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ABSTRACT

KEYWORDS Orthogonal Frequency Division Multiplexing; Timing Synchro-
nization; Software Defined Radio, Universal Software Radio
Peripheral; Log Likelihood Ratio, Joint Trellis Shaping; Dirty

Paper Coding

This report outlines the theory behind, the working of, and the design decisions
that went into the creation of an OFDM stack and a few other modules that
were constructed primarily as component blocks of a larger project aimed at im-
plementing and demonstrating a real-time Dirty Paper Coding framework in a
base-station-with-two-users environment. The report aims to be used as a refer-

ence design document for future generations of this framework.
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CHAPTER 1

INTRODUCTION

1.1 Orthogonal Frequency Division

Multiplexing

1.1.1 Digital communication

When transmitting digital data over a real (analog) channel, we typically first
convert the bit stream into a stream of complex symbols, using some kind of
modulation scheme. Following this, the symbols are pulse-shaped and upconverted
to the carrier frequency, real and imaginary parts of the symbols being encoded

in the in-phase and quadrature components of the carrier.

We can retrieve the complex symbols on the receiver side by performing matched
filtering followed by suitably sampling the analog data. In such a scenario, the ef-
fects of the channel can also be viewed as purely digital operations on the complex
data stream. We can, therefore, work at the level of digital abstraction, where we

only deal with a discrete sequence of complex symbols.

1.1.2 Channel effects

The modulation scheme used will decide how robust the message will be against
channel effects. A simple but effective digital channel model has an impulse re-
sponse to model inter-symbol interference (caused due to multi-path effects in
wireless transmission, for example) and an addition of white gaussian noise. Sim-
ple modulation schemes such as QAM do not fare well in such a channel, however,

due to ISI.



In order combat the effect of ISI in such cases, we would need to employ com-
putationally intensive decoding techniques such as the Viterbi algorithm. Alterna-
tives are to use sub-optimal equalization filters such as the zero-forcing equalizer,
but depending upon how many taps the channel has, these filters could turn out

to be extremely long, which once again, makes them computationally intensive.

1.1.3 OFDM solves the ISI problem

OFDM is a modulation scheme that effectively solves the problem of ISI without
introducing heavy computational complexity. It does this by placing a block of
complex data symbols on adjacent narrow-band ‘subcarriers’ in the frequency
domain. The transmitted data block is the inverse-FFT of the frequency domain
block. On the receiver side, each data block is converted back into frequency

domain by taking the FF'T of the block.

Each block of data, after the inverse-FFT is performed, is prepended with a
cyclic prefix, which is a copy of the last few symbols. The length of this cyclic
prefix is equal to the number of taps in the channel’s impulse response. The cyclic
prefix ensures that the effects of ISI remain limited to the same data block and

guards against pollution of symbols from adjacent data blocks.

With this framework, the ISI of the channel gets expressed in frequency domain
as frequency-selective fading, with each subcarrier seeing a different gain. If we
have a model of the channel in frequency domain, (by taking the FFT of the
channel taps), then we can reverse the effects of ISI completely by simply dividing

each received subcarrier symbol by the channel response at that subcarrier.

1.2 The USRP and the UHD API

The USRP platform is a computer-hosted software-defined radio. In one sentence,
the USRP allows you to work at the level of digital abstraction alluded to in
subsection 1.1.1. The device is connected to the computer using either an ethernet

cable or a USB 3.0 cable (depending upon the USRP model used), and one can
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interface it to one’s program by using the open source UHD API.

Different USRP boards can work at different frequencies and have different
rates. The devices have the capability to act as a full transceiver. But at least
two distinct devices are required in order to perform experiments where data is to

be transmitted and received.

The UHD API can be used to interface with the USRP from a C+-+ program.
The API provides classes and methods to set up the USRP device with the desired
frequency, rate and gain settings. Omne can instantiate a transmit- or receive-

streamer to send or receive data in the form of a complex data stream.

In this project, the UHD API has been made use of extensively. The use
of the API has been restricted to two modules, namely the USRP Transmitter
module and the USRP Receiver module. These are described in subsections 3.2.3

and 3.2.4.






CHAPTER 2

TIMING ANALYSIS

2.1 Packet detection

Timing analysis is used to determine the point in time where the packet starts.
This is also a method to recognize whether a packet has arrived or not. In the
current scheme, the packet detection module uses the Schmidl and Cox method

(Schmidl and Cox, 1997) for timing analysis.

This entire section will assume a level of abstraction wherein we have an inex-
haustible data source of digital, complex symbols at the receiver. We acquire this
data by reading from this source into a buffer (which is simply an array) in our

receiver program’s source code.

2.1.1 The Schmidl and Cox algorithm

For the receiver to be able to pick out a packet from ambient noise and inter-
ference, the transmitted packet must be designed for detection. All transmitted
packets have a preamble, which consists of two identical halves. Each half is a
pseudo-random-number sequence. The correlation of each half with with other
(independent and hence uncorrelated) signals is expected to be low. However,
its correlation with the other half will be high. Moreover, this property is well-
maintained even when the preamble is passed through an ISI channel with additive

white gaussian noise.

In other words, we can detect the start of a packet by correlating two adjacent
windows, each having half the size of the preamble, with each other. The point
where this correlation value becomes high can be taken to be the start of the

packet.
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Figure 2.1: Absolute value of the preamble

The metric used to determine whether or not the correlation value is high

enough is the normalized cross-correlation, defined as

_ | Cross-correlation of the two windows |
Metric =

v/ Product of the autocorrelations of the windows

Let z be the vector of complex values corresponding to the first window and y be

that corresponding to the second. Then, the metric m is given by

(2.1)

where (*) denotes complex conjugation in the case of scalars and complex conjugate
transpose in the case of vectors. All vectors are taken to be row vectors. A plot

of this metric on actual transmitted data is shown in figure 2.2.

2.1.2 Running correlation on the receive buffer

In order to efficiently perform a running correlation of adjacent windows over
an entire receive buffer, we minimize the number of computations performed.

On moving one step, we add the latest correlation point and subtract the oldest
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Figure 2.2: A sample plot of received data in black, with the metric overlaid in blue. The sharp
singular peak in magenta indicates the maximum of the metric, which is taken to
be the start of the preamble. Note that the value of the metric is shown at the
start of the two correlation windows. Notice that although the channel distorts the
preamble, the two halves are still more or less identical. This is the reason behind
why this method of packet detection works. Also notice how the metric stops soon
after the peak is detected. The reasoning behind this is explained in subsection 2.4.1.

correlation point.

X0 Ln
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Figure 2.3: Correlation windows

Let {z;}7-) and {y;}/-; be complex sequences corresponding to the symbols
in the left window and the right window respectively, where n is the window size,
which is half the length of the preamble. In the next time step, these windows are

denoted as {z;}", and {y;}", respectively.!

Let ¢4 be the correlation of windows in the current time step, and c¢,,,, be the

'Note that for the purpose of these calculations, the two windows may be disconnected or
overlapping. No assumptions are made regarding the equality of certain ranges of z; and y;.
Specifically, we do not assume that x,, = yo. Thus, when z; = y; Vi € {0,1,...n — 1}, we

automatically arrive at the running autocorrelation formula.



correlation of the windows in the next time step. That is,

n—1

cua =Y wy! 22)
1=0

Cnew = szyz* (2.3)
=1

We can then write ¢, in terms of ¢,y as follows:

n—1

Cnew = Z xzyz* - xoys + l'ny:; (24)
=0

= Cold = To¥o + T, Y (2.5)

This way, once we have acquired the correlation of the first n symbols, the

correlation of subsequent windows is an O(1) process.

2.1.3 Implementation using the two-frame block

In order to implement the Schmidl and Cox algorithm, we need to continuously
scan through the received symbols, correlating two windows, each half the size of
the preamble. Once the preamble is found, we need to pull out a full frame_size

number of symbols from the buffer.

Obviously, the receive buffer should be at least as long as the preamble. But if
the receive buffer is too long, then depending upon the rate of communication, we
may be adding latency to our program by having to wait for the buffer to get filled.
If our receive buffer is only one frame_size long, then on finding the preamble in
the middle of this buffer, we will have to take into account how many symbols
more we need to extract for the frame from the next buffer. This is cumbersome

and error-prone.

A simpler implementation scheme involves having a receive buffer that is two
frame_sizes long. We refer to this buffer as the two-frame block. On each iteration,

we search only the first half of the buffer. Even if the preamble is found towards
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Figure 2.4: A depiction of the two-frame block used to buffer received complex symbols

the end of the first half, we can still pull out a full frame_size from the two-frame

block.

2.2 The DC offset problem

The packet detection algorithm hinges on the fact that the only place where the
correlation yields a peak is when the two windows are identical. But when there is
a DC component present in the signal, the algorithm yields a high correlation. We
therefore need to eliminate the DC component in the signal prior to performing

the correlation.

2.2.1 Discovering the DC offset

We observed problems with packet detection, wherein received packets were not
getting decoded faithfully; there being no correlation between the transmitted
and received constellations. Upon plotting the start of the frame along with the
computed metric, we noticed the presence of two peaks of the metric (as opposed
to the expected one). The first peak, which was not caused by the preamble, was
being erroneously detected as the start of the frame, leading to the rest of the

frame being incorrectly decoded.

The reason for this was the presence of a large plateau prior to the start of the
preamble. This signal plateau constituted a DC signal, which correlates positively
with itself. Since the plateau was longer than the size of the two correlation
windows, we saw a metric peak at the start of the plateau. This is plotted in

figure 2.5.
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Figure 2.5: A plot of the timing synchronizer without DC offset elimination. Notice how the
first erroneous peak is clearly aligned with the start of the plateau.

2.2.2 Eliminating the DC offset

To stop a DC signal producing fake peaks in our metric, one option was to correlate
the signal with the preamble sequence itself (as described later in subsection 2.3.3).
But this is a computationally expensive proposition, since it is not possible to
perform running correlations when one of the vectors being run over is actually

kept fixed.

We therefore eliminate the DC offset by subtracting out the mean of each

window before correlation. That is, instead of equation 2.1, we have

=8|
" ezl 20

where Z refers to the mean of the vector z.

This procedure has no effect on the preamble itself, since the pseudo random

noise sequence used for the preamble is zero-mean.
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2.2.3 Running correlations with DC offset elimination

In order to perform running correlations with the new metric, we need to come

up with an update equation similar to equation 2.5.

rg X Tn Y
ld N Y
A ~ N\ ~~ J/
U Yo v Yn

Figure 2.6: Correlation windows for the new update formulation

As before, let {z;}7=) and {y;}/'-; be complex sequences corresponding to the
symbols in the left window and the right window respectively. Furthermore, let
x and y be the means of the left and right windows in the first time step. In the
next time step, both windows are moved one step to the right. Let the new means

be w and v. This is shown diagrammatically in figure 2.6.

Then we immediately have an update equation for the means themselves:

Uu=7= 2.7
u=T+— (2.7)
n— T
b= g4 It (2.8)
n
We want to obtain 7, (z; — u)(y; — 0)* in terms of X0 (v; — 7) (y; — 9)*
= — —\ * iy — Tp — To — Yn — Yo *
Yo (wi—a)(yi—y) = (wi—u+ ><yi—v+)
i=1 i=1 n n
n—1 - . Ty — X0 n—1 .
=3 (= @)= o)+ () Y (- 0)
i=1 n i=1
k n—1 n—1 ES
Yn — Yo — Tn — Lo Yn — Yo
+< n >Zzl<xl u)+i1( n >( n >
(2.9)
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Now,

n—1 n—1
> (w—u)=> z;—(n—1)u (2.10)

i=1 i=1
=> z;—x,— (n—1)u (2.11)

i=1
=nu—x,— (n—1)u (2.12)
= (2.13)

And similarly,
n—1

> (i —0)" = (0—yn)’ (2.14)

Therefore,

n yn_y0>*(ﬂ—xn)+(n—1) (»“Cn—370> (yn—y())*

(2.15)

We can acquire the basic form of the update equation by rearranging terms:

Ty — T _ . n — o
Cnew:Cold_< n 0) (U_yn) _<yy0> (u—xn)

n

(e (Tt (B (216)

n

+ (20 =) (Yn — 0)" = (20 — T) (50 — )
In order to simplify this expression to minimize the number of correlation
terms, we need to group terms. If we group the (n — 1) <M> (y"—;yo)* term

n

with the (%)* (u — x,) term, we get

Tp — T

) (0 —yn)"

- (ynn—yo)* [ﬂ —x, + - 1(% - xo)} (2.17)

Cnew = Cold — (

+ (vn — ) (Yo — V)" — (0 — T)(yo — Y)"
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Simplifying the [-] term,

nu—nx, +(n—1z, — (n—1Dxy nu—(n— 1)z —z,

n n

So that

Tp — To\ - . YUn —Yo\" -
Cnew:Cold_( O)(U_yn) _( 0) ((L’—ZL’O)

+ (20 — ) (yn — 0)" — (20 — ) (Y0 — V)
= Coa + (0 —Z) (Y — 0)" + (0 —y)(xo — 2)*
+ (20 =) (Yo — V)" + (20 — T)(§ — y0)"
= coqg + (U — T+ 2 — ) (yp — V)"

+ (@ —2)(0—y+y—w)

= Cotd + (Tn = T)(Yn = 0)" = (w0 — ) (30 — 0)" (2.19)

If instead we had grouped the (n—1) (M> (%)* term with the (’””‘”’0) (v—

n n

yn)* term, we would have arrived at the equivalent update equation

Crew = Cold + (Tn — ) (Yn — ¥)" — (2o — u) (Yo — ¥)" (2.20)

Equations 2.19 and 2.20 together preserve the inherent symmetry present in
equation 2.16. So even though the individual equations seem to have lost the

symmetry, it is still preserved.

The same update equation can also be used for autocorrelation by setting

r,=y;Vie{0,1,...n—1}, v =uand y = 7.
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2.3 Practical considerations

2.3.1 Cross-correlation cut-off for noisy regions

We expect the absolute value of the cross-correlation of the two windows to be
much lower than the product of their autocorrelations. However, we found that
the value of the metric tended at times to be quite large, and even comparable to

the threshold used to determine the presence of a packet.

A possible reason for this might be the accumulation of errors due to the
running correlation algorithm being employed. In the regions of noise, both the
autocorrelation and cross-correlation values are low, however, random fluctuations
in the noise and in the error could sometimes cause them to become roughly of

the same order of magnitude.

In order to prevent erroneous packet detection in noisy regions, we introduced
a cut-off based on the absolute value of the cross-correlation. This cut-off value
must be empirically determined (refer to appendix A on setting this and other
such parameters). If the absolute value of the cross-correlation is less than the
cut-off, we manually set the running cross-correlation at the point to be zero, and

skip all other checks for the packet.

1 if(complex_abs(cross_corr) < CROSS_CORR_THRESHOLD) {
cross_corr = Complex(0, 0);

3 corr_coeff = 0;

2.3.2 Violation of the Cauchy-Schwarz inequality

We discovered that at certain instances, for example when searching for the pream-
ble towards the end of a previous frame, the value of the metric exceeded unity. In

a strict mathematical sense, this is impossible, since cross-correlation is an inner

14



product operation, and the Cauchy-Schwarz inequality guarantees that

(u, v) < |ul|v]

Nevertheless, the situation was observed. On closer inspection, we found that at
the edge of the frame, the values of the complex symbols dropped rapidly. In
such a situation, it took time for the cross-correlation value to settle (time for
the accumulated errors to diminish in comparison to the cross-correlation value
itself), whereas the autocorrelation values settled faster. This caused the cross-
correlation value to exceed the autocorrelation product, thus giving a metric value

greater than unity.

When checking for the preamble itself, we gave allowances for errors causing the
metric value to exceed unity. But in the situation described above, this occurred
with far larger deviations than we might expect due purely to floating point error.
In fact, the error was the accumulated error in the algorithm itself. In such
situations also, we manually set the cross-correlation value to zero to avoid further

propagation of this error.

absl = complex_abs(cross_corr);

2 abs?2

sqrt(auto_corr_left * auto_corr_right);
if(absl / abs2 > 1 + EPSILON) {
4 // Violation of the Cauchy-Schwarz inequality!

// Explicitly preserve it by killing the cross-correlation.

6 absl = 0;
corr_coeff = 0;
8 cross_corr = Complex(0, 0);
} else {
10 corr_coeff = absl / abs2;
}

15



2.3.3 Fine metric

When searching for the preamble in the body of a previous frame, we sometimes
found that the value of the metric exceeded the threshold. Essentially, the values
of the complex symbols within the frame depends on the data being transmitted.
It might so happen that the data produces a short repeating pattern of the same
length as the preamble in the bulk of the frame. In such a situation, the timing

synchronizer will erroneously detect a packet in the middle of a frame.

This is because, so far, we have only correlated the first half of the preamble
with the second half in the received vector. We never correlated the received
symbols with the actual preamble values themselves (which are fixed, and thus
known at the receiver). It may not be possible to simply increase the threshold
until this stops happening, since the threshold value is determined by the amount

of noise in the system.

To fix this issue, the fine metric is computed by correlating the first window
with the first half of the expected preamble. This is only done when the coarse
metric exceeds the threshold, since it is an expensive operation and since we cannot
use a running correlation algorithm to compute it. The fine metric value has its
own threshold, which is used as a second-pass for ensuring the presence of an

authentic preamble.

Note that even in the presence of an ISI channel, the fine metric will pick up
the most dominant channel tap. If p is the preamble vector and A is the channel,

then the received preamble is

y=pxh

This received vector is now correlated with the preamble itself, so that the fine

metric peaks at argmax(h) with a peak value of max(h).

2.3.4 Going left for safety

In the event that the packet location as determined by the timing synchronizer is

not exactly correct, or in the event that there are several dominant taps in the

16
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Figure 2.7: Absolute value of the fine metric in green, overlaid upon the metric in blue and the
received data in black. The threshold used for the metric was 0.8, as demarcated.
Notice how the fine metric is computed only when the metric exceeds its threshold.

channel impulse response, we may not extract a good OFDM block. That is, the
OFDM block extracted may be polluted by the cyclic prefix of the subsequent
block. Such pollution cannot be corrected for by OFDM.

Therefore, to be safe, we introduced a safety parameter. When supplying the
final packet location, we shift the packet safety positions to the left. This ensures
that each OFDM block extracted will contain only its own symbols. Instead of
picking up symbols from the next block, we would pick up symbols of the cyclic
prefix of the same block. This can then be corrected for by performing integer
frequency offset estimation, in order to rotate the block suitably. The final location

of the packet that is returned is therefore

packet_loc = peak_index 4 preamble_length — safety

2.4 Further optimizations

On profiling the program, it was found that the timing synchronizer was the

slowest block, taking up to 50% of the receiver program’s run time. In order to
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speed up the timing synchronizer to the extent possible, therefore, a few more
optimizations were performed that focused on reducing the amount of work the

timing synchronizer had to do.

2.4.1 Stopping correlation after threshold breach

The first optimization relies on the accuracy of the currently used timing analysis
algorithm. We found that the algorithm is quite selective in picking out packets
correctly. Given that this is the case, we assume that once the fine metric threshold
has been breached, a packet has been found, and that we only need to find the

dominant channel tap to find the best ‘location’ of the preamble.

Therefore, once the fine metric has been breached, we continue correlating only
up to a number max_time_steps_after_threshold of time steps. After this, the

point of maximum correlation is returned as the packet’s location.

2.4.2 Discarding the found frame block

Once a preamble has been found in the two-frame block, we know that a full frame
follows. All symbols corresponding to this frame can then be removed from the

receive buffer so that we do not search what we know is part of a frame.

This way, we also (mostly) avoid the problems mentioned in subsections 2.3.2
and 2.3.3. Otherwise, we would always have to scan the entirety of the second

window, parts of which might contain the frame body.>

We had remarked in subsection 2.1.3 that a one-frame block is cumbersome and

2Note that we do not entirely avoid this problem. In the presence of an ISI channel, the
effective frame length is longer than one frame_size, and in the event that the preamble is found
at the end of the first window, it is possible that the frame edge goes outside of the second frame
window, meaning parts of the frame would be yet to be received into the two-frame buffer. The
other scenario where we may scan the bulk of the frame in search of a packet is when the timing
synchronizer fails to detect a frame that is actually present. In both these cases, we would
encounter symbols from the bulk of the frame, and thus the measures taken in subsections 2.3.2

and 2.3.3 cannot be done away with.
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error-prone, since it is difficult to maintain and update information on how many
symbols have been extracted and how many more are left to extract. Nevertheless,

in the name of optimization, this is exactly what we now proceed to do.

two-frame block

frame_guard  frame_size
—> >

<—.> -~ -
corr. window preamble nearest next frame
num_to_acquire num_left_to_search

Figure 2.8: The two-frame block with num_to_acquire and num_left_to_search demarcated

We maintain two variables that describe the state of the two-frame block
outside of the timing synchronizer at any given point in time. The first is
num_left_to_search, which denotes the number of symbols that are present in
the two-frame block that have yet to be searched by the timing synchronizer. The
second is num_to_acquire, which denotes the number of symbols that have to be
acquired from the complex data source in the current iteration of the receive loop
to fill the remainder of the buffer. While it is redundant to maintain two variables,
since we have num_left_to_search+ num_to_acquire = 2 X frame_size but we do

so for the sake of convenience.

During initialization, both num_to_acquire and num_left_to_search are set
to frame_size. When the first frame is found, it will be found somewhere in
the middle of the two-frame block. Let this point in the two-frame block be
packet_loc. As mentioned in 2.3.4, the packet location returned is after the
preamble, but then safety positions to the left. Thus, from packet_loc, we can

discard frame_size — preamble_length + safety number of symbols.

To make sure that we do not read symbols at the end of the frame, we assume
that there is some minimum distance between two frames. This distance is called
the frame_guard. The number of symbols to discard, from packet_loc onwards,
is then frame_size — preamble_length + safety + frame_guard. In other words,

the only relevant parameter, which is the number of symbols that we still need to
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search through in the two-frame block is

num_left_to_search =2 X frame_size
— (frame_size — preamble_length
+ safety + frame_guard) (2.21)
= frame_size + preamble_length

— safety — frame_guard

num_to_acquire, which is the number of symbols that need to be acquired in

the next iteration of the receive loop is then 2 X frame_size —num_left_to_search.
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CHAPTER 3

THE MODULARIZED OFDM STACK

3.1 The goal

Ideally, we wish to achieve a level of abstraction over the physical layer that allows
us to operate at the level of bit-streams. We would like to transmit the bits with
almost no knowledge of the underlying layer and mechanism. Suppose bits were
stored as arrays of char elements, we would like to transmit them with a single

function call:

char *bits;
2 // ... fill in the array

transmit(bits);

Underlying this, there needs to be configurability. That is, if desired, we should
be able to break the abstraction and set options on the transmitter and receiver.
One way of doing this might be through a configuration file. But this would mean
that we cannot change parameters dynamically. So the underlying framework

should allow us to access internals in the code, if desired:

double gain = get_transmit_gain();

if(gain !'= 25) { // Change gain to 25.
3 set_transmit_gain(25);

}

In order to achieve this, we need to have a well-abstracted and modularized
code base. The data should be disconnected from the code to the maximum extent

possible. Different components of the code should be loosely coupled, that is, there



should be minimal interdependence between different modules, and they should

be maximally self-contained.

While, at present, the OFDM stack does not meet this ideal, one may at least

say that it has plotted itself a course and is well on its way.

3.2 The modules

The program has been functionally broken up into modules, as shown in figure 3.1.

Bits - Constin. OFDM | Packets | ysrp
symbols = | Modulator Transmitter

Bits- Decoded OoFbm | Complex| ysrp (
symbols | Demodulator |~ symbols | Receiver

Figure 3.1: Modules present in the OFDM stack

A more detailed description of each of these modules follows.

3.2.1 The mapper

The mapper converts a sequence of bits into one of complex symbols. The reason
this has been kept outside of the OFDM framework is that different applications

have different requirements on the kinds of complex symbols generated.

Mapping may be performed on a coded bit stream, in which case it may be
sufficient to use a standard constellation to perform mapping. But in the imple-
mentation of DPC, for example, we pre-subtract the expected interference from
another user. As a result, we do not transmit any fixed constellation points. Any

point in the available complex plane may be transmitted as a symbol.

It is therefore best to allow for different kinds of mappers. In the interest

of keeping the OFDM framework loosely coupled with the mapping framework,
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the two have been made into separate modules. The default mapper can now be

‘unplugged’ and a new, custom-defined mapper can be ‘plugged in’ to the code.

3.2.2 The OFDM Modulator

The OFDM Modulator converts a sequence of complex symbols into a sequence
of packets. Several configuration details come into play here, such as the number

of symbols that go into each frame, details of the preamble used in the frame, etc.

In order to maintain a list of these values that can be used by the various
functions that fall under the ambit of the OFDM Modulator, the modulator has
been made into a class. The data members of the class allow for encapsulation

and abstraction, so that the settings are exposed for change only if desired.

A set of default parameters are automatically loaded when the object is in-
stantiated. Following this, settings can be changed by setting them manually if
desired. This can be done directly by assignment, since all data members are
public. After this, the object has to be initialized using the initialize() member
function. This allocates memory and creates fftw_plans. In a multi-threaded
environment, this operation is not thread-safe, and therefore must be completed

before thread-creation.

In the transmit loop, the modulate() call does the job of making the symbols
passed to it into packets. It returns a packet, which is a sequence of time-domain

complex symbols that can be transmitted using some sort of transmitter.

3.2.3 The USRP Transmitter

The USRP Transmitter module is an encapsulated version of the UHD API for
transmission. As described in subsection 3.2.2, some default parameters are loaded
upon instantiation, which can be changed later. Further, the add_options() mem-
ber function can be used to let the module add its own set of options to the com-
mand line, via the boost program_options module. All this must be followed up

with an initialize() call.
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The transmitter uses the transmit() function to transmit symbols. Usually,
one packet of complex symbols (as received from the OFDM Modulator) is trans-
mitted at a time. However, there is really no such restriction. The transmitter
can be used independently of the OFDM modulator to transmit any sequence of

complex symbols.

3.2.4 The USRP Receiver

The USRP Receiver module is similar to the USRP Transmitter in all respects.
The receive() call is used to receive a desired number of complex symbols from

the USRP.

3.2.5 The OFDM Demodulator

The OFDM Demodulator is the least independent of all the modules. It is also
the heaviest in terms of computational requirement and code size. The primary
reasons for the lack of its independence are the stringent requirements of the timing
analyser, given its working mechanism. It has a specific requirement on the buffer
size. Furthermore, in order to decrease the burden on the timing analyser, we
implemented frame-discarding, as described in subsection 2.4.2. This resulted in
the use of the unwieldy variables num_left_to_search and num_to_acquire. These
variables inevitably decrease the level of independence of this module, because they
force it to become coupled with the process of acquisition of symbols (which is

really different module’s work), by definition.

This module provides the demodulate() member function to detect whether or
not packets are present in the given buffer, and if they are, then to demodulate
them and return a set of received complex symbols that should have come from

transmitted constellation points.
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3.3 Limitations

While the modularized implementation has enabled plugging and unplugging of

various modules, there are still many things that this framework cannot do.

3.3.1 Using two different kinds of frames

It may sometimes be desirable to use two different kinds of frames, for eg. a long
data frame for transmitting information, and a short acknowledgement frame, to
tell the other side that a packet has been received. While the basic structure is
present for making use of two different kinds of frames, possibly with different
preambles or data masks, the implementation of the same is not easy and requires

some work on the part of the developer.

Currently, it is possible to create two or more different OfdmModulator and
OfdmDemodulator object pairs, and then manually specifying a different preamble
or data mask for each pair. Since all data members are public, they can be directly
changed after instantiation. An initialize() call will then allocate requisite

memory, create fftw_plans and so on.

Modulation too, should not be a hassle. However, when calling the demodu-
late function, there is some amount of coupling between the calling program and
the demodulator in the form of num_left_to_search and num_to_acquire. If the
frame_sizes of the two types of frames are different, then during packet detection,
we may get different values of num_left_to_search and num_to_acquire from each
demodulator object. We would then have to create a temporary buffer to manage
the different requirements of num_left_to_search and num_to_acquire for the two

demodulators.

3.3.2 Using single precision

It is currently not possible to use single precision instead of double precision,

because the FF'TW module in its present configuration uses only double precision.
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While this by itself would not prevent us from using single precision elsewhere,
issues arise because at present, there are reinterpret_casts between our flexible

Complex and FFTW’s less flexible fftw_complex data types.

In order to use single precision everywhere, there is a need to refactor the usage
of FFTW, using preprocessor tricks to switch between fftw_complex, the double
precision implementation and fftwf_complex, the single precision implementation,

depending on the value of a preprocessor variable.

3.3.3 Dynamically changing parameters

At present, changing parameters, such as the USRP transmit gain, dynamically
during runtime is not easy. This is because the USRP parameter-setting functions
are currently coupled with the initialize() call. A re-initialization would cause
several variables to get malloced again, with unknown side-effects, and is not

viable at this time.

There is a need to decouple the initialization of the USRP from the process
of extracting parameters from program_options and from the process of setting

parameters on the USRP.
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CHAPTER 4

MODULES FOR DIRTY PAPER CODING

The following are component modules in a larger framework that seeks to imple-
ment Dirty Paper Coding (Costa, 1983) real-time in the case where a base station
is transmitting to two users. The implementation scheme for performing DPC is

as explained in Shilpa et al. (2010).

4.1 Log Likelihood Ratio computation

There is a requirement for the computation of log-likelihood ratios prior to de-
coding the constellation symbols. Furthermore, this log-likelihood ratio is to be

computed on a repeated constellation.

The reason for this is that while transmitting symbols (from a base station to a
user in a 2-user system) in the DPC framework, interference from user 2 has to be
pre-subtracted from the constellation symbol being transmitted for user 1. During
this process, it is possible that the symbol that is finally to be transmitted lies
outside of the constellation boundary. In such a situation, the symbol in question
is removed and reintroduced on the other side of the constellation. The operation
can be likened to a modulo operation, pulling symbols outside of an interval back

into the interval by repeatedly subtracting the interval size.

On the receiver side, for the computation of LLRs, it is essential for correctness
to consider the possibility that a symbol might actually have come from an out-of
constellation point, or effectively from the other side of the constellation. For the
purpose of LLR computation, therefore, we can assume that the symbol came

from a repeated grid of the constellation.

This has currently been implemented only for a repeated 256-QAM constella-

tion.



4.1.1 Approximation of LLR

The likelihood ratio is defined for each received bit as the ratio of the probability
of the corresponding transmitted bit being a 1 to to that of it being a 0. This

probability is computed for a given known noise variance, which must be estimated

beforehand.

In a 256-QAM constellation, the received constellation symbol could have come
from any of the 256 constellation points. Each constellation point encodes 8 bits.
So from one received 256-QAM constellation point, we get 8 LLR values. At any
given bit position, half the constellation points will correspond to 0 and the other
half to 1. For computing the exact LLR value, we consider the probability of the

bit having come from each of these constellation symbols.

Let s; be the transmitted constellation points and r be the received complex
vector. We wish to compute the LLR for a given bit (position) b. Let S° be the
set of indices ¢ for which s; has a 0 at bit position b, and S* be the set of indices
for which s; has a 1 at bit position b. Then, the LLR for bit b of the received
vector 7 is

(4.1)

o emlsir/(20%)
LLR(b) = log <Zz€5° ‘ )

Ssegr e 1P /(207)

where o2 is the noise variance.

To compute the LLR for each bit thus becomes very expensive, because it
involves 256 exponentiation operations. Since these LLR values are used only as
guides in the LDPC decoder, we do not need the exact LLR values. It is sufficient

to have good approximations of the same.

To this end, we neglect all terms except the dominant one in the numerator
and denominator of the likelihood ratio expression. That is to say, we redefine
the likelihood ratio as the ratio of the probability that the given received bit
is a 1, given that it came from the nearest constellation point having a 1 at
the corresponding bit location, to the probability that the given received bit is

a 0, given that it came from the nearest constellation point having a 0 at the
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corresponding bit location.

e
LLRapprox(b) = log s i 2/(207) (4.2)
e 1
|siy —r|* = [sig — 1]?
— 1 202 0 (43)

where 7}, corresponds to the nearest constellation point with index in SY and #}

corresponds to the nearest constellation point with index in S*.

4.1.2 Computation of the approximate LLR

In order to compute the approximate LLR for a bit, we need only the distance to
the constellation points corresponding to the nearest 0 and the nearest 1 for that
bit. To simplify our approach, we rely on the fact that the constellation points
corresponding to the nearest 0 and the nearest 1 are the same (constant) for all
points (all possible receive vectors) within the decision region of each transmitted

constellation point.

In other words, we can precompute the constellation points corresponding to
the nearest 0 and the nearest 1 for each transmitted constellation point and store
these values in a table. Then, we only need to find out the nearest constella-
tion point corresponding to a receive vector. This will tell us the nearest 0 and
the nearest 1 corresponding to a receive vector. Subtracting the squares of the

distances gives us the required LLR value.

4.1.3 Nearest constellation point in a repeated constella-

tion

In order to compute the approximate LLR, we need to find the nearest constel-
lation point to the received vector. This is equivalent to the operation of slicing,
or locating which decision region the given receive vector lies within. The only
difference is that we need to do this in a repeated constellation setting. This,

in fact, makes our job a whole lot easier, because it enables us to use floor and
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modulo operations.
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Figure 4.1: Repeated 256-QAM constellation, prior to normalization. The primary constellation
is black, while its repetitions are coloured variously.

Consider the canonical 256-QAM constellation where constellation points are
located at odd points on the grid, from —15 to +15, on both real and imaginary
axes. On top of this, we have repetitions, so that the same constellation is also
present from —47 — 155 to —17 + 155 (left-bottom and right-top corners of the
constellation rectangle being used to denote boundaries) on the left, from —15+417;

to 15 + 477 on the top, and so on in all other directions (refer figure 4.1).

Note that constellation points on x = —17 encode the same 8 bits as constel-
lation points on x = 415, and so on. This is the idea behind the ‘modulo’ or the
‘repetition’. This enables us to do the following for slicing: we scale and translate
the decision boundaries of the constellation to the points of discontinuity of the
floor function, and use the floor function to achieve slicing. Following this, we
use a modulo operation to bring all repeated constellation points back into the

primary constellation.
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double x = creal(received_symbol);

double y = cimag(received_symbol);

N

// Move the received point back into the primary constellation
4 X -= 32 x floor((x+16) / 32);
y -= 32 x floor((y+16) / 32);

6 // Find the index of the nearest constellation point

int x_index (int) (floor(x / 2) + 8);

8 int y_index (int) (floor(y / 2) + 8);

4.2 Viterbi algorithm for Joint Trellis Shaping

Joint Trellis shaping is aimed at minimizing the transmitted constellation energy
over a large number of constellation symbols. In order to do this with greater

ease, we use an almost-Gray mapping scheme for the constellation.

The mapping for 256-QAM is based off the mapping for 16-PAM. The first
four bits are mapped using a 16-PAM constellation to get the real part of the
256-QAM constellation point. Similarly, the next four bits are used to get the

imaginary part.

1001 1010 1111 1100 0001 0010 0111 0100
1000 1011 1110 1101 0000 0011 0110 0101

AR K H KA A A A KK H—HK—AH—HK—K—HK—
-15 =13 =11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

Figure 4.2: 16-PAM constellation with mapping shown

The 16-PAM constellation used is almost-Gray coded, as shown in figure 4.2.
Notice that the last three bits read the same when starting at —15 and going
right, and when starting at +1 and going right. The first bit, i.e. the sign bit,

can therefore be used to position the constellation point towards the centre of the
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constellation (with lower energy) or towards the edge of the constellation (with

higher energy).

The point of trellis shaping is to choose sign bits in such a way as to minimize
the overall constellation energy, averaged over many transmitted symbols. In the
case of DPC, we need to perform joint trellis shaping, wherein we minimize the
overall average constellation energy of two users. To achieve this the optimal way,

we make use of the Viterbi algorithm.

4.2.1 Shaping using the trellis

The Viterbi algorithm (Viterbi, 1967) is used to find the optimal sequence of signed
bits to minimize the overall energy of the transmitted symbols. Different choices
of signed bits make different paths in the trellis. The branch metric corresponds
to the energy of the constellation point generated by a certain choice of sign bits.

Thus, by finding the optimal path, we minimize the overall transmit energy.

4.2.2 Implementing the Viterbi algorithm

In the Viterbi algorithm, edge weights (or the branch metrics) denote the ‘cost’ of
choosing a certain path and node weights denote the accumulated minimum cost

of reaching that particular node.

We start by assigning a node weight of zero to the left-most states in the trellis.
Following this, at ‘time step’, we need to compute the edge weights. Given a set of
input bits, we need to evaluate all possible choices of sign bits. Each edge’s weight
is then the transmitted energy of the corresponding constellation point that results
from choosing that particular sign bit. Next, we need to update the node weights
of the next time step. This is done by choosing, for each node, an input edge,
which yields the least cost after adding its branch metric with the corresponding
source node’s weight. A summary of this algorithm in pseudocode is presented in

algorithm 1.
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Algorithm 1: The Viterbi algorithm

input : state_diagram; input bits for edge.weight computation
output: path

initialize start node weights to 0;
initialize all other node weights to oo;
forall time steps do
foreach edge in state_diagram do
Compute (edge.weight);
if edge.to_node.weight > edge.from_node.weight + edge.weight then
edge.to_node.weight < edge.from_node.weight 4+ edge.weight;
edge.to_node.prev_node < edge.from_node;
end

end

end

min_node < Min(final nodes);

node <— min_node;

while node not in start nodes do
path < node;
node < node.prev_node;

end

return path;
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APPENDIX A

TUNING THE TIMING SYNCHRONIZER

A.1 The requirement of tuning

The timing synchronizer is makes several assumptions about the system in ques-
tion, and these assumptions are coded in the form of numerical parameters.
The values of these parameters must be determined empirically, by performing
a few measurements on the system. The ‘system’, here, refers to the transmitter-

channel-receiver setup.

One possible use case scenario for tuning may be as follows: the synchronizer
is currently tuned for some frequency, but we desire to change the frequency of
operation by a large value. As a result, the expected degree of noise in the system
may increase. This could, potentially, cause erroneous packet detection in a noisy

patch, or more likely, cause a good packet to get dropped.

It is good to always keep a check on how many packets are being received, and
whether the rate at which they are being detected is equal to the rate at which
they are being transmitted. If it is found that the rate of reception of packets is

significantly lower, it is likely that the synchronizer needs to be tuned.

A.2 The debug files

To run the program with debugging enabled for the timing synchronizer, clean
and re-compile the program with the make option DEBUG_TIMING_SYNC=true set,

like so:

$ make clean

2 $ make cleandata



H $ make DEBUG_TIMING_SYNC=true

Then, run the transmitter and receiver as usual, with the desired parameters,
for a short period of time. At the receiver end, the timing synchronizer should
output a bunch of .out files. Each of these is a binary file of 128-bit complex
numbers, composed of two doubles. A list of these files and descriptions of their

content follows.

input_data.out

This file contains the received data stream as seen by the timing synchro-
nizer. Only parts of frames, which are discarded once found (as described
in subsection 2.4.2), may be visible. Specifically, only the first half of the
two-frame block is saved into this file. If a frame was found in the first half,
then the parts of it that go into the second half are never ‘seen’ by the timing
synchronizer once the frame is discarded.

All other debug files also share this particular property. Therefore, all debug
files are of the same length, and their data can be overlaid on a plot (such

as in figure 2.2).

abs.out
This file contains the absolute value of the cross-correlation and the product
of the autocorrelations of the correlation windows. The absolute value of
the cross-correlation is stored in the real part of the data and the product
of the autocorrelations is stored in the imaginary part of the data. For data
location 7, the two correlation windows start at ¢ and extend 2n — 1 locations

to its right.

found_packets.out
This file contains the points where packets were found. If a packet was found
at a given location, then this file contains a 1 at that position. At all other
locations, it contains 0.

While using 128-bit complex numbers may seem like a waste of space, it is
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convenient since it enables one to use the same mechanism to read all the
debug files, as opposed to having to remember what number format needs

to be used in each case.

left_avg_new.out
This contains the average, T of the left correlation window, as computed

using the running average algorithm.

right_avg_new.out
This contains the average, y of the right correlation window, as computed

using the running average algorithm.

fine_metric.out
This contains the value of the fine metric (refer subsection 2.3.3), wherever

it had to be computed. At other locations, it contains 0.

A.3 Performing tuning

Check whether tuning is required by overlaying the input data, the metric and
the positions of found packets on a plot. In python, with the packages numpy
(Oliphant, 2007) and matplotlib (Hunter, 2007) installed, this can be achieved as

follows:

import numpy as np

2 import matplotlib.pyplot as plt

4 a = np.fromfile('input_data.out’, dtype=np.complex128)

b = np.fromfile('abs.out’, dtype=np.complex128)

6 f = np.fromfile('found_packets.out’, dtype=np.complex128)
m = b.real / b.imag

8 m = np.where(np.isfinite(m), m, np.zeros(m.size))

10 plt.plot(abs(a), 'k")

plt.plot(m)

37



2 plt.plot(f.real)

plt.show()
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Figure A.1: Packet stream after passing through the timing synchronizer

This should, after suitable scaling, give a plot such as the one in figure A.1.
Note that all packets have been detected, as indicated by the presence of the

magenta line.

If there are several places where the packet fails to be detected, however, then
it calls for checking whether or not the metric exceeds the threshold. If not, then
the PACKET_THRESHOLD parameter in the parameters.h file needs to be changed so
that the threshold is crossed by the metric at the starting point of every packet,

but is not crossed in other random locations.

Similarly, there may also be a need to modify the FINE_THRESHOLD parameter

in the same file.

Furthermore, if the noise variance of the channel is high, it is possible for the ab-
solute value of the cross-correlation of noise to go above the CROSS_CORR_THRESHOLD.
This may result in undesired effects, as described in subsection 2.3.1. Such a case

can be identified because the metric will be visible even in regions where there is
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no packet.

In this case, plot the absolute value of the cross-correlation (the real part of
the data from the abs.out file) and overlay it on the data stream. It should now
be possible to set the CROSS_CORR_THRESHOLD at a value such that it is higher than
the absolute value of the cross-correlation of noise, but lower than the absolute

value of cross-correlation of parts of a packet.
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