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ABSTRACT

We addressed 3 problems that arise in various contexts @less communication. The
first was the theoretical problem of finding the integraligpgof a formulation of the
coverage lifetime problem in sensor networks. We were ratgiyto work on this prob-
lem by a conjecture posed in Bermanal. (2004) which claimed that it was 2, and we
disproved that conjecture by showing a counterexampleued projective geometries.
We were also able to show certain other related results, btg wot able to find the in-
tegrality gap exactly. The second problem involved a nevagtigm of file exchange in
P2P networks called the Give and Take Protocol, to encodaigess and prevent free-
riding. We provided randomized algorithms for this problend showed guarantees on
their performance. The third problem had to do with Onlinga@ithms for Basestation
allocation, in which we attempted to build on previous woykaecounting for queuing
of users and their departures. We considered the procdssang model in which the
rate achieved by a user at a basestation is equal to thedatgaduppliable by the bases-
tation divided by the number of users being served at thadtason. We showed that
for the case in which users have a fixed data demand, the gattiresbasestations have
very stringent stability conditions, and therefore that thodel was not worth studying
further from a competitive ratio perspective. We then coered an alternate model in
which broadcast channels exist at the basestations, amdtéhavailable to each user is
divided by the number of distinct files being served at thaetation. For this case,
we showed that certain probability distributions on thesfidgve rise to stable queues.
We also analysed the online vs. offline competitive ratiosstame algorithms in this

context.
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CHAPTER 1

INTRODUCTION

Wireless communication has thrown up a variety of open ol over the last 30
years, many of them theoretical. In this report, we aim talgt such problems that
span 3 sub-fields within wireless communication - sensovods, peer-to-peer net-

works and load balancing at data centers.

We will provide detailed introductions to each problem gamith the necessary
background and notation, in the chapters that follow. Aikthproblems build on a sub-
stantial amount of existing work. Two out of three problertisdo not have conclusive

results, while the third throws up many new open questions.

This report has been compiled in the chronological order lctv the problems
were tackled. Chapter 2 addresses the maximum lifetime agegoroblem in wireless
networks, and deals mainly with the concept of integralapg of binary integer pro-
grams. It aims to analyse the integrality gap of a specifissubf packing LPs. Chapter
3 looks at a newly proposed, stringent paradigm of file exgkan P2P networks and
deals with probabilistic algorithms for the problem. Chaptéhas to do with online
algorithms for basestation allocation, in which usersvarat arbitrary times but with
fixed data demands. We analyse regimes of rate sharing aataeeénters both in the

context of stability of the resulting queues and competitatios of online algorithms.



CHAPTER 2

Integrality Gap of the Maximum Lifetime Coverage

Problem in Wireless Sensor Networks

The introductory text of this chapter follows Bagaeieal. (2013) almost verbatim. The

text that follows is unique to this report.

2.1 Introduction

Wireless sensor networks are deployed for a variety of egfitins - military, data
collection, and health-care, to name a few - and most of tleesal monitoring or
covering a specific geographic area. Therefore, maximittiedifetime of coverage in
a wireless sensor network with battery-limited sensorsfisndamental and classical
problem, well studied in literature Cardetial. (2005); Cardei and Wu (2006); Berman
et al. (2004); Dinget al. (2012). Typically, a large number of sensors is deployed in a
given area, and consequently, many sub-collections oéthessors can cover/monitor
all the intended targets. Each such sub-collection of gerisaalled aset cover To
maximize the lifetime with the practical constraint of liexdl battery capacity, we need
to find an activity schedule for each sensor (signifying whienust be turnedn or
off) that ensures that all intended targets are covered/meditior the longest time

possible.

Concisely, the maximum coverage lifetime problem (MLCP) iadlsws. Given a
set of sensors and a set of targets, find an activity schedulddse sensors such that
(i) the total time of the schedule is maximized, (ii) all tatg are constantly monitored
(i.e. at any point of time, at least one of the set covers iw&@gtand (iii) no sensor is

used for longer than what its battery allows.

In literature, the MLCP has been approached using two methidus first method

involves solving the maximum disjoint set cover cover peobl(DSCP) Bollobéast al.



(2013). The DSCP finds the maximum number of set covers suthriliawo set covers
are pairwise disjoint. Clearly, sequentially turning onleat the disjoint set covers
found by the DSCP provides a feasible solution to MLCP. Thig@ggh has been used

in Cardei and Du (2005); Ahn and Park (2011); Cardei and Du (R&l§epcevic and
Potkonjak (2001); Laet al. (2007), and the DSCP has been solved heuristically. The
first provably approximate solution to the DSCP was given indBiaget al. (2013), in

which it was shown that the same approximation ratio exténnde¢he MLCP as well.

The second method to solve the MLCP uses non-disjoint setgove. set covers
that are not constrained to be disjoint. The optimal sofutibtained using this method
will exactly match the optimal solution of the MLCP, unlikeetDSCP approach. This
approach has been used by several papers - Cetrdéi(2005); Bermaret al. (2004);
Kasbekaret al. (2011); Zhao and Gurusamy (2008); Pyun and Cho (2009). Some of
them are heuristic while others provide provable guaranteeghe MLCP. It is also
worth mentioning here that the speag@ometriacase of the MLCP has also been stud-
ied Dinget al. (2012), in which each sensor can monitor a circular areararaself

with a given radius.

The relationship between the MLCP and DSCP is an interestieg lbis obvious
from the description above that any solution to the DSCP sabsolution to the MLCP.
In fact, the optimal solution of the MLCP is always greatemtlegual to that of the

DSCP, as we will demonstrate in Section 2.2.

OPT(MLCP)

Let us definem = IG, whereOPT (X)) denotes the optimal solution of

problemX. It was conjectured in Bermaat al. (2004) that:

Conjecture 2.1.1 IG < 2 for any input of targets and sensors (with identical battery

capacities).

It was also conjectured in Berma al. (2004) that:

Conjecture 2.1.2 IG < 1.5 for inputs of targets and sensors (with identical battery

capacities) in which the sensor coverage regions are knowe twhvex.

It is worthwhile to mention here that both the DSCP and MLCP apeddmplete,
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Cardei and Du (2005); Cardet al.(2005), and so evaluating optimal solutions of either
is not a trivial task. Approximate solutions cannot dirg¢télp us with the conjectures,
although they will provide upper bounds on integrality gagsve will see in the fol-

lowing sections.

2.1.1 Impact of a proof of conjectures 2.1.1 and 2.1.2

If the conjectures are true, and the DSCP and MLCP indeed haemstant (even
non 2) integrality gap, then it justifies approaching the MLGRugh the DSCP from
the point of view of an accurate solution. Already, the apptohas many functional
advantages, as enumerated in Bagatial. (2013), and showing that the two problems
are similar in their solutions would mean that the DSCP apgrda the MLCP would

always be preferred.

More generally, this would influence the general class of tdPshich the MLCP
belongs, known as Packing LPs or Multiple Knapsack probldmgeneral, these LPs
have an unbounded integrality gap, but there has been stenatlire on construct-
ing examples with a constant integrality gap Pritchard @pAnagnostopoulost al.
(2013).

The main result in this report however is the disproof of Cotyees 2.1.1 and 2.1.2,
although we do not show thdtz grows unbounded. We show in Section 2.2 that the
conjectures can in fact be formulated as an integrality gaplpm, and provide some

insight and devise methods to analyse that integrality gap.

2.2 Preliminaries

We define a universe of targdis= {1, 2, 3,...,n}, wheren is the number of targets.
We will hereafter refer to each target aselement Each sensoi can cover a subset
of targetsS; C U, and so the sensors are defined by the multiset {S;,S;,...}.
Hereon, we usé; to denote a sensor and call ea&;la subsetLet each sensdf; have

a battery capacity;. Since we are interested in monitoring all targets, we defiset



coverC C S to be a collection of sensors such that sensoiS itover the universe,
i.e., Ug,ec Si = U. The idea is to switch on set covers sequentially so as t@pgol
the time for which all elements can be monitored (which wétbal network lifetime),
while ensuring that each sensor is used only for as long dmitery will allow. The

formal definition of the MLCP is as follows:

Problem 1 (MLCP) LetC = {(C4,...,C,,} be the collection of all set covers frafh

andi; be the time for which set covér, is switched on. Then the MLCP is to

Maximize : i t;
Subject to C;Z <1, Vi,
ti€[0,1] Vi
0 if sensorS; is not in set covet’;,

Cij -
1 if sensors; is in set covel’;.

Lemma 2.2.1 Without loss of generality, we can consider all sensors teehavt bat-

tery capacity, i.eb; = 1, V i.

Proof If b; = B, V ¢, then the solution to the MLCP solved usihg= 1, V i, need
only be multiplied by a factor oB to get the required solution. Otherwise, we take the
greatest common divisa,,,, = gcd( bi,ba, ... ) createb; /b.,,, copies of each sensor
S;, V i, and consider each copy to be a separate sensor with badigagityb...,,. Thus,
the problem can be reducedip= B = b, ¥ j € J, whereJ is an index set and

>S5 m

Problem 2 (DSCP) Given a universé{ and a set of subsets, find as many set covers

as possible such that all set covers are pairwise disjointbther words, the DSCP may



be formally stated as:

Maximize: >t
=1
SUbjeCt to Cijtj <1, V1,

t; € {0,1} Vi

The DSCP necessitates that any subset can be present in aunaxifrone set
cover. If the number of disjoint set coversisthen using each of the disjoint set
covers for one time unit, clearly, we have an MLCP solutiok @fith b, = 1,V i. Thus,

solving the DSCP provides a feasible solution to the MLCP.

However, the solution of the MLCP differs from that of the DSGRhown in Ding
etal.(2012), because the optimal solution to the MLCP may not adviayolve disjoint
set covers. For example, gt = {1,2,3} andS = {5, Sz, S5}, whereS; ={1,2},

Sy ={2,3} andS; = {3, 1}. Clearly, the maximum number of disjoint set covers (and
therefore network lifetime) i$, while if we operate the sensors as folloWs), S, } for
0.5 units of time,{.Sy, S5} for 0.5 units of time, and{.S;, S5} for 0.5 units of time, the

lifetime is 1.5 time units. This is shown pictorially in figure 2.1.

Ironically, however, Bagariat al. (2013) showed that the best possible algorithm
to solve the DSCP is also one of the best possible algorithmsslt@ the MLCP by

showing matching upper and lower bounds on the approxima#to.

S1

Figure 2.1: Case where the solution to MLCP is greater than DSCP



Note that Problem 1 is effectively the LP relaxation of Pewmbl2. We are interested
in the ratio/G = %, which is the integrality gap between problems 1 and 2.
Problem 1 also belongs to a class of LPs called packing LPishvibr an arbitrary con-
straint matrixC' have an infinite integrality gap. In our case howevers constructed
in a very particular form, and so this case may have othergutigs with respect to its

integrality gap. This is what we aim to analyse.

2.2.1 Terminology

(i) » : Number of elements in the univer$&|. (ii) |S| : Number of subsets. Note
how S has been defined as a multiset. This is because subsetioeysetite possible,
since multiple sensors may cover the same targétss therefore theéotal number of
subsets, not the number of distinct subséis) R : Maximum size of a subsef; =
max | S;| (iv) F; : ThefrequencyF; of any elemeni € U is defined as the number of
subsetsS; € |S|that it appears inF; = #{S; : i € S;}. (V) Fuin, :miin F;. (Vi) Frae :

max Fj.
7

2.2.2 Known, relevant results

There are a few observations to be made about the DSCP (refieleRr 2 for formal
definition) with respect to the terminology we defined in &tP.2.1. The solution to
the DSCP cannot be more tha,;,, since the element with frequenéy,;,, can only

be present in a maximum d&f,,;,, disjoint set covers. We therefore have a trivial upper

bound ofF,,,;,, on the solution to the DSCP.

Note that the MLCP solution is also upper-boundedhy,,, since the element with
the least frequency has only,,;, sensors covering it, and at least one of these sensors

must be on at all times to ensure coverage.

In Bagariaet al. (2013), a deterministic algorithm was shown which given aniy
verse and set of sensors (all with unit battery capacityrnsta lifetime of%clnn
(wherel < ¢ < 2), by finding an equal number of disjoint set covers. This wiece

tively anO (In n) approximation algorithm to both the MLCP and DSCP, since breh a



upper-bounded by;,.;...

Another interesting observation is that this also givesrusper-bound oG as
being2In n, since the optimal solution of the DSCP is at Ie@;&‘w In n and that of the
MLCP is at mostr,,,;,,.

We will now move on to our results themselves - disproofs ofj€dmres 2.1.1 and
2.1.1.

2.3 Counterexample for Conjecture 2.1.1 - The Fano

Plane

A few examples should tell the reader that the disproof isechard to find. Our disproof
is a counter-intuitive projective geometR(G (2, 2) - the Fano Plane. A diagrammatic
representation is shown in figure 2.2. Consider each poirftarfigure - 7 in all - to
be our universe elements, and each line - again 7 in all (@atuthe circle) - to be the
sensors. Note that if you consider all the sensors that passgh a point, you end up

with a set cover, and so there are 7 minimal set cdvers
010

0l 110

11

10
00l 100

Figure 2.2: The Fano Plane. Points are labelled in keepirly the group theoretic
construction, which will be explained in Section 2.5.1.

Also note that once a set cover has been formed, the othersérsetannot form a

set cover on their own. So this example has dhbjisjoint set cover. In other words,

1A minimal set cover is defined as one in which the removal of seysor destroys the set cover
property. It should be obvious that is is sufficient to coesidst set covers of this form.
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OPT(DSCP) = 1. On the other hand, consider the operation of each of the 7 set
covers for timel/3. Note that no sensor is overused - each sensor forms a part of
exactly3 set covers, and so is operated farme unit totally. Each of these set covers
can be switched on sequentially, and@87 (M LCP) = 7 x 5 = 7/3 time units. So
for the Fano Plane,

OPT(MLCP) 7

_ Lo 2.1
OPT(DSCP) 3~ 2.1)

and hence, we have disproved Conjecture 2.1.1.

Note that this is still a weak disproof of the result. Ideadlydisproof ought to have
consisted of an example in which the integrality gap grew &snation of n or |S)|

without a constant upper bound, and that is still an openlpnob

2.4 Counterexample for Conjecture 2.1.2 - The Polygon

Note that the disproof is Section 2.3 was for a case of thelgnolin which sensors
could cover non-convex areas, and Conjecture 2.1.2 apgli#sose cases in which
sensor coverage areas are convex. The conjectured bourid vehich is even tighter
that that of Conjecture 2.1.1. Conjecture 2.1.2 basicallynddhat the example shown

figure 2.1 achieves the highest possible integrality gapdorex sensing regions.

In this section, we provide an example in which the intety@ap approaches—e.
This example is much more simple, and uses a very intuitivestcoction. Consider a
polygon with an odd number of vertices/edges. Let each xegpresent a universe
element and each edge represent a sensor. Note that eaoh saress two elements

and each element is covered by two sensors.



Figure 2.3: The Pentagon. The integrality gap 8 for this construction.

We will use the pentagon in Figure 2.3 as an example. Labetdges froml to
5 in some cyclic order. Note that there exisininimal set covers 135, 241, 352, 413
and524. This is basically obtained by what we call t&&I P algorithm: starting at
some edge and picking alternate edges in a particular airedtVe could have started
at one of5 edges, and so there must beninimal set covers. Note that each sensor in
the pentagon appears d3rof those set covers, so operating each set cover for tjfde
will give us an MLCP solution of/3. The DSCP solution is of courde /G = 5/3,

which disproves conjecture 2.1.2.

We now extend this analysis to all polygons with an odd nunabeertices. Note
that the DSCP is alwaykbecause any two minimal set covers will always have some
nontrivial intersection. There will exist minimal set covers (similar to the polygon ex-
ample), and each sensor will be pari{oft 1) /2 of these set covers. That is reasonably
simple to show, since in th8KI P algorithm, any sensor will be picked up in alternate
set covers. This means that each set cover can be operatiadd@/(n + 1) without

violating any battery capacity constraints.

So the MLCP solution will be: x 25 = 2% = 2 — 2. Denoting2/(n + 1) by

¢, which goes t@) asn — oo, we can say thatG = 2 — ¢ for some arbitrary > 0.

We emphasize here again that this is a weak disproof, and gtahger result would

be to show thaf G’ grows without bound for some family of examples.
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We will now describe some methods that we tried which did rive gs positive or
conclusively negative results, but whose insights may hretackling this problem in

the future.

2.5 Other Insights and Methods

2.5.1 The general projective geometries

The counterexample for the conjecture is provided by theoFdane, which is a pro-
jective geometry of the forn?G (2, 2). Itis therefore natural to ask what happens when

one considers a projective geomefty:(n, q)?

We analyze this problem fdPG/(2, ¢) first. Note that here, there agé+ ¢+ 1 lines
andq¢® + ¢ + 1 points. Each line passes through- 1 points. It is easy to show by
the group theoretic construction that all lines that passutph a particular point form
a set cover, and each line is partof 1 set covers. So a lower bound on the MLCP
solution is thereforé’%. It is possible to show that this upper bound is tight, by
considering the polytope formed by the LP feasible regibturhs out that the solution

corresponding tg® + ¢ + 1 is a corner point.

The solution of the DSCP, on the other hand, is not easily coalper This is unlike
the usual case in which it is hard to get a handle on the MLCRisaluBut for all the

simulated casésthe G was within2 asq increased! G, in fact, seemed to get smaller.

2.5.2 Anunsuccessful attempt to prove constant integrality gap

In this section, we describe a method by which we tried to @tbe constant integrality

gap of the LP through a dual formulation of the MLCP optimiaatproblem.

2A library to group-theoretically construd®G (n, q) and itsm-flats is up atht t p: // gi t hub.
conl ashwi npnt pgng.

11



Dual Formulation of Problem 1

The dual formulation of Problem 1 would look thus:

Problem 3
S|
Minimize: ) y;
j=1
y; € 0,1]Vj =0,1,...,|S]
Subject to Dit; > 1, V1,
0 if coverC; does not contain subsst,

Dy = i=0,1,...,m;j=0,1,...,|S]|
1 if cover(; contains subse§;.

Note that although the physical meaning of eggclts unclear, this formulation is what
gives us bounds such &8PT (M LCP) < F,,;,, Which is obtained by setting to 1 if

subsetS; contains the element with frequengy,;,,.

IP interpretation of the Dual

In the IP formulation of the dual, eagh must now take binary values. This formula-
tion is effectively a minimum weight set cover problem, inigfheach set cover can
be considered to be an element of a univeigseand each sensor is a newly defined
collection of set covers - a sensor “contains" a set coverdfpresent in that cover. The
problem is then to find the minimum number of sensors whichi@gether present in

all set covers. Let us denote the optimal solution to thidienm byO PT'(1 Pyya ).

Result to be proved

Let us denote the optimal solution to Problem3 ®yT'(Dual). We are interested
in proving the following result:OPT (M LCP) < 20PT(DSCP). Now, note that
OPT(MLCP) = OPT(Dual) < OPT(IPy4a). So it is sufficient to prove that

12



OPT(IPya) < cOPT(DSCP), wherecis some constant, to show tt@P7 (M LCP) <
cOPT(DSCP).

This now gives us a quantity that is easier to handle combiizdly. \We now need

to prove that,

Claim 2.5.1 Given all set covers, we can find sensors which, between them, are
present in all set covers, whefeis the number of disjoint set covers ands some

constant.

Note that a proof of claim 2.5.1 will provide a proof (withincanstant factor) to Con-
jecture 2.1.1, but a disproof of 2.5.1 will not carry as a digyh of Conjecture 2.1.1.
This is because claim 2.5.1 actually involves two integyajaps together - the primal

IGx dual IG.

We disproved claim 2.5.1 by considering a random bipartiégly with sensors and

elements. We were able to show than claim 2.5.1 actually grows unboundedrin

While this was an unsuccessful attempt, the analysis of takerday help any future

work on the problem.
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CHAPTER 3

Enforcing Fair Exchange in P2P networks

This chapter is more or less the text of the paper Maximizinigjty Among Selfish
Users in Social Groups Pananjaeial. (2014), which won the Best Paper Award in
the Networks track of the National Conference on Communinat{?NCC) 2014 held

at lIT Kanpur.

3.1 Introduction

We consider a peer-to-peer (P2P) network scenario, wherereale (or user) desires
a certain fixed set of files residing on a central server, efgll Aigh-definition movie
Knoke and Yang (2008). For each node, the cost associataddawtnloading all the
files from the server is prohibitively large. However, thaioof exchanging files across
the nodes is very low. The high cost of file acquisition frora ferver could be due to
large delay, license fee, power etc., while the low cost ¢ B2change could be due to
nodes sharing bandwidth, physical proximity between thgespmutual cooperation,
etc. Popular applications based on this concept includecaebing, content distribu-
tion networks, P2P networks, etc. Device-to-device (D2@nmunication in cellular
wireless networks is another example, where mobile phoo@serate with one another

to facilitate communication.

Clearly, to keep cost low, it is intuitive for each node to déwad a small fraction
of files from the server, and then obtain the remaining filesugh exchanges with
other nodes. Free riding -the phenomenon in which a noderddetownload anything
and still obtains all the files from other nodes - is possibl®2P networks, and can
lead to attacks like whitewashing, collusion, fake sersj&ybil attack Karakayet al.
(2009); Fox (2001); Dinger and Hartenstein (2006), etc. vi@dafree riding Feldman
et al. (2006); Feldman and Chuang (2005); Lockeal. (2006); Rahmaret al. (2010);



Nishida and Nguyen (2010); Karakagtal.(2009); Molet al.(2008), the file exchange
among nodes follows give-and-takecriterion. Two nodes can exchange files if both

have some file(s) to offer each other.

The problem we consider in this paper is to find an algorithmsfdheduling file
exchanges between nodes such that at the end of algorithem méymore exchanges
are possible due to the condition imposed by the give-akel-taiterion, the number
of nodes that receive all files is maximized. Prior work Aggalret al. (2013) has
considered maximizing the aggregate number of files reddiyaall nodes. Depending
on the utility of the user, e.g. watching a movie, maximizthg number of nodes that
obtain all the files could be more important than maximizing total number of files

across the network.

Finding an optimal algorithm for scheduling file exchangethwthe give-and-take
model is challenging, since at each step there are many gfansdes that satisfy the
give-and-take criterion and the choice of exchange at etsghdetermines the final
outcome. As a consequence, the number of feasible scheduésgonential. We
therefore concern ourselves with providing approximaatgorithms for the problem
that have polynomial time complexity. An algorithm to solvénaximization problem
is said to have an approximation ragia> 1 if it always returns a solution greater than
% times the optimal solution. We call such an algorithm approximation algorithm,

or simply ap algorithm.

We deal with the following file acquisition paradigm. Let bacser download each
file from the server independently with probabiljty Let there be a total of files and
m users. Note that the download cost for each user is direotiggutional top, since
the cost follows a binomial distribution. Users can eitheoa@sep before entering the
system (a-priori) or after (a-posteriori), in which casedtild depend on the number of
users or files. In this paper, we propose a deterministigtites tree-splitting algorithm
with polynomial complexity. The algorithm involves recivedy dividing the users into
two equally-sized groups, thereby forming a tree. The thivis are defined keeping the

give-and-take criterion in mind. Exchanges are then edfittom the leaves upward.

Our contributions for various regimes of andn are listed below. All of these hold
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with very high probability as. — oo:

(i) Form = O (log n), our algorithm has an approximation ratic= 2, providedp

can be chosen a-posteriori such teab(—2logn/m) < 1 —p < exp(—logn/m).

(i) Whenm = O (n), we present an algorithm that has an approximation ratio of
p = 2 whenp is chosen a-priori (users can choose to incur a vanishingbjlost to
themselves by minimizing), and an approximation ratio of= 1 + €, (¢; > 0) when
p can be chosen a-posteriori (the cost per user depends onand on the choice af

in the algorithm).

(iii) Whenm = O (n*) for somez > 1, we present an algorithm that has an approx-

imation ratio ofp = 1 + z whenp is chosen a-priori (small cost), and an approximation

ratio ofp = 132 + €5, (62 > 0) whenp can be chosen a-posteriori. The cost in the latter

case is again dependenton n ande,.

3.2 Preliminaries

3.2.1 Notation

(i) T: set of files on the server (the complete univerE);= n. (i) U = {uy, ug, . .., uy }:
set of all users.(iii) C!: set of files that usen; possesses at time step C? rep-
resents the files that user possesses at the start, i.e. before any exchan@ies.
F=,C?={1,2,3,..., f}: setof all files in the achievable univerg@) u; < u;:
exchange between usersandu;. (vi) F¢;: set of files that a group of usefspossesses.

Fg = Ui:uieG C! at timet. For examplefy = F.

3.2.2 Problem Definition

We assume that a single central server contaifies represented by the sEt Letm
users represented by the 8et= {uy, us, . .., u,, } initially obtain some files from this
server, but at high cost to themselves. Let the files obtdnyemlusen:; be represented

by C?. Note that in practice, file acquisition is a distributed g@ss, with each user
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picking files without being directed to do so by any centraitcaller. The exchanges
in the P2P network, on the other hand, can be centrally citedcand the controller’s
objective is to ensure that the users acquire all files in theesiable universe. To that

end, we propose the following file acquisition paradigm.

Definition 1 (Random Sampling) Each user picks up a file with probabilip(a file is
not picked up with probability = 1 — p). The pickup of files is i.i.d. across files and

users.

The parameters of the paradigm, i.e. the valug @ equivalentlyg) can either be
decided a-priori - when the users are oblivious to the nurabether users in the social
group and so decide the valuepbefore entering the system - or a-posteriori - when
the users appropriately choose the valuge dépending omn andn. We will consider

both cases.

LetFF =J,C? ={1,2,3..., f} be theachievable universeThe primary objective
for each user is to obtain gflfiles in the achievable univergg since these represent all
the files obtainable through exchanges. To this end, the aserinterested in dissemi-
nating the files among themselves at low cost. However, ®ach user is selfish, file
transfer between users can only occur via the give-andgiktecol, which we explain

using the following definitions:

Definition 2 (GT Criterion Aggarwal et al. (2013)) Two usersu; and u; satisfy the
GT criterion at timet if C; Z C; andC} Z Cf.

Definition 3 (Exchange:u; <+ u;) Two users can only exchange files if they satisfy the
GT criterion. After an exchange between usersndu; (at timet), C;*' = C'*' =
crUc.

Def. 2 & 3 form the cornerstone of the give-and-take protocol

We call a sequence of exchanges between ussch@duleand represent it by.
The set of all schedules is denoted by It is clear that any schedule will lead to a
situation in which no further exchanges are possible. At skige, we represent the set

of satisfiedusers who have obtained dlffiles by U,,;.
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Formally, we are interested in the following problem:

max |Usgy|

Subjectto:S € X (3.2)

As mentioned in Section 3.1, there are an exponential nuwibschedules int’,

and our interest lies in approximating (3.1) in polynomialé.

3.3 Recursive Algorithm

To solve (3.1), we present a recursive algorithm, which wiloa TreeSplit algorithm,
which repeatedly divides the users into two groups of eqgizal and then effects ex-

changes appropriately. Itis illustrated in Fig. 3.1.

musers | | | | e

Level 1 split

m/2users || |

k = logm levels

m leaves

Figure 3.1: TreeSplit of users. represents exchange, solid lines arising out of a group
represent the division of that group which obeys the spgttondition.

Recall from Section 3.2.1 that the set of files contained byoagof users= is

18



represented by;. Let there ben = 2* users for somé. Divide them users into
two groupsGt andG} of m/2 users each, satisfying tisplitting condition defined as
Fair € Fgy andFgy € Fi. We call this division devel 1split, which is indicated by
the superscript of groups!. If we can design a schedule to ensure a scenario in which
all users inG} containF:, and all users iri contain the files;;, we can then effect
pairwise exchanges between users:ip i.e., Ugr,i = {1,2...,m/2}, and users in

Gy, e uqr,i = {1,2...,m/2}. In other words,
Uicy, <> Wig, Vi€ {1,2,...,m/2}

ensuring that alin users obtain all files id’, maximizing (3.1).

Thus, essentially, we have reduced the problem to equivalerblems on two
smaller groups of usels; andG3, separately. Taking this recursion forward, we need
to see what happens at the base case (at akesmlt), when a group of two use(%f‘1
is divided into the group&* andG?,, of one user each, for sonigj. If the division
of G;?*l obeys the splitting condition, th%;c z FG§+1 andFGk+1 Z Fr. Since both
GY¥ andG?,, consist of one user each, the splitting condition forcesGfiecriterion to
be satisfied between the two uséfsandG?, ;. So we can effect an exchange between
usersG¥ andG* , and ensure tha(ﬂff1 contains two users who possess all the files in
FG;&. Pairwise exchanges as we move up the tree will therefoxe swbblem (3.1),

and the result is summarised in the following Theorem.

Theorem 3.3.1 For m = 2* for somek, we can use the TreeSplit algorithm to schedule
exchanges such that all users obtain the entire achievahieetse I, provided that

divisions obeying the splitting condition can be enforcedlblevels.

Notice that the TreeSplit algorithm is valid onlyrit is a power of2. We now look

at what happens for a general

We define theJniquePickalgorithm, which we apply on the: users as follows:
Initially, let U,y = U. We nowpruneUs,; as follows: Pick any user itV ;. If he
contains ainiquefile that no other user iV, sy contains, keep him itv,, ¢ ¢, otherwise

throw him out. Do this in any arbitrary order until all useravk been checked for
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uniqueness.

Proposition 3.3.2 The UniquePick algorithm ensures thét,;; finally contains all

files in the achievable universe, iBy, ,, = I

Proof The UniquePick algorithm removes only those users who doane any unique
files. Therefore, even if a user is removed fron/,, s, every filej € C? is present
iN Usyrr\wi. SinceUs,sr = U initially, and no file of F' is removed from all users in
Usur s up to the end of the Unique-Pick algorithi,, . must finally contain all files in

F. nm

Theorem 3.3.3 For anym, provided that the splitting condition can be enforced ih al

divisions, the TreeSplit algorithm has a 2-approximatidgoaithm to (3.1).

Proof We consider the power df closest to but less tham, and call this2¥ (y =
|log, m]). Note that2V/m > 1/2, by definition. At the end of the UniquePick algo-
rithm, either(i) [Us,sr| < 2Y or (i) |Usurr| > 2Y. In the case of conditiofi), we add
some users fron/\Us, s t0 Uy, ¢ SO that|Us,sr| = 2Y. We know from Prop. 3.3.2
that2? users contairf’, so we can now use Thm. 3.3.1 to ensure taiisers obtain
F provided the splitting condition can be enforced in all signs. So, at least half the
users obtain the achievable universe (siZi¢én > 1/2), giving us an approximation

ratio of 2.

In the case of conditiofii), we know that more thad¥ users are such that each

contains a unique file, anély,

= F (by Prop. 3.3.2). We can therefore use the
Polygon Algorithm from Aggarwagt al. (2013) to schedule exchanges and ensure that
all users inUs, sy obtain the universe. Again, more thhusers obtairF’, giving us an

approximation ratio o. g

One important assumption we made in the TreeSplit algontlamthat the splitting
condition can be enforced in every division; we did not ekpleow the division itself
is done. In the sections that follow, we will consider diéfat regimes ofn andn for

which the splitting condition is satisfied with high probléi
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3.3.1 Approximation ratio of 2 whenm = O (logn), n — oo

Whenm = O (logn), we apply the TreeSplit algorithm to the users. Y¥dadomly
divide groups as we go down the tree. We show that all divisions damgamly satisfy

the splitting condition with high probability.

Recall the Random Sampling paradigm, in which a file is not ambyea user with
probability . Letm = 2%, If all divisions satisfy the splitting condition in this se,
then the approximation ratio isby Thm. 3.3.3. The TreeSplit algorithm is applied on
thesem users. During the algorithm, atotal bfi- 2 +22 4. . . 421 =28 1 =m—1
groups are divided2( groups at levelj), as is obvious from Fig. 3.1. We represent
thesem — 1 groups by the set’. We would like the splitting condition to be obeyed
whenever any group/ € K is divided. To this end, we define an event - that the
splitting condition is violated during the division of a gniwM € K - and denote it by

Ay We state the following Lemma.

Lemma 3.3.4 The probability of occurrence od,; when the groupV/ under consid-

eration has some€ users is
P(Au) =2 (Z) (1= g (g™ (1 — ¢"?)". (3.2)
/=0

Proof We know that groupV/ hasd users. Now consider a division of thegeisers
into two groups\/; and M, of d/2 users each. I/, and M, are such that),, C Fy,
or Fy, C Fyy, then the splitting condition is violated and evet; occurs. Let us
assume thafF,;, C F),. Note that(1 — ¢%/2)*(¢%/?)"* is the probability that group/,
has only somé files and (Z) is the number of ways of choosing thesiles fromn
filesinT. Also, (1 — ¢%/2)* is the probability that group/, also contains thosefiles
(making F;, a superset). Summing over all possiblend multiplying by2 to factor

in the equivalent case in whidh,;, C F),,, we get the expression in (3.2). g
Note that (3.2) can also be written as:
P(An) = 2((1 = ¢ +¢"*)" = 2(1 +¢" — ¢*)". (3.3)
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As stated earlier, we want to ensure that the splitting dandis met for allM € K.
When the splitting condition is not met for any groupkip we say that arrror has
occurred. Note that the probability of error is the unionhef probabilities of alld,,’s,

and can be written as follows:

Perror) = P( U Ay) < Z P(Au),

MeK MeK

=2 ) " (L+gM =g, (3.4)
MeK

where| M | represents the number of users in gradpSince the number of terms in the
RHS of 3.4igK| = m — 1 < m andmax;cxc(1 + M — ¢™M/2)" occurs at M| = m

for a sufficiently largen, we get

P(error) < 2m(1 + ¢™ — ¢™/*)™. (3.5)

We now enforce a constraint on file acquisition. Note thatl moiv, we have only
been concerned with all users obtaining the achievablestse¥’. But in practice, each
user desires the complete univeiSe Before discussing how each user can obfajn

we define dile cover

Definition 4 (File Cover) A group of usergs7 is said to be a file cover if; = T, the

universe of available files.
Lemma 3.3.5 A group ofm users is a file cover ifig™ — 0 asn — oo.

Proof We consider a suitably defined bad event, that the group asersU is not a

file cover (fy; # T'). We call this evenD, and note that
PD) =1—=(1—-¢")" <ng™ (3.6)

It is clear from (3.6) thaP(D) — 0 asn — o if ng™ — 0, so the sel is a file cover

with high probability. g

Lemma 3.3.6 If m = clogn, the TreeSplit algorithm has an approximation ratio2of
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to (3.1) provided that the value af (or p) can be chosen a-posteriori such tha2/c <

logg < —1/ec.
Proof Note that form = clogn, using (3.5) and the identity that— » < exp(—z),

P(error) < 2clognexp <n(qdog" — q(:102gn)>,

= 2clog nexp ((nd%gq —1)- n(HCIO%)). (3.7)

The RHS of (3.7) goes to zero as— oo whenlog g > —2/¢, so all random divisions
in the TreeSplit algorithm obey the splitting conditiondt ¢ > —2/c. Furthermore,
from (3.6), we see that for this case,

P(D) < ng-loen (3.8)

P(D) — 0 asn — oo providedlog g < —1/c. Therefore, for-2/c < logq < —1/e,
the TreeSplit algorithm ensures that all users obtain tmepbete universd’ if m is a

power of2, which by Thm. 3.3.3, is a 2-approximation for general g

We now look at a more general regime, in which the number alsug®ws linearly

with the number of files.

3.3.2 Approximation ratio of 1 4 ¢ for m = O (n)

Form = O (n), we propose thé&artition+TreeSplitalgorithm. There are two steps
to the algorithm. In steffi), the users are randomly partitioned into a set of groups
G = {G;1,Gs,...} where each grougs; € G haswlogn users. We would like for

all groupsG; € G to be file covers. In stefii), the TreeSplit algorithm with random
divisions is applied to somelogn users in every group:; € G, wherevlogn is a

power of2 closest to but less thanlogn. Letm = an.

Lemma 3.3.7 If w, v andq are such that-2/v < log g < —2/w andwv log n is a power
of 2 closest to but less than log n, then the Partition+TreeSplit algorithm ensures that

at least—%"—v log n users obtain the complete univere
wlogn

23



Proof In the Partition+TreeSplit algorithm, we would like to asl@rrors at both steps
of the algorithm. An errorE; in step(i) occurs if any groups; € G is not a file
cover. An errorE;, in step(ii) occurs if any division in the TreeSplit algorithm does not
obey the splitting condition. We are therefore interestednalyzing the probability

P(E, U E,), which can be written as:

Z P(G; is not a file cover + Z P(Divisions among
Gieg G;eg

vlogn users inG; do not obey the splitting condition (3.9)

EachG; € G haswlogn = O (logn) users, for which we have already computed the
probability thatG; is not a file cover in (3.8). Similarly, since the term in thesed
summation involves logn = O (log n) users, we have computed the probability of an
error in division in (3.7). Also note that each summationddj hasvn /w log n terms,

since there aren/w logn groups inG. Using (3.7) and (3.8), we see that

P(El U Eg) <

) vlogq 1 (1+vlogq)
ng®”'°8™ 4+ 2y log ne” —Dm 2 . (3.10)
wlogn

We see that the first term of (3.10) goes to zero whery < —2/w and the second
goes to zero whelvg ¢ > —2/v, so the probability of error in the Partition+TreeSplit

algorithm goes to zero far such that-2/v < log ¢ < —2/w.

We now look at how many users can obtain the universe via théi®a+TreeSplit
algorithm. We know from (3.10) that i§ is such thatogq < —2/w, the random
partition of m users into the set of grougsensures that all groups h are file covers
with high probability. Each group haslogn users andg| is equal town /w logn. Let
us now try to prune each group € G through the UniquePick algorithm to obtalf).
H; can be of2 types:(a) | H;| > vlogn or (b) |H;| < vlogn.

If H; is of type(a), we know by the definition of the UniquePick algorithm that
it contains more thamlogn users who contain unique files. So we can apply the
Polygon algorithm of Aggarwagt al. (2013) to ensure that more thariogn users
in H; obtain the complete univer§é If H; is of type(b), add users frond;\ H; so that
|H;| = vlogn. Now, |H;| = vlogn, which is a power o2 and contains the complete

universe. Ifv andq satisfyloggq > —2/v, the TreeSplit algorithm can be applied to
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H; with random divisions to ensure that allogn users obtairi’. So for both types
of groups, at least logn users from each group can obtain the complete univérse
Since there aremn/wlogn such groups, we see that at Ie%%vlogn users obtain

the complete universé€ g

We now consider two cases in Sections 3.3.2 and 3.3.2.

Case i: g chosen a-priori

Lemma 3.3.8 Whenm = an andq is chosen a-priori, the Partition+TreeSplit algo-

rithm has an approximation ratio of.

Proof We choosev such thatog ¢ < —2/w. By Lemma 3.3.7, we know that if we

can choose a such thaw logn is a power of2 andlog ¢ > —2/v, then by the Parti-

tion+TreeSplit algorithm, at leagti—v log n users obtain the complete univefSeSo

we choose such that log n is the power of closest to but less thanlogn. We also

ensure while choosing thatw log n itself is not a power o. Note thatv/w > 1/2,

by definition. Therefore, the fraction of all users who obttie achievable universe is
an_vloBn _ /iy > 1/2. m

wlogn m

Case ii: ¢ can be chosen a-posteriori

Lemma 3.3.9 Whenm = an andq can be chosen a-posteriori, the Partition+TreeSplit

algorithm has an approximation ratio af+ ¢; for some arbitrarily smalk; > 0.

Proof We can now choose all af, v andq as we please such that /v < logq <
—2/w, and Lemma 3.3.7 assures us that at I%ﬁ(%tzv log n users obtain the complete
universeT. We first choose such thatvlogn is a power of2. We then choose
arbitrarily close to but greater than(w = v + J, say). We then choosgsuch that
—2/v < logq < —2/w, and this choice is possible because of our choice afidw.
Operating with these values of w andq, we see that the fraction of users who finally

obtain the complete univergeis —2n_28n — 4, /i, ~ 1. g

wlogn m
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Figure 3.2: Partition+TreeSplit algorithm whem = O (n) or O (n*). The users are
first randomly partitioned into a set of grougs Each group has size
wlogn, and is a file cover with high probabilityv log n users from each
group are then chosen by the UniquePick algorithm and theSpig algo-
rithm is applied on them.

3.3.3 Approximation ratio of <= + e for m = O (n?), z > 1

The algorithm for this case is still the Partition+TreeS&plgorithm. We recall that it
involves the following: randomly partition the users intagps of sizew logn, and
then perform the TreeSplit algorithm with random divisi@rswv logn users in each

group. Consequently, we follow an analysis similar to thebeftion 3.3.2.

Lemma 3.3.10If m = an® andw, v andq are such that-2/v < logqg < —(1+ 2)/w
andwv logn is a power o2 closest to but less than log n, then the Partition+TreeSplit

algorithm ensures that at Ieazsu%v log n users obtain the complete universe

Proof Asin Section 3.3.2, we want to avoid errdrg and F; in step(i) and stefii) of
the algorithm, respectively. In this regime, however= an?. So,

vloggq
—1)n 1+ )>. (3.11)

z vlogq

P(E1UEy) <

(nqw logn 4 9y log ne™ 2
wlogn

Splitting the RHS of (3.11) into two terms, we see that the festn goes to zero for

logg < —(1 + z)/w and that the second term goes to zerolé@rg > —2/v. So the

probability of error goes to zero as— oo when—2/v < logq < —(1 + z)/w.

As for the number of users who finally obtain the complete erse?’, we follow
a logic similar to that of the proof of Lemma 3.3.7. It has beeritted for the sake of

brevity. m
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We now consider the two cases as before.

Lemma 3.3.11 Whenm = an?for z > 1, andq is chosen a-priori, the Partition+TreeSplit

algorithm has an approximation ratio af+ z.

Proof We choosev such thafogg < —(1 + z)/w. We then choose somesuch that
v < 2w/1+ z andvlogn is a power of2. Note that we can always choossuch that
1/1+ 2z < v/w < 2/1+ z. We are also assured that; ¢ > —2/v. Following the
arguments that we made in Section 3.3.2 but now with Lemma@,.38ve can say that

atleaston” - £ > an® - 117 users obtain the universe. g

Lemma 3.3.12 Whenm = an® andq can be chosen a-posteriori, the Partition+TreeSplit

algorithm has an approximation ratio éfg + €, for an arbitrarily smalle; > 0.

Proof We start by choosing such thatvlogn is a power of2. We then setw =

24 4+ 5. Now, we choosg such that-2/v < log g < —(1 + z)/w, which we know is

possible. So by Lemma 3.3.10, we can now ensure that atdeast’ users obtain all

files in the universe. Since/w ~ 2/1 + z, the fraction of users who obtain all files is

142
2 + €9. ]

In the last 3 sections, we have shown that the TreeSplit artdi®a+TreeSplit al-
gorithms are effective for a variety of regimesmfandn. In the next section, we show
that for allm up to the order ot°™, it is highly probable that there exists a sched-
ule which ensures that at least half the users obtain the ledenpniversel’, thereby

showing how beneficial the Random Sampling acquisition pgnads.

3.3.4 Existence of a schedule such that at least half the users obtain

the universe for anym = O (60(71))

We show the existence of a schedule for any=- O (eo(n)) by considering the splitting
condition in the TreeSplit algorithm. We consider the dmisof a particular groug
of d users, and defin€ as the event that all possible divisions®@finto two equal

groups do not obey the splitting condition.
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Without loss of generality, leff = {uy, us, ..., us}. The total number of ways to
divide d users inG into 2 groups withd/2 users each iﬁd‘;z). Let the two groups of
users obtained from th&" division be denoted by,; andGs;, wherel < i < ( d )

/2
Let gl =S {Glia 1< < (d;lQ)} and SimilarIyQ2 =S {Ggi, 1< < (d;lg)}

Without loss of generality, we assunde;,, C Fg,, V i. Note thatF; = Fg,, U
Fg,, = Fg,, Vi. LetFg = {1,2,...,a,a + 1,...,a + b}, again without loss of

generality.
Lemma 3.3.13LetZ £ (., M. If E; occurs,|Z| = 1.

Proof We prove this by contradiction. Ca@§ SupposeéZ| > 1;then at least two users
are constrained to always reside together after divisidwat does not tally with the fact
that we are dividing& in (df/lz) ways, which is a contradiction. Ca¢@: Suppose
|Z| = 0, it would imply that3 Gy;,, Gy, € Gi,s.t Gi, NGy, = ¢; in that case(
could have been divided intG;, andG;, while obeying the splitting condition. So

FE 4 cannot occur.

According to Lemma 3.3.13, there is one user who is respta&bthe eventt,
whom we call theculprit user Without loss of generality, let this user hg. Let
C% ={1,2,...,a} and defineB £ F;\CY ={a+1,...,a+b}.

Lemma 3.3.14If E¢ occurs, any group:’ of d/2 — 1 users from{usy, us, . . ., uq} must

satisfyB C Fgr.

Proof Consider any grou:’" C G consistingd/2 — 1 users{ug,, ug,, ..., ug,, |-
Thesed/2 — 1 users along with user; will form a groupG;; € G; for somei, since
that is one of the possible divisions. Also note that= Fg/ |JCY,. Therefore{a +
La+2,...,a+b} C Fg.

Lemma 3.3.15 At leastd/2 users from{u,, us, . . ., uq} must possess each fifee B

for E; to occur, and the probability that this happens is less ttan 2 , whereb = |B|.
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Proof We prove the first part of the Lemma by contradiction. Suppess thani/2
users from{us, us, . .., uqs} possess some filg € B. This implies that at least/2 — 1
users from{usy, us, ..., us} do not possesg,. Without loss of generality, let users
{ua,us, ..., uq/n} NOt possesg,. Thesed/2 — 1 users will not satisfy Lemma 3.3.14,
which is a contradiction. Thus, each fifec B must be possessed by at le&& users
from {ug, us, ..., uq}.

We now come to the second part of the Lemma. Probability thisestd /2 users

d—1

from {us, us, ..., uq} possess a filg is (d/2

)p*?. Since each filef, € B is chosen

independently, probability that at least2 users from{us, us, . .., uy} possess all (=
b db

B|) files |s<(f§721)pd/2> < (2p)7.

Lemma 3.3.16 P(Eg) is less than(p +q(qd + p’(2p)d/2)>n, whereq = ¢?! and

P=1-4.

Proof: Let us denote the event in which the culprit usethasa files andF; has
a + b files by E,,. We know from Lemma 3.3.15 th@&(E¢|E,,) < (2p)2 . But

n n—a

P(Ec) =Y > P(Ec|Eoy)P(Eap). (3.12)

a=0 b=0
Note that the probability that— 1 users do not possess a filg/fs!, denoted by, and
n —a n—a / nn—a—
PEa) = () (M) )@ (319
Therefore, from (3.12) and (3.13),
a=n b=n—a

P(Ee) <}, D (Z)paq”‘“ <n R a) ()" (@) 2p) ™2,

a=0 b=0
a=n .

:Z (a)paqna(q/+p/(2p)d/2)n a,
a=0

Z(p+q(q’+p’(2p)d/2)>n~ n (3.14)

Theorem 3.3.17For m = O (exp(n'~%)) (e3 > 0) andp < 1/2, there exist divisions

obeying the splitting condition for all groups in the TreéBagorithm asn — oo.
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Proof Let K represent the set ofi — 1 groups which are divided in the TreeSplit
algorithm. We say that aarror occurs if3 G’ € K, for which all divisions do not

satisfy splitting condition.

Plerror) < S P(Ea) < |IC|<15}2’>C<{P(EG,)}) (3.15)

G'eK
From equation (3.14), it is easy to see thaix{P(Es)} occursG’ has minimum
number of users, i.el = 2, and is equal tc<p+q(q+2p2))n. Also, K| =m—1 < m.

Therefore, from equation (3.15), we obtain
Plerror) <O (exp(n'™)) (p+ ¢(1 — p+2p°))" (3.16)

Forp < 1/2, the RHS of equation (3.16) tends to zeronas» co. This implies that

vV G’ € K at least one division exists which satisfies the splittingdition.

So the TreeSplit algorithm with some method of division &xisith high probability
even form = O (e°™), and provides a schedule through which at least half thé tota

number of users obtain the complete universe.

3.4 Simulations

We ran simulations to verify our result from Section 3.3.4e ®nsidered large:
when compared ta. We divided users as in the TreeSplit algorithm, and noteetaor
whenever any one group in the tree was such that all possiMikahs violated the
splitting condition. Shown in Fig. 3.3 is a plot of the lowgatue ofn for a givenm for
which the percentage of error cases was less thianNotice that forp = 0.10, even

if there are2!'® users in the system and onlg0 files, 99% of cases are such that all
divisions obey the splitting condition, showing that it &ry probable that there exists a
schedule through whict* users obtain all60 files even though each user only starts

out with aroundl60 x 0.10 = 16 files.
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3.5 Conclusions and Future Work

We presented a random file acquisition paradigm and showestart approximation
algorithms for a variety of regimes under the give-and-tfdkeexchange protocol. We
also showed that it is beneficial for users to acquire filesguie Random Sampling
file acquisition paradigm (with small, to keep cost low) by showing that there exists
a schedule that ensures at least half the users obtain thersmwith high probability.
Future work in this area could involve the study of other &tzuisition paradigms and
comparisons of their performance with respect to the gne-take protocol. It could
also involve an interesting game theoretic question throprhy the GT criterion, as to
what are the minimum number of files each node should dowrfiaewl the server to

ensure that it finally gets all the files that it desires.

270 —

230 —

190 —

Number of filesn

110 —

30 —

log, m

Figure 3.3: Plot for different values gfof the minimum value of. for which 99% of
cases are such that there exist divisions for all groups$, g, m.
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CHAPTER 4

Online algorithms for basestation allocation of users

with fixed data demands and arbitrary arrival times

We have had the least success with this problem among the wWedave considered.

Most of these results are exploratory in nature.

4.1 Introduction

In this chapter, we consider the problem of assigning usebmsestations, online, in
order to satisfy some objective function. This extends tbekvof Thangaraj and Vaze

(2013) in the context of basestation allocation.

The problem setup of Thangaraj and Vaze (2013) is as folloere aren users
andm basestations. Every user-basestation pgihas a particular weight,; associ-
ated with it, which signifies the rate of data download thatubker; can achieve when
connected to basestatign After some assignment of users to basestations, if a bases-
tation j has a set of usefS; connected to it, whergJ;| = d;, then the rate achieved
by each usef in U; is equal tow;;/d;. This represents therocessor sharing model
In Thangaraj and Vaze (2013), the objective function that ea@nsidered was sum-rate
maximization, i.e., they were interested in maximizing shuen of rates achieved by
all users after they have been allocated to basestatioapirigein mind the processor
sharing model. They wanted to characterize ahéne case, in which users arrive in
a particular order, and they must be assigned to basesatrevnocably without any

knowledge of future arrivals.

The main difference between the work in Thangaraj and Va@&3pRand previous
load balancing work Azaet al. (1993); Azar (1998); Caragianné al. (2006) was in

the processor sharing model (load balancing does not hareghof resources at the



basestation) and the corresponding objective functioninAsost analysis of online
algorithms, Thangaraj and Vaze (2013) was concerned witviging competitive ratio

analyses. The competitive ratio of an online algorithm iseasure of its performance.
The competitive ratio (in a maximization problem) can be rosdi for both the worst
case and the average case. In the former case, it repreBentsakimum ratio of the
objective functions of the optimal offline and online alglms for any incoming order
of the users. The average case, on the other hand, takes aofrearatios - one for

each incoming order of users.

A competitive ratio that grows with the parameters of thebfgm (7, » in this
case) is considered undesirable; an algorithgoispetitivef its competitive ratio can
be shown to be a constant. As it turns out, for the problem ianglaraj and Vaze
(2013), the worst case competitive ratio scales wifor any online algorithm, so they
analysed the problem for the average case competitive rékiey provided an online
algorithm based on thie-secretary problem that had an average competitive rattp of

for arbitrary weights of users to basestations.

The objective function of Thangaraj and Vaze (2013), howevénpractical, be-
cause itassumes that the users, once assigned, will cemtitiue system forever (hence
the maximization of sum rate). In practice, however, usetgeaand exit the system,
and it makes more practical sense to address this questibrpaihaps another, more

relevant objective function.

In this report, we consider models that try and incorporhie ¥ery notion, and
analyse their feasibility. We then move on to offline versnbne algorithms and pro-
pose some such algorithms. As pointed out before, the nafutes work is mainly

exploratory.

4.2 Preliminaries
The notation is the same as stated in Section 4.1. There d@sestations, represented
by the setB = {b, b2, ...,b,}; n users represented by the $ét= {u,us, ..., u,},

and a weight matriX}” with entriesw;;. To incorporate the queuing, we first explore a
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trivial extension of the problem considered in Thangaraj ¥aze (2013).

4.2.1 Atrivial extension of Thangaraj and Vaze (2013)

e The users arrive in a queue and depart when they have be@audsrthe system.
Define each arrival or departure asewent

e Time is slotted as follows. One time slot is set to the smadesation between
two events. Since we are interested in an online algorithchthe time of oc-
currence of the events is not known a-priori, we set one tiote® an arbitrarily
small duration. This slot duration could also be an add#ianput to the online
algorithm - an estimation of the smallest duration betweemts under heavi-
est traffic. By definition, events can only occur either at tkegibning or end
of a slot, and not during a slot. Also, a maximum of one useraraine at the
beginning of any slot.

e Users spend soneervice timan the system. The arrival time (slot number) of
useru; is represented byl; and his service time by,.

e Our objective is to assign users irrevocably to basestaiiomn online fashion
S0 as to maximize the average rate supported by the systémislthe total rate
output of the system (all users at all basestations) in/skxtd we consider some
L slots in all, our objective function is representediyx >, P;/L.

Two Basestation Model with simplistic queuing
o Letdd = {uy,ug,...,u,}.
o LetB = {b,by}.
o Letwy; =wpVie{l,2,...,n}.

e Let A, = 7 and letS; = A; + k for all usersu;. So a user arrives in every slot
and stays fok slots. Note that this implies that there are a totah@lots to be
averaged over.

Offline Algorithm

We know that the good algorithms in the 2 basestation setswgn the “best"”
users to one basestation and all the others to the otherthges In the same spirit,

we propose the following optimal offline algorithm to our pkem.

Let, = {u; : w; € U andVu;,u, € Uy, |j — k| > k, Zuieug w;y IS Maximumy.
Letify =U \Z/{g
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The algorithm itself is simple: assign all userdinto b, and all users iidf, to b,.
Note that the users ity will contribute a very small fraction of the total utilityf the

average rate supported by the offline algorithm is represemy R, s s, we see that:

Roff > Z W;1 (4-1)

u; EUy

Online Algorithm

For this, let us split the users into contigudaiscksof k users eachl/; = {uy, ug, ..., ug},
Uy = {up41, Ukt2, - - -, ugk + @and so on. We now pick the best user in each block by the
secretary algorithm and assign himito All the other users are assignedito Note

the following about this algorithm:

e There are a maximum of two users assigned) tat any time.

o A = Zj max,,cy; Wi IS an upper bound of,;;. The secretary algorithm’s
competitive ratio will be with respect td, and becauséd > R,;;, the ratio can
be extended to our algorithm.

e The competitive ratio of the overall online algorithm overmutations of blocks
and then of users within each block is therefore giver2 byn/k) - cs.., Where
Csec IS the competitive ratio of the secretary algorithm.

Note that this trivial extension that incorporates queyingvides a competitive
ratio that scales with, and so the corresponding online algorithm is not competiti

Therefore, we propose another practically feasible model.

4.2.2 A New Model
We now consider the following model:

Definition 5 Users come in as before, in a queue. Arrival times are arbjtrd&ach
useru; now has a constant data demardd The user is irrevocably assigned to a
basestation when he arrives, he achieves a certain rate didbestation (which varies
as other users enter and leave that basestation), and leaties he has fulfilled his
data demand. Our objective is allocate users so amioimize the maximum time

spent by any user in the system.
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Assumption 4.2.1 Inter-arrival times follow an exponential distributiono$iven that
a user has arrived at time = 0, the time of arrival of the next user follows the prob-
ability distributionp(t) = Xe~*. Inter-arrival times are independent for all pairs of

consecutive users.

Our objective with Definition 5 and Assumption 4.2.1 is toateea stable queuing
model that is amenable to analysis. However, we show in tkeseetion that because
of our processor sharing constraint, the stability condgibecome way too stringent,

and so analyzing an infinite queue is useless.

4.3 Unstable queues!

Consider the problem posed by definition 5 and Assumptiori4.Ret the users all
have a constant data demahe- 1. Also, letw;; = w V 7, j. This is the trivial case of
identical users and identical basestations. Note that lmeovs. offline analysis is triv-
ial in this case, since the online algorithm knows exacthatithe offline algorithm does
(since users are identical). The competitive ratio is thoeeel, and will be achieved by
a simple round-robin algorithm, which assigns usgio basestatioh; ,,,q ... We now

analyze how the queue at a particular basestation evolheetodhis algorithm.

Let us limit ourselves without loss of generalityiip Let us denote the usersiat
by u;,, u;, and so on. Let the arrival time of usey, bet, and let his departure time be
T..

The departure time of the first uséy is now a random variable, and can be ex-

pressed using the equation:

to — 1 t3 — 1 ty — 1 tp — tp—
L Y7 R 7 . ST LB S (4.2)
1 2 3 sz,

where|s|7, represents the number of users in the system (at that bgepst@hen user
k departs. The above equation is simply one which is writteseda@n the constraint on

data demand.
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In expectation, equation (4.2) becomes

1 1 1
Sy —)>1 4.
w)\m<1—|—2+ +T1/Am> > (4.3)

The LHS goes as bg, and it is easy to show write a similar expression for a génera
useru;,, with some gain terms due to the fact that the first few usergele We will
gloss over the details, but is easy to see that if sae )th user exists in the system
beforeu;, leaves, the queue will become unstable, and the objectiaitin we want

to analyse will go to infinity.

So basically, the processor sharing model does not allowstédrle queues. In the
next section, will discuss another processor sharing miadehich the stability of the

gueue can be preserved.

4.4 Another Variant to ensure queue stability

Let us now consider a different model by which service at teeltation happens.

Definition 6 We will assume a broadcast channel at the basestation, whazdbasts
the files that users need on the channel. Note that if all ugdiseabasestation require
the same file, then the basestation will be able to serve théwrt #heir respective
weights (without division). In general, the rate achievabjeulseru; when connected
to basestatiorb; is w;;/|f|;, where|f|; represents the number of distinct files being
demanded ab;. Users still have a constant data demand as in Definition 3y tre

processor sharing model has changed.

Note that all basestations can serve the files that are beimgulded by all users.
It is trivial to see that this case reduces to the previoug gd@sen all users come in
demanding unique files. But what if the demand of files followethe distribution, by
which some files were more popular than others? Wouldn'tehgire that the number

of distinct files being served at a basestation reduced? Weei that in this section.

Let the probability distribution on the demand of files be am&vhich picking up

file i is represented by(:) and1 — p(i) = ¢(i). Note that users sample from this
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distribution independently. Let us denote using the intdiceandom variabld? the
event that files was picked up by users. Let there be a total éf files. We can
now write an expression for the random variall&, the number of distinct files at a

basestation when there aeaisers assigned to it as

F
XE=3"1F (4.4)
j=1
By the linearity of expectation,
F
E[X* =" E[I}). (4.5)

j=1

Now, if the assignments to basestation happen independefthe files acquired by

the users (bad algorithm), then

F

BIXT =3 1-4()" (4.6)

Now as it turns out, using the file distributigti) = 2~ with an infinite number of
files returnsX* = O(log k) for the independent allocation algorithm. Note tha *|
wask in our previous processor sharing model. This new model esp khe queue

stable.

Another thing to be observed is that the files that users eedguiroduces another
dimension to the problem concerning online algorithms,abee of the ordering of
these files. Even the trivial case of equal weights and datedds is not immediately

obvious, and needs an intelligent online algorithm.

4.5 Some online algorithms

We propose an algorithms for the problem in Definition 5 withitary user arrival

times (without Assumption 4.2.1), and one for Definition 6.

Algorithm 1: Let the users arrive at arbitrary times. At the arrival adug, assume
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that he is allocated to basestattgrand evaluate the objective function (minmax service
time) for all the users at that basestation. Assign the ustrat basestation in which
the objective function is minimum. This is a sort of globaiseedy algorithm. Based
on the fact that we have not been able to produce a bad casenjecire that in the

average case,

Conjecture 4.5.1 Algorithm 1 is within a constant factor of the offline perfomga for

the problem corresponding to definition 5.

It also seems intuitive that a combination of Algorithm 1 assigning users to a
basestation already serving the file they demand ought tqbmal for the problem
corresponding to definition 6. In keeping with the tone of st of this chapter how-
ever, we do not have analytical proofs to support this cdaje¢ and this is merely to

encourage future work in a variety of possible directions.

4.6 Conclusion

We analysed the problem of online basestation allocationr@noduced a few models
to take care of the queuing and departure of users. We promogme algorithms that
we conjectured to be optimal for these models. We also loakdtbw these models
influence queue stability, and found that queues are usuasitable in the case of pro-
cessor sharing as defined in Thangaraj and Vaze (2013). \Wefdhe proposed a new
mode of processor sharing that keeps the queues stabletainasonditions. This new
sharing model also throws up its own questions of onlineuserdfline performance,
and we proposed another algorithm for this case as well. droislem still leaves a lot

to be explored in the context of competitive ratios.
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