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ABSTRACT

Gilbert-Varshamov(GV) bound, lower bounds the maximum size of binary codes of

length n and minimum distance d. Here, we attempt to improve the GV bound using

properties of sparse graph, particularly by using square-free graphs. Vardy [Jiang and

Vardy (2004)] used properties of triangle-free graphs on the Gilbert graph, to asymptoti-

cally improve the GV bound from 2n/V (n, d− 1) to 2n log
(
V (n, d− 1)

)
/V (n, d− 1),

where V (n, d − 1) =
∑i=d

i=0

(
n
i

)
. We try to generalize this approach using square-free

graphs. The square-free graphs are shown to “sparser” than triangle-free graphs. There-

fore, we try improving the lower bound on the maximum independent set size of square-

free graphs. Thereafter, we apply the bound on a square-free-subgraph of the Gilbert

graph. Meanwhile, we have also proved that for d/n > .31, the number of squares in

the Gilbert graph is 2n × V (n− 1, d)3(1−ǫ), for some ǫ > 0.

In the chapter, we approach the problem using vertex-coloring on the Gilbert graph.

GV bound can be improved if one shows that the number of colors required to vertex-

color the Gilbert graph is o
(
V (n, d − 1)

)
. We show that the local coloring requires

(
V (n, d − 1)

)c
colors, for c < 1. Though this in itself doesn’t improve the GV bound,

it motivates this approach.

KEYWORDS: Coding Theory, Gilbert-Varshamov bound, Sparse Random

Graphs, Graph Coloring.
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NOTATION

G(V,E) A graph where V represents the set of vertices and E ⊆ V × V represents the edges.
n(G) Number of vertices of the graph G.
E(G) Number of edges of the graph G.
α(G) Maximum Independent size of graph G.
N(v) Neighbourhood set of vertex v.
K(G) Number of triangles in graph G.
S(G) Number of squares in graph .
v̄ Denotes a vector on F2, of size n, where n is defined in the context.
dist(v̄1, v̄2) Hamming distance between vectors v̄1, v̄2.
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CHAPTER 1

INTRODUCTION

Codes form the very fundamental building blocks communication. The celebrated result

by Shannon proves that one can send error-free information on a noisy channel with

certain extra cost! The motivation behind coding theory is to minimize the “extra" cost

incurred. Mathematically, suppose we want to send m bits of data over noisy channel

C, we have to obviously send more than m bits, say n bits. The central problem which

coding theory addresses is to minimize n/m, which we shall refer as rate r, for a given

m such that the information is error free. It is evident that there are various trade offs,

which depend on the channel C. note that here the word ‘channel’ refers to the medium

which transfers the message. It could be anything from electric signals in wires, waves

in air, light pulses in an optical fibre or even combination of all of these!

One of the most simple and practical channels to model is the channel which “cor-

rupts” at-most d bits of a the n-length codeword, which we shall refer as Cd channel.

Under this channel what is the maximum rate r obtainable as a function of d and n? One

could also ask reverse the question – What is the maximum length of message length m

for a given codeword of length n, for noiseless transmission of information over chan-

nel Cd? Lets solve the problem is steps; firstly for any received word to be uniquely

mapped to a message, the distance between the codewords corresponding to any two

message must be greater than 2d. Henceforth, shall restrict ourselves to the case were

the codebits are binary(i,e either 0 or 1). Posing the question in language of mathemat-

ics, let Aq(n, d) be the maximum number of codewords for a n length-codeword. What

is maximum value of Aq(n, d)? There are various upper bounds [Richardson and Ur-

banke (2008)]on Aq(n, d), such as the Elias bound, Plotkin bound, each dominating for

certain ranges of d/n. But only non-trivial lower bound for Aq is Gilbert-Varshamov

bound, which for binary case is

A(n, d) ≥ 2n
∑i=d

i=0

(
n
i

)

This bound was proposed in 1952 by Gilbert and later improved by Varshamov,



henceforth the name. For a very long time this bound was the best know to coding

theorist. But the simulations gave number codewords higher than the GV bound [Zi-

noviev and Litsyn (1985)]. Various improvements upon the binary Gilbert-Varshamov

bound were presented by Varshamov [Varshamov (1957)], Hashim [Hashim (1978)],

Elia [Elia (1983)], Tolhuizen[Tolhuizen (1997)], Barg-Guritman-Simonis [Barg et al.

(2000)], and Fabris [Fabris (2001)].

In 2004, Vardy-Jiang [Jiang and Vardy (2004)] asymptotically improved the GV

bound to

A(n, d) ≥ c
2n

∑i=d
i=0

(
n
i

) log
( i=d∑

i=0

(
n

i

))

, for come constant c.

The technique used in the paper [Jiang and Vardy (2004)], was significantly different

from [Varshamov (1957)], [Hashim (1978)], [Elia (1983)], [Tolhuizen (1997)], [Barg

et al. (2000)], [Fabris (2001)]. They used an existing result which states that the size

of the maximum independent set size for triangle-free graph G, α(G) is greater than

n(G) log d
d

, where d is the average degree of the graph G.

Here, we try using Vardy’s idea on a square-free graphs (Graphs with no 4-Cycles).

But for that we initially try improving the maximum independent set size for square-

free graph G and then apply the improved bound on the Gilbert graph (Refer definition

5). We also try another approach by using graph vertex coloring in the end.

In the first chapter, we define various objects which will commonly be used through-

out the thesis. In second chapter, we summarize Vardy’s paper [Jiang and Vardy (2004)].

In the third chapter, we try improving the lower bound of maximum independent set size

on graphs with no 4-Cycles. In fourth chapter, we relax those bounds for graphs with

“few" triangle and squares. In chapter six, we apply the results from chapter five on

Gilbert graph to improve the GV bound. Chapter seven is a standalone chapter, which

describes all together a new approach to the GV bound, using vertex-coloring. The last

chapter provides the possible direction for improving the GV-bound.

Disclaimer: Though I have conveniently written “improving" GV bound at various

places, we have only tried improving it, with no concrete results. I sincerely hope that

ideas presented here would be used to improve the GV-bound.
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CHAPTER 2

Definitions and Few Important Results

2.1 Independent set size

Definition 1 Independent set : For a graph G(V,E), U ⊆ V , is an independent set if

none of the vertices in U have an edge between them i.e, for all u1, u2 ∈ U , {u1, u2} 6∈
E. Whereas, α(G) is defined as maximum size of independent set.

Finding the maximum independent size of a graph is NP-Complete. However, there are

a few polynomial time approximation algorithms. We shall now state few lower bounds

maximum independent set size of a graph.

Theorem 2.1.1 (Li and Lin (2012)) For a graph G(V, E), let d denote the average de-

gree and α(G) denote the maximum size of an independent set. Then,

α(G) ≥ n

d
(2.1)

There are infinite number of graphs which satisfy the above lower bound and therefore,

the lower bound in theorem 2.1.1 is tight. Therefore, one can obtain a better lower

bound only for a particular class of graphs, which satisfy certain properties. We shall

look into one such class of graphs.

Definition 2 Girth : Girth of the graph is defined the size of the cycle, which uses the

minimum number of vertices.

Definition 3 Triangle-free graphs: Graph G(V,E) is said to be a triangle-free graph

iff its girth is strictly greater than 3.

Triangle-free graphs are also referred as C-3 graphs. By the definition of the graph G,

for a given vertex v ∈ V , none of its neighbours are connected. This is a common situ-

ation is various problems and therefore, it has motivated extensive research of triangle

free graphs. Using this property, Ajai et.al proved the following result.



Theorem 2.1.2 (Ajtai et al. (1980)) For a triangle-free graph G(V,E), let d denote the

average degree and α(G) denote the maximum size of an independent set. Then,

α(G) ≥ n

d
log d (2.2)

.

Definition 4 Square-free graphs : Graph G(V,E) is said to be a square free graph iff

its girth is strictly greater than 4.

Square-free graphs are also referred at quadrilateral-free graphs or C-4 graphs in the

literature. These graphs are of particular interest because of the following reasons.

1. For a square-free graph of size |V | = n, the maximum number of edges is
O(n3/2) [Jukna (2001)], [Füredi (1996)]. Whereas, maximum number of edges
for a triangle-free graph of size |V | = n, is O(n2) [Jukna (2001)].

2. Number of 6 cycles in bipartite square-free graphs is O(n2).

From the above points, we can see that square-free graphs are ‘sparser’ than triangle-

free graphs and one could possibly improve the lower bound on α(G) for square-free

graphs.

2.2 Gilbert-Varshamov Bound

Let A(n, d) denote the maximum number of codewords in a code of length n and mini-

mum distance d over binary field. The Gilbert - Varshamov bound asserts that

A(n, d) ≥ 2n
∑i=d

i=0

(
n
i

)

2.3 Gilbert Graph

Definition 5 Gilbert Graph : Consider the subspace {0, 1}n, construct a the corre-

sponding graph Gn
d(V,E), each vertex v ∈ V , represents a vector in the subspace

{0, 1}n. For any two given vertices v1, v2 ∈ V , {v1, v2} ∈ E if hamming distance
(
dist(v̄1, v̄2)

)
between the corresponding vectors is lesser than or equal to d

4



Few easily observable properties of Gn
d .

1. Degree of each vertex of the graph is equal to
∑i=d

i=0

(
n
i

)
.

2. The graph has high degree of symmetry.

3. The graph has a clique of the size
∑i=d/2

i=0

(
n
i

)
.

4. Let I be a independent set of Gn
d , then for v1, v2 ∈ I, the hamming distance

between vectors corresponding to v1 and v2 is greater than d.

Using theorem 2.1.1 on Gn
d , we obtain

α(Gn
d) ≥

2n
∑i=d

i=0

(
n
i

) (2.3)

The result in equation (2.3) is nothing but the GV bound!
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CHAPTER 3

Using triangle-free graphs to improve the GV bound

In chapter 2, we defined triangle-free graphs. We also saw an improvement in the

lower bound maximum independent size of triangle-free graphs. Intuitively it seems

like having "few" triangles in a graph should not hurt the lower bound. We now state

a lemma which gives a lower bound on maximum independent set size of graphs with

few triangles.

Lemma 3.0.1 (Bollobás (1998), lemma 12.16) Let G(V,E) be a graph with maximum

degree at most ∆ and suppose that G contains no more than T triangles. Then

α(G) ≥ n(G)

10∆

(

log2∆− 1

2
log
( T

n(G)

))

(3.1)

If each vertex is part of at most t triangles using lemma 3.0.1 we have

α(G) ≥ n(G)

10∆

(

log2 ∆− 1

2
log

t

3

)

(3.2)

Vardy in his paper [Jiang and Vardy (2004)], uses the above lemma on the Gilbert graph

and a series of other results, described further, to improve the GV bound by a log factor.

Initially, they prove that for the Gilbert graph, each vertex is part of equal number

of triangles, say t. This can be easily observed from the construction. Later they prove

that t = ∆2(1−ǫ), where ∆ =
∑i=d

i=0

(
n
i

)
. Combining the two results they obtain

A(n, d) ≥ ǫ
2n

(
∑i=d

i=0

(
n
i

)) log

(
i=d∑

i=0

(
n

i

))

(3.3)



CHAPTER 4

Square-Free Graphs

From chapter 2, we observed that the triangle-free restriction on a graph, improved the

lower bound on its independent set size by a log factor. Later, in chapter 3 we saw

that how this result was used to further improve the GV bound. Thus we try something

similar by using square-free graphs. As it turns out, dealing with square free graphs

becomes harder. The reason being that the square-free property is not easily usable

when compared with the triangle-free property.

4.1 Independent size in terms of maximum degree

The theorem mentioned has a mistake in the proof, which was noticed after a long time

and the mistake has been stated in the end. But there are various techniques used in the

theorem which might be helpful for correcting the mistake and proving the theorem.

Theorem 4.1.1 Let G(V,E) be a square-free graph on n vertices with maximum degree

of ∆ and average degree davg > 1. Then

α(G) ≥ ndavg
log2 ∆

c∆2
,

where c is a constant and α(G) is the maximum independent set.

Proof The proof follows the technique similar to the one used by Alon [Alon and

Spencer (2004)], to prove theorem 2.1.2. Let W be a random independent set of vertices

in G, uniformly chosen over all independent sets in G. For each pair of vertex (u, v)

connected by an edge, we define the random variable

Xu,v = ∆|{v} ∩W |+∆|{u} ∩W |+ |N{v} ∩W ||N{u} ∩W | (4.1)



u v

1

2

y − 1

y

1

2

z − 1

z

Figure 4.1: Example of a sub-graph induced by an edge in a square free graph.

The definition of the random variable in equation (4.1) is not very obvious. It was

obtained after a few trials. Now, we shall state and prove few lemmas, which, further

will be used to prove this theorem.

Lemma 4.1.2 E[Xu,v] ≥ log2 ∆
c

, where c is a constant.

Proof Let H be subgroup of G induced be the vertices V −N(v)∪{v}−N(u)∪{u}.

Consider a fixed independent set S in H and let the set Z denote the non-neighbours

of S in N(u), similarly let set Y denoted the non-neighbours of S in N(v). Refer the

figure 4.1. Also, let z = |Z| and y = |Y |.

To prove the lemma 4.1.2, it suffices to proof the following:

E[Xu,v|W ∩ V (H) = S] ≥ log2 ∆

c
(4.2)

Note: Since the graph is triangle-free none of the vertices in Z have an edge between

them and similarly none of the vertices in Y have edge between them. Also since the

graph is square free, there are no edges between vertices in set Z and Y .

Therefore for a given S, number of ways W can be chosen is precisely 2z+2y+2z+y.

(i) 2z when v is present in W and u is not present in W , (ii) 2y when u is present in W

and v is not present in W . (iii) 2z+y when neither v nor u are present in W . Applying
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the conditional expectation in (4.2), we obtain

E[Xu,v|W ∩ V (H) = S] =
1

2z + 2y + 2z+y

( ∑

v∈W,u 6∈W

∆|{v} ∩W |+
∑

u∈W,v 6∈W

∆|{u} ∩W |+

∑

v 6∈W,u 6∈W

|N{v} ∩W ||N{v} ∩W |
)

=
∆2z

2z + 2y + 2z+y
+

∆2y

2z + 2y + 2z+y
+

z∑

i=1

y
∑

j=1

ij
(
z
i

)(
y
j

)

2z + 2y + 2z+y

=
∆(2z + 2y)

2z + 2y + 2z+y
+

zy2z+y−2

2z + 2y + 2z+y

≥ 1

2
∆(2−y + 2−z) +

zy

8
(4.3)

We complete the proof by using the following proposition.

Proposition 4.1.3 1
2
∆(2−y + 2−x) + xy

8
≥ log2 ∆

8
.

Proof Differentiating the above equation with respect to x and equating it to zero, we

obtain

−∆2−x ln(2) + y/4 = 0, (4.4)

similarly differentiating the equation with respect to y and equation it to zero, we obtain

−∆2−y ln(2) + x/4 = 0, (4.5)

From the symmetry in equations (4.4) and (4.5), equation (4.3) attains minimum at

x = y = x0, where x0 is solution to −(4ln2)∆2−x0 + x0 = 0, which is given by

x0 = log(∆)− o(log log(∆)). (4.6)

Substituting x0 is equation (3), we have

E[Xu,v|W ∩ V (H) = S] ≥ 1

16
log2 ∆ (4.7)

Let davg denote the average degree of graph G, therefore, total edges is ndavg/2.

Now using lemma 4.1.2 and the summing E[Xu,v] over all edges in the graphs, we

9



obtain
∑

(u,v)∈E

E[Xu,v] ≥
1

16
ndavg log

2 ∆ (4.8)

Lemma 4.1.4 E[2∆2|W | + |W |2∆] ≥
∑

(u,v)∈E

E[Xu,v], where ∆ is the max degree of

the vertices in the graph.

Proof The proof follows directly from the two propositions stated and proved further.

Proposition 4.1.5
∑

(u,v)∈E

∆|{v} ∪W |+∆|{u} ∪W | ≤ 2∆2

Proof Consider the following summation

∑

(u,v)∈E

∆|{u} ∪W | =∆
∑

u∈V

∑

v∈N(u)

|{u} ∩W |

=∆
∑

u∈V

|{u} ∩W | × |N(u)|

= ∆
∑

u∈W

|N(u)|

∑

(u,v)∈E

∆|{u} ∪W | ≤ ∆2|W | (4.9)

Similarly, we also have

∑

(u,v)∈E

∆|{v} ∪W | ≤ ∆2|W | (4.10)

The equations (4.9) and (4.10) proves the proposition.

Proposition 4.1.6
∑

(u,v)∈E

|N(v) ∪W ||N(u) ∪W | ≤ |W |2∆

Proof This argument is the main crux of theorem 4.2.1. We shall introduce few defini-

tions which will aid us in our proof. Refer figure ??.

1. K = ∪u∈WN(u), neighbourhood of the independent set W .

2. α(v) = W ∩N(v), ∀v ∈ K

3. β(v) = K ∩N(v), ∀v ∈ W .

10



u1

u2

u3

v

α(v) = {u1, u2, u3}

K

W

K

W

v

u1

u2
u3

β(v) = {u1, u2, u3}
W

K

4. Let E(K) denote the edges present between the vertices in K.

The parameters α and β follow certain constraints:

Constraint 1: Since the neighbourhood size of each vertex v ∈ W is lesser than ∆, we

have the following constraint

∑

u∈W

|N(u)| ≤ |W |∆, (4.11)

The LHS in equation (4.11) denotes the number of edges between vertices in the set W

and K. Therefore, on recounting the edges, we obtain

∑

v∈K

|α(v)| ≤ |W |∆ (4.12)

Constraint 2: If a vertex u ∈ K is connected to a vertex v1 ∈ K and v2 ∈ K, then

v1 and v2 do not share a common neighbour in W because the graph is square-free,

therefore, we have the following

∑

v′∈β(v)

|α(v)′| ≤ |W | ∀ v ∈ K (4.13)

There are a few more constraints on α and β, like α(v) + β(v) ≤ ∆. However, here,

we shall not state the other constraints since they are not used in the proof.

Now we express he LHS of equation in proposition 4.1.6, in terms α(v) and β(v)

11



and later use constraints 1 and 2, to obtain the required result.

∑

(u,v)∈E

|N(v) ∩W ||N(u) ∩W | =
∑

(v,v′)∈E(K)

|α(v)||α(v′)|

=
∑

v∈K

|α(v)|
∑

v′∈β(v)

|α(v′)| (4.14)

Given the constrains 1 and 2, we would like to upper bound the RHS of the equation

(4.14). We therefore pose the following let uem :

max
∑

v∈K

|α(v)|
∑

v′∈β(v)

|α(v′)| (4.15)

s.t
∑

v∈K

|α(v)| ≤ |W |∆

∑

v′∈β(v)

|α(v′)| ≤ |W | ∀ v ∈ K

It can be easily seen that the maximum value of the objective function (4.15) is |W |2∆.

This completes the proof of proposition 4.1.6

Using lemma (4.1.2) and (4.1.4), we obtain

E[|W |2∆+ 2|W |∆2] ≥ 1

16
ndavg log

2 ∆. (4.16)

Since RHS of equation (4.16) can be upperbound by |Wmax|2∆+2|Wmax|∆2, we have

|Wmax|2∆+ 2|Wmax|∆2 ≥ 1

16
davgn log2 ∆

|Wmax|2 + 2|Wmax|∆ ≥ 1

16

davg
∆

n log2 ∆. (4.17)

We consider the case when ∆ > Wmax and thus equation (4.17) gives us the following

expression for independent set size

Wmax ≥ davg
48∆2

n log2 ∆ (4.18)

12



4.2 Independent size in terms of average degree

Construct G′ from G by removing all the vertices with degree greater than 2davg. By

Markov’s inequality, number of vertices in graph G′ ≥ n/2 and its max degree is 2davg.

Let average degree of G′ be denoted by d′avg. Now, we apply the (4.18) on G′ to obtain:

W ′
max ≥ n

( d′avg
108davg

)( log2 2davg
davg

)

(4.19)

For graph G′, we also have the following result for triangle free graphs

W ′
max ≥ n

log d′avg
8d′avg

(4.20)

Thus from equation (4.19) and (4.20), we have

W ′
max ≥ nmax

( log d′avg
8d′avg

,
d′avg log

2 2davg

108d2avg

)

(4.21)

From equation (4.21), it can be easily shown that

W ′
max ≥ n

cdavg
log

3

2 davg (4.22)

Since independent set on graph G′ is also an independent set on G, we have Wmax ≥
W ′

max.

Theorem 4.2.1 Let G(V,E) be a square-free graph on n vertices with average degree

of davg > 1 and if 2davg > α(G). Then α(G) > n
cdavg

log
3

2 davg, where c is a constant

and α(G) is the maximum independent set.

4.3 Mistake

As mention before, the above proof has a mistake and the mistake is the assumption

that ∆ > |W | for a square free graph. The assumption is not satisfied for any graph

because neighbourhood of the vertex with highest degree is a independent set and thus

W > ∆ for all square-free graphs. Moreover, Bollobas [Bollobás (1981)] has proved

for all g > 0, that there exists graphs G with girth g such that α(G) ≤ 2n(G)
d

log d,

where d is the average degree of the graph. Thus imposing only the girth constraint is

13



not sufficient for improving the lower bound on the α(G). We have to impose further

restriction, other than the girth restrictions, on the graph G to improve the lower bound

of the α(G).

However, we shall continue to use this theorem and improve the GV bound. Hope-

fully, someday, someone, corrects the mistake and completes the whole proof!

14



CHAPTER 5

Graphs with triangles and squares

5.1 Graphs with very few triangles and squares

Theorem 5.1.1 Consider a graph G with n vertices, if K(G) + S(G) ≤ c0n, then

α(G) > (c1)
n
d
log

3

2 d, where c0 and c1 are a constants lesser than 1.

Proof For each triangle and square in the graph G, remove a vertex to make the whole

graph triangle and square free. Denote the resultant graph G0. Since G0 is triangle free

and V (G0) ≥ (1− c0)n, we use theorem 4.2.1 on G0, to obtain the required result.

5.2 Graphs with few triangles and squares

Now we consider a general case and obtain an expression similar to the one obtained

by Bollobas [Bollobás (1998)].

Theorem 5.2.1 Consider a graph G with K(G) = nd2(1−ǫ1) triangles and S(G) =

nd3(1−ǫ2) squares, with n being the total number of vertices and d being the average

degree o the graph. If ǫ1 > ǫ2 then

α(G) ≥ c1
n

d

(
log(d)− 1

3
log(S/n)

) 3

2 ,

else

α(G) ≥ c1
n

d

(
log(d)− 1

2
log(K/n)

) 3

2

Proof We shall divide the proof into two cases.



5.2.1 Case 1 : ǫ1 > ǫ2

Set n0 = n
(

n
4S

)1/3
. Now, consider a random sub graphs of G induced by n0 vertices

and denote it by G0. We have the following results for graph G0,

E[E(G0)] = E(G)

(
n0

2

)

(
n
2

)

n

d
=

n0

d0
, also d0 = d

( n

4S

)1/3
. (5.1)

E[S(G0)] = S(G)

(
n0

4

)

(
n
4

) ≤ n0/4 (5.2)

.E[K(G0)] = K(G)

(
n0

3

)

(
n
3

) ≤ n
K(G)

4S(G)
.

Substituting K = nd2(1−ǫ1), S = nd3(1−ǫ2) and n = 4n0d
1−ǫ2 , we obtain the following :

E[K(G0)] ≤ K(G)
n

4S(G)

≤ 4n0d
1−ǫ2

nd2(1−ǫ1)

nd3(1−ǫ2)

≤ 4n0d
2(ǫ2−ǫ1) (5.3)

But since ǫ1 > ǫ2,

E[K(G0)] = o(n0). (5.4)

By Chebyshev’s inequality, we can see that there exists a subgraph G′
0, spanned by n0

vertices which satisfies the three equations (5.1), (5.2) and (5.4). Also the graph G′
0

satisfies the conditions of theorem 5.1.1 and therefore we have

α(G0) ≥
n0

cd0
log

3

2 d0 (5.5)

Substituting n0 and d0 in the equation (5.10) in terms of of n, d, S, we obtain

α(G0) ≥
n

cd

(
log(d)− 1

3
log(S/n)

)2
(5.6)

Since independent set of G0 is also an independent set of G, we obtain the expression

as stated in the theorem 5.2.1.
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5.2.2 Case 2: ǫ1 ≥ ǫ2

Set n0 = n
(

n
4K

)1/2
. Now, consider a random subgraph of G induced by n0 vertices and

denote by G0. We have the following results for graph G0,

E[E(G0)] = E(G)

(
n0

2

)

(
n
2

)

n

d
=

n0

d0
, also d0 = d

( n

4K

)1/2
(5.7)

.E[K(G0)] = K(G)

(
n0

3

)

(
n
3

) ≤ n0/4 (5.8)

E[S(G0)] = S(G)

(
n0

4

)

(
n
4

) ≤ S(G)
( n

4K(G)

)2

.

Substituting K = nd2(1−ǫ1), S = nd3(1−ǫ2) and n = 4n0d
1−ǫ1 , we obtain the following :

E[S(G0)] ≤ S(G)
( n

4K(G)

)2

≤ nd3(1−ǫ2)
1

16d4(1−ǫ1)

≤ 4n0d
1−ǫ1d3(1−ǫ2)

1

16d4(1−ǫ1)

≤ 1

4
n0d

3(ǫ1−ǫ2)

But since ǫ1 ≤ ǫ2, we have

E[S(G0)] ≤ n0/4. (5.9)

By Chebyshev’s inequality, we can see that there exists a subgraph G′
0, spanned by

n0 vertices which satisfies the three equation(5.7),(5.8) and (5.9). Also the graph G′
0

satisfies the conditions of theorem 5.1.1 and therefore we have

α(G0) ≥
n0

cd0
log2 d0 (5.10)

Substituting n0 and d0 in the equation (5.10) in terms of of n, d, S, we obtain

α(G0) ≥
n

cd

(
log(d)− 1

2
log(K/n)

)2
(5.11)
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Since independent set of G0 is also an independent set of G, we obtain the expression

as stated in the theorem 5.2.1.

We shall use theorem 5.1.1, to improve GV bound in chapter 7.

18



CHAPTER 6

Further improving GV bound

In this section we show that K(G) = nd2(1−ǫ1), ǫ1 > 0 and S(G) = nd3(1−ǫ2), ǫ2 > 0

for the Gilbert graph. Once we show this, using theorem 5.2.1 we have the following

result.

Theorem 6.0.2 For the Gilbert’s graph, with code word length N and minimum dis-

tance D, for a constant c, we have

α(G) ≥ c
2N

V (N,D)
log3/2 V (N,D), (6.1)

where V (D,N) =
∑i=D

i=0

(
N
i

)
is the degree of each code and c is constant.

6.1 Counting the number of triangles and squares

Lemma 6.1.1 For Gilbert’s graph G, the number of triangles, K(G) = nd2(1−ǫ1) for

some ǫ1 > 0.

Proof This has been proved in Vardy [Jiang and Vardy (2004)] and therefore it is omit-

ted in here.

Lemma 6.1.2 For Gilbert’s graph G, the number of squares, S(G) = nd3(1−ǫ2) for

ǫ2 > 0, for d/n ∈ (.31, .5).

Proof Since the symbols n and d have been used previously, we will be using N for size

of the codeword and D to be the minimum distance required. Let all-zero code word,

denoted by v0, be part of q squares. Since the graph is symmetric (in some sense), the

total number of squares in the whole graph will be nq/4. A sample square is show in

the fig ??



v0

v1

v2

vopp(or u)

all-zero code word

We observe the following few points:

1. vopp and v0 can be disconnected (no edge between them).

2. Both v1 and v2 should be connected to v0 and vopp.

3. The maximum distance between v0 and vopp is 2D − 1.

Lemma 6.1.3 Number of squares Squ with u being opposite of v0 is lesser than the

square of the number of edges incident from u to vertices in N(v0), where N(v0) be the

subgraph induced by the neighbourhood of v0.

Proof For any vertex u ∈ G, it can form a square with vertex v0 using v1, v2 ∈ N(v0)

as shown in the figure ??.

Squ
∣
∣{v1, v2 ∈ N(v0) : {u, v1} ∈ E(G)and{u, v2} ∈ E(G)}

∣
∣

≤
∣
∣{v1 ∈ N(v0) : {u, v1} ∈ E(G)}

∣
∣
2

(6.2)

Refer the figure ?? for a clear idea.

Codewords with distance > d and ≤ 2d

Codewords with distance ≤ d

all-zero code word

Type 2 square.
Type 1 square.b

(Neighbourhood of all-zero codeword.)
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Lemma 6.1.4 For a vertex u ∈ G with weight w, number of edges to the neighbour-

hood N(v0), i.e expression in equation (6.2) is given by

E[u,N(v0)] =
D∑

i=1

min{w,i}
∑

w+i−D
2

(
w

i

)(
n− w

i− j

)

− 1 (6.3)

Proof Proved in Vardy’s Jiang and Vardy (2004) paper.

Lemma 6.1.5 Number of squares q containing v0 is equal to

q =
1

2

2D∑

w=1

(
n

w

)( D∑

i=1

min{w,i}
∑

w+i−D
2

(
w

i

)(
n− w

i− j

)

− 1

)2

, (6.4)

Proof Number of vertices whose corresponding codeword is w hamming distance away

from v0 is
(
n
w

)
. Thus using lemmas 6.1.3 and 6.1.4, we obtain the required expression.

Lemma 6.1.6 Let u and u′ be vertices in G and suppose wt(u) ≤ wt(u′). Then

E[u,N(v0)] > E[u′, N(v0)].

Proof This can be easily seen from the construction of the Gilbert’s graph. Refer

Vardy’s [Jiang and Vardy (2004)] paper for the proof.

Let us now upper bound the value of the villain q by

q ≤ e1(λ, n, d) + e1(λ, n, d)

2
(6.5)

where

e1(λ, n, d) =
1

2

λD∑

w=1

(
n

w

)( D∑

i=1

min{w,i}
∑

w+i−D
2

(
w

i

)(
n− w

i− j

)

− 1

)2

(6.6)

e2(λ, n, d) =
1

2

2D∑

w=λD+1

(
n

w

)( D∑

i=1

min{w,i}
∑

w+i−D
2

(
w

i

)(
n− w

i− j

)

− 1

)2

(6.7)

For vertex ū with wt(u) = 1 and δ = d
n

,

E[ū, N(v0)] ≤
D∑

i=1

(
n

i

)

≤ 2nH2(δ) (6.8)
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Using lemma (6.1.4) and equation (6.8) in equation (6.6), we obtain

e1(λ, n, d) ≤ 22nH2(δ)

λD∑

w=1

(
n

w

)

≤ 2n(2H2(δ)+H2(λδ)). (6.9)

Consider a vertex u with wt(u) = λD and let µ = 1 − λ. We calculate E[u,N(v0)]

using equation (6.3) by splitting into two parts

E[u,N(v0)] = h1(λ, n, d) + h2(λ, n, d) (6.10)

where,

h1(λ, n, d) =

µD
∑

i=1

i∑

j=0

(
w

j

)(
n− w

i− j

)

h2(λ, n, d) =
w−1∑

i=1µD

i∑

j= i−µD
2

(
w

j

)(
n− w

i− j

)

+

µD
∑

i=w

w∑

j= i−µD
2

(
w

j

)(
n− w

i− j

)

Now, we upperbound h1 as follows

h1(λ, n, d) =

µD
∑

i=1

i∑

j=0

(
w

j

)(
n− w

i− j

)

≤
µD
∑

i=1

(
w

i

) i∑

j=0

(
n− w

i− j

)

≤
µD
∑

i=1

(
w

i

) i∑

j=0

(
n− w

j

)

≤
µD
∑

i=1

(
w

i

) µD
∑

j=0

(
n− w

j

)

≤ 2n
(
λδH2

(
µ
λ

)
+(1−λδ)H2

(
µδ

1−λδ

))

(6.11)
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Now we upper bound h2, by using the following bound
(
w
j

)
< 2w = 2nλδ,

h2(λ, n, d) = 2nλδ
w−1∑

i=1+µD

i∑

j= i−µD
2

(
n− w

i− j

)

+ 2nλδ
µD
∑

i=w

w∑

j= i−µD
2

(
n− w

i− j

)

uniting the two sums,

h2(λ, n, d) = 2nλδ
D∑

i=1+µD

i∑

j= i−µD
2

(
n− w

i− j

)

h2(λ, n, d) = 2nλδ
D∑

i=1+µD

j= i+µD
2∑

j=0

(
n− w

i− j

)

observe that (i+ µD′)/2 ≤ D − λD/2

h2(λ, n, d) = 2nλδ
D∑

i=1+µD

j=D−Dλ/2
∑

j=0

(
n− w

i− j

)

h2(λ, n, d) = nλδ2n
(
λδ+(1−λδ)H2

(
δ−λδ/2
1−λδ

))

(6.12)

Using equations (6.10), (6.11) and (6.12), we obtain

E[u,N(v0)] ≤ 2nλδH2(
µ
λ
)+n(1−λδ)H2(

µδ
1−λδ

) + nλδ2nλδ+n(1−λδ)H2

(
δ−λδ

2
1−λδ

)

For δ > 1/4, we have the following,

e2(λ, n, d) ≤ (nλδ + 1)22
n

(

1+2λδ+2(1−λδ)H2

(
δ−λδ/2
1−λδ

))

(6.13)

A well know inequality which will be used in the next part of the proof is

2nH2(µ)

√

8nµ(1− µ)
≤

µn
∑

k=0

(
n

k

)

≤ 2nH2(µ) (6.14)

We show for δ ∈ (0.31, .5), that there exist ǫ > 0 s.t,

(1− ǫ)H2(δ) > H2(λδ) (6.15)

3(1− ǫ)H2(δ) > 1 + 2λδ + 2(1− λδ)H2

(δ − λδ/2

1− λδ

)

(6.16)
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It can be seen from the plots ??, that inequalities 6.15 and 6.16 hold true for λ =

0.99999 and ǫ = 0.000000001. We shall use the inequalities 6.15 and 6.16 for the final

part of the proof.

0.0 0.1 0.2 0.3 0.4 0.5
Delta

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

0.0000025

0.0000030

0.0000035

0.0000040

0.0000045

a

(1− ǫ)H2(δ)−H2(λδ)

0.30 0.35 0.40 0.45 0.50
Delta

0.000

0.001

0.002

0.003

0.004

0.005

0.006

a

3(1− ǫ)H2(δ)− 1− 2λδ − 2(1− λδ)H2

(
δ−λδ/2
1−λδ

)

Figure 6.1: Plotting the two inequalities.
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The degree of the Gilbert’s graph is V (n, d) = 2nH2(δ) and now we use the equations

(6.5), (6.9), (6.13) and the inequality (6.14) to obtain

q

V (n, d)3−ǫ
=

e1(λ, n, d) + e2(λ, n, d)

8nδ(1− δ)
)ǫ/2−3/2

2(3−ǫ)nH2(δ)

≤ 2n
(
H2(λδ)−(1−ǫ)H2(δ)

)

(
8nδ(1− δ)

)ǫ/2−3/2
+

(nλδ + 1)22
n

(

1+2λδ+2(1−λδ)H2

(
δ−λδ/2
1−λ

)
−3(1−ǫ)H2(δ)

)

(
8nδ(1− δ)

)ǫ/2−3/2

(6.17)

Using the equations (6.15) and (6.16) , we can conclude that equation (6.17), tends to

zero exponentially as n → ∞. This implies that q < V (n, d)3−ǫ.

25



CHAPTER 7

Graph coloring approach

This section motivates another direction in which one could proceed to improve the GV

bound. The results in the section shows that the Gilbet’s graph requires very few colors

for local coloring.

Now, we will state two lemmas which will be used later.

Lemma 7.0.7 (Bondy and Murty (1976), Brook’s theorem) Chromatic number χ(G)

of a graph is lesser or equal to maximum degree of the graph.

Lemma 7.0.8 Consider a graph G with its vertex chromatic number equal to χ(G),

then

α(G) ≥ n(G)

χ(G)
(7.1)

Proof Color the graph G using χ(G) colors, group the vertices by the color. Since no

two adjacent vertices are colored with the same color, each group is an independent set.

By pigeonhole principle, at least one of the group must contain n(G)
χ(G)

vertices.

Note: Chromatic number of a graph G is always lesser than its maximum degree, ∆.

Thus we can also obtain the GV bound using theorem (7.0.8). On the other side, we

might be able to improve the GV bound using this method. But, obtaining the chromatic

number of a graph is generally a hard problem and it has been bounded found for very

few classes of graphs.

Here we shall present some results which positively motivates this direction of ap-

proach.

7.1 Coloring neighbourhood of all-zero codeword

For the gilbert graph Gn
d , consider the subgraph H induced by the neighbhourhood of

all-zero code word.



Definition 6 The set Lshell comprise all the vertices whose corresponding codeword

has a weight equal to ℓ.

We can see that the vertices of graphs H can be partitioned into sets Lshell, were

ℓ ∈ {1, 2, · · · , d}. We shall color each "shell" with different colors and let number

of colors required for coloring "shell" Lshell be denoted by c(ℓ). Therefore,

χ(H) ≤
ℓ=d∑

ℓ=0

c(ℓ) (7.2)

Now for the graph H , consider the graph induced by the vertices belonging to shell

Lshell and denote it by Hℓ. Thus the chromatic number of Hℓ, χ(Hℓ) is equal to c(l).

Now we shall use lemma (7.0.7), to bound χ(Hℓ) and finally bound χ(H).

All the vertices in Hl have equal degree. The degree of the vertex corresponding to

codeword {1, 1, . . . , 1, 1
︸ ︷︷ ︸

ℓ ones

, 0, 0 . . . , 0, 0} is given by

a=min(d/2,ℓ)
∑

a=0

(
ℓ

a

)(
n− ℓ

a

)

(7.3)

Using lemma (7.0.7),

c(ℓ) = χ(Hℓ) ≤
a=min(d/2,ℓ)
∑

a=0

(
ℓ

a

)(
n− ℓ

a

)

(7.4)

Using equation (7.4) in equation (7.2), we obtain

χ(H) ≤
ℓ=d∑

lℓ=0

a=min(d/2,ℓ)
∑

a=0

(
ℓ

a

)(
n− ℓ

a

)

≤ d

a=d/2
∑

a=0

(
d

a

)(
n− d

a

)

(7.5)

In equation (7.5), the term
(
d
a

)
attains its maximum at a = d/2. Also, since a ≤ d/2,

(
n−d
a

)
, attains its maximum value at a = d/2. Thus we

χ(H) ≤ d2

2
2d2(n−d)H2

(
d

2n−2d

)

(7.6)
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0.0 0.1 0.2 0.3 0.4 0.5
Delta

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

a

δ + (1− δ)H2

(
δ

2−2δ

)
−H2(δ)

Let δ = d
n

, then equation (7.6) can we written as

χ(H) ≤ d2

2
2
n

(

δ+(1−δ)H2

(
δ

2−2δ

))

(7.7)

Comparing χ(H) with the maximum degree of H , dH = 2nH2(δ) we obtain

χ(G)

dH
=

d2

2
2
n

(

δ+(1−δ)H2

(
δ

2−2δ

)
−H2(δ)

)

(7.8)

From the plot in figure ?? we see that χ(X) is exponential smaller than dH for all values

of δ.

7.2 Inference

We have shown the the color coloring requires exponentially lesser number of colors

when compared to the degree of the graph. But, χ(H) is not necessarily equal to χ(G).

Thus we haven’t actually improved the GV bound.

The given graph is dense for high values of δ and generally for dense graphs, colors

required for local coloring is equal to color required to global coloring.
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CHAPTER 8

Future Work

8.1 Analysis 1

In chapter 4, we saw that only girth constraints aren’t sufficient to improve lower bound

on the independent set size. One could probably read the paper by Bollobas [Bollobás

(1981)] or paper my Mackay McKay (1987) and come up with constraints which would

improve the lower bound on the maximum independent set size. After-which the anal-

ysis in chapter ?? could be used to complete the argument.

8.2 Can we use higher girth graphs?

Lemma 8.2.1 There exists C-5-free graphs with O(n3/2) edges.

Proof Furdei Füredi (1996) proved that maximum number of edges in a square-free

graph is 1
2
n3/2 + o(n) and also constructed graphs which attained the bound. Consider

such a graph Gu(V,E)which attains the upper bound. Now divide the graph into two

subgraphs with n(G)/2 vertices each, as shown in the figure ??.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

n/2 vertices n/2 vertices

b

b

b

b

b

b

E1 E2

E3

Graph G1 Graph G2

Let the number of edges in graph G1 be E1, total number of edges in graph G2 be

E3 and the number of edged between the vertices of G1 and G2 be E3. By furdei’s



[Füredi (1996)] result, we have

E1 + E2 + E3 =
1

2
n3/2 + o(n)

E2 ≥
1

2
n3/2 + o(n)−max(E1 + E3) (8.1)

In equation (8.1), max(E1) = max(E3) =
1
2
n
2
3/2 + o(n). Therefore,

E2 ≥
1

2

(
1− 1√

2

)
n3/2 + o(n). (8.2)

Consider the bipartite graph Gb induced between the vertices of graph G1 and G2. We

know that the bipartite graph, Gb does not contain 4-cycle and therefore, cannot contain

a 5-cycle. From equation (8.2), we see that the graph Gb has O(n3/2) edges. Thus we

have constructed C-5-free graphs without 5 cycles having O(n3/2) edges.

From lemma 8.2.1, we can see that maximal C-5 graphs and maximal C-4 graphs con-

tain same order of edges. Therefore, this might indicate the fact that one could not

possible improve the GV bound using C-5-free graphs.

However, the C-6-free graphs are sparser when compared to C-4-free graphs and

thus one could possibly improve the GV bound using C-6-free graphs.

8.3 Analysis 2

In chapter 7 we proved that local coloring for the Gilbert’s graph requires very few

colors when compared to the degree of the graph. Since the graph is dense for large

values of d/n and has lots of cycles, one might be able to find a relation for global

coloring vs local coloring.

In the literature, there are various classes of graphs whose chromatic number χ(G)

is known and since Gilbert graph is highly symmetric, only could probably find its

exact chromatic number using various techniques in literature used to determine the

chromatic number.
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14. McKay, B. (1987). lnl) elâĂŹenl) en’l âĂŸsets in regular graphs of high girth. Ars

Combinatoria, 23, 179–185.

15. Richardson, T. and R. L. Urbanke, Modern coding theory. Cambridge University

Press, 2008.

16. Tolhuizen, L. M. (1997). The generalized gilbert-varshamov bound is implied by tu-

ran’s theorem [code construction]. Information Theory, IEEE Transactions on, 43(5),

1605–1606.

17. Varshamov, R., Estimate of the number of signals in error correcting codes. In Dokl.

Akad. Nauk SSSR, volume 117. 1957.

18. Zinoviev, V. A. and S. Litsyn (1985). On codes exceeding the gilbert boundâĂİ. Probl.
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