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ABSTRACT 

 

KEYWORDS: Wireless sensor networks, tree topology, distributed aggregation, System 

monitoring modules, Intrusion detection, and Outlier detection 

 

Wireless sensor networks offer the potential to span and monitor large geographical areas 

inexpensively. Sensors, however, have significant power constraint (battery life), making 

communication very expensive. Another important issue in the context of sensor based 

information systems is that individual sensor readings are inherently unreliable. Design of 

reliable wireless sensor network (WSN) need to address the failure of single or multiple 

network components and implementation of the techniques to tolerate the faults occurred 

at various levels. The issues and requirements of reliability improvement mechanism 

depend on the available resources and application for which the WSN is deployed. The 

objective is to design the optimal selection of nodes for sensing and scheduling for 

intrusion detection such that the long term network cost incurred by all components is 

minimized. As part we have looked at using simple data mining and machine learning 

techniques like outlier detection; jointly considering data aggregation, information trust, 

and fault tolerance to enhance resilient distributed data aggregation in WSNs. We 

consider a large-scale cyber network with N nodes. Each node is either in a healthy state 

(1) or an abnormal state (0). Due to random intrusions, the state of each component 

transits from 1 to 0 over time. At each time, a subset of K (K < N) components are 

checked and those observed in abnormal states are not included in the data record while 

performing aggregation. We propose different approaches for making these aggregation 

schemes more resilient against certain attacks. As a result, we identify that median is 

more robust as suggested by many, and also effective in outlier elimination than mean. 

We propose a method to locally select a set of reliable nodes for sampling considering the 

cost or weightage, reliability factor and total energy available with the node, in order to 

increase the life time of the network and improve resilience.  
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CHAPTER 1 

INTRODUCTION 

Recently there has been growing interest in providing fine-grained metering and control 

of living environments using low power devices. Wireless Sensor Networks (WSNs), 

which consist of spatially distributed self-configurable sensors, perfectly meet the 

requirement. The sensors provide the ability to monitor physical or environmental 

conditions, such as temperature, humidity, vibration, pressure, sound, motion and etc., 

with very low energy consumption. The development of WSNs was motivated by 

military applications such as battlefield surveillance; WSNs are widely used in industrial 

environments, residential environments and wildlife environments. With the rapid 

development of wireless technology, more and more people prefer to use the wireless 

network as their end-user network. Compared with the traditional wireless network, WSN 

has its own features, such as low cost and low energy consumption. They more strongly 

resemble embedded systems, for two reasons. First, wireless sensor networks are 

typically deployed with a particular application in mind, rather than as a general platform. 

Second, a need for low costs and low power leads most wireless sensor nodes to have 

low-power micro-controllers ensuring that mechanisms such as virtual memory are either 

unnecessary or too expensive to implement. 

One major challenge in a WSN is to produce low cost and tiny sensor nodes. There are an 

increasing number of small companies producing WSN hardware and the commercial 

situation can be compared to home computing in the 1970s. Many of the nodes are still in 

the research and development stage, particularly their software. Also inherent in sensor 

network adoption is the use of very low power methods for data acquisition. To reduce 

cost, each sensor board has very limited on-board resources, such as computing speed, 

storage and energy source. Energy is the scarcest resource of WSN nodes, and it 

determines their lifetime. WSNs are meant to be deployed in large numbers in various 

environments, including remote and hostile regions, where ad hoc communications are a 

key component. For this reason, algorithms and protocols need to address the issues of 
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Lifetime maximization, Robustness and fault tolerance, and Self-configuration.  

Technologies enabling WSNs should be concerned of cost minimization, miniaturization 

and energy scavenging i.e. to recharge batteries from ambient energy sources like light, 

vibration etc.  

Sensor networks have been proposed for scientific data collection, environmental 

monitoring, building health monitoring, burglar and fire alarm systems, and many other 

applications involving distributed interaction with the physical environment. Many of 

these applications involve a distributed system of sensors measuring the environment 

from many vantage points and then somehow aggregating the collected data to form a 

global summary view that can be acted upon. But a common problem in such networks is 

information error and loss caused by component failure, external interference, wireless 

transmission error, and security threats such as fake data injection [7]. Due to lower 

reliability and hence the accuracy of the data sensed by individual sensor nodes, 

collaboration among sensors is necessary for reliable event detection and prevention of 

faulty or fake reports. For event detection with multi-mode collaboration, the common 

method is data aggregation, which is leveraged not only to reduce the throughput of data 

transmission, thus saving energy effectively, but also to enhance the accuracy of event 

detection and avoid interference of the compromised nodes. Consequently, data 

aggregation can be viewed as an important building block in sensor networks. For 

wireless sensor networks (WSNs) deployed in the noisy and unattended environments, it 

is necessary to establish a comprehensive framework that protects the accuracy of the 

gathered information.  

As security has been identified as a major challenge for sensor networks, recent protocols 

have been designed with security in mind to be able to make the aggregation resilient 

from attacks. When a single sensor node can be captured, compromised, or spoofed, an 

attacker can often manipulate the result of the aggregation operation without limit, 

gaining complete control over the computed aggregate which is undesirable. For instance, 

it is shown that any protocol that computes the average, sum, minimum, or maximum 

function is insecure against malicious data, no matter how these functions are computed. 

In response to this threat, David Wagner introduced a theoretical framework for modeling 
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the security of data aggregation [1]. This model insists that the aggregation function must 

be resilient in the presence of arbitrary changes to a small subset of sensor observations, 

and thus he coin the term resilient aggregation to refer to schemes that satisfy this 

condition. Wagner also introduces the concept of the breakdown point from robust 

statistics in the context of resilient aggregation. He introduces several techniques and 

principles for achieving resilient aggregation in new protocols. Wagner also 

recommended the use of outlier filtering techniques such as truncation and trimming for 

achieving resilient aggregation. Outliers can be detected and filtered out in a hop-by-hop 

fashion or at the base station after the sensor readings reach the base station.  

If communication overhead is not a concern, we can send readings from all nodes to a 

base station for decent aggregation. But, exhaustively forwarding the exact data value of 

every node is extremely communication-intensive. Node Congestion measures how 

quickly the heaviest loaded nodes will exhaust. But, we require the nodes closer to Base 

Station not to exhaust, which in general are expected to have more communication load. 

Now we can understand the problem as a trade-off between ‘Low communication loads 

on the heaviest loaded nodes’ vs  ‘Large amount of in-network communication’. 

 

As part of our work, we have looked at using simple data mining and machine learning 

techniques; jointly considering data aggregation, information trust, and fault tolerance to 

enhance resilient distributed data aggregation in WSNs. In later parts of Chapter 1, we 

look at typical WSNs in great detail, understanding the issues to be addressed for 

resilience. In Chapter 2, information about prior research work from which our work is 

adapted or motivated is provided. In Chapter 3, we define the models and detail 

assumptions of the network, aggregation scheme and attacker. In Chapter 4, we define the 

problem and outline our proposed method to address the same, propose a method to 

compute reliabilities and respective reliability factors at each node and also explain how 

we have adapted the Q-digest algorithm for distributed median computation. In Chapter 

5, we compare different approaches using results obtained from simulations.  
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1.1. Typical Structure of WSNs 

A wireless sensor network (WSN) is a wireless network consisting of spatially distributed 

autonomous devices that use sensors to monitor physical or environmental conditions. 

These autonomous devices, known as routers and end nodes, combine with a gateway to 

create a typical WSN system. A typical WSN is built of several hundreds or even 

thousands of “sensor nodes”. Each node has the ability to communicate with every other 

node wirelessly, thus a typical sensor node has several components: a radio transceiver 

with an antenna which has the ability to send or receive packets, a microcontroller which 

could process the data and schedule relative tasks, several kinds of sensors sensing the 

environment data, and batteries providing energy supply. The distributed measurement 

nodes communicate wirelessly to a central gateway, which acts as the network 

coordinator in charge of node authentication, message buffering, and bridging from the 

wireless network to the wired Ethernet network, where you can collect, process, analyze, 

and present your measurement data. A WSN consists of three main components: nodes, 

gateways, and software. The spatially distributed measurement nodes interface with 

sensors to monitor assets or their environment. . The sensors also have the ability to 

transmit and forward sensing data to the base station. Most modern WSNs are bi-

directional, enabling two-way communication, which could collect sensing data from 

sensors to the base station as well as disseminate commands from the base station to end 

sensors. The acquired data wirelessly transmit to the gateway, which can operate 

independently or connect to a host system where you can collect, process, analyze, and 

present your measurement data using software. Routers are a special type of 

measurement node that you can use to extend WSN distance and reliability. 

1.2. Architecture of WSNs 

Network architectures for ad-hoc networks are in principle, relatively straightforward and 

similar to standard networks. Mobility is compensated for by appropriate protocols, but 

interaction paradigms don’t change much. WSNs, on the other hand, look quite different 

on many levels. The topology of WSNs can vary among star network, tree network and 

mesh network. The need and the possibility to manipulate data as it travels through the 

network open new possibilities for protocol design. If a centralized architecture is used in 

a sensor network and the central node fails, then the entire network will collapse, 
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however the reliability of the sensor network can be increased by using distributed 

control architecture. There is also no centralized body to allocate the resources and they 

have to be self-organized. Characteristic requirements for WSNs will be Quality of 

service, fault tolerance, life-time, scalability, programmability and maintainability. The 

required mechanisms to meet these requirements are Multi-hop wireless communication, 

Energy-efficient operation, both for communication and computation, Auto-

configuration, Collaboration & in-network processing (i.e. Nodes in the network, 

collaborate towards a joint goal with pre-processing data in the network), Data centric 

networking, Locality (i.e. To do things locally, on the node or among nearby neighbors, 

as far as possible).  

In typical networks (including ad hoc networks), network transactions are addressed to 

the identities of specific nodes. In a redundantly deployed sensor network, specific source 

of an event, alarm, etc. might not be important. Thus, the network design must focus 

networking transactions on the data directly instead of their senders and transmitters, 

which can be understood as “data-centric networking”. Whereas energy-efficient 

networking protocols use multi-hop routes for low energy consumption (energy/bit) and 

take available battery capacity of devices into account. In many sensor applications, the 

data collected from individual nodes is aggregated at a base station or host computer. To 

reduce energy consumption, many systems also perform in-network aggregation of 

sensor data at intermediate nodes en route to the base station. Most existing aggregation 

algorithms and systems do not include any provisions for security, and consequently 

these systems are vulnerable to a wide variety of attacks. In particular, compromised 

nodes can be used to inject false data that lead to incorrect aggregates being computed at 

the base station. The data gathered from wireless sensor networks is usually saved in the 

form of numerical data in a central base station. Additionally, the Open Geospatial 

Consortium (OGC) is specifying standards for interoperability interfaces and metadata 

encodings that enable real time integration of heterogeneous sensor webs into the 

Internet, allowing any individual to monitor or control Wireless Sensor Networks through 

a Web Browser.  



 6 

In-network processing [8] reduces communication overhead by applying an aggregation 

function in the network, but at the cost of security. Because end to end authentication can 

be a problem for applying popular in-network aggregation functions. Another important 

aspect to be considered in the design is to exploit temporal and spatial correlation. To 

reduce communication costs some algorithms remove or reduce nodes' redundant sensor 

information and avoid forwarding data that is of no use. As nodes can inspect the data 

they forward, they can measure averages or directionality for example of readings from 

other nodes. For example, in sensing and monitoring applications, it is generally the case 

that neighboring sensor nodes monitoring an environmental feature typically register 

similar values. This kind of data redundancy due to the spatial correlation between sensor 

observations inspires techniques for in-network data aggregation and mining. Depending 

on application, more sophisticated processing of data can take place within the network. 

Observed signals might vary only slowly in time and hence no need to transmit all data at 

full rate all the time. Signals of neighboring nodes are often quite similar, which implies 

its enough to transmit differences. We can also exploit the location information, activity 

patterns, heterogeneity etc. for improved security and efficiency. In the following 

sections we look at how different protocols have been designed considering these aspects 

to address one or many problems with WSNs.  

1.3. Data Acquisition Systems  

Data acquisition system [2, 3]
 
for sensor networks can be classified into two broad 

categories on the basis of the data collection methodology employed for the application: 

1. Query-based systems: In query-based systems, the base station (the data sink) 

broadcasts a query to the network and the nodes respond with the relevant 

information. Messages from individual nodes are potentially aggregated en route 

to the base station. Finally, the base station computes one or more aggregate 

values based on the messages it has received. In some applications, queries may 

be persistent in nature resulting in a continuous stream of data being relayed to the 

data sink from the nodes in the network. For such applications, the query 

broadcast by the base station specifies a period; nodes in the network send their 

readings to the base station after each epoch. 
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2. Event-based systems: In event-based applications, such as perimeter 

surveillance and biological hazard detection, nodes send a message to the base 

station only when the target event occurs in the area of interest. If multiple reports 

being relayed correspond to the same event, they can be combined by an 

intermediate node on the route to the base station. 

Data acquisition systems can also be categorized based on how sensor data is aggregated. 

In single-aggregator approaches, aggregation is performed only at the data sink. In 

contrast, hierarchical aggregation approaches make use of in-network aggregation. 

Hierarchical aggregation schemes can be further classified into tree-based schemes and 

ring-based schemes on the basis of the topology in which nodes are organized. However, 

most existing data management and acquisition systems for sensor networks are 

vulnerable to security attacks launched by malicious parties. 

1.4. Applications of WSNs 

Wireless sensor networks (WSNs) are commonly used in pervasive and ubiquitous 

applications. WSNs are developed using both static (motes) and mobile (e.g. Smart 

phone) sensor nodes for various applications such as smart homes, tele health, 

surveillance, metering, and industry automation [4, 5, and 6]. In these applications, the 

data collected by sensor nodes from their physical environment need to be assembled at a 

host computer or data sink for further analysis. Typically, an aggregate (or summarized) 

value is computed at the data sink by applying the corresponding aggregate function to 

the collected data. Interaction patterns between sources and sinks classify application 

types as follows: 

1. Event detection: Nodes locally detect events and report these events to interested 

sinks. Event classification is an additional option.  

2. Periodic measurement 

3. Function approximation: Use sensor network to approximate a function of space 

and/or time (e.g., temperature map). 

4. Edge detection: Find edges (or other structures) in such a function. 

5. Tracking: Report (or at least, know) position of an observed intruder. 
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1.5. Possible threat models for WSNs 

Sensor nodes are often deployed in unattended environments, so they are vulnerable to 

physical tampering. Since current sensor nodes lack hardware support for  tamper 

resistance, it is relatively easy for an adversary to compromise a node without being 

detected. The adversary can obtain confidential information (e.g., cryptographic keys) 

from the compromised sensor and reprogram it with malicious code. Moreover, the 

attacker can replicate the compromised node and deploy the replicas at various strategic 

locations in the network. A compromised node can be used to launch a variety of security 

attacks. These attacks include jamming at the physical or link layer as well as other 

resource consumption attacks at higher layers of the network software. Compromised 

nodes can also be used to disrupt routing protocols, and topology maintenance protocols 

that are critical to the operation of the network.  

However, we focus on attacks that target the data acquisition protocol used by the 

application. Specifically, we discuss attacks in which the compromised nodes send 

malicious data in response to a query (or send false event reports in event-based systems). 

By using a few compromised nodes to render suspect the data collected at the sink, an 

adversary can effectively compromise the integrity and trustworthiness of the entire 

sensor network. In event-based systems, compromised nodes can be used to send false 

event reports to the base station with the goal of raising false alarms and depleting the 

energy resources of the nodes in the network. We refer to this attack as the false data 

injection attack. Similarly, in query-based systems, compromised nodes can be used to 

inject false data into the network with the goal of introducing a large error in the 

aggregate value computed at the data sink. The aggregate computed by the sink is 

erroneous in the sense that it differs from the true value that would have been computed if 

there were no false data values included in the computation. Unlike event-based systems, 

however, in aggregation systems the effectiveness of a false data injection attack depends 

on both the aggregate being computed and whether sensor data is aggregated en route to 

the data sink or only at the data sink, and thus the techniques used for preventing this 

attack differ from the techniques used in event-based systems.  
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In an aggregation system, a compromised node N can corrupt the aggregate value 

computed at the sink in four ways. First, N can simply drop aggregation messages that it 

is supposed to relay towards the sink. This has the effect of omitting a large fraction of 

sensor readings being aggregated. Second, N can alter a message that it is relaying to the 

data sink. Third, N can falsify its own sensor reading with the goal of influencing the 

aggregate value. Fourth, in systems that use in-network aggregation, N can falsify the 

sub-aggregate which it is supposed to compute based on the messages received from its 

child nodes. The input falsification cannot be addressed unless we have prior knowledge 

about the distribution of sensor readings.  

The first attack in which a compromised node intentionally drops aggregation messages 

can substantially deviate final estimate of the aggregate if tree-based aggregation 

algorithms are used. The deviation will be large if the compromised node is located near 

the root of the aggregation hierarchy because a large fraction of sensor readings will be 

omitted from being aggregated. Countermeasures against this attack include the use of 

multi-path routing and ring-based topologies [9] as well as the use of probabilistic 

techniques in the formation of aggregation hierarchies [10]. To prevent the second attack 

in which a compromised node alters a message being relayed to the sink, it is necessary 

for each message to include a message authentication code (MAC) generated using a key 

shared exclusively between the originating node and the sink. This MAC enables the sink 

to check the integrity of a message, and filter out messages that have been altered. Hence, 

the effect of altering a message is no different from dropping it, and countermeasures 

such as multi-path routing are needed to mitigate the effect of this attack. We refer to the 

third attack in which a sensor intentionally falsifies its own reading as the falsified local 

value attack. This attack is similar to the behavior of nodes with faulty sensors, and also 

to the false data injection attack in event-based systems. Potential countermeasures to this 

attack include approaches used for fault tolerance such as majority voting and reputation-

based frameworks [11, 12]. The three attacks discussed above apply to both single-

aggregator and hierarchical aggregation systems, whereas the fourth attack applies only 

to hierarchical aggregation systems. This attack in which a node falsifies the aggregate 

value it is relaying to its parent(s) in the hierarchy is much more difficult to address. We 

refer to this attack as the falsified sub-aggregate attack.  
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CHAPTER 2 

BACKGROUND 

Data resilience refers to the ability of a network storing the data to recover quickly and to 

continue maintaining availability of data despite of any disruptions (such as equipment 

failure, power outage, or even malicious attack). Due to resource constraints of sensor 

networks such as non-renewable battery power and limited storage capacity of sensor 

nodes, link unreliability and scarce bandwidth of the wireless medium, and the 

inhospitable and harsh environments in which they are deployed, sensor nodes are often 

prone to failure and vulnerable of data loss. Therefore, how to ensure that data collected 

at sensor nodes reach the base station reliably despite all the vulnerabilities has been an 

active research topic since the inception of sensor network research.  

The existing literature on secure aggregation can be broadly divided into two categories: 

the first category uses Data Authentication (verifiable sampling) to provide resilient 

probabilistic estimates of the aggregate result; the second category uses commitment 

verification, which, unlike the first category, can provide highly precise results for which 

any malicious tampering is immediately evident, but at the cost of availability.  

1. Data Authentication: One-hop verification [13] and witness based verification 

provide good examples of the necessity of using authentication primitives such as 

MACs to authenticate the origin of each input and sub-result. Without such 

authentication, for example, an adversary could insert many false input elements 

and untraceably skew the aggregation result. Though One-hop verification in a 

tree topology works well for the single node attacker, it requires all the values to 

be forwarded to the parent and fails in case the child parent pair is attacked. 

However, it secures data from a highly powerful attacker who can observe and 

manipulate everything at a single node. The idea of witness based verification is 

to build in redundancy into the system, by including multiple redundant 

aggregators or witnesses which attest the aggregate reported by primary 

aggregator. In this sense, they are performing a pure validation function, and are 

hence called witnesses to the authenticity of the aggregation report.  
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2. Commitment and Verification:  Each aggregator node commits to a set of inputs 

and a result of the computation over these inputs, which is then verified through a 

process of having redundant elements repeating the computation. For the one-hop 

verification technique, the redundant verifier is the parent of each aggregator 

node; for the witness-based verification scheme, the aggregation operation is 

replicated over several redundant aggregator nodes. This pattern of commitment 

and subsequent verification is the basis of more sophisticated schemes, like SIA 

(Secure Information Aggregation [14]). The idea of the SIA is to enable the user 

to verify that the answer given by the aggregator in response to a query is a good 

approximation of the true value even when the aggregator and some fraction of 

the sensor nodes are corrupted.  

The basic approaches of one-hop verification and witness-based verification have a clear 

drawback: only a small, fixed number of verifiers need to be compromised in order for 

the adversary to completely break the security of the system. Despite these disadvantages, 

these basic schemes nonetheless have the advantages of being relatively simple to 

implement, and are relatively efficient for low threat applications. A number of additional 

extensions to One-hop verification scheme are proposed by Jadia and Mathuria [15] to 

provide secrecy of the data from a single in-network attacker.  

Cristofaro et al [16] generalize the witness based approach to hierarchical aggregation, 

using multiple redundant aggregator nodes per level. They use a heuristic metric called 

“quality of information” (QoI) to measure the level of confidence on a given sub-

aggregation result. This QoI metric is then propagated in the hierarchical aggregation 

computation process. In the end, the base station is presented with both an aggregation 

result and a measure of confidence on the result, which the base station can use as 

evidence to accept or reject the final aggregation result. A related approach similar to this 

QoI metric-based scheme is reputation based integrity checking [17], where nodes 

evaluate trustworthiness of other nodes based on their past behavior, and determines 

whether to accept a received aggregate based on the sender’s trustworthiness level. Based 

on the multilayer aggregation architecture of WMSNs, Sun et al [18] designed a trust 

based framework for data aggregation with fault tolerance with a goal to reduce the 
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impact of erroneous data and provide measurable trustworthiness for aggregated results. 

By extracting statistical characteristics from different sources and extending Josang’s 

trust model, they propose how to compute self-data trust opinion, peer node trust opinion, 

and peer data trust opinion.  

There is another class of approaches in which accuracy of the aggregation computation is 

sacrificed in return for making the protocol resilient to malicious manipulation. 

Specifically, these approaches typically compute a statistical estimator for the aggregate 

value; while using the estimator is less accurate that computing the precise aggregate, it is 

easier to secure, because there is less reliance on the honest behavior of intermediate 

aggregators. Each of these algorithms [13, 19, 20 and 21] essentially selects a subset of 

the nodes and asks for a “representative member”, a node that signifies that the set has at 

least one node satisfying the predicate. The representative member then returns an 

authenticated report attesting to this fact. An estimate of the count of nodes satisfying the 

predicate can then be calculated by appropriate choice of the sampled subsets. 

Data aggregation, as a primitive communication task in wireless networks, can reduce the 

communication complexity. However, in-network aggregation usually brings an 

unavoidable security defect. Some malicious nodes may control a large percentage of the 

whole network data and compel the network misbehave in an arbitrary manner. Thus, 

locating the malicious nodes to prevent them from further disaster is a practical challenge 

for data aggregation schemes. Based on the grouping and localization techniques, Xu et 

al [46] proposed a novel integrated protocol to locate malicious nodes. The proposed 

protocol does not rely on any special hardware and requests only incomplete information 

of the network from the security schemes. The model is to perform Grubb’s test [34] to 

detect group with malicious nodes and then to detect the malicious nodes within the 

group using area based approach to perform local estimation. Scaffer et al [22] present a 

statistical framework, CORA: Correlation based Resilient Aggregation, which is 

designed to mitigate the effects of an attacker who is able to alter the values of the 

measured parameters of the environment around some of the sensor nodes. Their 

proposed framework takes advantage of the naturally existing correlation between the 

sample elements, which is very rarely considered in other sensor network related papers. 
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The algorithms presented are to be applied without assumption on the sensor network’s 

sampling distribution or on the behavior of the attacker, which otherwise is a very big 

assumption to make. Though there are some very efficient algorithms designed making 

assumptions about behavior of the attacker which are highly context specific. Sun et al 

[23] are the first to propose integration of system monitoring modules and intrusion 

detection modules in the context of WSNs. They propose an Extended Kalmann Filter 

(EKF) based mechanism to detect false injected data. Specifically, by monitoring 

behaviors of its neighbors and using EKF to predict their future states (actual in-network 

aggregated values), each node aims at setting up a normal range of the neighbors’ future 

transmitted aggregated values. Using different aggregation functions they present how to 

obtain a theoretical threshold and further apply an algorithm of combining Cumulative 

Summation and Generalized Likelihood Ratio to increase detection sensitivity, 

illustrating how the proposed local detection approaches work together with the system 

monitoring module to differentiate between malicious events and emergency events. 

Secure tree-based aggregation protocols [24 and 25] remain vulnerable to message losses 

either due to node failure or compromised nodes. The performance and security tradeoffs 

between resilient tree-based approaches and multipath approaches such as Attack 

Resilient Synopsis Diffusion [26] have yet to be explored.  

Distributed consensus is a common objective in WSNs, to make applications in various 

areas such as data aggregation [27], distributed optimization [28], and flocking [29], 

resilient to presence of malicious nodes. Our objective being to perform resilient data 

aggregation in distributed fashion and as we identified before that median is the most 

robust and light weight aggregate function, we adapt ideas from the model of Median 

Consensus Algorithm proposed by Zhang et al [30]. They design a consensus algorithm 

where, at each time-step, each node updates its value as a weighted average of its own 

value and the median of its neighbors’ values. This algorithm requires no global 

information about the network, and is computationally lightweight. Roy et al [31] 

propose a protocol to compute an approximate Median and verify if it has been falsified 

by an adversary and design an attack-resilient algorithm to compute the Median even in 

the presence of a few compromised nodes. The entire network of nodes is divided into 

number of groups and each group is randomly sampled to collect a set of samples to 
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compute median. Once the base station collected all the samples it sorts them in 

ascending order and plots a histogram to estimate median while histogram verification is 

done based on the aggregation tree which essentially checks whether sum of counts in 

each bucket is equal to the total number of nodes. Shrivastava et al [32] proposed a data 

aggregation scheme that significantly extends the class of queries that can be answered 

using sensor networks. These queries include (approximate) quantiles, such as the 

median, the most frequent data values, such as the consensus value, a histogram of the 

data distribution, as well as range queries while each sensor aggregates the data it has 

received from other sensors into a fixed (user specified) size message. Aggregation 

scheme we proposed uses a modified version of this q-digest algorithm which is known 

for its accuracy, scalability and low resource utilization for highly variable input data 

sets.  

However, only a few protocols consider secure in-network aggregation based on a 

prevention-based scheme, in which encryption, authentication, and key management are 

used. Once a sensor node is compromised, all its associated secrets become open to 

attackers, rendering prevention-based techniques helpless. To solve this problem, 

intrusion detection systems (IDSs), which serve as the second wall of protection, can 

effectively help identify malicious activities. Unfortunately, there is very little work that 

aims at addressing the secure in-network aggregation problem from an intrusion detection 

perspective so far. Now we understand that, to achieve resilience to the aggregation 

function, intrusion detection systems (IDS) are important part of the system. The 

objective of IDS is to locate malicious activities (e.g., denial of service attack, port scans, 

hackers etc.) in the quickest way such that the infected parts can be timely fixed to 

minimize the overall damage to the network. With the increasing size, diversity, and 

interconnectivity of the cyber system, however, intrusion detection faces the challenge of 

scalability: how to rapidly locate intrusions and anomalies in a large dynamic network 

with limited resources. The two basic approaches to intrusion detection, namely, active 

probing and passive monitoring [35], [36], face stringent resource constraints when the 

network is large and dynamic. Hence our objective is to design the optimal scheduling for 

intrusion detection such that the long-term network cost incurred by all abnormal 

components is minimized. In [37], the problem of intrusion recognition by classifying 
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system patterns was addressed based on data mining. Without resource constraint, the 

focus is on the best selection of system features to detect intrusion from the accessible 

system data statistics. Similar problems of statistical modeling of data and detection 

algorithms under various scenarios were considered in a number of works [38, 39, 40 and 

41]. Datta et al [42] discussed the importance of distributed data mining and explains 

how it can be used for local approximation by distributed implementation of K-means 

clustering. These studies mainly address the intrusion detection problem from a machine 

learning or pattern recognition perspective and do not consider the constraint on the 

system monitoring capacity.  

Our work is a stochastic control approach for intrusion detection in large networks with 

resource constraints, where the problem of how to adaptively allocate the limited 

resources for performance optimization and life time maximization is of great interest. 

Liu and Zhao [23] formulate the problem as a special class of Restless Multi-Armed 

Bandit (RMAB) process and show that for this class of RMAB, Whittle index [43] exists 

and can be obtained in closed form, leading to a low-complexity implementation of 

Whittle index policy with a strong performance. They consider a strong average-reward 

criterion under which not only the steady-state average reward but also the transient 

reward starting from an arbitrary initial arm state is maximized, leading to the maximum 

long-term total reward growth rate. However to compute the Whittle index in closed 

form, we require to have knowledge of the probability with which each component is 

attacked, which is a serious assumption to make. Hence we propose a more generalized 

approach to identify more reliable nodes and selectively sampling the nodes increasing 

the life time of WSN. 
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CHAPTER 3 

 

MODELS AND ASSUMPTIONS 

3.1. Model for WSN 

WSNs are often deployed to monitor emergency events like forest fire. We assume that 

the majority of nodes around some unusual events are not compromised. In anomaly 

based detection, the normal system behavior is defined as the behavior of the majority of 

nodes (or similarly, the behavior of the system in the majority of its operational time). 

Note that the redundancy in sensor deployment is also one of the important features in 

many WSNs. Therefore, nodes are often densely deployed. These conditions can help 

sensor nodes make an accurate decision. We also assume that falsified data transmitted 

by a compromised node is significantly different from the actual value so that falsified 

data can effectively disrupt aggregation operations. If falsified data sent out by 

compromised nodes are only slightly different from true aggregated values, an attacker 

cannot cause significant impact on deployed applications. We do not assume time 

synchronization among nodes. Our proposed approach can tolerate the time inaccuracy 

caused by children nodes and parent nodes. In the context of WSNs, time synchronization 

still incurs expensive operations.  

Since the communication range of the nodes is limited, the sink will generally not be in 

range of all the sensors. Therefore, the information has to be relayed from sources to the 

sink by means of intermediate nodes. We will assume that each sensor node has a secure 

channel back to the base station for reporting data measurements. Moreover, we assume 

these secure channels are independent: capture of one sensor node might compromise the 

contents of that node's channel to the base station, but it will not reveal anything about 

other nodes' channels. For instance, each sensor might share a per-node symmetric key 

with the base station and use this key to encrypt its data. As a consequence of these 

assumptions, we do not need to worry about interception of data in transit. This leaves 

only the question of whether the endpoints are trustworthy or not.  
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Let us assume a general multi-hop network with a set of N sensor nodes and a single base 

station, BS. Each of these sensor nodes are assumed to have a maximum storage limit of 

energy which is full at the time of deployment and gain energy from ambient sources like 

solar or vibration at a constant rate. The BS knows the IDs of the sensor nodes present in 

the network. The network user controls the BS and initiates the query. We also consider 

that sensor nodes are similar to the current generation of sensor nodes in their 

computational and communication capabilities and power resources, while the BS is a 

laptop-class device supplied with long-lasting power. And let this network be deployed in 

a vast two-dimensional geographical region. The positions of sensors are uniformly and 

independently distributed in the region.  

We can model the network as a connected graph with N vertices. There is a special vertex 

BS which denotes the base station, and each of the remaining vertices each represents a 

sensor node. We draw an edge between every pair of vertices that correspond to sensor 

nodes within mutual transmission/reception range of each other. Any algorithm can be 

used to design the routing tree, as long as (i) it allows the data to flow in both directions 

of the tree, and (ii) it avoids sending duplicates. Typically, the base station broadcasts the 

aggregation query message throughout the network and aggregation tree is constructed 

then, if it does not already exist. We propose a tree building algorithm using the 

reliability factors at each node, which is explained in the later sections. It is advised to 

use different node as the root node in order to avoid node congestion and also making the 

network resilient to powerful attackers comprising certain set of nodes, but for our 

purpose we use a fixed root node and a single base station. At each discrete time, each 

component is either in the healthy state (1) or the abnormal state (0), and, to identify the 

state of each node, we use mean/median based outlier detection methods which are 

explained in the later sections.  

3.2. Aggregation Scheme 

The distributed aggregation problem is the problem of computing a given function over 

all the readings, such that the base station BS receives the correct value of aggregate. 

Assume an aggregation service, e.g. TAG by UC Berkley [44, 45], which aims at 

aggregating the data within the network in a time- and energy-efficient manner. The goal 
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of the aggregation service is to minimize the amount of time spent by sensors in 

powering their different components and to maximize the time spent in the idle mode, in 

which all electronic components are switched off. Indeed, the energy consumption is 

several orders of magnitude lower in the idle mode than in a mode where the CPU or the 

radio is active. Once a routing tree is set up and the nodes synchronized, data can be 

aggregated along the routing tree, from the leaves to the root. Each node includes its 

contribution in a partial state record X which is propagated along the routing tree. Partial 

state records may be any data structures. Partial state records are merged when two (or 

more) of them arrive at the same node. When the eventual partial state record is delivered 

by the root node to the base station, the desired result is obtained. Note that without this 

aggregation process, all the measurements would be routed to the base station. The root 

node would therefore have to send N packets per epoch. Instead, using our aggregation 

scheme, each node is required to send only a few pieces of data. In our work, we have not 

taken into account the effect of lost messages. The effect of lost messages can be 

mitigated to some extent in a continuous query setting where the state record is 

continuously updated.  

In a hierarchical environment monitoring system, sensor nodes collect the environment 

signals according to a certain sampling mechanism and report them to higher level sensor 

nodes (called aggregators). An aggregator and its direct children form an aggregation set. 

The aggregators forward the aggregated results to their higher level aggregator 

recursively, and eventually to the sink node. Since the nodes participating in the process 

may be destroyed or the data may be manipulated, the aggregators and the sink node 

should have a mechanism to provide trustworthiness of aggregated results to the users. 

Consider a temperature monitoring network as an example. When the sensing part of a 

sensor node fails suddenly, the sampling value collected by the sensor changes 

accordingly, the node itself can judge the data abnormal immediately based on temporal 

correlation. But, if the sensed data from this node maintain the abnormal value from then 

on, as time goes by, this node may treat its reports as normal. In this case, comparing the 

reports from this sensor, with those of its neighbors, the aggregator should determine the 

trustworthiness of this sensor still low and thus reduce the weight (contribution) to the 

aggregation process. In any set of data it is important to be on the lookout for outliers. 
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Outliers are individual values that fall outside of the overall pattern of the rest of the data. 

This definition is somewhat vague and subjective, so it is helpful to have a rule to help in 

considering if a data point truly is an outlier. 

3.3. Attack Model 

We consider that the adversary can compromise a few sensor nodes without being 

detected. If a node is compromised, all the information it holds will also be compromised. 

We will use a Byzantine fault model, where the adversary can inject arbitrarily chosen 

malicious data readings at a few sensors. Of course, compromised nodes may behave in 

arbitrarily malicious ways, which means that measurements from compromised nodes are 

under the complete control of the adversary. We conservatively assume that all 

compromised nodes collude, or are under the control of a single attacker. An archetypical 

attack compromises nodes reporting bogus measurements in an attempt to skew the 

computed aggregate. Compromise of sensor nodes is indeed a real threat in real sensor 

networks. Because sensor nodes must be low-cost, we often cannot afford to mount them 

in physical packaging that provides a high level of tamper resistance. Because sensor 

nodes must be deployed into the environment, we cannot provide physical security or 

control access to them. And, because sensor nodes must be deployed in large numbers, 

the adversary is afforded many opportunities to compromise a sensor node. 

 Of course, the adversary's capabilities are not unlimited. Some cost or luck will be 

required for each node that the adversary wishes to compromise. Therefore, we should 

assume that the adversary can compromise only a limited number of sensor nodes, but 

not half of the network.  
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CHAPTER 4 

 

PROBLEM AND PROPOSED SOLUTION 

4.1. Problem Statement 

Let t denote the discrete time variable and       be the measurement collected by the 

sensor       , at time t. Furthermore, individual sensor readings are subject to 

environmental noise and hence we assume an additive Gaussian sampling noise to these 

measurements with known variance   
 , as it can be estimated regularly by the base 

station from all the sensor readings.  

                                                    
   

All these nodes are provided with identical computational resources and we pick one 

node as root node, which communicates directly with base station. But in our discussions, 

for simplicity, we consider root node and base station as same identity, as root node can 

be varied periodically for it not to be exhausted completely. The initial energy available 

at each node be E0 and which is its maximum energy storage capacity and gains energy 

at a constant rate of e’, independent of whether it’s active or not. We assume an attack 

model, where the adversary selects certain specified fractions of nodes randomly 

according to a uniform distribution. To these nodes, a Gaussian random noise of zero 

mean and variance,   
 , which is significantly higher than the noise variance,   

 , which is 

assumed to be known as it can be periodically estimated from the sensor readings.  

Essentially, we can understand the problem of determining the state of a node i, as a 

detection problem with the null hypothesis,                        and alternate 

hypothesis being                       , described as follows: 

                

                     

                                   
                  

    

Eventually our problem is to estimate A, within the tolerable error bound using less 

power by trading the accuracy. For this once we identify a node as unhealthy we ignore 
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these nodes and perform aggregation. In each cycle, we are constrained to sense a limited 

fraction of nodes, say ‘k’ nodes, out of total ‘N’ nodes, to save energy in-order to 

increase the average lifetime of the network. Essentially the chance that a node among 

the children of a parent gets sampled is directly proportional to the product of cost, 

reliability and energy available.  With these ‘k’ nodes, and the root node, we form a 

routing tree to aid data aggregation and we must ensure that all these ‘k’ nodes are 

included in the tree.  

4.2. Outlier detection 

To determine whether a particular node is attacked or not i.e. the state of node is 0 or 1, 

we use median/mean based outlier detection methods. Outliers distort the average and 

standard deviation and make these statistics unreliable. Deletion of outlier data is a 

controversial practice frowned on by many scientists and science instructors; while 

mathematical criteria provide an objective and quantitative method for data rejection, 

they do not make the practice more scientifically or methodologically sound, especially 

in small sets or where a normal distribution cannot be assumed. Rejection of outliers is 

more acceptable in areas of practice where the underlying model of the process being 

measured and the usual distribution of measurement error are confidently known. And 

hence we do not include the measurements from sensors which are identified to be 

attacked to make the aggregate more accurate and thus making it robust.  

For mean based detection, we flag a node as attacked if it is outside the     limit. For 

median based method, we use a graphical procedure called a boxplot for summarizing 

univariate data introduced by John Tukey [33], which includes a simple rule for flagging 

observations as outliers. That rule declares observations as outliers if they lie outside the 

interval (                          ); where    is first quartile and    is third 

quartile. The common choices for g is 1.5 for flagging "out" values and 3.0 for flagging 

"far out" observations. The proposed approach is especially easy to use for large data 

sets, which are becoming quite common. Simple adjustments make the procedure 

practical for smaller sample-sizes. To avoid false positives as all the measurements are 

close, we use this method only when the IQR (Inter quartile range given by         ) 

is greater than       . 
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4.3. Metrics for node comparision 

At each node starting from the root, we pick a certain fraction of nodes to be sampled 

among its children based on their Cost function, Reliability factor and Fraction of energy 

remaining, the computation of which is defined as follows: 

1. Cost function: Cost or weightage of a node, n, with respect to the entire network 

is directly proportional to the total number of children it has, i.e. the entire set of 

nodes that communicate to root node through the node n, and is defined as 

follows:  

      
                                      

                         
 

2. Reliability factor: Each node, i, is in state     , either attacked or healthy, 

represented by 0 or 1. The state of each node can be visualized as a Bernoulli 

Random variable   with a probability that it take 1 is   and 0 is     . Where as 

in each cycle, using our median/mean based consensus algorithm, we estimate the 

state (1 or 0). Since the states are subject to change at any time in the presence of 

an attacker, we calculate the exponential moving average of these samples, with a 

finite forgetting factor, λ to estimate  . This estimate of probability   which is the 

probability that a node is healthy (1) can be referred as the reliability coefficient 

     of the node  , defined as below: 

                              

 Let t(n) be the time elapsed (in number of clock cycles) from the last sampling of 

node n. Here we encounter two cases at each node, where the node is being 

sampled continuously, t(n) = 0, or hasn’t been sampled for certain time, t(n) ≠ 0. 

Hence we need to λ accordingly, as follows: 

    

{
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At each node, only the state information of its immediate children is available, we 

need to propagate the reliability information to the parent. But we only require a 

single bit reliability flag to be transferred from the children. Hence at each node, 

we compute an Effective Reliability Coefficient  ̂   , which is weighted average 

of Reliability Coefficient of the node and its immediate children, given by: 

 ̂     
∑                                                   

∑                                      
 

3. Energy Remaining: We know the initial energy available with each node    and 

energy available at node i at time t is      . The fraction of energy remaining at 

node i is given by        
     

  
.  

4.4. Query Disemmination 

Base station inititates a query to pick a certain fraction (which is specified in the query 

from base station) of reliable nodes for sensing and performing the aggregation.  

Step 0:  BS sends a query to sense fixed fraction of nodes k 

Step 1:  Starting with the root node, we compute the effective reliability 

coefficient of its children  ̂    

Step 2:  Compute the fraction of energy remaining      

Step 3:  Compute the product and sort the children with high to low value of the 

product  ̂        . 

Step 4:  Use the first k fraction of these children for sensing 

Step 5: Repeat step 1 to 4 for each of the selected node 

Starting from the root node, each parent (nodei ) looks at their children’s (nodej’s ) 

reliability coefficient and selects a certain fraction of nodes (k) according to 

node_selection algorithm given below; 

Algorithm: node_selection(nodei) 

W = []  # to store the weights for each node i.e. the product of  ̂    and      

Ki = ⌊                     ⌋ 

for nodej in children(nodei): 

 W.append( ̂        ) 
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W.sort() 

selected_nodes = indices of W[ 0 : Ki]  

 

# Repeat the same algorithm recursively till we reach the leaf nodes 

for nodek  in selected_nodes: 

 node_selection(nodek) 

4.5. Q-digest Algorithm for median computation 

We know that median is more robust than mean, but median cannot be accurately 

computed in distributed fashion, hence the tradeoff ‘energy’ vs ‘accuracy’. Few 

algorithms are available to compute Median in distributed fashion, of Q-digest (Quantile 

digest) [32] is the one with improved and controllable efficiency.  

The core idea behind q-digest is that it adapts to the data distribution and automatically 

groups values into variable sized buckets of almost equal weights. Since q-digest is aimed 

at summarizing the data distribution and to support quantile computation, it is useful to 

compare it with traditional database approaches such as histograms. The critical 

difference between q-digest and a traditional histogram is that Q-digest can have 

overlapping buckets, while traditional histogram buckets are disjoint. Q-digest is also 

better suited towards sensor network queries.  

A q-digest consists of a set of buckets of different sizes and their associated counts. Every 

sensor has a separate q-digest which reflects the summary of data available to it, and this 

can be the partial state record that is propagated up the network as mentioned earlier. In 

any particular sensor, the q-digest is a subset of these possible buckets with their 

associated counts. The q-digest encodes information about the distribution of sensor 

values. The size of the q-digest is determined by a compression parameter k.  

4.5.1. Construction of Q-digest 

The root node initiates a Q-digest algorithm while constructing the routing tree. The Q-

digest data structures generated at these nodes (starting from the nodes at the bottom 

excluding leaf nodes) are propagated up the tree. And these Q-digests are merged at the 

parent node and so on. The parent can cache the q-digests received from its children and 

if a q-digest from a child is lost, it can replace that q-digest by the older one as these 
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sensor measurements doesn’t change rapidly, thus addressing the problem of message 

losses. The idea is to have a binary tree data structure with nodes as buckets for a 

particular range. Starting from the root node, the range is       , and its children have 

    
 

 
  and   

 

 
   , and so on till the leaf nodes have buckets of length 1. To construct 

the q-digest we will hierarchically merge and reduce the number of buckets. Given the 

compression parameter k, a node v is in q-digest if and only if it satisfies the following 

digest property: 

          ⌊
  

 
⌋      

              (  )            ⌊
  

 
⌋      

                                                  

We go through all nodes bottom up and check if any node violates the digest property. 

Since we are going bottom up, the only constraint that can be violated is Property (2), i.e. 

nodes whose parent and sibling add up to a small count. The algorithm to execute this 

hierarchical merge is described as Compress, which takes the uncompressed q-digest Q, 

the number of readings n and compression parameter k as input, is shown below; 

Algorithm: Compress 

          

While      : 

 for v  in level l: 

  if               (  )            ⌊
  

 
⌋ : 

        (  )                       

   delete v and vs from Q 

 l = l - 1 

 

4.5.2. Merging of Q-digest 

In a true sensor network setting we need to be able to build the q-digest in a distributed 

fashion. For example if two sensors    and    send their q-digests to their parent sensor 

(parent in the routing tree), the parent sensor needs to merge these two q-digests to 

construct a new q-digest and also add its own value to the q-digest. A single value can be 
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considered a trivial q-digest with one leaf node. Since merging multiple q-digests is no 

harder than merging two digests, the idea to merge two q-digests is to take the union of 

the two and add the counts of buckets with the same range ([min, max]). Then, we 

compress the resulting q-digest, as shown in the merge algorithm below; 

 Algorithm: merge( Q1( n1, k), Q2( n2, k)) 

            

Compress( Q, n1 + n2, k) 

 

4.5.3. Adapting Q-digest for our purpose 

After computing the q-digest structure, each sensor has to pack it, and transmit it to its 

parent. The main limitation of sensor networks is their limited bandwidth. To represent a 

q-digest tree in a compact fashion we number the nodes in a level by level order, i.e. root 

is numbered 1 and its two children are numbered 2 and 3 etc. But the problem with the 

algorithm mentioned above is, it assumes the values generated at each node are integers 

in the range of       . In all practical purposes of WSNs, we have a closed range of 

values allowed and beyond which is unacceptable or sometimes unattainable. For the Q-

digest algorithm to work it only requires the measurements to attain values from a limited 

set. Hence we assume a range of length   centered at an average measurement in normal 

conditions, say A, i.e. the range is     
 

 
   

 

 
 .  The accuracy in aggregation is 

inversely proportional to the length of the range of values the nodes can take. In our case, 

we can round of the aggregates to one or two decimal points, to limit the number of 

possible values and be able to use Q-digest. 

4.5.4. Quantile Computation using Q-digest 

At each node using these Q-digest binary tree structures and by post order traversal we 

can compute median and other quantiles to determine whether the node is attacked or 

healthy with the help of Tukey’s test. To find the q
th

 quantile from q-digest, we sort the 

nodes of q-digest in increasing right endpoints (max values); breaking ties by putting 

smaller ranges first. This list (L) gives us the post-order traversal of list nodes in q-digest. 

Now we scan L (from the beginning) and add the counts of nodes as they are seen. For 

some node v of this q-digest, this sum becomes more than     ; where n is the total 
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number of sensors branched under that sensor node, and it is suggested to report 

maximum of the bucket i.e. v.max as estimate of quantile. Notice that there are at least qn 

readings with value less than v.max, hence rank of v is at least qn. The sources of error 

are readings with value less than v.max, present in ancestors of v. These will not be 

counted in quantile algorithm, since v comes before its ancestors in L. This error is 

bounded by    (refer: Theorem 1 [32]). So, the rank of value reported by our algorithm is 

between    and        . Thus the error in our estimate is always positive, i.e., we 

always give a value which has a rank greater than (or equal to) the actual quantile. But we 

report average of maximum and minimum of the range of bucket, i.e.                 

  as our estimate of the quantile thus making the error two sided. Though this increases 

the error in case where there is no attack, but in presence of attacked nodes, average is 

noted to be good estimate. However in special cases where we are only concerned of one 

sided attacks, the former is more sensible.  

As noted earlier median based outlier elimination is more robust but as the median 

computed is an approximation, the aggregate is not very accurate. As we are using Q-

digest, in the worst case, the count of any node can deviate from its actual value by the 

sum of the counts of its ancestors which implies that the maximum error is bounded 

(refer: lemma 2 [32]). Furthermore, in many practical applications of WSNs like 

fire/burglar alarms, intrusion detection etc., it’s important to accurately determine the 

range in which the aggregate is present rather the exact value.  

4.6. Improvement in median based outlier detection 

Our algorithm for selecting nodes to sample is based on assumption that we accurately 

determine whether a particular node is attacked or not. Hence, minimizing the number of 

false positives is important and we identified that median is more resilient in this regard 

than mean. In response to this vulnerability, we also tried to modify Tukey’s method 

[33], to classify the measurement X observed into 4 states (opposed to two states earlier 

0/1) as: 00 – attacked if    [   
 

 
              )  (                   

 

 
]  , 01 – not healthy if    [                               )         

                                , 10 – healthy if                  
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                                    and 11 – very healthy if            . That is, 

we communicate additional bit to the parent signifying the reliability of children, and 

accordingly update the reliability factor i.e. instead of 0 or 1, now we use the values 0.0 

for 00, 0.25 for 01, 0.75 for 10 and 1.0 for 11. However, we will note in later sections that 

no significant improvement is observed by this approach, implying single bit state 

information is completely sufficient in computing reliability factor.  
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CHAPTER 5 

RESULTS AND ANALYSIS 

Using all the mentioned ideas and algorithms we have simulated different approaches in a 

similar setting to understand relative efficiency. Unless mentioned the true value of the 

sensor measurements is centered at A = 100, embedded in additive Gaussian noise with 

variance,   
   , which is assumed to be known at each node and sampling period is 

    which runs for 200 cycles i.e. 1000 clock cycles in total. Let us assume all float 

value communication is done using 32-bits, and for simplicity let energy spent for 

communicating a bit from one node to immediate child or parent is 1. In naïve approach 

of mean aggregation by forwarding all the measurements up the aggregation tree for 1000 

clock cycles require 32000 units of energy. Let the energy available with each node at the 

time of deployment be                and each sensor node gains energy at a 

constant rate,                             , that is half the energy required in naïve 

approach, only as a reference to compare all the approaches. For the whole network to be 

eternal, we need to bring down the energy requirement for each cycle to half. For 

approaches involving median computation using Q-digest algorithm, we assume the 

measurements can take values in the range          .  

At time t, each attacked node i, takes the measurements       given by; 

                                                   
                  

    

The attacks used in the simulation are as follows (here clk is the number of clock cycles):  

100 < clk < 200:        

300 < clk < 400:       

500 < clk < 600:      

700 < clk < 800:       

900 < clk < 1000:       

To simulate events I have varied the mean A of the actual distribution as follows: 

    0 < clk < 750:  A = 100.0 

750 < clk < 850:  A = 102.0 

850 < clk < 1000:  A = 103.0 
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5.1. Naïve distributed mean aggregation 

We look at naïve distributed mean aggregation as a bench mark approach to have essence 

of how much we have gained by implementing our ideas. Query from the base station 

requests to collect measurements from all the nodes, i.e. fraction of nodes to be selected 

is 1 and rest remains the same. Starting with the root node, each parent nodei collects the 

sensor measurements from its children in 32-bit notation, and mean of these values is 

computed. Similarly these aggregates are forwarded up the tree till the root node and 

aggregate computed at the root is transmitted to the base station. The aggregate algorithm 

for naïve distributed mean aggregation is as shown below; 

 

Algorithm: aggregate(nodei) 

values = []      # list of values used for mean computation 

values.append( nodei._mesurement)  # nodei._mesurement =       

for nodej in children(nodei): 

 if len(children(nodej)   : 

  aggregate(nodej) 

  values.append(nodej._aggregate) 

 else: 

  # if the node is a leaf node 

  values.append(nodej._measurement)    

 nodei._aggregate = mean(values) 

return 

 

The average root mean square error using this approach is approximately 0.9, which 

attests the fact that mean based aggregation is not robust to strong attacks. From the plot 

of Error in aggregate over time in fig 1, the error is large when there is an attack. It’s 

worth noting that even in the absence of adversary, we observe significant error in the 

aggregate implying error is not bounded in mean based aggregation. From the plot of 

total energy available at each clock cycle fig 2, we observe independent of the presence 

of adversary; energy is spent at a constant rate resulting in 25% reduction.  
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Fig. 1. Plot of  total number of attacked nodes and Error in aggregate using naïve distributed mean aggregation 

 

 

 

Fig. 2. Plot of total number of attacked nodes and Total energy available at each clock cycle 

 

However as we are activating all the nodes to sense and transmit measured values, we 

don’t save any energy by this approach (see fig 3). Our objective is to save energy when 

there is no adversary and use this energy to make the network resilient to attack 

otherwise, i.e. instead of total available energy line of single gradient; we need to have a 

one dependent on the errors. 
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Fig. 3. Plot of total number of attacked nodes and Error in the aggregate 

5.2. Mean aggregation of reliable nodes 

Instead of using all the measurements to compute the aggregate (mean), we use mean 

based outlier elimination to determine whether a particular node is reliable or not (i.e. 

healthy or attacked). Then we only include the nodes which are noted to be reliable in 

computing aggregate, as shown in the aggregate algorithm below; 

 Algorithm: aggregate(nodei) 

values = []      # list of values used for mean computation 

values.append( nodei._mesurement)  # nodei._mesurement =       

for nodej in children(nodei): 

 if len(children(nodej)   : 

  aggregate(nodej) 

  if nodej._reliable = 1:  # include or transmit only reliable readings 

   values.append(nodej._aggregate) 

 else: 

  # if the node is a leaf node 

  values.append(nodej._measurement)    

  

nodei._aggregate = mean(values) 

outlier_detection(nodei)   #mean based outlier detection using ‘values’ 

return 
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We can observe from fig 4 that we are able to contain the error in presence of an attack, 

and the average root mean square error amounted to be 0.85, which is a slight 

improvement from the naïve approach. It is to be noted that the error in most cases is with 

in the     limit, which is the bound we used to determine whether a node is reliable or 

not. Thus, inherently that is the best we can achieve from this approach.  

 

Fig. 4. Plot of total number of attacked nodes and Error in the aggregate using mean aggregation of reliable nodes 

 

Fig. 5. Plot of total number of attacked nodes and total energy available at each cycle 

According to our algorithm, if once a node is identified as attacked or unreliable, we 

don’t require the aggregate at the node to parent. Hence, when there are attacked nodes 
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present in the network and are identified to be attacked, we save energy, approximately 

12% of which lost in the previous approach. We can observe in the fig 5 below that the 

energy loss is slowed. But actually we should save energy when adversary is not present, 

and use that saved energy to make the attack resilient in presence of adversary, which is 

not the case here. Now we try to reduce energy wastage by reducing the number of nodes 

we sample in our next approach.   

5.3. Mean aggregation using selected nodes 

As mentioned earlier to reduce the average amount of energy spent for each cycle, 

starting from the root node we select a fraction of nodes (0.5 in our case) among its 

children. The aggregation algorithm remains same as in the previous section, but in the 

query dissemination i.e. node_selection algorithm, we select only 50% of its children at 

each node. These are the ones that are considered more reliable and important, i.e. the 

ones with high effective reliability coefficient and energy remaining.  

Using this approach, the average root mean square error observed is 0.8, which not a big 

change, but we can notice from fig 7 that we save 25% energy that is spent in the naïve 

approach.  

 

Fig. 6. Plot of total number of attacked nodes and Error in the aggregate using mean aggregation of selected nodes 
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Fig. 8. Plot of total number of attacked nodes and total energy available at each cycle 

Though the energy used looks dependent on the total number of nodes attacked, on close 

observation you will find the energy is spent more in absence of attack, because all the 

measurements are transmitted where as in presence of an attack, we only transmit 

measurements of nodes that are noted reliable. This is evident from the correlation 

coefficient of -0.18 between energy available and total number of nodes attacked.  

5.4. Naïve median aggregation 

Similar to the method described in 5.1, here we use median computed using Q-digest 

algorithm (refer: page 23, chapter 4) instead of mean. Using this approach, the average 

mean square error observed is 0.29. From the fig 8, we can note the error is bounded 

approximately by 0.3 both in the presence and absence of an adversary. As we have 

assumed the sensor readings can take values in the range of           while 

implementing the Q-digest algorithm, the minimum size of a bucket in the digest is 

0.675. Since we are using the average of the bucket ranges as approximation for median, 

we observe an error close to      (i.e. nearly half of 0.675), which is the trade-off made 

to save the energy as shown in fig 9. Opposed to constant message length (32-bit) in case 

of mean, here we use controllable message length (function of number of buckets filled) 

and thus save the energy.  
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Fig. 8. Plot of total number of attacked nodes and Error in the aggregate using median aggregation of reliable nodes 

Moreover, the median based outlier detection algorithm has given 0 false positives, i.e. 

nodes that are flagged as attacked are actually attacked. Although it wasn’t quite 

successful in detecting all the attacked nodes among the sampled ones, it has to be noted 

that these nodes are within the range of the values produced by nodes with normal 

behavior and doesn’t affect our aggregate. 

 

Fig. 9. Plot of total number of attacked nodes and total energy available at each cycle 

It is worth noting from the energy plot (fig 9), that in the absence of an adversary, the 

gradient of total energy plot is nearly 0, which implies the nodes are accomplishing the 

task only by using the energy they gain from ambient sources (at rate       units per 

cycle). However at the end of 1000 cycles, total energy lost is same as in the case of 
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naïve mean aggregation, which implies though we are saving energy in absence of an 

attack, we are wasting energy in the presence of an attacker. Hence, we need to minimize 

the number of nodes we activate by selecting most reliable nodes for sampling (5.5).  

Similar to the approach in 5.2, i.e. including only the values from reliable nodes to 

compute the aggregate, we can implement similar method using median. But we don’t 

save much energy as message length doesn’t vary even if we don’t include value at that 

node if found unreliable and end up wasting energy transmitting the reliability 

information. However, as mentioned above, we cannot improve the accuracy either, in 

fact we decrease the accuracy in aggregate (observed a root mean square error of 0.45) by 

decreasing the number of samples used for computing the median.   

5.5. Median aggregation using selected nodes 

Similar to the method described in 5.3, here we use median based outlier detection and 

use the reliability information to pick the best nodes. Using this approach, the average 

root mean square error observed is 0.4. Furthermore, the energy usage is highly 

dependent on the strength of the attack, fig 10. It should be noted that an error of 0.33 is 

inherent to our median approximation algorithm even when all the nodes are behaving 

normally, and hence 0.4 is not huge considering the amount of energy we save using this 

approach, see fig 11.  

 

Fig. 10. Plot of total number of attacked nodes and Error in the aggregate using median aggregation of selected nodes 
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Fig. 11. Plot of total number of attacked nodes and total energy available at each cycle 

 

To have detailed picture of the efficiency of this algorithm, we have computed the root 

mean square error over time period where adversary is effective and otherwise, and these 

values amounted to be 0.56 and 0.33 respectively. 

 

Fig. 12. Plot of total number of attacked nodes and Error in the aggregate using median aggregation of selected nodes 
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Fig. 13. Plot of total number of attacked nodes and total energy available at each cycle 
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CONCLUSION 

 

We have proposed different approaches for making these aggregation schemes more 

resilient against certain attacks. We have used only mean and median though there are 

more sophisticated algorithms available to separate additive Gaussian attack, because 

these are computationally light weight and can be easily implemented in distributed 

fashion. We also identified that median is more robust as suggested by many, and also 

effective in outlier elimination than mean. We have adapted the Q-digest algorithm for 

distributed median computation. Though we have shown in our results we save energy in 

communication, implementing these algorithms require high computational power, which 

is not addressed here. This is one wide area for research to develop computationally light 

weight algorithms using minimum power. There are few works addressing this issue, but 

the aggregate functions used are not secure, implementing which under same assumptions 

requires fully homo-morphic encryption system which is out of the scope of this 

discussion. Major contribution of our work is a method to locally select a set of reliable 

nodes for sampling considering the cost or weightage, reliability factor and total energy 

available with the node, in order to increase the life time of the network and improve 

resilience. Very few works have considered using the feedback from outlier detection to 

modify sampling query in order to make the network robust to attacks.  
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