mean error in normalizedψ for circular quantum wire at nρ = 1, nφ = 1

(a) Cubical quantum dot (b) Cylindrical quantum dot (c) Spherical quantum dot

Figure 2.14: Normalized ψ for quantum dots - ground state

where ψ itself reaches maximum value. But, at some regions there is asymmetry in the errors caused,
which could possibly be because of the directional preference of the algorithm being used for numeri-
cally solving the Schrodinger’s equation.

The maximum and mean errors for different number of iterations for nρ = m = 1 and nφ = l = 1

are also plotted. They are actually the maximum or mean error of all values of ψ over the entire region
for each iteration.

Both the maximum and mean error decreases as the number of iterations increases, similar to the
previous case with rectangular coordinate system. This shows that the solution was actually converging
and the simulation was stable for polar coordinate system too (fig 2.13).

2.4 Simulation of quantum dot using mesh-based methods

Simulation of quantum wires and dots for complicated potentials could also be done using PDE solver
with a mesh. A mesh is generated for a required geometry using Gmsh software - it is a 3D finite
element grid generator with a build-in CAD engine and post-processor. Then, SE (2.1) is solved for this
geometry using FiPy - an object oriented, partial differential equation (PDE) solver, written in Python,
based on a standard finite volume (FV) approach. Finer meshing not only gives more accurate solution,
but also the ease to visualize better. The wave function was normalized using: ψ = ψ√´

S dsψ
∗ψ

, where

ds = differential area or volume of the entire range. The ground state wavefunctions of quantum dots
are shown using Mayavi2 (3D) data visulaizing software in fig 2.14.
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2.5 Simulation using LOBPCG method

The time-independent 3D Schrodinger’s equation (SE) for a quantum wire is,

− ~2

2m∗

[
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

]
= (E2D + Ez)ψ (2.12)

where the total energy is given by, Etot = E2D + Ez . Due to 2D confinement, the quantum wire
allows only a certain discrete set of energy modes to exist. The corresponding energies E2D of each
mode are actually the eigen values of SE (2.1) (because SE (2.1) is an eigen value equation). For now,
it is assumed that V = 0eV inside the wire region and infinite outside. Thus E2D takes values from
only a finite set of values (eigenvalues) depending upon the various modes of the wavefunction ψ. Also,
assuming total energy, Etot = EF to be constant, where EF is the Fermi energy. Then it means that Ez
is also restricted to take only a finite set of values. This means, while considering electron flow through a
nanowire (along its axis), only certain modes can pass through, thereby modifying a lot of current-based
parameters in comparison to the corresponding parameters in planar layers.

The eigen values of SE (2.1) are the eigen energies of the different eigen modes allowed inside the
wire region and the wavefunction ψ is given by the eigen vectors of the same equation. These eigen
vectors and values are modified due to various parameters. The variations in the following cases are
studied here. When,

• size of the quantum wire is changed

• 4 quantum wires arranged in a lattice are considered

• potential outside the 4 quantum wires is varied

• gap between the 4 quantum wires is varied

Here, the wavefunction is initialized with random values over the entire region of interest (here just
the wire region) whereas at the boundaries it always remains at zero because, of infinite potential. The
Schrodinger’s equation (2.1) is solved using a smoothed aggregation solver[14] with the help of some pre-
conditioners. The eigen value equation was solved by LOBPCG[15],[16] (Locally Optimal Block Precon-
ditioned Conjugate Gradient) method. This was implemented using python-based PyAMG (Algebraic
Multi-Grid solver) libraries.

2.5.1 Eigen energy levels of a rectangular quantum wire

The first 9 energy levels of a square quantum wire is shown in fig 2.15. The size of the quantum wire is
assumed to be lw = 10nm. The wavefunctions of the degenerate levels are actually orthogonal to each
other, i.e. ψ1 and ψ2 satisfy

´
A dAψ

∗
1ψ2 = 0, which in discrete form is

∑
i,j ψ

i,j∗
1 ψi,j2 = 0. So, if we

assume separation of variables, then we get the following wavefunction pairs for the degenerate energy
levels.

From figure 2.16, the degenerate energy level pairs are 1 (nx = 2 and ny = 1) and 2 (nx = 1 and
ny = 2); 4 (nx = 1 and ny = 3) and 5 (nx = 3 and ny = 1); 6 (nx = 3 and ny = 2) and 7 (nx = 2
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and ny = 3). Here nx and ny are respectively the x − axis and y − axis quantum numbers when the
separable wavefuntions are considered for simulation.

Figure 2.15: First 9 eigen energy levels of a square quantum wire

Figure 2.16: Eigen energies (in eV) of a square quantum wire for first 9 energy levels

In fig 2.15, red colour represents +ve values of about 10−2 in magnitude and similarly black colour
represents −ve values of simlar magnitude, whereas white colour represents values that are compari-
tively very close to zero (about ±10−5). The same colour mapping is followed for later plots too. The
wavefunctions ψ that are plotted in 2.15 are the first 9 eigen vectors of 2D SE 2.1. Here, for any eigen
vector, if Ψ is an eigen vector with an eigen value energy of say, EΨ, then for the same eigen energy
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value, −Ψ is also an eigen vector. So, since the wavefunction was initialized to random values initially,
for each level, we end up getting either +Ψ or −Ψ, which is clear from 2.15, where sometimes the
surrounding is red −ve or black +ve. The eigen energies obtained using LOBPCG method is shown
in fig 2.16. They are very close to the analytical values: E2D =

~2(k2x+k2y)

2m∗ =
~2π2(n2

x+n2
y)

2m∗L2
x

, assuming
Lx = Ly and m∗ is the effective mass of an electron in a GaAs crystal. It is m∗ = 0.067m0, where m0

is the rest mass of an electron.

2.5.2 Eigen energies for wires of different dimensions

The energy eigenvalues of the first 10 energy levels are shown here, as the size (lw) of the square
quantum wire was varied from 0.1nm to 20nm (figure 2.17). As seen earlier in the figure 2.16, some of
the energy levels are degenerate, i.e., have same energy for all wire sizes. For example, the energy level
1 with nx = 2 and ny = 1 has same energy as the energy level 2 with nx = 1 and ny = 2.

Figure 2.17: E2D (in eV) vs lw (×10−10m)

All the eigen energies E2D shown here decrease as the wire size lw increases. This is because,

E2D = ~2
2m∗

((
2πnx
Lx

)2
+
(

2πny
Ly

)2
)

. So, E2D ∝ 1
l2w

, because Lx = Ly = lw.

2.5.3 Eigen energy levels of an array of 4 quantum wires

Now similarly, the first 9 eigen energy levels (figure 2.18) for the case when there is an array of 4
quantum wires placed in a crystal lattice equally spaced from each other. Here, the size of each of the
square quantum wires is lw = 2nm and the lattice width considered is about 10nm. The space between
the rectangular wires is also 2nm. The potential considered outside the wire region is not infinite, but
rather a finite value of V = 10eV . Whereas, as usual zero potential is considered inside the wire region
and infinite potential outside the lattice. So, at the lattice boundaries, the wavefunction goes to zero. The
wavefunction is initialized with random values over the entire lattice region and the SE (2.1) is solved in
a way explained earlier in the beginning of this section. Unlike the single wire case, for the 4 wires case
the first 4 energy levels are degenerate, whereas in the single wire case, 2nd and 3rd levels only are the
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first set of degenerate levels and only two levels are degenarate, i.e. with same energy. Whereas, in the
case with 4 wires, the next 5 energy levels are degenerate (fig 2.19). The colour map used here is similar
to the one mentioned in section 2.5.1.

Figure 2.18: First 9 eigen energy levels of 4 quantum wires

Figure 2.19: Eigen energies (in eV) of a square quantum wire for first 9 energy levels

2.5.4 Variation of eigen energies due to outside potential

Using different materials as substrate means different Fermi energies, therefore different potentials in
the lattice, outside the wire region, compared to the potential inside the wire, for a particular material of
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wire. So, the variation of the eigen energies is studied as the potential outside Voutside is changed. Here,
the potential outside the lattice is always infinite and potential inside the wire region is zero, but Voutside
which is the potential outside the wire and in the lattice is varied. It is varied from 0eV to 4eV . The
case Voutside = 0eV is same as considering the whole lattice region as one single wire region. Also, like
the previous case, the wire size and the gap between the wires is maintained at 2nm and the size of the
lattice region considered is also maintained at 10nm.

Figure 2.20: Ground state energy for different Voutside (in eV)

Figure 2.21: E2D (in eV) vs Voutside (in eV) for first 9 eigen energy levels

The colour map used here is similar to the one mentioned in section 2.5.1. At lower potentials, the
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wires interfere with each other significantly (figure 2.20). The first 4 energy levels which are very distinct
for Voutside = 0eV (because it is similar to a quantum wire of size lw = 10nm) become degenerate as
the potential outside becomes larger compared to the potential inside. Similarly, the next 5 energy levels
also become degenerate as Voutside increases. Also, all the eigen energies monotonically increase (from
fig 2.21) as Voutside increases. This is because, as Voutside is close to 0eV , it is similar to considering
one single quantum wire of size lw = 10nm, whereas when Voutside is about 4eV and higher, then most
of the electron wavefunction is localized inside the wire regions of the 4 quantum wires, each of which
is of size lw = 2nm. So, effectively, there is a decrease in the apparent wire size considered. In section
2.5.2, it was shown that eigen energies increased drastically as the wire size decreased, which explains
the above behaviour of the eigen energies with respect to Voutside.

2.5.5 Eigen energy levels as the gap between the 4 wires is varied

In the previous two subsections (2.5.3 and 2.5.4), the simulation was carried out assuming that there
are 4 rectangular quantum wires of same size of lw = 2nm which are placed apart from each other
with some gap, in a crystal lattice of size 10nm. Now, the change in the eigen energies of the system
is studied as the gap between the wires is varied from 6nm to 0.4nm. The potential outside the wire
region is kept constant for the entire simulation, Voutside = 10eV compared to the zero potential inside
the wire region.

Figure 2.22: Ground state energy for different gaps (in nm) between the wires
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Figure 2.23: E2D (in eV) vs gap between the wires (in nm) for first 9 eigen energy levels

The colour map used here is similar to the one mentioned in section 2.5.1. The eigen energies are
almost same, mostly (fig 2.22). Only when the gap between the wires is closer than half the size of the
wire (here about 1nm), the system behaves as if there is a single larger wire in the centre, because of
lateral quantum tunneling between the wires (fig 2.23). Also when the gap between the wires is so much
that the wires are about half the wire size distance (here about 1nm) from the boundaries (of the lattice),
the eigen energies increase because the electrons get reflected from the infinite lattice boundaries and
need more energy to stay confined in the wires close to the boundaries (fig 2.23).
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CHAPTER 3

Tunneling Magneto Resistance

3.1 Theory and importance of TMR

3.1.1 Spin of an electron

Spin is an intrinsic property of elementary particles and participates in magnetic interactions. An elec-
tron is an elementary particle that carries a negative electric charge −e and a spin 1/2 corresponding
to the magnetic moment of e/(2mc) = 9.285 × 10−24(JT−1). We cannot separate a spin from a
charge when we deal with electrons. When the electric current flows in a wire, both charge and spin
are carried by electrons. In contrast to the electric charge, the spin of an electron has two directions,
up or down. In nonmagnetic conductors such as Cu, Al, and Au, spin-dependent phenomena are not
observed, since the same number of spin-up and spin-down electrons are present. However, in magnetic
materials such as Fe, Co, and Ni, the number of electrons with spin up is different from that with spin
down. Therefore, the transport properties of magnetic materials are spin dependent. We can vary the
resistance by applying a magnetic field to change the direction of magnetization. This phenomenon
is called magnetoresistance (MR) and is applied to magnetoresistive devices such as hard-disk drives.
Electron tunneling is a basic phenomenon in quantum mechanics by which electric current can pass from
one electrode through a thin insulating barrier layer into a second electrode. Recently, spin-dependent
tunneling in magnetic tunnel junctions has attracted enormous attention because of its potential appli-
cations in high-density magnetic recording devices and nonvolatile magnetic random access memory
(MRAM). Spin-dependent tunneling is also important from a scientific point of view, since it provides
much information about the physical properties of magnetic materials[17].

3.1.2 TMR of magnetic tunnel junctions

Two ferromagnetic metals separated by an insulating oxide layer exhibit a giant magnetoresistance[18],[19]

of up to 40% due to tunneling across the insulating layer. The tunneling magnetoresistance TMR ef-
fect was observed by Julliere[20] (see also Maekawa and Gafvert[21]) but the magnitude of the TMR in
these early experiments was very small. Theoretical interpretation of the TMR effect has been based
on the conventional theory of tunneling see, for example, Refs. [22] and [23]. The main conclusion of
the conventional theory of tunneling is that the tunneling current is proportional to the product of the
densities of states in the left and right electrodes. This conclusion is arrived at by treating tunneling as
a quantum transition from one electrode to the other. The two electrodes between which the transitions
take place are regarded as two separate systems described by different Hamiltonians[24]. Such a sep-
aration is clearly impossible in the closely related problem of the current perpendicular-to-plane giant
magnetoresistance CPP GMR since the two ferromagnets are strongly coupled in the metallic regime



via a nonmagnetic metallic spacer. Given that the CPP GMR and TMR seem to require different theo-
retical treatment, one might conclude that they are qualitatively different effects. It is, therefore, rather
remarkable that the observed magnitudes of the CPP GMR and TMR are comparable despite the fact
that the individual resistances of a tunneling junction in its ferromagnetic and antiferromagnetic config-
urations are several orders of magnitude higher than those of a metallic trilayer. Experimentally, the two
effects seem to be closely related. To establish a theoretical link between the TMR and CPP GMR, it is
necessary to develop a nonperturbative theory of tunneling that treats the two electrodes together with
the tunneling barrier as a single quantum-mechanical system. This is, indeed, the method one uses to
solve the textbook problem of tunneling through a rectangular barrier. The rectangular barrier model
was already applied by Slonczewski[25] to calculate the TMR[26].

3.1.3 Theories explaining TMR

In the early studies on spin-dependent tunneling, the theoretical interpretation was based on a simple
model in which the spin is conserved in the tunneling process and the conductance of each spin direction
is proportional to the densities of states of that spin in each electrode. In this model, the tunnel current is
larger when the magnetizations of the two electrodes are parallel than when they are antiparallel, which
explains the strong dependence of the tunneling current on the relative orientation of the magnetizations
of the ferromagnetic electrodes. However, the model does not explain the experimental results that the
TMR exhibits rather large bias and temperature dependencies. Another approach based on the single-
electron Schrodinger equation was proposed by Slonczewski[25] (1989). By extending the free-electron
model of tunneling in nonmagnetic tunnel junctions[27] to magnetic tunnel junctions, Slonczewski found
that the polarization of tunneling electrons depends not only on the electronic density of states of FMs but
also on the potential height of the tunnel barriers[25]. In this approach, the electrodes and the insulating
barrier are treated as a single quantum-mechanical system and the wave functions of up and down
electrons are constructed by solving the Schrodinger equation in the whole system. While the free-
electron model captures some essential features, their predictions for TMR are quantitatively unreliable
because the lattice structure of the electrodes and the variation of the band structure near the insulating
barrier are overlooked[28]. The tight-binding model gives more realistic descriptions for TMR. This
approach allows one to distinguish electronic structures at interfaces from that in the bulk and to study
the effect of the interface roughness, although it contains some empirical parameters. One can easily
see that the single-band tight-binding model reduces to the free-electron model. It is also shown that the
conductance of the tight-binding method reduces to the usual expression for the conductance obtained
in the classical theory of tunneling when the electron hopping between the electrodes is weak and the
coherence across the barrier is completely lost[17].

3.1.4 Free electron model

In the tunnel Hamiltonian model in the preceding section, we assumed that the tunneling matrix elements
and the spin-up and spin-down electrons can be treated as constants. In other words, the wave function
in the barrier region is assumed to be independent of the wave vector and spin. However, it is not
obvious that the above assumptions are justified. In 1989, Slonczewski proposed another approach
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Figure 3.1: (a) Potential energy diagram for a metal/insulator/metal tunnel junction with the bias voltage
V (b) The geometry of one- electron potential

for the spin-dependent tunneling based on the free-electron model, where the exact wave function in
the barrier region is used[25] (Slonczewski, 1989). He showed that TMR is determined not only by
the spin polarization of FM electrodes, P , but also by the potential height of the insulating barrier.
Introducing the effective spin polarization of the ferromagnetic electrode, Peff , which ranges from −P
to P depending on the potential height of the barrier, the TMR is expressed using the same formula as
that derived from the tunnel Hamiltonian model. Before studying the spin-dependent tunneling in ferro-
magnetic tunnel junctions, it is convenient to consider the nonmagnetic tunnel junctions and derive an
approximate form of the tunnel conductance in weak transmitting limit[27] (Burstein and Lundqvist,
1969). When the bias voltage V is applied, electrons incident from the left electrode tunnel through
the insulating barrier, resulting in a tunnel current, as shown in fig 3.1. The shaded area represents the
occupied states of electrons at zero temperature. Electrons are transmitted from the occupied states in
the left electrode to the unoccupied states in the right electrode. The left and right boundaries of the
insulating barrier are indicated by z1 and z2 , respectively[17].

We assume that the system has translational symmetry in the transverse (x and y) direction and
therefore the wave vector parallel to the barrier surface k‖ = (kx, ky) is conserved during the tunneling.
We also assume that the temperature is zero. The number of electrons incident from the left electrode
per unit time with wave vector k‖ is given by

N(k‖) = 2× 1

2

eVˆ

0

dEvz(E, k‖)
1

π~vz(E, k‖)
= 2

eV

h
(3.1)

where vz(k‖) is the velocity along the z direction and 1/π~vz(k‖) is the corresponding 1D density
of states for the one spin channel. The factor 2 in equation (3.1) is due to the spin-degeneracy of the
energy bands in the nonmagnetic electrode. Note that the number of incident electrons is independent
of the wave vector k‖ . The tunnel current density is obtained by summing up the number of electrons
tunneling through the barrier:

I = e

ˆ dk2
‖

(2π)2
N(k‖)T (k‖) = 2

e2V

h

ˆ dk2
‖

(2π)2
T (k‖) (3.2)

where T (k‖) is the transmission probability defined as the ratio between the probability current
densities of incident and transmitting waves. Here we assume the bias voltage V is so small that we
can neglect the energy dependence of the transmission probability. The differential conductance per unit
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area is written in terms of the transmission probability as

G ≡ dI

dV
= 2

e2

h

ˆ dk2
‖

(2π)2
T (k‖) (3.3)

The transmission probability T (k‖) is obtained by solving the 1D Schrodinger equation:

− ~2

2m

∂2

∂z2
ψ(z) =

(
E − V (z)− ~2

2m
k2
‖

)
ψ(z) (3.4)

in the geometry shown in 3.1. The general solutions of equation (3.4) in the left (L) electrode, barrier
(B), and right (R) electrode are, respectively, of the forms

ψL(z) = aLe
ikLz + bLe

−ikLz for z ≤ z1

ψB(z) = aBe
iκz + bBe

−iκz for z1 < z ≤ z2

ψR(z) = aRe
ikRz + bRe

−ikRz for z > z2

(3.5)

where the z components of the wave numbers are defined as

kL =
√

(2m/~2)(E − VL)− k2
‖

κ =
√
k2
‖ − (2m/~2)(E − VB)

kR =
√

(2m/~2)(E − VR)− k2
‖

(3.6)

The scattering wave in the whole system is given by the combination of eigen functions in equation
(3.5). The coefficients aL, bL, aB , bB , aR and bR are determined by matching the slope and value of the
wave function across the interface[27]. The matching conditions at z = z1 are conveniently described as
a 2× 2 matrix R1 operating on the 2D vectors as

(
aL

bL

)
= R1

(
aB

bB

)
(3.7)

where

R1 =
1

2kL

(
(kL − iκ)e(−ikL+κ)z1 (kL + iκ)e(−ikL−κ)z1

(kL + iκ)e(ikL+κ)z1 (kL − iκ)e(ikL−κ)z1

)
(3.8)

In the same manner, the matching conditions at z = z2 are written as

(
aB

bB

)
= R2

(
aR

bR

)
(3.9)

where
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Figure 3.2: Densities of states for spin-up (D ↑) and spin-down (D ↓) electrons in the F alignment (a)
and those in the A alignment (b)[17]

R2 =
i

2κ

(
(kR − iκ)e(ikR−κ)z2 −(kR + iκ)e−(ikR+κ)z2

−(kR + iκ)e(ikR+κ)z2 (kR − iκ)e−(ikR−κ)z2

)
(3.10)

Since the quantity that we wish to compute is the transmission probability for the electron incident
from the left electrode, only a transmitted wave exists in the right electrode and bR = 0. The relation
between the coefficients aL, bL and aR is

(
aL

bL

)
= R1R2

(
(
aR

0

)
(3.11)

Thus, the transmission probability is

T (k‖) =
|aR|2kR
|aL|2kL

=
kR
kL

1

|(R1R2)11|2
(3.12)

d = z2 − z1 is the thickness or the length of the barrier.

Next, let us consider the magnetic tunnel junctions, where the conductance is spin-dependent. In the
magnetic electrodes, spin-up and spin-down electrons feel the different exchange potentials h0 and−h0,
respectively. The matching condition depends on the relative angle between the magnetization vectors of
left and right electrodes. For simplicity, we consider two types of alignments of magnetization vectors,
parallel (F, because it is similar to ferromagnetic) and anti-parallel (A) alignments, as shown in Figure
3.2.

The spin quantization axis is taken to be parallel to the magnetization vector in the left electrode.
For the F alignment, where the magnetization vectors are parallel, we have two tunneling processes:
electrons incident from the left majority (minority) spin band tunnel to the right majority (minority)
spin band. Potential diagrams for these two tunneling processes are shown in Figure 3.3(a) and (b),
respectively. The wave numbers of electrons in the majority and minority spin bands are

kM =
√

(2m/~2)(E − h0)− k2
‖, km =

√
(2m/~2)(E + h0)− k2

‖ (3.13)
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Figure 3.3: Geometries of the potentials for spin-up and spin-down electrons in the F alignment are
shown in panels a) and (b), and those in the A alignment are shown in (c) and (d), respectively

The conductance for spin-up (spin-down) electrons is obtained from equation (3.3) and (3.12) by
setting kL = kR = kM (km), where kM (km) is the wave number for the electrons in the majority
(minority) spin band. The total conductance for the F alignment is:GP = GP↑ + GP↓ . In contrast,
for the A alignment where the magnetization vectors are antiparallel, electrons incident from the left
majority (minority) spin band tunnel to the right minority (majority) spin band. The potential diagrams
for spin-up and spin-down electrons are depicted in Figure 3.3(c) and (d), respectively.

The conductance for the A alignment, GA is given from equation (3.3) and (3.12) by setting kL =

kM (km) and kR = km(kM ), where kM (km) is the wave number for the electrons in the majority
(minority) spin band

Using GF and GA, the TMR is expressed as17

TMR =
GF −GA

GA
(3.14)

The tunneling conductances, GF (both GF↓ and GF↑ ) and GA and TMR for a nanowire (or nanopil-
lar) are different from that of the similar parameters for the current flowing through MTJs which consists
of planar layers (with almost infinitely wide cross-sectional area compared to the de-Broglie wavelength
of the electron). The conductances and TMR for a nanowire vary a lot due to changes in wire dimensions
or barrier length or barrier potential or when an array of wires are considered.

3.2 Variation of transmission probability with the thickness d of the in-
sulating barrier

The density of states is slightly shifted up by h0 = 0.2eV for minority spin electrons and shifted down
by the same h0 = 0.2eV for majority spin electrons from the zero energy level. In this case, downspin
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(a) T ↓F vs d (b)

Figure 3.4: Transmission probability, TF vs barrier length d for nanowire (VB = 2.2V )

↓ is considered as the majority spin. That means, the majority spin electrons has more number of states.
Equation (3.12), describes the dependence of these allowed states to the transmission probability for
tunneling through the barrier. There are more number of majority spin electrons available for conduction.
Depending on the alignment (F ↓ or F ↑ or A), the transmission probability is different. The length of
the insulating MgO barrier d too changes the transmision probability of the electrons of different spins.

3.2.1 Parallel alignment

The transmission probability for electrons in F alignment, T ↓F or T ↑F is plotted for every eigen energy
mode or state as d is varied in fig 3.4. For all the states, the probability of tunneling decreases drastically
as the barrier length increases. This is because, during quantum tunneling through MgO barrier, the
probability amplitude exponentially decays as a function of distance, thus reducing the probability to
reach the other side. Lower energy states have more transmission probability. This is because, for a
given energy of an electron, the confinement energy (E2D) is lower for lower energy states by definition
and so, the remaining energy for traversing through the wire is more for lower energy states. T ↑F for
higher energy modes are much lower than the lower modes because the electrons from those modes are
not available as those higher modes have energies more than the Fermi energy, EF = 0.8eV . Now, this
Fermi energy translates to EF + h0 = 1.0eV for majority electrons and EF − h0 = 0.6eV for minority
electrons. For the 10nm wire, first six modes have energy lower than 0.6eV , so the minority electrons
in modes above that energy are no more available, resulting in very less T ↑F .

3.2.2 Anti-parallel alignment

The behaviour of the transmission probability for anti-parallel alignment is similar to that of the parallel
alignment (fig 3.5). TA is lower than T ↓F (majority) and greater than T ↑F (minority), except when the
barrier is very thin, i.e., when κd� 1. At such short barriers, a lot of electrons get reflected by the spin
band barriers of the right substrate and get transmitted back to the initial (left) substrate traversing again
through the barrier in (A) alignment. So, eventually, the TA is the lowest only for such thin barriers.
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Figure 3.5: Transmission probability, TA vs barrier length d (VB = 2.2V )

Figure 3.6: Tunneling conductance per unit area vs barrier length d (VB = 2.2V )

3.3 Variation of tunneling conductance with the thickness d of the insu-
lating barrier

The tunneling conductance, given by (3.3) depends on the transmission probability of electron tunneling
through an insulating barrier, MgO. It is integrated over all the available energy states of the conduction
electrons. It is studied for magnetic tunnel junction which has a planar barrier (relatively infinite cross-
sectional area) and for barrier in nanowire (or nanopillar) tunnel junction (cross-sectional area in nano
regime). The expression (3.3) becomes a summation over all the available states for nanowire case.

The variation of the tunneling conductance for parallel alignment and anti-parallel alignment as the
length d of the insulating barrier was changed is shown in fig 3.6. Transmission probability decreases
drastically with increasing barrier length, fig 3.4 and 3.5. Tunneling conductance is just the summation
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(a) Planar tunnel junction (b) Nanowire tunnel junction

Figure 3.7: Relative tunneling conductance vs barrier thickness (VB = 2.2V )

(or integration) of the probabilities over all the states. So, its behaviour is expected to be similar and
it actually is similar. But, conductance is more for planar tunnel junction, because it allows a lot of
electrons to flow through.

3.3.1 Planar magnetic tunnel junction

Relative tunneling conductance (compared to G↑F (minority)) for planar tunnel junction (fig 3.7(a)),
reaches a maximum and drops down because, majority electrons scatter more due to the presence of lot
of them and eventually G↓F andGA starts dying down. When the barriers are very thin, the electrons are
able to reflect back to the left substrate itself in the (A) alignment, because of imbalance in the number
of states available in the substrates on both sides. So, GA < G↑F for very thin barriers.

3.3.2 Nanowire magnetic tunnel junction

Relative tunneling conductance for nanowire (or nanopillar) tunnel junction also reaches a maximum
and drops down due to similar reasons as that of the planar case (3.7(b)).

3.4 Variation of TMR with the thickness d of the insulating barrier

Tunneling magneto resistance (TMR) given by (3.14) depends on the relative difference between the
conductances in the parallel (F) alignment and in the anti-parallel (A) alignment for a given energy.
These conductances depend on the length of the barrier, so TMR too depends on the length of the
insulating barrier. As mentioned earlier, electrons with energy below Fermi energy only are available in
the metal substrate. Now, this Fermi energy translates to EF + h0 = 1.0eV for majority electrons and
EF − h0 = 0.6eV for minority electrons as described earlier. This difference causes differences in the
tunneling conductances of electrons of different spins. From (3.14), this relative difference is known as
TMR.
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Figure 3.8: TMR vs barrier thickness, d for different wire dimensions VB = 2.2V

Actually, for a given energy of electrons and size of the nanowire, there are only a certain number
(finite) of states that are allowed, unlike the planar tunnel junction, where a density of states is consid-
ered, because continuous set of (infinite) states are allowed in the planar case. So, here, the nanowire
dimensions considered are in such a way that, there is one additional non-degenerate energy mode that
gets added as the dimensions are increased. For example, wire with dimensions 5.3nm has two energy
non-degenerate modes below EF , the Fermi energy or the total energy. Similarly, the wire with dimen-
sions 6.7nm has three non-degenerate energy modes below EF , and the wire with dimensions 7.4nm

has four non-degenerate energy modes below EF and so on. Finally, the case with the planar junction is
also considered, which apparently has infinite states below EF .

For all dimensions of the nanowire (even for the planar junction case), TMR decreases as the barrier
thickness increases (3.8) because of reduction of the effect of spin filtering for thicker barriers. Yet,
for different barrier thicknesses, this effect reduces differently. It shows a damped oscillating behaviour
(3.8). That is, the wire with dimensions 5.3nm has very low TMR, while the wire with dimension
6.7nm has very high TMR. Again, the wire with dimension 7.4nm has lower TMR than the planar case,
but more than the 5.3nm wire and so on, until it reaches the planar case. But, when the insulating barrier
thickness d considered is as large as 8− 10nm, then this oscillating behaviour is not seen, rather wires
with smaller dimensions have more TMR than the wires with larger dimensions (3.8). Moreover, the
5.3nm wire has TMR value which is almost constant, except for a dip when d is very small.
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(a) T ↓F vs VB (b) T ↓F vs VB

Figure 3.9: Transmission probability, TF vs barrier potential VB (d = 10nm)

3.5 Behaviour of transmission probability with the barrier potential VB

Depending on the alignment (F ↓ or F ↑ or A), the transmission probability is different. When a dif-
ferent material is used as an insulating barrier like Al2O3, instead of MgO and with different crystal
compositions or configurations, the barrier potential VB changes. This affects κ (3.6), which in turn
changes the probability of electrons tunneling through the barrier for different alignments of the mag-
netization vectors. It actually changes the probability of electrons that gets reflected and transmitted
at both the metal-insulator interfaces, thus modifying a lot of parameters that depends on these prob-
abilities. The density of states is slightly shifted up by h0 = 0.2eV for minority spin electrons and
shifted down by the same h0 = 0.2eV for majority spin electrons from the zero energy level. In this
case, downspin ↓ is considered as the majority spin. That means, the majority spin electrons has more
number of states. Equation (3.12), describes the dependence of these allowed states to the transmission
probability for tunneling through the barrier. There are more number of majority spin electrons available
for conduction. Depending on the alignment (F ↓ or F ↑ orA), the transmission probability is different.
The length of the insulating MgO barrier d too changes the transmision probability of the electrons of
different spins

3.5.1 Parallel alignment

The transmission probability for electrons in F alignment, T ↓F or T ↑F is plotted for every eigen energy
mode or state as VB is varied (keeping barrier thickness d = 10nm constant), in fig 3.9. For all the
states, the probability of tunneling decreases drastically as the barrier potential (height) increases. This
is because, during quantum tunneling through MgO or Al2O3 barrier, the probability amplitude expo-
nentially decays as a function of distance and κ, thus reducing the probability to reach the other side.
Lower energy states have more transmission probability. This is because, for a given energy of an elec-
tron, the confinement energy (E2D) is lower for lower energy states by definition and so, the remaining
energy used for traversing through the wire and tunneling through the barrier is more for lower energy
states. As explained in an earlier section, the minority electrons are not much available at high energy
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Figure 3.10: Transmission probability, TA vs barrier height VB (d = 10nm)

modes, therefore T ↑F is comparatively very low for those modes.

3.5.2 Anti-parallel alignment

The behaviour of the transmission probability for anti-parallel alignment is similar to that of the parallel
alignment (fig 3.10). TA is lower than T ↓F (majority) and greater than T ↑F (minority), except when the
barrier potential is very small, i.e., when κd� 1. At such short barriers, a lot of electrons get reflected
by the spin band barriers of the right substrate and get transmitted back to the initial (left) substrate
traversing again through the barrier. This transition of the probabilities happens at a particular value
of VB for different energy levels. Higher the level, lower the transition barrier potential, because (3.6)
suggests κ to be the sum of VB and k2

‖ ∝ E2D.

3.6 Behaviour of tunneling conductance with the barrier potential VB

The tunneling conductance, given by (3.3) depends on the transmission probability of electron tunneling
through an insulating barrier. It is integrated over all the available energy states of the conduction
electrons. It is again studied for magnetic tunnel junction which has a planar barrier (relatively infinite
cross-sectional area) and for barrier in nanowire tunnel junction (cross-sectional area in nano regime)
for varying barrier potentials. The expression (3.3) becomes a summation over all the available states
for nanowire case.

The variation of the tunneling conductance for parallel alignment and anti-parallel alignment as the
potential (or height) of the insulating barrier VB was changed (keeping barrier thickness d = 10nm

constant) is shown in fig ??. Transmission probability decreases drastically with increasing VB , figs 3.9
and 3.10. Tunneling conductance is just the summation (or integration) of the probabilities over all the
states. So, its behaviour is similar. But, conductance is more for planar tunnel junction, because it allows
a lot of electrons.
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Figure 3.11: Tunneling conductance per unit area vs barrier potential VB (d = 10nm)

(a) Planar tunnel junction (b) Nanowire tunnel junction

Figure 3.12: Relative tunneling conductance vs barrier potential VB (d = 10nm)
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Figure 3.13: TMR vs barrier height VB for different wire dimensions (d = 10nm)

3.6.1 Planar magnetic tunnel junction

Unlike the dependence on barrier thickness d, dependence on barrier potential VB affects the probability
of reflection and transmission at both the metal-insulator interfaces too (fig ??(a)). The combined effect
of the change in the probabilities and the change in the amount of scattering that happens for a given
energy inside the insulating barrier, results in a steady increase in the tunneling conductances (G↓F and
GA) relative to G↑F . The change in comparitive behaviour of the transmission probabilities for different
alignments described in the earlier section is clearly shown in 3.12, where at around VB ≈ 1.4V ,
G↓F = G↑F = GA.

3.6.2 Nanowire magnetic tunnel junction

Relative tunneling conductance for nanowire tunnel junction also steadily increases due to similar rea-
sons as that of the planar case (fig 3.7(b)). Only the cross-sectional area is in nanometer regime.

3.7 Behaviour of TMR with the barrier potential VB

The tunnelling conductances depend on the barrier potential VB , so TMR too depends on VB . Similar to
the case where the thickness of the barrier was varied, here too, the nanowire dimensions are considered
are in such a way that, there is one additional non-degenerate energy level that gets added (below EF =

0.8eV ) as the dimensions are increased. Finally, the case with the planar junction is also considered,
which apparently has infinite states below EF = 0.8eV .
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Figure 3.14: Tunneling conductances vs gap between wires

For all dimensions of the nanowire (even for the planar junction case), TMR decreases as the barrier
potential VB increases for lower potentials (above Fermi energy) (fig 3.13). This is because of reduction
of the effect of spin filtering for increasing barrier potentials. But, for all wire dimensions, TMR then
reaches a minimum, which is zero and starts increasing for higher values of VB . That’s when G↓F =

G↑F = GA. Now, this is because, as VB increases, more reflections happen at both the metal-insulator
interfaces, causing a steady increase in the values of TMR for nanowire tunnel junctions of various
dimensions and for the planar MTJ too. The value of VB for each wire (of certain dimensions) at
which the TMR reaches minimum, increases from about 0.7V to about 1.4V for wires with greater
dimensions (side of the cross-sectional area) i.e. from 5.3nm to 10.0nm to planar (fig 3.13). This is
because the effect of reflections starts dominating in effecting TMR early, i.e., even at lower values of
VB , for wires with lesser number of allowed energy levels, meaning wires with smaller dimensions.
Now, interestingly, when VB < EF , the electrons start crossing over the barrier, because, electrons in
modes of higher energy have more energy than the barrier. This causes oscillating behaviour of TMR
because those modes have discrete energies.

3.8 Tunneling parameters for an array of 4 quantum wires

Though single wire is easy for modelling, in practice, only an array of wires is often used. The spin-
dependent tunneling conductances and TMR are studied for electrons flowing through 4 quantum wires
of dimension 2nm each placed apart on a substrate, as the gap between the wires are changed.

3.8.1 Tunneling conductance vs gap between wires

Tunneling conductance stays constant when the gap between the wires is between about 2nm to about
4.5nm, i.e. when the wires are not very close to each other nor when they are very close to the edges (fig
3.14). When the gap between the wires is lower than this range, the system behaves as if there is a single
larger wire in the centre, because of lateral quantum tunneling between the wires. But, more lateral
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Figure 3.15: TMR vs gap between wires

reflections happen causing some electrons to leak into the substrate, thus reducing the conductance.
Also when the gap between the wires are so much that it is about half the wire size distance from
the boundaries (of the lattice), the conductances decrease because the electrons get reflected from the
infinite lattice boundaries and need more energy to stay confined and flow through the wires close to the
boundaries.

3.8.2 Tunneling Magneto Resistance (TMR) vs gap between wires

The TMR, in fact reflects the behaviour of the tunneling conductance. TMR increases for both the
extreme cases, i.e. when the wires are very close apart and when they are very close to the edges (fig
3.15). This happens because, although the difference between GF and GA remains almost same, their
actual value reduces drastically, in turn increasing TMR at those extreme cases (as TMR ∝ 1

GA
).
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CHAPTER 4

Spin Transfer Torque

4.1 Theory and applications of Spin Transfer Torque

Spin-transfer torque is an effect in which the orientation of a magnetic layer in a magnetic tunnel junction
or spin valve can be modified using a spin-polarized current.

Charge carriers (such as electrons) have a property known as spin which is a small quantity of an-
gular momentum intrinsic to the carrier. An electrical current is generally unpolarized (consisting of 50
spin-up and 50 spin-down electrons); a spin polarized current is one with more electrons of either spin.
By passing a current through a thick magnetic layer (usually called the "fixed layer"), one can produce
a spin-polarized current. If this spin-polarized current is directed into a second, thinner magnetic layer
(the "free layer’), angular momentum can be transferred to this layer, changing its orientation. This
can be used to excite oscillations or even flip the orientation of the magnet. The effects are usually
only seen in nanometer scale devices. Spin-transfer torque can be used to flip the active elements in
magnetic random-access memory. Spin- transfer torque magnetic random-access memory (STT-RAM
or STT-MRAM) has the advantages of lower power consumption and better scalability over conven-
tional magnetoresistive random-access memory (MRAM) which uses magnetic fields to flip the active
elements.

4.1.1 Metal-Ferromagnetic junction

When a current of polarized electrons enters a ferromagnet, there is generally a transfer of angular mo-
mentum between the propagating electrons and the magnetization of the film. This concept of "spin
transfer" was proposed independently by Slonczewski[29] and Berger[30] in 1996. Experiments soon
followed where anomalies in the current-voltage characteristics of magnetic heterostructures were inter-
preted as evidence for spin transfer[31]. Unambiguous confirmation came when the phenomenon of giant
magnetoresistance[32] was used to detect magnetization reversal in ferromagnetic multilayers with large
current densities flowing perpendicular to the plane of the layers[33]−[35]. Subsequently, spin transfer has
been implicated to explain the observation of spin precession for high-energy, spin-polarized electrons
that traverse a magnetic thin film[36] and enhanced Gilbert damping in magnetic multilayers compared
to one-component magnetic films[37]. More experiments may be expected in the future because spin
transfer is expected to play an important role in the nascent field of "spin electronics"[38].

4.1.2 Particle Transport

The wave vector for an electron with state index i (Energy level) and spin index σ (up or down) is∣∣ψiσ; Ei,±~
2

〉
. For a single particle, the wave vector is a superposition of different states.



|ψ〉 =
∑
iσ

|ψiσ〉 (4.1)

We define the wave function as ψiσ(r) ≡
〈
r|ψiσ; Ei,±~

2

〉
.

The number density is
n(r) =

∑
iσ

ψ∗iσ(r)ψiσ(r) (4.2)

The number current density 1is

j(r) = R

[∑
iσ

ψ∗iσ(r)v̂ψiσ(r)

]
, (4.3)

where v̂ = −(i~/m)∇ is the velocity operator.

We are interested in steady state solution where n is independent of time. Not far from equilibrium,
the current takes the phenomenological form (drift and diffusion)

j = (σ/e)E−D∇δn, (4.4)

where δn = n− neq and D is the diffusion constant.

4.1.3 Spin Transport

The Spin Density is defined as an expectation over the Pauli matrices as

m(r) = 〈s〉

=
∑
iσσ′

ψ∗iσ(r)sσσ′ψiσ′(r)

s = (~/2)σ where σ = σxx̂ + σyŷ + σzẑ.

σx =

(
0 1

1 0

)

σy =

(
0 −i
i 0

)

σz =

(
1 0

0 −1

)

〈s.r̂〉 gives the expectation of spin when measured along r̂.

1Satisfies the continuity equation ∂n(r)
∂t

+∇.j(r) = 0 for a conserved quantity. In this article, we derive j(r) by using the

Schrodinger equation for a free particle in an electric field and not in a magnetic field,
(
i~ ∂ψ

∂t
=
[
−~2
2m
∇2 + V

]
ψ
)
.
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We define the Spin current density by analogy to particle transport as

Q(r) = R

[∑
iσσ′

ψ∗iσ(r)sσσ′ ⊗ v̂ψiσ′(r)

]
(4.5)

Unlike particle transport, we consider spin accumulation and generation in the continuity equation2. We
get

∇.Q +
∂m

∂t
= −δm

τ↑↓
+ next (4.6)

where Q is a tensor with Qik as current along spin axis i flowing spatially through axis k.

∇.Q = ∂kQik where δm = (|m| − meq)m̂ is spin accumulation due to transfer of angular mo-
mentum between spin current and the lattice due to spin-flip. The relaxation time τ↑↓ changes with
magnitude of local spin density but not direction.

The Landau-Lifshitz-Gilbert torque density gives next = −(gµB/~)m×Beff +αm̂× .
m where the

first term is spin torque due to applied magnetic field and the second term is phenomenological damping.
In this article we study the spin transfer torque density nstt = −∇.Q.

Phenomenologically the spin current is driven by drift and diffusion,

Qik = σ̄iEk − Λ̄i∂kδmi (4.7)

σ̄ = (σ↑ − σ↓)m̂ and Λ̄ also proportional to the same rather than thirf rank tensors. D̄ is taken to be a
scalar rather than a fourth rank tensor.

In a nonmagnet, σ↑−σ↓. Hence, spin current occurs only if there is a gradient in spin accumulation.
But, it is not so for a ferromagnet. Also the phenomenological transport equations are not valid if the
direction of ferromagnetic magnetization is not uniform. Corrections are necessary when the magneti-
zation rotates continuously in space like inside a domain wall.

We alter the phenomenological equation 4.4 by considering that spin accumulation also causes a
flow in particle current to

ji = (σ/e)Ei −D∂iδmk

4.2 Free Electrons

Consider a free electron in a non-magnet travelling towards a ferromagnet with magnetization Mẑ. We
choose a spin basis along the ẑ direction and define K↑F and K↓F as the fermi levels for majority and
minority electrons for spin along ẑ.

2The choice of Ĥ =
[
−~2
2m
∇2 + V

]
we made to derive j will force the RHS of (eqn) to be 0. The Hamiltonian has

additional terms capturing next and spin relaxation.
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The transformation matrix3 between two spin basis at an angle θ, φ is given as

U = exp

(
−iσzφ

2

)
. exp

(
−iσyφ

2

)
=

(
e−i

φ
2 0

0 ei
φ
2

)
.

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)

=

(
cos θ2e

−iφ
2 − sin θ

2e
−iφ

2

sin θ
2e
iφ
2 cos θ2e

iφ
2

)

Let the spin be polarized at an angle θ, φ in the non-magnet with spin +1
2 and travelling with wave

vector k = (kx,q)4, and spatial varialble as r = (x,R). It can be represented by (|↑′〉 eikxxeiq.R). Then
we have

ψin = U
∣∣↑′〉 =

[
cos

θ

2
e−i

φ
2 |↑〉+ sin

θ

2
ei
φ
2 |↓〉

]
eikxxeiq.R (4.8)

in the ẑ basis.

We set ~2|kσ |2
2m = EσF as only conduction electrons are free.

We can split ψ = ψin + ψref + ψtr as ψ↑ and ψ↓ by suitable transformation of the wave vector. We
assume that the transverse components q.R remain unaffected by the planar interface and hence drop
eiq.R as it is a constant phase in the wave function. The reflected wave travelling along −x̂ but having
the same fermi energy will have k = (−kx,q). The transmitted waves have different fermi energy and
we expect k = (k↑x,q) for the spin up wave and similar expression for spin down.

ψ↑ = cos θ2e
−iφ/2 |↑〉

 eikxx +R↑e
−ikxx

T↑e
ik↑xx

x < 0

x > 0

ψ↓ = sin θ
2e
iφ/2 |↓〉

 eikxx +R↓e
−ikxx

T↓e
ik↓xx

x < 0

x > 0

(4.9)

ψ has to be continuous for the same electron. Also, continuity of ∂ψ
∂x should be applied, as there is only

a finite Energy difference (follows from the Schrodinger’s equation). Then, it results in 4 equations and
4 unknown transmission and reflection coefficients that could be solved.

Tσ (q) =
2kx (q)

kx (q) + kσx (q)
, Rσ (q) =

kx (q)− kσx (q)

kx (q) + kσx (q)
(4.10)

where kσx =
√(

Kσ
F

)2 − q2, (σ ≡↑, ↓). Note that if we have q2 > (Kσ
F )2 we have imaginary wave vec-

tors, implying tunneling and not propagation as the amplitude decays. The expressions for the transverse
spin current probabilities and transverse spin current density components are[39]:

Rσ (q) =
jrefσ
jin

= RσR
∗
σ =

[
kx (q)− kσx (q)

kx (q) + kσx (q)

] [
kx (q)− kσx (q)

kx (q) + kσx (q)

]∗
3Uθn̂ = exp

(−iS.n̂θ
~

)
= I cos θ

2
− in̂.σ sin θ

2
4here q ≡ (ky, kz). Note that, unlike in earlier sections, in this section, electron is assumed to traverse along +vex−axis

direction
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T σ (q) =
jtraσ
jin

=
R (kσx (q))

kx (q)
TσT

∗
σ =

kσx + (kσx)∗

2kx

[
2kx (q)

kx (q) + kσx (q)

] [
2kx (q)

kx (q) + kσx (q)

]∗
∣∣∣Q̂xx + Q̂yx

∣∣∣ =


∣∣∣R↑R∗↓∣∣∣ =

∣∣∣∣[kx(q)−k↑x(q)

kx(q)+k↑x(q)

] [
kx(q)−k↓x(q)

kx(q)+k↓x(q)

]∗∣∣∣∣ ,∣∣∣T↑T ∗↓Φ
∣∣∣
x−→100

=

∣∣∣∣[ 2kx(q)

kx(q)+k↑x(q)

] [
2kx(q)

kx(q)+k↓x(q)

]∗
k↓x+k↑x

2kx
e
i
(
k↓xx−k↑xx

)∣∣∣∣
x−→100

x < 0

x > 0
,

and its easy to see that Rσ + T σ = 1. The transmission and reflection probability currents are

conserved as expected (continuity of ψ, ∂ψ∂x ). Φ = k↓x+k↑x
2kx

e
i
(
k↓xx−k↑xx

)
. There is a discontinuity that

occurs because k↓x becomes complex for q > 0.5KF . This is because wavevectors with q > 0.5KF

have energy beyond the barrier, which is why the transmisson probability goes to zero for them. Also,
considering x −→ 100, changes the phase rapidly causing a steep fall in the transmitted spin current
density plot in figure 4.2(c) and 4.2(d). The transverse component of the reflected spin current density
has a phase associated with it, given by ∠R↑R∗↓ is also plotted in figure 4.2. Whereas the transverse
component of the transmitted spin current density varies with the space. So, its spatial precission is
shown in figure 4.3.

For further discussions, we normalize q, K↑F and K↓F w.r.t. KF . Some quantities of interest were
studied as a function of q for K↑F = 1.5KF and K↓F = 0.5KF and for both planar multilayer case and
for nanowire case (Figure 4.1, 4.2 and 4.3).

4.2.1 Spin filtering

The interface slows down minority spin while speeding up majority spin. So, reflection and transmission
probabilities are spin dependent (fig 4.2(a), 4.2(b), 4.2(c) and 4.2(d)). When q > K↓F , the transverse
spin is retained only in the reflected wave as minority spin decays in the ferromagnet (fig 4.2(e), 4.2(f)).
Hence, a discontinuity occurs at q = K↓F . We can define

[
1− |R↑R↓| − |T↑T↓Φ|x→∞

]
as a measure

of transverse spin absorbed by the interface, which actually causes the spin transfer torque. In figure
4.1, the reflected and transmitted spin current densities are also plotted. The spin current densities are in
terms of ~

2vx (where vx = kxh
m ).

1) The first plot (fig 4.2(a) and 4.2(b)) shows the variation of the reflection probability current w.r.t
q.

2) The next plot (fig 4.2(c) and 4.2(d)) shows the variation of the transmision probability current
w.r.t q.

3) The third plot (fig 4.2(e) and 4.2(f)) shows the variation of transverse spin current w.r.t q.

4.2.2 Spin Rotation

WhenR↑R↓ is imaginary, a phase is introduced in the reflected wave. It is quantum mechanical in nature
and has no classical analogue. Figure 4.2 shows this variation of phase w.r.t. q.
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(a) Reflection probability currents (planar) (b) Reflection probability currents (nanowire)

(c) Transmission probability currents (planar) (d) Transmission probability currents (nanowire)

(e) Transverse spin current (planar) (f) Transverse spin current (nanowire)

Figure 4.1: Spin filtering of spin currents for a free electron
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(a) Phase(R↑R↓) (planar) (b) Phase(R↑R↓) (nanowire)

Figure 4.2: Spin rotation of spin currents for a free electron

(a) Phase(T↑T
∗
↓Φ) (planar) (b) Phase(T↑T

∗
↓Φ) (nanowire)

Figure 4.3: Spatial spin precession of spin currents for a free electron
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4.2.3 Spatial precession

The transmitted transverse spin has a spatially varying phase (Figure 4.3) when k↑x 6= k↓x. This causes
a distributed torque density at every point in the ferromagnet. One could observe that here, a constant
energy level has been assumed and the probabilities of spin currents were plotted for different values of q

which is nothing but the radially confined energy levels. kσx =
√(

Kσ
F

)2 − q2 gives us the corresponding
kσx either for magnetic or non-magnetic material. But if the nanowire is finitely long and becomes
comparable to the radial dimensions, then this assumption would not be valid and we would have very
limited energy values and mostly they might allow only very selective q and kσx values.

4.3 Distribution of electrons

The spin current flowing through the non-magnetic-ferromagnetic interface were derived and plotted for
a free electron case. Now, for a distribution of electrons, the spin curent is given by[39],

Qinxx =
~
2

ˆ
vx>0

d3k

(2π)3 fp (k) vx (k) sin θk cosφk

but for a nanowire, it should be

Qinxx =
~
2

k∑
vx>0

(
∆3k

)
(2π)3 fp (k) vx (k) sin θk cosφk

where fp (k) = f↑ (k) − f↓ (k) determines the degree of the polarization at each point on the Fermi
surface. The angles θk and φk determine the direction of the spin polarization. Electron states in the
immediate vicinity of the Fermi surface dominate the transport of charge and spin. Therefore, we write

fσ (k)→ fσ (εk) + gσ (q)
∂fo (εk)

∂εk
,

where fo is the equilibrium Fermi-Dirac distribution function and the partial derivative restricts k to the
Fermi surface. We write gσ (q) rather than gσ (k) because |k|2 = k2

x + q2 = k2
F . The equilibrium term

does not contribute to the spin current. The summation happens for different values of kx, which in turn
depends on the different values taken by q. So, there are 3 summations, one over kx and the other two
over q. It is known that Ex ∝ k2

x and E2D ∝ q2.

Qinxx =
~
2

q∑
vx>0

(
∆2q

) 1

(2π)3 gp (q) sin θq cosφqvx (q)

kx∑
vx>0

(∆kx)
∂fo (εk)

∂εk

From the Boltzman Transport equation, we get,

∂f

∂t
+∇f. p

m
+
∂f

∂p
.F =

df

dt
= 0

48



Ignoring bulk effects, we get at steady state,

∂f

∂x
vx =

1

~
∂E

∂x

∂f

∂kx

which implies,
∂f

∂E
=

1

~vx
∂f

∂kx

So,
kx∑
vx>0

(∆kx)
∂fo (εk)

∂εk
=

kx∑
vx>0

(∆kx)
1

~vx
∂f

∂kx
=

1

~vx

kx∑
vx>0

∆f =
1

~vx

(considering f as a step function). Subsituting this in the equation for Qinxx, we get,

Qinxx =
1

4π

q∑
vx>0

(
∆2q

) 1

(2π)2 gp (q) sin θq cosφq (4.11)

Similarly,

Qinyx =
1

4π

q∑
vx>0

(
∆2q

) 1

(2π)2 gp (q) sin θq sinφq (4.12)

Following the similar derivation for the reflected and transmitted spin currents as mentioned in the
Stiles’ paper[39], we get,

Qrefxx = − 1

4π

q∑
vx>0

(
∆2q

) 1

(2π)2 gp (q) sin θq
∣∣R∗↑ (q)R↓ (q)

∣∣< [ei(φq+∆φq)
]

Qrefyx = − 1

4π

q∑
vx>0

(
∆2q

) 1

(2π)2 gp (q) sin θq
∣∣R∗↑ (q)R↓ (q)

∣∣= [ei(φq+∆φq)
]

Qtrxx =
1

4π

q∑
vx>0

(
∆2q

) 1

(2π)2 gp (q) sin θq
v↑x (q) + v↓x (q)

|2vx (q)|
<
[
T ∗↑ (q)T↓ (q) eiφqe

−i
(
k↑x−k↓x

)
x
]

Qtryx =
1

4π

q∑
vx>0

(
∆2q

) 1

(2π)2 gp (q) sin θq
v↑x (q) + v↓x (q)

|2vx (q)|
=
[
T ∗↑ (q)T↓ (q) eiφqe

−i
(
k↑x−k↓x

)
x
]

At this point, we must make a specific choice for gp(q) and the polarization of the incident spin current.
Let us assume the current is completely spin polarized along +x̂ . This fixes θk = π/2 and φk = 0.
Then, from (4.12), Qinyx = 0 and Qinxx is the only incoming transverse component. We begin with the ap-
proximate form, gp (q) = a+bvx (q) . The two terms account for interface and bulk effects, respectively.
The velocity-dependent bulk term is familiar from textbook treatments of electrical conductivity[40], usu-
ally gradients in spin accumulation rather than electric potential drive the spin current in the nonmagnet.
The constant term is needed because a spin-dependent chemical potential difference ∆µ across an in-
terface also drives a spin current[41]. Here, we assume that the interface resistance is large (i.e. large
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reflection probability), so we use gp (q) ' a = ∆µ. With these choices, the incident spin current is

Qinxx =
1

4π

∆µ

(2π)2

q∑
vx>0

(
∆2q

)
The summation depends on the nanowire symmetry that we use. Similarly, the other components for
θq = π/2 and φq = 0 are:

Qrefxx = − 1

4π

∆µ

(2π)2

q∑
vx>0

(
∆2q

) ∣∣R∗↑ (q)R↓ (q)
∣∣< [ei∆φq] (4.13)

Qrefyx = − 1

4π

∆µ

(2π)2

q∑
vx>0

(
∆2q

) ∣∣R∗↑ (q)R↓ (q)
∣∣= [ei∆φq] (4.14)

Qtrxx =
1

4π

∆µ

(2π)2

q∑
vx>0

(
∆2q

) v↑x (q) + v↓x (q)

|2vx (q)|
<
[
T ∗↑ (q)T↓ (q) e

−i
(
k↑x−k↓x

)
x
]

(4.15)

Qtryx =
1

4π

∆µ

(2π)2

q∑
vx>0

(
∆2q

) v↑x (q) + v↓x (q)

|2vx (q)|
=
[
T ∗↑ (q)T↓ (q) e

−i
(
k↑x−k↓x

)
x
]

(4.16)

From the above equations, the magnitude of the reflected (from eqns. (4.13) and (4.14)) and transmit-
ted (from eqns. (4.15) and (4.16)) transverse spin current could be determined relative to the incoming
transverse component of spin current Qinxx,∣∣∣Qrefxx +Qrefyx

∣∣∣
Qinxx

=

∑q
kx>0

(
∆2q

) ∣∣∣R∗↑ (q)R↓ (q)
∣∣∣∑q

kx>0 (∆2q)
(4.17)

∣∣Qtrxx +Qtryx
∣∣

Qinxx
=

∑q
kx>0

(
∆2q

) ∣∣∣∣k↑x(q)+k↓x(q)
2kx(q) T ∗↑ (q)T↓ (q) e

−i
(
k↑x−k↓x

)
x
∣∣∣∣∑q

kx>0 (∆2q)
(4.18)

Now, using the relations in (4.10) the above summations were calculated for different geometries
to understand how confining electrons in a low-dimensional structures change the spin-transfer torque
experienced by the ferromagnetic layer.

4.3.1 Transverse spin current for different wire sizes

Using the relation obtained in (4.17), the reflected transverse spin current is plotted for nanowire struc-
tures with different sizes5(fig 4.4)

Bigger the size of the wire, more number of states are allowed and hence more spin current. The
fraction of the electrons that gets reflected from the interface compared to the ones that are incident, is
almost a constant, so it increases slowly. Next, the transverse transmitted spin current is plotted in fig
4.5.

5lw is same as Lx and Ly . lw = Lx = Ly → length of one side of the cross-section of the wire.
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Figure 4.4: Incident and reflected transverse spin current density vs lw in nm

Figure 4.5: Q(transverse)
transmitted vs KFx for different wires
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Figure 4.6: Spin Transfer Torque vs KFx for different wires

As expected, it falls down as it goes through the wires of any dimensions. This is due to spatial
precession. When the size increases, the number of electrons that cross the barrier increases and also the
number of electrons that tunnel through also increases. The combined effect of both of them results in
damped oscillation w.r.t KFx or just damping. it depends on the size, difference in K↓F and K↑F , etc.

4.3.2 Spin Transfer Torque for different wire sizes

The spin-transfer torque[39] is given by , Nstt = (Qin − Qtr + Qref ).Ax̂. Here, Nstt is higher for
larger wires (except for lw = 5.3nm case) (from fig (4.6)), because reflection or scattering supports in
increasing the torque. There are more of the electrons too to further it.

Just to get more insight, the same figure 4.6 is shown from the other side in fig 4.7, i.e. here the
behaviour of the same Nstt is shown as the size of the wire changes, sampled at different distances
(KFx = 0, KFx = 2.5, KFx = 5, KFx = 7.5 and KFx = 10)

There is an overall apparent increase in Nstt as the wire size increases, but some glitches happen
because the balance mentioned earlier varies a lot when there are very few allowed energy levels (like
the case of wire with size lw = 6.7nm, which has only 4 allowed energy levels).
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Figure 4.7: Spin Transfer Torque vs lw at KFx = 10
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CHAPTER 5

Conclusion and future scope for work

The behaviour of TMR for different wire sizes and barrier potentials could also be studied for different
outside potentials (i.e. lattice potentials). The variation of STT in nanowire structures have to be studied
for materials with lattice-matched interfaces.

It is interesting to note that, there is a growing interest in the resistance and magnetoresistance
associated with domain walls (DWs) in metallic ferromagnets[42]. Owing to recent progress in nan-
otechnology, it became possible now to extract a single DW contribution to electrical resistance[42]−[45].
Surprisingly, it turned out that the resistance of a system with DWs in some cases was smaller than in
the absence of DWs[43],[44], whereas in other cases it was larger[46]−[48]. This intriguing observation
led to considerable theoretical interest in electronic transport through DWs. The interest is additionally
stimulated by possible applications of the associated magnetoresistance in magnetoelectronics devices.

In a series of experiments the magnetoresistance associated with DWs was found to be very large.
Moreover, recent experiments on Ni microjunctions showed that constrained DWs at the contact be-
tween ferromagnetic wires produce an unexpectedly large contribution to electrical resistivity, and con-
sequently lead to a huge negative magnetoresistance. It was shown theoretically that DWs in magnetic
microjunctions can be very sharp, with the characteristic width L being of atomic scale. This is much
less than typical DW width in bulk materials or thin films[49].

The variation of resistances and spin transfer torques of the domain wall[50] while taking into account
of its the motion, have to be studied for various dimensions of nanowire (or nanopillar)[51].
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