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ABSTRACT

We addressed 3 problems that arise in various contexts in wireless communication. The

first was the theoretical problem of finding the integrality gap of a formulation of the

coverage lifetime problem in sensor networks. We were motivated to work on this prob-

lem by a conjecture posed in Bermanet al. (2004) which claimed that it was 2, and we

disproved that conjecture by showing a counterexample thatused projective geometries.

We were also able to show certain other related results, but were not able to find the in-

tegrality gap exactly. The second problem involved a new paradigm of file exchange in

P2P networks called the Give and Take Protocol, to encouragefairness and prevent free-

riding. We provided randomized algorithms for this problemand showed guarantees on

their performance. The third problem had to do with Online Algorithms for Basestation

allocation, in which we attempted to build on previous work by accounting for queuing

of users and their departures. We considered the processor sharing model in which the

rate achieved by a user at a basestation is equal to the total rate suppliable by the bases-

tation divided by the number of users being served at that basestation. We showed that

for the case in which users have a fixed data demand, the queuesat the basestations have

very stringent stability conditions, and therefore that the model was not worth studying

further from a competitive ratio perspective. We then considered an alternate model in

which broadcast channels exist at the basestations, and therate available to each user is

divided by the number of distinct files being served at that basestation. For this case,

we showed that certain probability distributions on the files give rise to stable queues.

We also analysed the online vs. offline competitive ratios for some algorithms in this

context.
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CHAPTER 1

INTRODUCTION

Wireless communication has thrown up a variety of open problems over the last 30

years, many of them theoretical. In this report, we aim to study 3 such problems that

span 3 sub-fields within wireless communication - sensor networks, peer-to-peer net-

works and load balancing at data centers.

We will provide detailed introductions to each problem along with the necessary

background and notation, in the chapters that follow. All three problems build on a sub-

stantial amount of existing work. Two out of three problems still do not have conclusive

results, while the third throws up many new open questions.

This report has been compiled in the chronological order in which the problems

were tackled. Chapter 2 addresses the maximum lifetime coverage problem in wireless

networks, and deals mainly with the concept of integrality gaps of binary integer pro-

grams. It aims to analyse the integrality gap of a specific subset of packing LPs. Chapter

3 looks at a newly proposed, stringent paradigm of file exchange in P2P networks and

deals with probabilistic algorithms for the problem. Chapter 4 has to do with online

algorithms for basestation allocation, in which users arrive at arbitrary times but with

fixed data demands. We analyse regimes of rate sharing at the data centers both in the

context of stability of the resulting queues and competitive ratios of online algorithms.



CHAPTER 2

Integrality Gap of the Maximum Lifetime Coverage

Problem in Wireless Sensor Networks

The introductory text of this chapter follows Bagariaet al.(2013) almost verbatim. The

text that follows is unique to this report.

2.1 Introduction

Wireless sensor networks are deployed for a variety of applications - military, data

collection, and health-care, to name a few - and most of theseentail monitoring or

covering a specific geographic area. Therefore, maximizingthe lifetime of coverage in

a wireless sensor network with battery-limited sensors is afundamental and classical

problem, well studied in literature Cardeiet al. (2005); Cardei and Wu (2006); Berman

et al. (2004); Dinget al. (2012). Typically, a large number of sensors is deployed in a

given area, and consequently, many sub-collections of these sensors can cover/monitor

all the intended targets. Each such sub-collection of sensors is called aset cover. To

maximize the lifetime with the practical constraint of limited battery capacity, we need

to find an activity schedule for each sensor (signifying whenit must be turnedon or

off) that ensures that all intended targets are covered/monitored for the longest time

possible.

Concisely, the maximum coverage lifetime problem (MLCP) is asfollows. Given a

set of sensors and a set of targets, find an activity schedule for these sensors such that

(i) the total time of the schedule is maximized, (ii) all targets are constantly monitored

(i.e. at any point of time, at least one of the set covers is active), and (iii) no sensor is

used for longer than what its battery allows.

In literature, the MLCP has been approached using two methods. The first method

involves solving the maximum disjoint set cover cover problem (DSCP) Bollobáset al.



(2013). The DSCP finds the maximum number of set covers such that any two set covers

are pairwise disjoint. Clearly, sequentially turning on each of the disjoint set covers

found by the DSCP provides a feasible solution to MLCP. This approach has been used

in Cardei and Du (2005); Ahn and Park (2011); Cardei and Du (2005); Slijepcevic and

Potkonjak (2001); Laiet al. (2007), and the DSCP has been solved heuristically. The

first provably approximate solution to the DSCP was given in Bagariaet al. (2013), in

which it was shown that the same approximation ratio extended to the MLCP as well.

The second method to solve the MLCP uses non-disjoint set covers, i.e. set covers

that are not constrained to be disjoint. The optimal solution obtained using this method

will exactly match the optimal solution of the MLCP, unlike the DSCP approach. This

approach has been used by several papers - Cardeiet al. (2005); Bermanet al. (2004);

Kasbekaret al. (2011); Zhao and Gurusamy (2008); Pyun and Cho (2009). Some of

them are heuristic while others provide provable guarantees to the MLCP. It is also

worth mentioning here that the specialgeometriccase of the MLCP has also been stud-

ied Ding et al. (2012), in which each sensor can monitor a circular area around itself

with a given radius.

The relationship between the MLCP and DSCP is an interesting one. It is obvious

from the description above that any solution to the DSCP is also a solution to the MLCP.

In fact, the optimal solution of the MLCP is always greater than equal to that of the

DSCP, as we will demonstrate in Section 2.2.

Let us defineOPT (MLCP )
OPT (DSCP )

= IG, whereOPT (X) denotes the optimal solution of

problemX. It was conjectured in Bermanet al. (2004) that:

Conjecture 2.1.1 IG ≤ 2 for any input of targets and sensors (with identical battery

capacities).

It was also conjectured in Bermanet al. (2004) that:

Conjecture 2.1.2 IG ≤ 1.5 for inputs of targets and sensors (with identical battery

capacities) in which the sensor coverage regions are known to be convex.

It is worthwhile to mention here that both the DSCP and MLCP are NP-complete,
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Cardei and Du (2005); Cardeiet al.(2005), and so evaluating optimal solutions of either

is not a trivial task. Approximate solutions cannot directly help us with the conjectures,

although they will provide upper bounds on integrality gapsas we will see in the fol-

lowing sections.

2.1.1 Impact of a proof of conjectures 2.1.1 and 2.1.2

If the conjectures are true, and the DSCP and MLCP indeed have a constant (even

non 2) integrality gap, then it justifies approaching the MLCPthrough the DSCP from

the point of view of an accurate solution. Already, the approach has many functional

advantages, as enumerated in Bagariaet al. (2013), and showing that the two problems

are similar in their solutions would mean that the DSCP approach to the MLCP would

always be preferred.

More generally, this would influence the general class of LPsto which the MLCP

belongs, known as Packing LPs or Multiple Knapsack problems. In general, these LPs

have an unbounded integrality gap, but there has been some literature on construct-

ing examples with a constant integrality gap Pritchard (2010); Anagnostopouloset al.

(2013).

The main result in this report however is the disproof of Conjectures 2.1.1 and 2.1.2,

although we do not show thatIG grows unbounded. We show in Section 2.2 that the

conjectures can in fact be formulated as an integrality gap problem, and provide some

insight and devise methods to analyse that integrality gap.

2.2 Preliminaries

We define a universe of targetsU = {1, 2, 3, . . . , n}, wheren is the number of targets.

We will hereafter refer to each target as anelement. Each sensori can cover a subset

of targetsSi ⊆ U , and so the sensors are defined by the multisetS = {S1, S2, . . .}.

Hereon, we useSi to denote a sensor and call eachSi asubset. Let each sensorSi have

a battery capacitybi. Since we are interested in monitoring all targets, we definea set
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coverC ⊆ S to be a collection of sensors such that sensors inC cover the universe,

i.e.,
⋃

Si∈C
Si = U . The idea is to switch on set covers sequentially so as to prolong

the time for which all elements can be monitored (which we call the network lifetime),

while ensuring that each sensor is used only for as long as itsbattery will allow. The

formal definition of the MLCP is as follows:

Problem 1 (MLCP) Let C = {C1, . . . , Cm} be the collection of all set covers fromS

andti be the time for which set coverCi is switched on. Then the MLCP is to

Maximize :
m
∑

j=1

tj

Subject to Cijtj ≤ 1, ∀ i,

ti ∈ [0, 1] ∀ i

Cij =











0 if sensorSi is not in set coverCj,

1 if sensorSi is in set coverCj.

Lemma 2.2.1 Without loss of generality, we can consider all sensors to have unit bat-

tery capacity, i.e.bi = 1, ∀ i.

Proof If bi = B, ∀ i, then the solution to the MLCP solved usingbi = 1, ∀ i, need

only be multiplied by a factor ofB to get the required solution. Otherwise, we take the

greatest common divisorbcom = gcd
(

b1, b2, . . .
)

, createbi/bcom copies of each sensor

Si, ∀ i, and consider each copy to be a separate sensor with battery capacitybcom. Thus,

the problem can be reduced tobj = B = bcom, ∀ j ∈ J, whereJ is an index set and

|J| > |S|.

Problem 2 (DSCP) Given a universeU and a set of subsetsS, find as many set covers

as possible such that all set covers are pairwise disjoint. Inother words, the DSCP may

5



be formally stated as:

Maximize :
m
∑

j=1

tj

Subject to Cijtj ≤ 1, ∀ i,

ti ∈ {0, 1} ∀ i

The DSCP necessitates that any subset can be present in a maximum of one set

cover. If the number of disjoint set covers isk, then using each of thek disjoint set

covers for one time unit, clearly, we have an MLCP solution ofk with bi = 1, ∀ i. Thus,

solving the DSCP provides a feasible solution to the MLCP.

However, the solution of the MLCP differs from that of the DSCP as shown in Ding

et al.(2012), because the optimal solution to the MLCP may not always involve disjoint

set covers. For example, letU = {1, 2, 3} andS = {S1, S2, S3}, whereS1 = {1, 2},

S2 = {2, 3} andS3 = {3, 1}. Clearly, the maximum number of disjoint set covers (and

therefore network lifetime) is1, while if we operate the sensors as follows:{S1, S2} for

0.5 units of time,{S2, S3} for 0.5 units of time, and{S1, S3} for 0.5 units of time, the

lifetime is1.5 time units. This is shown pictorially in figure 2.1.

Ironically, however, Bagariaet al. (2013) showed that the best possible algorithm

to solve the DSCP is also one of the best possible algorithms tosolve the MLCP by

showing matching upper and lower bounds on the approximation ratio.

1 2

3

S1

S2 S3

Figure 2.1: Case where the solution to MLCP is greater than DSCP
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Note that Problem 1 is effectively the LP relaxation of Problem 2. We are interested

in the ratioIG = OPT (MLCP )
OPT (DSCP )

, which is the integrality gap between problems 1 and 2.

Problem 1 also belongs to a class of LPs called packing LPs, which for an arbitrary con-

straint matrixC have an infinite integrality gap. In our case however,C is constructed

in a very particular form, and so this case may have other properties with respect to its

integrality gap. This is what we aim to analyse.

2.2.1 Terminology

(i) n : Number of elements in the universe| U|. (ii) |S| : Number of subsets. Note

how S has been defined as a multiset. This is because subset repetitions are possible,

since multiple sensors may cover the same targets.|S| is therefore thetotal number of

subsets, not the number of distinct subsets.(iii) R : Maximum size of a subsetSi =

max
i

|Si| (iv) Fi : The frequencyFi of any elementi ∈ U is defined as the number of

subsetsSj ∈ |S| that it appears in.Fi = #{Sj : i ∈ Sj}. (v) Fmin : min
i

Fi. (vi) Fmax :

max
i

Fi.

2.2.2 Known, relevant results

There are a few observations to be made about the DSCP (refer Problem 2 for formal

definition) with respect to the terminology we defined in Section 2.2.1. The solution to

the DSCP cannot be more thanFmin, since the element with frequencyFmin can only

be present in a maximum ofFmin disjoint set covers. We therefore have a trivial upper

bound ofFmin on the solution to the DSCP.

Note that the MLCP solution is also upper-bounded byFmin, since the element with

the least frequency has onlyFmin sensors covering it, and at least one of these sensors

must be on at all times to ensure coverage.

In Bagariaet al. (2013), a deterministic algorithm was shown which given anyuni-

verse and set of sensors (all with unit battery capacity) returns a lifetime ofFmin

/
c lnn

(where1 < c < 2), by finding an equal number of disjoint set covers. This was effec-

tively anO(lnn) approximation algorithm to both the MLCP and DSCP, since both are

7



upper-bounded byFmin.

Another interesting observation is that this also gives us an upper-bound onIG as

being2 lnn, since the optimal solution of the DSCP is at leastFmin

/
2 lnn and that of the

MLCP is at mostFmin.

We will now move on to our results themselves - disproofs of Conjectures 2.1.1 and

2.1.1.

2.3 Counterexample for Conjecture 2.1.1 - The Fano

Plane

A few examples should tell the reader that the disproof is quite hard to find. Our disproof

is a counter-intuitive projective geometryPG(2, 2) - the Fano Plane. A diagrammatic

representation is shown in figure 2.2. Consider each point in the figure - 7 in all - to

be our universe elements, and each line - again 7 in all (including the circle) - to be the

sensors. Note that if you consider all the sensors that pass through a point, you end up

with a set cover, and so there are 7 minimal set covers1.

Figure 2.2: The Fano Plane. Points are labelled in keeping with the group theoretic
construction, which will be explained in Section 2.5.1.

Also note that once a set cover has been formed, the other 4 sensors cannot form a

set cover on their own. So this example has only1 disjoint set cover. In other words,

1A minimal set cover is defined as one in which the removal of anysensor destroys the set cover
property. It should be obvious that is is sufficient to consider just set covers of this form.

8



OPT (DSCP ) = 1. On the other hand, consider the operation of each of the 7 set

covers for time1/3. Note that no sensor is overused - each sensor forms a part of

exactly3 set covers, and so is operated for1 time unit totally. Each of these set covers

can be switched on sequentially, and soOPT (MLCP ) = 7× 1
3
= 7/3 time units. So

for the Fano Plane,
OPT (MLCP )

OPT (DSCP )
=

7

3
> 2 (2.1)

and hence, we have disproved Conjecture 2.1.1.

Note that this is still a weak disproof of the result. Ideally, a disproof ought to have

consisted of an example in which the integrality gap grew as afunction of n or |S|

without a constant upper bound, and that is still an open problem.

2.4 Counterexample for Conjecture 2.1.2 - The Polygon

Note that the disproof is Section 2.3 was for a case of the problem in which sensors

could cover non-convex areas, and Conjecture 2.1.2 applies to those cases in which

sensor coverage areas are convex. The conjectured bound is1.5, which is even tighter

that that of Conjecture 2.1.1. Conjecture 2.1.2 basically claims that the example shown

figure 2.1 achieves the highest possible integrality gap forconvex sensing regions.

In this section, we provide an example in which the integrality gap approaches2−ǫ.

This example is much more simple, and uses a very intuitive construction. Consider a

polygon with an odd number of vertices/edges. Let each vertex represent a universe

element and each edge represent a sensor. Note that each sensor covers two elements

and each element is covered by two sensors.

9



Figure 2.3: The Pentagon. The integrality gap is5/3 for this construction.

We will use the pentagon in Figure 2.3 as an example. Label theedges from1 to

5 in some cyclic order. Note that there exist5 minimal set covers -135, 241, 352, 413

and524. This is basically obtained by what we call theSKIP algorithm: starting at

some edge and picking alternate edges in a particular direction. We could have started

at one of5 edges, and so there must be5 minimal set covers. Note that each sensor in

the pentagon appears in3 of those set covers, so operating each set cover for time1/3

will give us an MLCP solution of5/3. The DSCP solution is of course1. IG = 5/3,

which disproves conjecture 2.1.2.

We now extend this analysis to all polygons with an odd numberof vertices. Note

that the DSCP is always1 because any two minimal set covers will always have some

nontrivial intersection. There will existn minimal set covers (similar to the polygon ex-

ample), and each sensor will be part of(n+1)/2 of these set covers. That is reasonably

simple to show, since in theSKIP algorithm, any sensor will be picked up in alternate

set covers. This means that each set cover can be operated fortime 2/(n + 1) without

violating any battery capacity constraints.

So the MLCP solution will ben × 2
n+1

= 2n
n+1

= 2 − 2
n+1

. Denoting2/(n + 1) by

ǫ, which goes to0 asn → ∞, we can say thatIG = 2− ǫ for some arbitraryǫ > 0.

We emphasize here again that this is a weak disproof, and thata stringer result would

be to show thatIG grows without bound for some family of examples.
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We will now describe some methods that we tried which did not give us positive or

conclusively negative results, but whose insights may helpin tackling this problem in

the future.

2.5 Other Insights and Methods

2.5.1 The general projective geometries

The counterexample for the conjecture is provided by the Fano plane, which is a pro-

jective geometry of the formPG(2, 2). It is therefore natural to ask what happens when

one considers a projective geometryPG(n, q)?

We analyze this problem forPG(2, q) first. Note that here, there areq2+ q+1 lines

andq2 + q + 1 points. Each line passes throughq + 1 points. It is easy to show by

the group theoretic construction that all lines that pass through a particular point form

a set cover, and each line is part ofq + 1 set covers. So a lower bound on the MLCP

solution is thereforeq
2+q+1
q+1

. It is possible to show that this upper bound is tight, by

considering the polytope formed by the LP feasible region. It turns out that the solution

corresponding toq2 + q + 1 is a corner point.

The solution of the DSCP, on the other hand, is not easily computable. This is unlike

the usual case in which it is hard to get a handle on the MLCP solution. But for all the

simulated cases2, theIG was within2 asq increased.IG, in fact, seemed to get smaller.

2.5.2 An unsuccessful attempt to prove constant integrality gap

In this section, we describe a method by which we tried to prove the constant integrality

gap of the LP through a dual formulation of the MLCP optimization problem.

2A library to group-theoretically constructPG(n, q) and itsm-flats is up athttp://github.
com/ashwinpm/pgnq.
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Dual Formulation of Problem 1

The dual formulation of Problem 1 would look thus:

Problem 3

Minimize :
|S|
∑

j=1

yj

yj ∈ [0, 1]∀j = 0, 1, . . . , |S|

Subject to Dijtj ≥ 1, ∀ i,

Dij =











0 if coverCi does not contain subsetSj,

1 if coverCi contains subsetSj.

i = 0, 1, . . . ,m; j = 0, 1, . . . , |S|

Note that although the physical meaning of eachyi is unclear, this formulation is what

gives us bounds such asOPT (MLCP ) ≤ Fmin, which is obtained by settingyi to 1 if

subsetSi contains the element with frequencyFmin.

IP interpretation of the Dual

In the IP formulation of the dual, eachyi must now take binary values. This formula-

tion is effectively a minimum weight set cover problem, in which each set cover can

be considered to be an element of a universeCU and each sensor is a newly defined

collection of set covers - a sensor “contains" a set cover if it is present in that cover. The

problem is then to find the minimum number of sensors which aretogether present in

all set covers. Let us denote the optimal solution to this problem byOPT (IPdual).

Result to be proved

Let us denote the optimal solution to Problem3 byOPT (Dual). We are interested

in proving the following result:OPT (MLCP ) ≤ 2OPT (DSCP ). Now, note that

OPT (MLCP ) = OPT (Dual) < OPT (IPdual). So it is sufficient to prove that

12



OPT (IPdual) ≤ cOPT (DSCP ), wherec is some constant, to show thatOPT (MLCP ) ≤

cOPT (DSCP ).

This now gives us a quantity that is easier to handle combinatorially. We now need

to prove that,

Claim 2.5.1 Given all set covers, we can findck sensors which, between them, are

present in all set covers, wherek is the number of disjoint set covers andc is some

constant.

Note that a proof of claim 2.5.1 will provide a proof (within aconstant factor) to Con-

jecture 2.1.1, but a disproof of 2.5.1 will not carry as a disproof of Conjecture 2.1.1.

This is because claim 2.5.1 actually involves two integrality gaps together - the primal

IG× dual IG.

We disproved claim 2.5.1 by considering a random bipartite graph with sensors and

elements. We were able to show thatc in claim 2.5.1 actually grows unbounded inn.

While this was an unsuccessful attempt, the analysis of the dual may help any future

work on the problem.
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CHAPTER 3

Enforcing Fair Exchange in P2P networks

This chapter is more or less the text of the paper Maximizing Utility Among Selfish

Users in Social Groups Pananjadyet al. (2014), which won the Best Paper Award in

the Networks track of the National Conference on Communications (NCC) 2014 held

at IIT Kanpur.

3.1 Introduction

We consider a peer-to-peer (P2P) network scenario, where each node (or user) desires

a certain fixed set of files residing on a central server, e.g. afull high-definition movie

Knoke and Yang (2008). For each node, the cost associated with downloading all the

files from the server is prohibitively large. However, the cost of exchanging files across

the nodes is very low. The high cost of file acquisition from the server could be due to

large delay, license fee, power etc., while the low cost of P2P exchange could be due to

nodes sharing bandwidth, physical proximity between the nodes, mutual cooperation,

etc. Popular applications based on this concept include webcaching, content distribu-

tion networks, P2P networks, etc. Device-to-device (D2D) communication in cellular

wireless networks is another example, where mobile phones cooperate with one another

to facilitate communication.

Clearly, to keep cost low, it is intuitive for each node to download a small fraction

of files from the server, and then obtain the remaining files through exchanges with

other nodes. Free riding -the phenomenon in which a node doesnot download anything

and still obtains all the files from other nodes - is possible in P2P networks, and can

lead to attacks like whitewashing, collusion, fake services, Sybil attack Karakayaet al.

(2009); Fox (2001); Dinger and Hartenstein (2006), etc. To avoid free riding Feldman

et al. (2006); Feldman and Chuang (2005); Locheret al. (2006); Rahmanet al. (2010);



Nishida and Nguyen (2010); Karakayaet al.(2009); Molet al.(2008), the file exchange

among nodes follows agive-and-takecriterion. Two nodes can exchange files if both

have some file(s) to offer each other.

The problem we consider in this paper is to find an algorithm for scheduling file

exchanges between nodes such that at the end of algorithm, when no more exchanges

are possible due to the condition imposed by the give-and-take criterion, the number

of nodes that receive all files is maximized. Prior work Aggarwal et al. (2013) has

considered maximizing the aggregate number of files received by all nodes. Depending

on the utility of the user, e.g. watching a movie, maximizingthe number of nodes that

obtain all the files could be more important than maximizing the total number of files

across the network.

Finding an optimal algorithm for scheduling file exchanges with the give-and-take

model is challenging, since at each step there are many pairsof nodes that satisfy the

give-and-take criterion and the choice of exchange at each step determines the final

outcome. As a consequence, the number of feasible schedulesis exponential. We

therefore concern ourselves with providing approximationalgorithms for the problem

that have polynomial time complexity. An algorithm to solvea maximization problem

is said to have an approximation ratioρ > 1 if it always returns a solution greater than

1
ρ

times the optimal solution. We call such an algorithm aρ approximation algorithm,

or simply aρ algorithm.

We deal with the following file acquisition paradigm. Let each user download each

file from the server independently with probabilityp. Let there be a total ofn files and

m users. Note that the download cost for each user is directly proportional top, since

the cost follows a binomial distribution. Users can either choosep before entering the

system (a-priori) or after (a-posteriori), in which case itcould depend on the number of

users or files. In this paper, we propose a deterministic, iterative tree-splitting algorithm

with polynomial complexity. The algorithm involves recursively dividing the users into

two equally-sized groups, thereby forming a tree. The divisions are defined keeping the

give-and-take criterion in mind. Exchanges are then effected from the leaves upward.

Our contributions for various regimes ofm andn are listed below. All of these hold
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with very high probability asn → ∞:

(i) Form = O(log n), our algorithm has an approximation ratioρ = 2, providedp

can be chosen a-posteriori such thatexp(−2 log n/m) < 1− p < exp(− log n/m).

(ii) Whenm = O(n), we present an algorithm that has an approximation ratio of

ρ = 2 whenp is chosen a-priori (users can choose to incur a vanishingly small cost to

themselves by minimizingp), and an approximation ratio ofρ = 1+ ǫ1, (ǫ1 > 0) when

p can be chosen a-posteriori (the cost per user depends onm, n, and on the choice ofǫ1

in the algorithm).

(iii) Whenm = O(nz) for somez > 1, we present an algorithm that has an approx-

imation ratio ofρ = 1+ z whenp is chosen a-priori (small cost), and an approximation

ratio ofρ = 1+z
2

+ ǫ2, (ǫ2 > 0) whenp can be chosen a-posteriori. The cost in the latter

case is again dependent onm, n andǫ2.

3.2 Preliminaries

3.2.1 Notation

(i) T : set of files on the server (the complete universe);|T | = n. (ii) U = {u1, u2, . . . , um}:

set of all users.(iii) Ct
i : set of files that userui possesses at time stept. C0

i rep-

resents the files that userui possesses at the start, i.e. before any exchanges.(iv)

F =
⋃

i C
0
i = {1, 2, 3, . . . , f}: set of all files in the achievable universe.(v) ui ↔ uj:

exchange between usersui anduj. (vi) FG: set of files that a group of usersG possesses.

FG =
⋃

i:ui∈G
Ct

i at timet. For example,FU = F .

3.2.2 Problem Definition

We assume that a single central server containsn files represented by the setT . Letm

users represented by the setU = {u1, u2, . . . , um} initially obtain some files from this

server, but at high cost to themselves. Let the files obtainedby a userui be represented

by C0
i . Note that in practice, file acquisition is a distributed process, with each user
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picking files without being directed to do so by any central controller. The exchanges

in the P2P network, on the other hand, can be centrally controlled, and the controller’s

objective is to ensure that the users acquire all files in the achievable universe. To that

end, we propose the following file acquisition paradigm.

Definition 1 (Random Sampling) Each user picks up a file with probabilityp (a file is

not picked up with probabilityq = 1 − p). The pickup of files is i.i.d. across files and

users.

The parameters of the paradigm, i.e. the value ofp (or equivalently,q) can either be

decided a-priori - when the users are oblivious to the numberof other users in the social

group and so decide the value ofp before entering the system - or a-posteriori - when

the users appropriately choose the value ofp depending onm andn. We will consider

both cases.

LetF =
⋃

i C
0
i = {1, 2, 3 . . . , f} be theachievable universe. The primary objective

for each user is to obtain allf files in the achievable universeF , since these represent all

the files obtainable through exchanges. To this end, the users are interested in dissemi-

nating the files among themselves at low cost. However, sinceeach user is selfish, file

transfer between users can only occur via the give-and-takeprotocol, which we explain

using the following definitions:

Definition 2 (GT Criterion Aggarwal et al. (2013)) Two usersui and uj satisfy the

GT criterion at timet if Ct
i 6⊆ Ct

j andCt
j 6⊆ Ct

i .

Definition 3 (Exchange:ui ↔ uj) Two users can only exchange files if they satisfy the

GT criterion. After an exchange between usersui anduj (at timet), Ct+1
i = Ct+1

j =

Ct
i

⋃

Ct
j.

Def. 2 & 3 form the cornerstone of the give-and-take protocol.

We call a sequence of exchanges between users aschedule, and represent it byS.

The set of all schedules is denoted byX . It is clear that any schedule will lead to a

situation in which no further exchanges are possible. At this stage, we represent the set

of satisfiedusers who have obtained allf files byUsat.
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Formally, we are interested in the following problem:

max |Usat|

Subject to:S ∈ X (3.1)

As mentioned in Section 3.1, there are an exponential numberof schedules inX ,

and our interest lies in approximating (3.1) in polynomial time.

3.3 Recursive Algorithm

To solve (3.1), we present a recursive algorithm, which we call the TreeSplit algorithm,

which repeatedly divides the users into two groups of equal size and then effects ex-

changes appropriately. It is illustrated in Fig. 3.1.

U

m users

G1
1 G1

2
k
=

lo
g
m

le
ve

ls

m/2 users

Level1 split

Levelk split

m leaves

Figure 3.1: TreeSplit of users.↔ represents exchange, solid lines arising out of a group
represent the division of that group which obeys the splitting condition.

Recall from Section 3.2.1 that the set of files contained by a group of usersG is
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represented byFG. Let there bem = 2k users for somek. Divide them users into

two groupsG1
1 andG1

2 of m/2 users each, satisfying thesplitting condition, defined as

FG1
1
6⊆ FG1

2
andFG1

2
6⊆ FG1

1
. We call this division alevel 1split, which is indicated by

the superscript of groupsG1
i . If we can design a schedule to ensure a scenario in which

all users inG1
1 containFG1

1
, and all users inG1

2 contain the filesFG1
2
, we can then effect

pairwise exchanges between users inG1
1, i.e., uiG1

1
, i = {1, 2 . . . ,m/2}, and users in

G1
2, i.e.,uiG1

2
, i = {1, 2 . . . ,m/2}. In other words,

uiG1 ↔ uiG2 ∀ i ∈ {1, 2, . . . ,m/2}

ensuring that allm users obtain all files inF , maximizing (3.1).

Thus, essentially, we have reduced the problem to equivalent problems on two

smaller groups of usersG1
1 andG1

2, separately. Taking this recursion forward, we need

to see what happens at the base case (at a levelk split), when a group of two usersGk−1
j

is divided into the groupsGk
i andGk

i+1 of one user each, for somei, j. If the division

of Gk−1
j obeys the splitting condition, thenFGk

i
6⊆ FGk

i+1
andFGk

i+1
6⊆ FGk

i
. Since both

Gk
i andGk

i+1 consist of one user each, the splitting condition forces theGT criterion to

be satisfied between the two usersGk
i andGk

i+1. So we can effect an exchange between

usersGk
i andGk

i+1 and ensure thatGk−1
j contains two users who possess all the files in

FGk−1
j

. Pairwise exchanges as we move up the tree will therefore solve problem (3.1),

and the result is summarised in the following Theorem.

Theorem 3.3.1 For m = 2k for somek, we can use the TreeSplit algorithm to schedule

exchanges such that all users obtain the entire achievable universeF , provided that

divisions obeying the splitting condition can be enforced at all levels.

Notice that the TreeSplit algorithm is valid only ifm is a power of2. We now look

at what happens for a generalm.

We define theUniquePickalgorithm, which we apply on them users as follows:

Initially, let Usuff = U . We nowpruneUsuff as follows: Pick any user inUsuff . If he

contains auniquefile that no other user inUsuff contains, keep him inUsuff ; otherwise

throw him out. Do this in any arbitrary order until all users have been checked for
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uniqueness.

Proposition 3.3.2 The UniquePick algorithm ensures thatUsuff finally contains all

files in the achievable universe, i.e.FUsuff
= F .

Proof The UniquePick algorithm removes only those users who do nothave any unique

files. Therefore, even if a userui is removed fromUsuff , every filej ∈ C0
i is present

in Usuff\ui. SinceUsuff = U initially, and no file ofF is removed from all users in

Usuff up to the end of the Unique-Pick algorithm,Usuff must finally contain all files in

F .

Theorem 3.3.3 For anym, provided that the splitting condition can be enforced in all

divisions, the TreeSplit algorithm has a 2-approximation algorithm to(3.1).

Proof We consider the power of2 closest to but less thanm, and call this2y (y =

⌊log2 m⌋). Note that2y/m > 1/2, by definition. At the end of the UniquePick algo-

rithm, either(i) |Usuff | ≤ 2y or (ii) |Usuff | > 2y. In the case of condition(i), we add

some users fromU\Usuff to Usuff so that|Usuff | = 2y. We know from Prop. 3.3.2

that2y users containF , so we can now use Thm. 3.3.1 to ensure that2y users obtain

F provided the splitting condition can be enforced in all divisions. So, at least half the

users obtain the achievable universe (since2y/m > 1/2), giving us an approximation

ratio of2.

In the case of condition(ii) , we know that more than2y users are such that each

contains a unique file, andFUsuff
= F (by Prop. 3.3.2). We can therefore use the

Polygon Algorithm from Aggarwalet al. (2013) to schedule exchanges and ensure that

all users inUsuff obtain the universe. Again, more than2y users obtainF , giving us an

approximation ratio of2.

One important assumption we made in the TreeSplit algorithmwas that the splitting

condition can be enforced in every division; we did not explain how the division itself

is done. In the sections that follow, we will consider different regimes ofm andn for

which the splitting condition is satisfied with high probability.
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3.3.1 Approximation ratio of 2 whenm = O(log n), n → ∞

Whenm = O(log n), we apply the TreeSplit algorithm to the users. Werandomly

divide groups as we go down the tree. We show that all divisions done randomly satisfy

the splitting condition with high probability.

Recall the Random Sampling paradigm, in which a file is not chosen by a user with

probability q. Let m = 2k. If all divisions satisfy the splitting condition in this case,

then the approximation ratio is2 by Thm. 3.3.3. The TreeSplit algorithm is applied on

thesem users. During the algorithm, a total of1+2+22+ . . .+2k−1 = 2k−1 = m−1

groups are divided (2j groups at levelj), as is obvious from Fig. 3.1. We represent

thesem − 1 groups by the setK. We would like the splitting condition to be obeyed

whenever any groupM ∈ K is divided. To this end, we define an event - that the

splitting condition is violated during the division of a groupM ∈ K - and denote it by

AM . We state the following Lemma.

Lemma 3.3.4 The probability of occurrence ofAM when the groupM under consid-

eration has somed users is

P(AM) = 2
n

∑

ℓ=0

(

n

ℓ

)

(1− qd/2)ℓ(qd/2)n−ℓ(1− qd/2)ℓ. (3.2)

Proof We know that groupM hasd users. Now consider a division of thesed users

into two groupsM1 andM2 of d/2 users each. IfM1 andM2 are such thatFM1 ⊆ FM2

or FM2 ⊆ FM1, then the splitting condition is violated and eventAM occurs. Let us

assume thatFM1 ⊆ FM2. Note that(1−qd/2)ℓ(qd/2)n−ℓ is the probability that groupM1

has only someℓ files and

(

n

ℓ

)

is the number of ways of choosing theseℓ files fromn

files inT . Also, (1 − qd/2)ℓ is the probability that groupM2 also contains thoseℓ files

(makingFM2 a superset). Summing over all possibleℓ, and multiplying by2 to factor

in the equivalent case in whichFM2 ⊆ FM1, we get the expression in (3.2).

Note that (3.2) can also be written as:

P(AM) = 2((1− qd/2)2 + qd/2)n = 2(1 + qd − qd/2)n. (3.3)
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As stated earlier, we want to ensure that the splitting condition is met for allM ∈ K.

When the splitting condition is not met for any group inK, we say that anerror has

occurred. Note that the probability of error is the union of the probabilities of allAM ’s,

and can be written as follows:

P(error) = P(
⋃

M∈K

AM) ≤
∑

M∈K

P(AM),

= 2
∑

M∈K

(1 + q|M | − q|M |/2)n, (3.4)

where|M | represents the number of users in groupM . Since the number of terms in the

RHS of 3.4 is|K| = m− 1 < m andmaxM∈K(1 + q|M | − q|M |/2)n occurs at|M | = m

for a sufficiently largem, we get

P(error) ≤ 2m(1 + qm − qm/2)n. (3.5)

We now enforce a constraint on file acquisition. Note that until now, we have only

been concerned with all users obtaining the achievable universeF . But in practice, each

user desires the complete universeT . Before discussing how each user can obtainT ,

we define afile cover.

Definition 4 (File Cover) A group of usersG is said to be a file cover ifFG = T , the

universe of available files.

Lemma 3.3.5 A group ofm users is a file cover ifnqm → 0 asn → ∞.

Proof We consider a suitably defined bad event, that the group ofm usersU is not a

file cover (FU 6= T ). We call this eventD, and note that

P(D) = 1− (1− qm)n ≤ nqm (3.6)

It is clear from (3.6) thatP(D) → 0 asn → ∞ if nqm → 0, so the setU is a file cover

with high probability.

Lemma 3.3.6 If m = c log n, the TreeSplit algorithm has an approximation ratio of2
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to (3.1)provided that the value ofq (or p) can be chosen a-posteriori such that−2/c <

log q < −1/c.

Proof Note that form = c log n, using (3.5) and the identity that1− x < exp(−x),

P(error) < 2c log n exp
(

n(qc logn − q
c logn

2 )
)

,

= 2c log n exp
(

(n
c log q

2 − 1) · n(1+ c log q
2

)
)

. (3.7)

The RHS of (3.7) goes to zero asn → ∞ whenlog q > −2/c, so all random divisions

in the TreeSplit algorithm obey the splitting condition iflog q > −2/c. Furthermore,

from (3.6), we see that for this case,

P(D) ≤ nqc logn (3.8)

P(D) → 0 asn → ∞ providedlog q < −1/c. Therefore, for−2/c < log q < −1/c,

the TreeSplit algorithm ensures that all users obtain the complete universeT if m is a

power of2, which by Thm. 3.3.3, is a 2-approximation for generalm.

We now look at a more general regime, in which the number of users grows linearly

with the number of files.

3.3.2 Approximation ratio of 1 + ǫ for m = O(n)

For m = O(n), we propose thePartition+TreeSplitalgorithm. There are two steps

to the algorithm. In step(i), the users are randomly partitioned into a set of groups

G = {G1, G2, . . .} where each groupGi ∈ G hasw log n users. We would like for

all groupsGi ∈ G to be file covers. In step(ii) , the TreeSplit algorithm with random

divisions is applied to somev log n users in every groupGi ∈ G, wherev log n is a

power of2 closest to but less thanw log n. Letm = αn.

Lemma 3.3.7 If w, v andq are such that−2/v < log q < −2/w andv log n is a power

of 2 closest to but less thanw log n, then the Partition+TreeSplit algorithm ensures that

at least αn
w logn

v log n users obtain the complete universeT .
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Proof In the Partition+TreeSplit algorithm, we would like to avoid errors at both steps

of the algorithm. An errorE1 in step (i) occurs if any groupGi ∈ G is not a file

cover. An errorE2 in step(ii) occurs if any division in the TreeSplit algorithm does not

obey the splitting condition. We are therefore interested in analyzing the probability

P(E1 ∪ E2), which can be written as:

∑

Gi∈G

P(Gi is not a file cover) +
∑

Gi∈G

P(Divisions among

v log n users inGi do not obey the splitting condition). (3.9)

EachGi ∈ G hasw log n = O(log n) users, for which we have already computed the

probability thatGi is not a file cover in (3.8). Similarly, since the term in the second

summation involvesv log n = O(log n) users, we have computed the probability of an

error in division in (3.7). Also note that each summation in (3.9) hasαn/w log n terms,

since there areαn/w log n groups inG. Using (3.7) and (3.8), we see that

P(E1 ∪ E2) <
αn

w log n

(

nqw logn + 2v log ne(n
v log q

2 −1)·n(1+
v log q

2 )

)

. (3.10)

We see that the first term of (3.10) goes to zero whenlog q < −2/w and the second

goes to zero whenlog q > −2/v, so the probability of error in the Partition+TreeSplit

algorithm goes to zero forq such that−2/v < log q < −2/w.

We now look at how many users can obtain the universe via the Partition+TreeSplit

algorithm. We know from (3.10) that ifq is such thatlog q < −2/w, the random

partition ofm users into the set of groupsG ensures that all groups inG are file covers

with high probability. Each group hasw log n users and|G| is equal toαn/w log n. Let

us now try to prune each groupGi ∈ G through the UniquePick algorithm to obtainHi.

Hi can be of2 types:(a) |Hi| > v log n or (b) |Hi| ≤ v log n.

If Hi is of type (a), we know by the definition of the UniquePick algorithm that

it contains more thanv log n users who contain unique files. So we can apply the

Polygon algorithm of Aggarwalet al. (2013) to ensure that more thanv log n users

in Hi obtain the complete universeT . If Hi is of type(b), add users fromGi\Hi so that

|Hi| = v log n. Now, |Hi| = v log n, which is a power of2 and contains the complete

universe. Ifv andq satisfy log q > −2/v, the TreeSplit algorithm can be applied to
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Hi with random divisions to ensure that allv log n users obtainT . So for both types

of groups, at leastv log n users from each group can obtain the complete universeT .

Since there areαn/w log n such groups, we see that at leastαn
w logn

v log n users obtain

the complete universeT

We now consider two cases in Sections 3.3.2 and 3.3.2.

Case i: q chosen a-priori

Lemma 3.3.8 Whenm = αn and q is chosen a-priori, the Partition+TreeSplit algo-

rithm has an approximation ratio of2.

Proof We choosew such thatlog q < −2/w. By Lemma 3.3.7, we know that if we

can choose av such thatv log n is a power of2 andlog q > −2/v, then by the Parti-

tion+TreeSplit algorithm, at leastαn
w logn

v log n users obtain the complete universeT . So

we choosev such thatv log n is the power of2 closest to but less thanw log n. We also

ensure while choosingw thatw log n itself is not a power of2. Note thatv/w > 1/2,

by definition. Therefore, the fraction of all users who obtain the achievable universe is

αn
w logn

v logn
m

= v/w > 1/2.

Case ii: q can be chosen a-posteriori

Lemma 3.3.9 Whenm = αn andq can be chosen a-posteriori, the Partition+TreeSplit

algorithm has an approximation ratio of1 + ǫ1 for some arbitrarily smallǫ1 > 0.

Proof We can now choose all ofw, v andq as we please such that−2/v < log q <

−2/w, and Lemma 3.3.7 assures us that at leastαn
w logn

v log n users obtain the complete

universeT . We first choosev such thatv log n is a power of2. We then choosew

arbitrarily close to but greater thanv (w = v + δ, say). We then chooseq such that

−2/v < log q < −2/w, and this choice is possible because of our choice ofv andw.

Operating with these values ofv, w andq, we see that the fraction of users who finally

obtain the complete universeT is αn
w logn

v logn
m

= v/w ≈ 1.

25



m users

w log n users Set of file coversG

v log n users m
w logn

groups

Figure 3.2: Partition+TreeSplit algorithm whenm = O(n) or O(nz). The users are
first randomly partitioned into a set of groupsG. Each group has size
w log n, and is a file cover with high probability.v log n users from each
group are then chosen by the UniquePick algorithm and the TreeSplit algo-
rithm is applied on them.

3.3.3 Approximation ratio of 1+z
2 + ǫ for m = O(nz), z > 1

The algorithm for this case is still the Partition+TreeSplit algorithm. We recall that it

involves the following: randomly partition the users into groups of sizew log n, and

then perform the TreeSplit algorithm with random divisionson v log n users in each

group. Consequently, we follow an analysis similar to that ofSection 3.3.2.

Lemma 3.3.10 If m = αnz andw, v andq are such that−2/v < log q < −(1 + z)/w

andv log n is a power of2 closest to but less thanw log n, then the Partition+TreeSplit

algorithm ensures that at leastαn
z

w logn
v log n users obtain the complete universeT .

Proof As in Section 3.3.2, we want to avoid errorsE1 andE2 in step(i) and step(ii) of

the algorithm, respectively. In this regime, however,m = αnz. So,

P(E1 ∪ E2) <
αnz

w logn

(

nqw logn + 2v log ne(n
v log q

2 −1)·n(1+
v log q

2 )
)

. (3.11)

Splitting the RHS of (3.11) into two terms, we see that the firstterm goes to zero for

log q < −(1 + z)/w and that the second term goes to zero forlog q > −2/v. So the

probability of error goes to zero asn → ∞ when−2/v < log q < −(1 + z)/w.

As for the number of users who finally obtain the complete universeT , we follow

a logic similar to that of the proof of Lemma 3.3.7. It has beenomitted for the sake of

brevity.
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We now consider the two cases as before.

Lemma 3.3.11 Whenm = αnz for z > 1, andq is chosen a-priori, the Partition+TreeSplit

algorithm has an approximation ratio of1 + z.

Proof We choosew such thatlog q < −(1 + z)/w. We then choose somev such that

v < 2w/1 + z andv log n is a power of2. Note that we can always choosev such that

1/1 + z < v/w < 2/1 + z. We are also assured thatlog q > −2/v. Following the

arguments that we made in Section 3.3.2 but now with Lemma 3.3.10, we can say that

at leastαnz · v
w
> αnz · 1

1+z
users obtain the universe.

Lemma 3.3.12 Whenm = αnz andq can be chosen a-posteriori, the Partition+TreeSplit

algorithm has an approximation ratio of1+z
2

+ ǫ2 for an arbitrarily smallǫ2 > 0.

Proof We start by choosingv such thatv log n is a power of2. We then setw =

1+z
2
v+ δ. Now, we chooseq such that−2/v < log q < −(1+ z)/w, which we know is

possible. So by Lemma 3.3.10, we can now ensure that at leastαnz · v
w

users obtain all

files in the universe. Sincev/w ≈ 2/1 + z, the fraction of users who obtain all files is

1+z
2

+ ǫ2.

In the last 3 sections, we have shown that the TreeSplit and Partition+TreeSplit al-

gorithms are effective for a variety of regimes ofm andn. In the next section, we show

that for allm up to the order ofeo(n), it is highly probable that there exists a sched-

ule which ensures that at least half the users obtain the complete universeT , thereby

showing how beneficial the Random Sampling acquisition paradigm is.

3.3.4 Existence of a schedule such that at least half the users obtain

the universe for anym = O
(

eo(n)
)

We show the existence of a schedule for anym = O
(

eo(n)
)

by considering the splitting

condition in the TreeSplit algorithm. We consider the division of a particular groupG

of d users, and defineEG as the event that all possible divisions ofG into two equal

groups do not obey the splitting condition.
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Without loss of generality, letG = {u1, u2, . . . , ud}. The total number of ways to

divide d users inG into 2 groups withd/2 users each is
(

d
d/2

)

. Let the two groups of

users obtained from theith division be denoted byG1i andG2i, where1 ≤ i ≤
(

d
d/2

)

.

Let G1 , {G1i, 1 ≤ i ≤
(

d
d/2

)

} and similarlyG2 , {G2i, 1 ≤ i ≤
(

d
d/2

)

}.

Without loss of generality, we assumeFG2i
⊆ FG1i

∀ i. Note thatFG = FG2i
∪

FG1i
= FG1i

∀ i. Let FG = {1, 2, . . . , a, a + 1, . . . , a + b}, again without loss of

generality.

Lemma 3.3.13 LetI ,
⋂

M∈G1
M . If EG occurs,|I| = 1.

Proof We prove this by contradiction. Case(i): Suppose|I| > 1; then at least two users

are constrained to always reside together after division. That does not tally with the fact

that we are dividingG in
(

d
d/2

)

ways, which is a contradiction. Case(ii) : Suppose

|I| = 0, it would imply that∃ G1i1 , G1i2 ∈ G1, s.t G1i1 ∩ G1i2 = φ; in that case,G

could have been divided intoG1i1 andG1i2 while obeying the splitting condition. So

EG cannot occur.

According to Lemma 3.3.13, there is one user who is responsible for the eventEG,

whom we call theculprit user. Without loss of generality, let this user beu1. Let

C0
u1

= {1, 2, . . . , a} and defineB , FG\C
0
u1

= {a+ 1, . . . , a+ b}.

Lemma 3.3.14 If EG occurs, any groupG′ of d/2−1 users from{u2, u3, . . . , ud} must

satisfyB ⊆ FG′ .

Proof Consider any groupG′ ⊂ G consistingd/2 − 1 users{ug1 , ug2 , . . . , ugd/2−1
}.

Thesed/2 − 1 users along with useru1 will form a groupG1i ∈ G1 for somei, since

that is one of the possible divisions. Also note thatFG = FG′

⋃

C0
u1. Therefore{a +

1, a+ 2, . . . , a+ b} ⊆ FG′.

Lemma 3.3.15 At leastd/2 users from{u2, u3, . . . , ud} must possess each filefi ∈ B

for EG to occur, and the probability that this happens is less than(2p)
db
2 , whereb = |B|.

28



Proof We prove the first part of the Lemma by contradiction. Supposeless thand/2

users from{u2, u3, . . . , ud} possess some filef0 ∈ B. This implies that at leastd/2− 1

users from{u2, u3, . . . , ud} do not possessf0. Without loss of generality, let users

{u2, u3, . . . , ud/2} not possessf0. Thesed/2 − 1 users will not satisfy Lemma 3.3.14,

which is a contradiction. Thus, each filefi ∈ B must be possessed by at leastd/2 users

from {u2, u3, . . . , ud}.

We now come to the second part of the Lemma. Probability that at leastd/2 users

from {u2, u3, . . . , ud} possess a filef0 is
(

d−1
d/2

)

pd/2. Since each filef0 ∈ B is chosen

independently, probability that at leastd/2 users from{u2, u3, . . . , ud} possess allb (=

|B|) files is
(

(

d−1
d/2

)

pd/2
)b

< (2p)
db
2 .

Lemma 3.3.16P(EG) is less than
(

p + q
(

q′ + p′(2p)d/2
)

)n

, whereq′ = qd−1 and

p′ = 1− q′.

Proof: Let us denote the event in which the culprit useru1 hasa files andFG has

a+ b files byEa,b. We know from Lemma 3.3.15 thatP(EG|Ea,b) < (2p)
db
2 . But

P(EG) =
n

∑

a=0

n−a
∑

b=0

P(EG|Ea,b)P(Ea,b). (3.12)

Note that the probability thatd−1 users do not possess a file isqd−1, denoted byq′, and

P(Ea,b) =

(

n

a

)

paqn−a ×

(

n− a

b

)

(p′)b(q′)n−a−b, (3.13)

Therefore, from (3.12) and (3.13),

P(EG) <

a=n
∑

a=0

b=n−a
∑

b=0

(

n

a

)

paqn−a

(

n− a

b

)

(p′)b(q′)n−a−b(2p)db/2,

=
a=n
∑

a=0

(

n

a

)

paqn−a
(

q′ + p′(2p)d/2
)n−a

,

=
(

p+ q
(

q′ + p′(2p)d/2
)

)n
. (3.14)

Theorem 3.3.17For m = O(exp(n1−ǫ3)) (ǫ3 > 0) andp < 1/2, there exist divisions

obeying the splitting condition for all groups in the TreeSplit algorithm asn → ∞.
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Proof Let K represent the set ofm − 1 groups which are divided in the TreeSplit

algorithm. We say that anerror occurs if∃ G′ ∈ K, for which all divisions do not

satisfy splitting condition.

P(error) ≤
∑

G′∈K

P(EG′) ≤ |K|
(

max
G′∈K

{P(EG′)}
)

(3.15)

From equation (3.14), it is easy to see thatmax{P(EG′)} occursG′ has minimum

number of users, i.e.d = 2, and is equal to
(

p+q
(

q+2p2
)

)n

. Also, |K| = m−1 < m.

Therefore, from equation (3.15), we obtain

P(error) ≤ O
(

exp(n1−ǫ)
) (

p+ q(1− p+ 2p2)
)n

(3.16)

For p < 1/2, the RHS of equation (3.16) tends to zero asn → ∞. This implies that

∀ G′ ∈ K at least one division exists which satisfies the splitting condition.

So the TreeSplit algorithm with some method of division exists with high probability

even form = O
(

eo(n)
)

, and provides a schedule through which at least half the total

number of users obtain the complete universe.

3.4 Simulations

We ran simulations to verify our result from Section 3.3.4. We considered largem

when compared ton. We divided users as in the TreeSplit algorithm, and noted anerror

whenever any one group in the tree was such that all possible divisions violated the

splitting condition. Shown in Fig. 3.3 is a plot of the lowestvalue ofn for a givenm for

which the percentage of error cases was less than1%. Notice that forp = 0.10, even

if there are215 users in the system and only160 files, 99% of cases are such that all

divisions obey the splitting condition, showing that it is very probable that there exists a

schedule through which214 users obtain all160 files even though each user only starts

out with around160× 0.10 = 16 files.
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3.5 Conclusions and Future Work

We presented a random file acquisition paradigm and showed constant approximation

algorithms for a variety of regimes under the give-and-takefile-exchange protocol. We

also showed that it is beneficial for users to acquire files using the Random Sampling

file acquisition paradigm (with smallp, to keep cost low) by showing that there exists

a schedule that ensures at least half the users obtain the universe with high probability.

Future work in this area could involve the study of other file-acquisition paradigms and

comparisons of their performance with respect to the give-and-take protocol. It could

also involve an interesting game theoretic question thrownup by the GT criterion, as to

what are the minimum number of files each node should downloadfrom the server to

ensure that it finally gets all the files that it desires.
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Figure 3.3: Plot for different values ofp of the minimum value ofn for which 99% of
cases are such that there exist divisions for all groups, with log2 m.
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CHAPTER 4

Online algorithms for basestation allocation of users

with fixed data demands and arbitrary arrival times

We have had the least success with this problem among the three we have considered.

Most of these results are exploratory in nature.

4.1 Introduction

In this chapter, we consider the problem of assigning users to basestations, online, in

order to satisfy some objective function. This extends the work of Thangaraj and Vaze

(2013) in the context of basestation allocation.

The problem setup of Thangaraj and Vaze (2013) is as follows.There aren users

andm basestations. Every user-basestation pairi, j has a particular weightwij associ-

ated with it, which signifies the rate of data download that the useri can achieve when

connected to basestationj. After some assignment of users to basestations, if a bases-

tation j has a set of usersUj connected to it, where|Uj| = dj, then the rate achieved

by each useri in Uj is equal towij/dj. This represents theprocessor sharing model.

In Thangaraj and Vaze (2013), the objective function that was considered was sum-rate

maximization, i.e., they were interested in maximizing thesum of rates achieved by

all users after they have been allocated to basestations, keeping in mind the processor

sharing model. They wanted to characterize theonline case, in which users arrive in

a particular order, and they must be assigned to basestations irrevocably without any

knowledge of future arrivals.

The main difference between the work in Thangaraj and Vaze (2013) and previous

load balancing work Azaret al. (1993); Azar (1998); Caragianniset al. (2006) was in

the processor sharing model (load balancing does not have sharing of resources at the



basestation) and the corresponding objective function. Asin most analysis of online

algorithms, Thangaraj and Vaze (2013) was concerned with providing competitive ratio

analyses. The competitive ratio of an online algorithm is a measure of its performance.

The competitive ratio (in a maximization problem) can be defined for both the worst

case and the average case. In the former case, it represents the maximum ratio of the

objective functions of the optimal offline and online algorithms for any incoming order

of the users. The average case, on the other hand, takes a meanof all ratios - one for

each incoming order of users.

A competitive ratio that grows with the parameters of the problem (m, n in this

case) is considered undesirable; an algorithm iscompetitiveif its competitive ratio can

be shown to be a constant. As it turns out, for the problem in Thangaraj and Vaze

(2013), the worst case competitive ratio scales withn for any online algorithm, so they

analysed the problem for the average case competitive ratio. They provided an online

algorithm based on thek-secretary problem that had an average competitive ratio of8,

for arbitrary weights of users to basestations.

The objective function of Thangaraj and Vaze (2013), however is impractical, be-

cause it assumes that the users, once assigned, will continue in the system forever (hence

the maximization of sum rate). In practice, however, users arrive and exit the system,

and it makes more practical sense to address this question with perhaps another, more

relevant objective function.

In this report, we consider models that try and incorporate this very notion, and

analyse their feasibility. We then move on to offline versus online algorithms and pro-

pose some such algorithms. As pointed out before, the natureof this work is mainly

exploratory.

4.2 Preliminaries

The notation is the same as stated in Section 4.1. There arem basestations, represented

by the setB = {b1, b2, . . . , bn}; n users represented by the setU = {u1, u2, . . . , un},

and a weight matrixW with entrieswij. To incorporate the queuing, we first explore a
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trivial extension of the problem considered in Thangaraj and Vaze (2013).

4.2.1 A trivial extension of Thangaraj and Vaze (2013)

• The users arrive in a queue and depart when they have been served by the system.
Define each arrival or departure as anevent.

• Time is slotted as follows. One time slot is set to the smallest duration between
two events. Since we are interested in an online algorithm and the time of oc-
currence of the events is not known a-priori, we set one time slot to an arbitrarily
small duration. This slot duration could also be an additional input to the online
algorithm - an estimation of the smallest duration between events under heavi-
est traffic. By definition, events can only occur either at the beginning or end
of a slot, and not during a slot. Also, a maximum of one user canarrive at the
beginning of any slot.

• Users spend someservice timein the system. The arrival time (slot number) of
userui is represented byAi and his service time bySi.

• Our objective is to assign users irrevocably to basestations in an online fashion
so as to maximize the average rate supported by the system. IfPℓ is the total rate
output of the system (all users at all basestations) in slotℓ, and we consider some
L slots in all, our objective function is represented bymax

∑L
ℓ=1 Pℓ/L.

Two Basestation Model with simplistic queuing

• Let U = {u1, u2, . . . , un}.

• LetB = {b1, b2}.

• Letwi1 = wi2 ∀ i ∈ {1, 2, . . . , n}.

• Let Ai = i and letSi = Ai + k for all usersui. So a user arrives in every slot
and stays fork slots. Note that this implies that there are a total ofn slots to be
averaged over.

Offline Algorithm

We know that the good algorithms in the 2 basestation settingassign the “best"

users to one basestation and all the others to the other basestation. In the same spirit,

we propose the following optimal offline algorithm to our problem.

Let Ug = {ui : ui ∈ U and∀uj, uk ∈ Ug, |j − k| > k,
∑

ui∈Ug
wi1 is maximum.}.

Let Ub = U \ Ug.
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The algorithm itself is simple: assign all users inUg to b1 and all users inUb to b2.

Note that the users inb2 will contribute a very small fraction of the total utility. If the

average rate supported by the offline algorithm is represented byRoff , we see that:

Roff ≥
∑

ui∈Ug

wi1 (4.1)

Online Algorithm

For this, let us split the users into contiguousblocksof k users each.U1 = {u1, u2, . . . , uk},

U2 = {uk+1, uk+2, . . . , u2k} and so on. We now pick the best user in each block by the

secretary algorithm and assign him tob1. All the other users are assigned tob2. Note

the following about this algorithm:

• There are a maximum of two users assigned tob1 at any time.

• A =
∑

j maxui∈Uj
wi1 is an upper bound onRoff . The secretary algorithm’s

competitive ratio will be with respect toA, and becauseA ≥ Roff , the ratio can
be extended to our algorithm.

• The competitive ratio of the overall online algorithm over permutations of blocks
and then of users within each block is therefore given by2 · (n/k) · csec, where
csec is the competitive ratio of the secretary algorithm.

Note that this trivial extension that incorporates queuingprovides a competitive

ratio that scales withn, and so the corresponding online algorithm is not competitive.

Therefore, we propose another practically feasible model.

4.2.2 A New Model

We now consider the following model:

Definition 5 Users come in as before, in a queue. Arrival times are arbitrary. Each

userui now has a constant data demanddi. The user is irrevocably assigned to a

basestation when he arrives, he achieves a certain rate at thebasestation (which varies

as other users enter and leave that basestation), and leaveswhen he has fulfilled his

data demand. Our objective is allocate users so as tominimize the maximum time

spent by any user in the system.
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Assumption 4.2.1 Inter-arrival times follow an exponential distribution. So given that

a user has arrived at timet = 0, the time of arrival of the next user follows the prob-

ability distribution p(t) = λe−λt. Inter-arrival times are independent for all pairs of

consecutive users.

Our objective with Definition 5 and Assumption 4.2.1 is to create a stable queuing

model that is amenable to analysis. However, we show in the next section that because

of our processor sharing constraint, the stability conditions become way too stringent,

and so analyzing an infinite queue is useless.

4.3 Unstable queues!

Consider the problem posed by definition 5 and Assumption 4.2.1. Let the users all

have a constant data demandd = 1. Also, letwij = w ∀ i, j. This is the trivial case of

identical users and identical basestations. Note that an online vs. offline analysis is triv-

ial in this case, since the online algorithm knows exactly what the offline algorithm does

(since users are identical). The competitive ratio is therefore1, and will be achieved by

a simple round-robin algorithm, which assigns userui to basestationbi mod m. We now

analyze how the queue at a particular basestation evolves due to this algorithm.

Let us limit ourselves without loss of generality tob1. Let us denote the users atb1

by ui1 , ui2 and so on. Let the arrival time of useruik betk and let his departure time be

Tk.

The departure time of the first userT1 is now a random variable, and can be ex-

pressed using the equation:

w
t2 − t1

1
+ w

t3 − t2
2

+ w
t4 − t3

3
+ . . .+ w

tk − tk−1

|s|T1

≥ 1 (4.2)

where|s|Tk
represents the number of users in the system (at that basestation) when user

k departs. The above equation is simply one which is written based on the constraint on

data demand.
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In expectation, equation (4.2) becomes

wλm
(1

1
+

1

2
+ . . .+

1

T1/λm

)

≥ 1 (4.3)

The LHS goes as alog, and it is easy to show write a similar expression for a general

useruip , with some gain terms due to the fact that the first few users leave. We will

gloss over the details, but is easy to see that if someO(nǫ)th user exists in the system

beforeui1 leaves, the queue will become unstable, and the objective function we want

to analyse will go to infinity.

So basically, the processor sharing model does not allow forstable queues. In the

next section, will discuss another processor sharing modelin which the stability of the

queue can be preserved.

4.4 Another Variant to ensure queue stability

Let us now consider a different model by which service at the basestation happens.

Definition 6 We will assume a broadcast channel at the basestation, which broadcasts

the files that users need on the channel. Note that if all users at the basestation require

the same file, then the basestation will be able to serve them all at their respective

weights (without division). In general, the rate achievable by userui when connected

to basestationbj is wij/|f |j, where|f |j represents the number of distinct files being

demanded atbj. Users still have a constant data demand as in Definition 5, only the

processor sharing model has changed.

Note that all basestations can serve the files that are being demanded by all users.

It is trivial to see that this case reduces to the previous case when all users come in

demanding unique files. But what if the demand of files followedsome distribution, by

which some files were more popular than others? Wouldn’t thisensure that the number

of distinct files being served at a basestation reduced? We will see that in this section.

Let the probability distribution on the demand of files be onein which picking up

file i is represented byp(i) and1 − p(i) = q(i). Note that users sample from this
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distribution independently. Let us denote using the indicator random variableIki the

event that filei was picked up byk users. Let there be a total ofF files. We can

now write an expression for the random variableXk, the number of distinct files at a

basestation when there arek users assigned to it as

Xk =
F
∑

j=1

Ikj . (4.4)

By the linearity of expectation,

E[Xk] =
F
∑

j=1

E[Ikj ]. (4.5)

Now, if the assignments to basestation happen independently of the files acquired by

the users (bad algorithm), then

E[Xk] =
F
∑

j=1

1− q(j)k. (4.6)

Now as it turns out, using the file distributionp(i) = 2−i with an infinite number of

files returnsXk = O(log k) for the independent allocation algorithm. Note thatE[Xk]

wask in our previous processor sharing model. This new model can keep the queue

stable.

Another thing to be observed is that the files that users acquire introduces another

dimension to the problem concerning online algorithms, because of the ordering of

these files. Even the trivial case of equal weights and data demands is not immediately

obvious, and needs an intelligent online algorithm.

4.5 Some online algorithms

We propose an algorithms for the problem in Definition 5 with arbitrary user arrival

times (without Assumption 4.2.1), and one for Definition 6.

Algorithm 1 : Let the users arrive at arbitrary times. At the arrival of userui, assume
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that he is allocated to basestationbj and evaluate the objective function (minmax service

time) for all the users at that basestation. Assign the user to that basestation in which

the objective function is minimum. This is a sort of globallygreedy algorithm. Based

on the fact that we have not been able to produce a bad case, we conjecture that in the

average case,

Conjecture 4.5.1 Algorithm 1 is within a constant factor of the offline performance for

the problem corresponding to definition 5.

It also seems intuitive that a combination of Algorithm 1 andassigning users to a

basestation already serving the file they demand ought to be optimal for the problem

corresponding to definition 6. In keeping with the tone of therest of this chapter how-

ever, we do not have analytical proofs to support this conjecture, and this is merely to

encourage future work in a variety of possible directions.

4.6 Conclusion

We analysed the problem of online basestation allocation and introduced a few models

to take care of the queuing and departure of users. We proposed online algorithms that

we conjectured to be optimal for these models. We also lookedat how these models

influence queue stability, and found that queues are usuallyunstable in the case of pro-

cessor sharing as defined in Thangaraj and Vaze (2013). We therefore proposed a new

mode of processor sharing that keeps the queues stable for certain conditions. This new

sharing model also throws up its own questions of online versus offline performance,

and we proposed another algorithm for this case as well. Thisproblem still leaves a lot

to be explored in the context of competitive ratios.
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