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ABSTRACT

KEYWORDS: Prefetcher ; Exp3 algorithm; Computer Architecture; Reinforce-

ment Learning; High Performance Processor Design.

This report presents the design of a prefetcher using a Reinforcement Learning Algo-

rithm - Exp3. This prefetcher introduces adaptiveness into the conventional prefetchers

through the RL algorithm. This adaptiveness is essential for improved performance

of the processor. The prefetcher monitors the processor performance by tracking three

metrics accuracy, lateness and cache pollution. The prefetcher adjusts its aggressiveness

at certain intervals during the program execution. The statistics are collected during the

interval and aggressiveness is selected at the of interval, based on the performance of

metrics, using exp3 algorithm. The algorithm drives the prefetcher towards optimal

state selection to achieve high performance.

The prefetcher is tested for PARSEC benchmark suite and found effective in case

of medium granularity workloads. It improved the lateness of benchmarks compared

to FDP but performed worse than FDP in case of pollution because of exploration.

This prefetcher performs better than No prefetcher and Stride Prefetcher for all of the

benchmarks, and is equally good as FDP for most of the benchmarks.
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CHAPTER 1

INTRODUCTION

Processor speed has increased significantly over the past few decades but memory la-

tency has been a major drawback. The rate of increase in the memory speed is much

lesser than the rate at which processor speed is increasing. To compensate this, cache is

used between processor and memory. Cache access takes lesser cycles than the memory

access. But still cache cannot accommodate all the required data at the same time. This

results in cache misses which require access to the memory to get the data. Thus, a

cache miss latency is equivalent to a memory access. In order to improve the perfor-

mance, most useful data must be loaded into the cache. Prefetcher addresses this task by

predicting future trends in data access patterns. A prefetcher is attached to a cache and

monitors the data entering and leaving it. It loads the most useful data, predicted from

aforementioned patterns, into the cache before it is actually accessed by the processor.

But designing a prefetcher with high accuracy is quite challenging because in ad-

dition to predicting the future access it should not replace most accessible data from

cache. An improper design of prefetcher might result in cache pollution and decrease

the performance rather than increasing it. Prefetching aggressively without monitoring

might result in decreasing the performance of the processor. The excessive prefetch-

ing might replace more useful instructions thereby leading to additional cache misses.

Furthermore, it might also lead to usage of bus and memory bandwidth for long time

resulting in increasing the latency of each instruction. An adaptive prefetcher mon-

itors the performance and adjusts its prediction patterns. A few adaptive prefetchers

have been proposed which adjusts its prefetches based on certain metrics of cache. A

feedback directed prefetcher is one such adaptive prefetcher which monitors the perfor-

mance using Accuracy, Lateness and Pollution of cache. It predicts the future accesses

and adjusts prefetch degree based on above parameters. The prefetch degree is the num-

ber of blocks to be prefetched at each iteration. But it uses an intuitive and predefined

process to identify prefetch degree. This project uses a reinforcement algorithm instead



of an intuitive approach. It uses exp3 algorithm to monitor the performance and predict

the trends. This algorithm directs the prefetcher towards the most optimal decision.

Thus it is adaptive and directs towards the optimal performance.

The layout of the report is as follows. Chapter 2 gives an overview of various

prefetching Techniques, the conventional Stride Prefetcher used in this project and

also a brief description on Reinforcement Learning and the Exp3 Algorithm based on

which the prefetcher has been designed. Chapter 3 explains the design of the adaptive

prefetcher using RL algorithm. It also gives a detailed description of hardware imple-

mentation to track the metrics, and employing the exp3 algorithm on the prefetcher

problem. Chapter 4 describes the Simulation Environment used for testing the design

and the analysis of the results. Chapter 5 concludes the report and presents the future

scope of this project.
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CHAPTER 2

BACKGROUND

This chapter gives an overview about prefetchers, exp3 algorithm and other information

required to understand the project work.

2.1 Prefetching Techniques

Prefetching techniques have been employed in the high performance processors to re-

duce the gap between processor and memory latency. Caching brings a small amount of

data from memory closer to the processor whenever it is required. Prefetching in addi-

tion to Caching significantly reduces the gap between memory and processor. Prefetch-

ing can be done in different ways like Software based or Hardware based. Software

Prefetching relies on compiler technology to selectively insert prefetch instructions. In

this method, data will be requested to be prefetched several cycles before the memory

access is actually required. But there is some execution overhead due to extra prefetch

instructions in software prefetching. Hardware based prefetching requires an additional

component attached to the cache. The main advantage through this technique is that

prefetches are handled dynamically at run-time unlike software prefetching which re-

quires compiler intervention. But the disadvantage with hardware prefetching is that it

requires additional hardware and predicting complex memory access patterns is diffi-

cult. Hardware Prefetching in turn can be done in different ways. Popular techniques in-

clude stream prefetching, stride prefetching, tagged prefetching etc. In stream prefetch-

ing, exclusive buffers are used to allocate stream entries which are trained and tracked

to predict access patterns. The stride prefetcher maintains a constant stride by analysing

previous accesses and fetches the future data based on the stride that is maintained. In

this project, hardware prefetching technique with stride prefetcher has been employed.

The following subsection describes the stride prefetching technique in detail that has

been used in the project.



2.1.1 Stride Prefetcher

Stride Prefetching is one of the Hardware Prefetching Techniques used to eliminate

compulsory misses. In this method, the prefetcher maintains a table of stride entries

to keep track of access patterns. An instruction in the entry is associated with a stride

which is the difference between the memory location referenced by load instruction and

the last address referenced by the load. When the same instruction is accessed again,

the block which is at the stride distance from the last address will be prefetched.

The following table illustrates the structure of each entry in the stride table:

Inst. Addr Referenced Addr Stride Confidence

Prog. Counter block addr difference 4

... ... ... ...

As shown above each entry in the table has an instruction address, Referenced ad-

dress, stride entry and confidence. Whenever a prefetcher is notified, it checks if the

current instruction is already present in the table. If it is not present a new entry will be

created for it with a confidence of zero. If there is a match, the difference between the

current address referenced by the instruction and the previous block address from the

entry is computed. This is defined to be the new stride. This stride is compared with the

existing stride in the table. If the new stride matches with the old stride the confidence

of the instruction will be incremented unless it exceeds the maximum confidence limit.

Else, the stride will be updated with new stride and the confidence is reset if it is greater

than a minimum confidence limit. The referenced address will be updated to the current

block address referred by the instruction.

The confidence of each entry is an indicator of the likelihood of access of the blocks

at the stride distance from current referenced address. After updating the stride entry,

the block at reference address + stride is requested to be prefetched. The prediction is

that the block located at the same offset is more likely to be accessed in the near future.

But initiating the prefetch of only the next block might not cover the memory latency

to a great extent. Instead multiple blocks located at the same offset can be prefetched

at the same time. That is the blocks which are located at the same offset until reference

address + N*stride can be fetched. The N is the number of blocks to be prefetched.
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This is called as Prefetch Degree of the Prefetcher.

Maintaining a constant prefetch degree might be useful for some applications but it

might lead to polluting the cache if the degree is too high. Hence, it is highly essential

to monitor the effect of prefetching on the performance and vary the degree accordingly.

The performance can be monitored by keeping track of certain parameters. These pa-

rameters are updated continuously by the prefetcher after certain interval. A few of such

parameters which are considered in the development of this project are illustrated in the

next subsection.

2.1.2 Performance Parameters

The performance can be tracked by using many different parameters. This project uses

three parameters Prefetch Accuracy, Prefetch Lateness and Prefetcher Generated Cache

Pollution. The computation of each of these parameters is clearly illustrated in this

subsection

Prefetch Accuracy

Prefetch Accuracy is a measure of how accurately the prefetcher is able to predict the

future accesses. It gives an idea of the fraction of prefetched lines accessed by the

application before they are replaced. It is defined as the ratio of number of prefetches

used by application before they are replaced (useful prefetches) to the total number of

blocks that are prefetched i.e.,

Prefetch Accuracy =
No. of Useful Prefetches

Total no.of prefetches issued

The higher the accuracy the better the performance of the processor. Poor accu-

racy results in more bandwidth occupancy and might also replace useful prefetch lines

resulting in more misses.

5



Prefetch Lateness

Prefetch Lateness is a measure of the timeliness of the prefetch requests. Though the

prefetch requests are accurate they are not useful unless they are fetched on time. The

prefetch request is said to be late if it is still in the queue when a demand request to

that block is made by the processor. The prefetch lateness is the ratio of number of late

prefetches to the number of prefetches that are accessed by application.

Prefetch Lateness =
No. of Late Prefetches

No. of Useful Prefetches

In general lateness can be reduced by increasing the aggressiveness of the prefetcher.

The highly aggressive prefetcher issues prefetch requests more often. Hence it has

lesser lateness than a conservative prefetcher.

Prefetch Generated Cache Pollution

This parameter is a measure of the pollution created by the prefetcher into the cache.

It is highly difficult to compute the exact pollution incurred by the prefetcher, hence an

estimate of the pollution is computed. It is defined as the ratio of number of demand

misses caused by the prefetcher to the total number of demand misses in the cache.

Cache Pollution =
No. of DemandMisses caused by Prefetcher

Total no.of demand misses

The misses caused by prefetcher are the misses which occur when the prefetch re-

quests replace the required blocks. The higher pollution degrades processor perfor-

mance significantly if not controlled. Besides, it consumes more bandwidth and also

replaces useful data resulting in more misses. Hence it is a very crucial parameter to

monitor the performance.

The value of these parameters is compared to some thresholds and the degree is

updated accordingly. But deciding the optimal degree is slightly tedious task. This task

6



can be simplified by incorporating a reinforcement algorithm in the prefetcher. This

project uses exp3 algorithm to make the decision. This algorithm drives the prefetcher

towards optimal degree without much exploration and exploitation. The next section

describes the multi arm bandit problem, which is required to understand the algorithm,

and the exp3 algorithm in detail.

2.2 Reinforcement Learning Algorithm

Reinforcement Learning is an area of machine learning concerned with how an agent

ought to take actions in an environment to maximise cumulative reward. Reinforce-

ment Learning allows the machine or software agent to learn its behaviour based on

feedback from the environment. This behaviour can be learnt once and for all, or keep

on adapting as time goes by. If the problem is modelled with care, some Reinforcement

Learning algorithms can converge to the global optimum; this is the ideal behaviour

that maximises the reward. As mentioned, there are many different solutions to the

problem. The most popular, however, allow the software agent to select an action that

will maximise the reward in the long term (and not only in the immediate future).

A basic reinforcement learning model consists of:

1. a set of environment states S

2. a set of actions A

3. rules of transitioning between states

4. rules that determine scalar immediate reward of a transition and

5. rules that describe what agent observes

The agent interacts with the environment in discrete time steps t. At each time step,

the agent observes the environment and then an action at is chosen to make a transition

from state st to state st+1. Now the reward corresponding to the transition (st,at,st+1) is

determined. The agent repeats this process at each time step so as to maximize total

reward from all the transitions. At each step the decision is made based on the previous

transitions and the rewards obtained. The agent should consider long term benefits to

7



achieve optimal reward i.e., though the immediate reward is less sometimes agent may

choose that action because of the long term benefits associated with that action.

The following subsections give description about the problem associated with this

project and how reinforcement learning algorithm helps to achieve optimal reward for

the problem.

2.2.1 Multi-arm bandit problem

Multi arm bandit problem is a sequential resource allocation problem concerning with

allocating resources among several alternative projects. These problems are paradigms

of fundamental conflict between allocating resources to projects that yield high imme-

diate reward versus allocating resources to projects that yield low immediate reward

but yield better results in the long term future. In this MAB problem, resources are

allocated to one of the arms which changes its state and thus the player gets a reward

corresponding to that transition, and other arms remain in the same state.

This project is related to a specific case of Multi Arm Bandit problem in which

the gambler must decide which arm to choose among K non-identical slot machines

in a sequence of trails in order to maximize the reward. Initially the gambler has no

knowledge about the rewards of each of the arms. Also, the arms do not follow a

stochastic process to assign the rewards. The rewards are assigned by an adversary

based on the current state of the machine at each trial. Thus this problem is a classical

example of the trade off between exploration and exploitation. The exploration being

the player trying to find out the best arm and exploitation being the gambler playing the

arm believed to give the best trade-off.

The gambler pulls one of the arms at each trial and he gets the pay off pertaining to

that bandit at that instant. The goal is to find the arm that gives best pay-off as early as

possible and gambling on that bandit to achieve maximum reward. The gambler needs

to trade off between exploration and exploitation. If the player plays continuously on

the one arm that he thinks is the best one (exploitation) he may fail to discover the actual

arm that gives the higher reward. But if he spends more time on exploring the bandits

(exploration) to find out the best arm, he may not use the best arm for long time to get

8



higher reward. Hence, this problem is considered to be a classical example of trade-off

between exploration and exploitation. Both should be balanced effectively to get higher

reward without consuming more time.

The following subsection explains the exp3 algorithm used to tackle the gambler

problem of MAB to attain maximum reward.

2.2.2 Exp3 Algorithm

Exp3 stands for Exponential-weight algorithm for Exploration and Exploitation. As

discussed above, the multi-arm bandit problem requires a trade-off between exploration

and exploitation to achieve maximum reward. Exp3 algorithm solves this problem by

using an exponential weighted factor to decide the bandit.

In this algorithm, each bandit is associated with some weight which are updated at

each trial based on the action performed. The action (selection of the arm) is performed

based on the weights associated with each arm at that instant. After performing the

action, a reward is assigned to the player and all the weights are updated. The updated

weights decide which arm to be chosen in the next trial. The weights may be increased

or decreased based on whether the reward obtained is good or bad respectively. The

psuedo code for the algorithm is shown below and is explained in detail in the following

description.

Algorithm 1 Exp3 Algorithm

Parameters: γ ∈ [0, 1]
Initialization: wi(t) = 1 for i = 1, 2, 3, 4....K

Algorithm:
for each t = 1, 2, 3, 4, ....

1: Set pi(t) = (1− γ) wi(t)∑K
j=1 wj(t)

+ γ
K

i = 1, 2, 3, 4, ....K

2: Select it randomly based on p1(t), p2(t), p3(t), .....pK(t)
3: Assign reward xit ∈ [0, 1]
4: for j = 1, 2, 3....K set

x̂j(t) =

{
xj(t)

pj(t)
, if j = it

0, otherwise

wj(t+ 1) = wj(t)exp(
γx̂j(t)

K
)

Initially, all the bandits are assigned a weight of 1. At each instant, the probability
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of choosing a bandit is equal to the fraction of the weight of that bandit among total

weight. But in Step-1, in addition to this a uniform distribution term 1
K

is added to the

probabilities. This is to ensure that the bandits with very less weights are not left out

eventually because they may not not be useful now but might give higher rewards in

the future. This term allows the algorithm to try out all the K bandits and gets good

estimate of rewards. However the dependence on this term can be controlled by tuning

the parameter γ. For γ = 1 the selection is independent of weights and for γ = 0 it

is independent of uniformity. The user can use a γ close to 1 until a good estimate of

rewards is obtained and change it to a value close to 0 after getting the estimate.

After calculating the probabilities, an arm is selected by generating a random num-

ber and comparing with the probabilities. Now a reward for this arm which is in the

range [0, 1] is selected by the adversary. The adversary may not follow a stochastic

process to decide the rewards. The decision may be dependent on the previous bandits

selected, current state etc. A reward vector x̂(t) is maintained to modify the weights.

After obtaining the rewards this vector is updated as shown in Step-4. The selected arm

gets the value xj(t)

pj(t)
and other arms get zero reward. This compensates the reward of

actions that are unlikely to be chosen and guarantees that the expected simulated gain

will be proportional to actual gain of the action i.e., the term xj(t)

pj(t)
increases the chance

of selecting the arms with low probability and high reward. The new weights are cal-

culated by multiplying the old weights with the exponential factor as shown in Step-4.

The scaling factor γ
K

in the exponential term ensures that the proportional rewards lie

in the range [0, 1].

As it can be seen from the above discussion, the exp3 algorithm trades off between

exploration and exploitation through the exponential factor exp(γx̂j(t)
K

). Hence it is

given the name Exponential weighted algorithm for Exploration and Exploitation. The

following chapter explains how the prefetcher problem can be modeled as multi arm

bandit problem and how the exp3 algorithm is used in the design of the prefetcher to

improve processor performance.
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CHAPTER 3

EXP3 PREFETCHER DESIGN

This chapter gives detailed description of the prefetcher design using exp3 algorithm.

It explains how prefetcher problem can be modelled as a multi arm bandit problem and

how exp3 algorithm can be used to improve the efficiency of the prefetcher.

3.1 Exp3 Prefetcher

Exp3 prefetcher is an improvement on the traditional prefetcher which incorporates

adaptiveness in it using exp3 algortihm. In a conventional prefetcher, whenever a cache

miss occurs prefetcher is notified of the miss and then the prefetcher anticipates future

accesses and issues prefetches based on its type. In the exp3 prefetcher, in addition to

that its aggressiveness is varied based on the performance. The duration of process ex-

ecution is divided into intervals. During each interval, the data required to calculate the

parameters is collected and they are updated at the end of each interval. The variations

in these parameters during the interval gives an idea of the performance. The aggres-

siveness is then selected based on whether the current aggressiveness is improving or

decreasing the performance. The selection is done using the RL algorithm Exp3. The

following sections explain the hardware implementation of calculating the parameters

and updating them.

3.2 Calculating the parameters

Three parameters Prefetch Accuracy, Prefetch Lateness and Prefetch generated Cache

Pollution have been used in this prefetcher to estimate the performance. These metrics

are tracked as discussed below:



3.2.1 Prefetch Accuracy

The prefetch accuracy requires two counters useful prefetches and total prefetches is-

sued. A pref bit is added to each block in the L2 Cache which is useful to keep track of

the prefetch requests that are accessed. Whenever a block is inserted into the cache by

a prefetch request the pref bit is set, and it is reset when a demand request replaces this

block. So if a cache hit occurs and the pref bit is set then it implies that the prefetched

block is accessed, therefore the counters useful prefetches and total prefetches issued

are incremented. If the pref bit is not set during a cache hit then it means that the block

is not fetched by the prefetcher, hence only totalprefetches issued is incremented. The

accuracy can be computed by the taking the ratio of the counters useful prefetches and

total prefetches issued.

3.2.2 Prefetch Lateness

The lateness of the prefetch requests is tracked using Miss Status Holding Register

(MSHR) queue. MSHR queue keeps track of all the memory requests. A prefetch re-

quest is late if the request has an MSHR entry while a demand request to the same block

is generated. To keep track of late prefetches the source attribute and the pref-count

bit of MSHR entry are used. Each MSHR entry has a source attribute which depicts

whether the request is prefetcher generated or a demand request. The pref-count bit

indicates whether the entry has been counted as late prefetch or not. When a cache

miss occurs for a demand request, if the MSHR queue contains a fetch request to the

same block that is generated by the prefetcher and its pref-count bit is not set, then the

late total counter is incremented and pref-count bit is set. This counter value is equal to

the total number of prefetch requests that are late. The Lateness value can be obtained

by taking the ratio of late total to useful prefetches.
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3.2.3 Prefetcher generated Cache Pollution

To keep track of cache pollution it is required to store information about all the blocks

dislodged by the prefetcher. But it consumes lot of memory and incurs a heavy over-

head on the processor. Hence, it is very difficult to compute cache pollution accurately.

But it can be fairly estimated by using a Bloom Filter.

Figure 3.1: Bloom Filter

The bloom filter used in this prefetcher contains an bit vector and a XOR gate. The

inputs of the XOR gate are the lower and higher half bits of cache block address as

shown in the above figure. The output of the XOR gate corresponds to the address of

the bit in the bit vector. When cache block is evicted by a prefetch request the bloom

filter is accessed with the block address and the corresponding bit is set in the bit vector.

When a demand request replaces a block in the cache then the bit corresponding to that

address is reset in the bit vector. Whenever a cache miss occurs, the bloom filter is

accessed with the cache block address. If the bit is set, it indicates that the miss is

caused by the prefetcher because of the block eviction. The counter pollution total is

then incremented to keep track of pollution created by the prefetcher. If the bit is reset,

then it means that the miss is caused by a demand request. Hence, the counter cache

demand misses, which keeps track of the misses caused by the demand requests, is

incremented. The metric Cache Pollution can be calculated by taking the ratio of the

pollution total to the cache demand misses.
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3.2.4 Interval based Counter Update

The program excecution time is divided into intervals and each of the counters men-

tioned above will be updated at the end of each interval. The interval can be decided by

setting a threshold to number of instructions executed or the number of misses in the

cache or the number of blocks evicted from the cache etc. In this prefetcher, the num-

ber of blocks evicted has been chosen to be the criteria to decide the end of interval. A

counter eviction count has the value of number of cache blocks evicted in an interval.

This counter is incremented whenever a cache block is evicted. When eviction count

exceeds the threshold Tinterval then the interval has reached its end. At the end of each

interval the above counters are updated by using a feedback based sampling method as

shown in the equation below:

New Counter V alue =
1

2
(Counter value at the beginning of the interval)

+
1

2
(Count during the interval)

This method ensures that the new value takes into account the previous values and

the count during the interval but the count during the interval is given more weight

than the previous values. This is to adapt to time varying behaviour of the program.

At the end of each interval the count during the interval is reset so that it restarts when

the next interval begins. After updating all the counter values the metrics Prefetch

Accuracy, Prefetch Lateness and Prefetcher generated Cache Pollution are computed to

adjust the aggressiveness of the prefetcher.

3.3 Adjusting the Prefetcher aggressiveness using Exp3

This section describes modelling of the prefetcher problem as a multi-arm bandit prob-

lem and the use of Exp3 to adjust aggressiveness.
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3.3.1 Modelling the prefetcher problem as a multi-arm bandit prob-

lem

The real challenge of the prefetcher is to anticipate the future accesses and issue prefetches.

To address this, the cache lines can be considered as the arms of the multi-arm bandit

problem. But since the number of cache blocks in the L2 cache are very high, the com-

putation of weights for those arms introduces high overhead on the processor. Instead of

anticipating the future requests using exp3 it can be done using conventional prefetchers

like stride or stream. But the conventional prefetchers will not adapt to the performance

of the processor. To tackle this issue, aggressiveness can be adjusted by monitoring the

performance. The aggressiveness determines the extent upto which the anticipation can

be done by the prefetcher. Hence, the aggressiveness can be selected using the exp3

algorithm. The arms of the prefetcher problem are considered to be various aggressive-

ness states which prefetcher can attain. Each turn of the player in the multi-arm bandit

problem is equivalent to the selection of aggressiveness at the end of each interval. The

reward assignment in this case does not follow a specific distribution. Instead, it varies

after each interval based on the variation of the parameters computed above. Thus this

problem is equivalent to the adversarial multi-arm bandit problem with aggressiveness

as arms and performance variation as adversary to decide the reward.

3.3.2 Aggressiveness Selection

Now that the prefetcher problem is modelled as a multi-arm bandit problem exp3 algo-

rithm can be used to make optimum decision at each interval. A constant aggressiveness

value throughtout the whole proces might not result in optimal performance because of

process behavioural variations. It is necessary to adjust the aggressiveness according

to the process after each interval in order to maintain good performance. Since Exp3

algorithm uses Reinforcement Learning, it selects the optimal aggressiveness after each

interval.
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Aggressiveness State Prefetch Degree

Very Aggressive 16

Aggressive 8

Middle-of-the-Road 4

Conservative 2

Very Conservative 1

Table 3.1: Aggressiveness States

The aggressiveness states of the prefetcher are divided based on the Prefetch Degree

as shown in the table 3.1. Five different states of aggressiveness are considered in this

case. These states range from a Prefetch Degree of 1 corresponding to Very Conserva-

tive state to a Prefetch Degree of 16 corresponding to Very Aggressive state. Each of

these states is equivalent to each bandit of the multi-arm bandit problem. At the end of

each interval i.e., whenever eviction count exceeds Tinterval threshold, the metrics accu-

ray, lateness and pollution are compared to their corresponding thresholds to determine

whether each of them is high, medium or low. The accuracy is compared with two dif-

ferent thresholds Alow and Ahigh to determine whether the system is at high, medium or

low accuracy state. The lateness and pollution are compared to the thresholds Tlateness

and Tpollution respectively to determine whether the system is late and polluting or not.

Case Prefetch Accuracy Prefetch Lateness Cache Pollution Reward Assignment(State 1, State 2 , State 4, State 8, State 16)

1 High Late Not-Polluting Increasing Reward (0.2,0.4,0.6,0.8,1)

2 High Late Polluting Increasing Reward

3 High Not-Late Not-Polluting Decreasing towards right from current state

4 High Not-Late Polluting Decreasing Reward (1,0.8,0.6,0.4,0.2)

5 Medium Late Not-Polluting Increasing Reward

6 Medium Late Polluting Decreasing Reward

7 Medium Not-Late Not-Polluting Decreasing towards right from current state

8 Medium Not-Late Polluting Decreasing Reward

9 Low Late Not-Polluting Decreasing Reward

10 Low Late Polluting Decreasing Reward

11 Low Not-Late Not-Polluting Decreasing towards left from current state

12 Low Not-Late Polluting Decreasing Reward

Table 3.2: Reward Assignment

After determining the accuracy, lateness and pollution the rewards are assigned to
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each bandit as explained in table 3.2. The rewards are divided uniformly for five bandits

in the range [0, 1] i.e., every state gets a reward from one of 0.2, 0.4, 0.6, 0.8 and 1. The

reward assignment follows four different patterns which are Increasing Reward, De-

creasing Reward, Decreasing Reward from current state towards right and Decreasing

Reward from current state towards left. In the Increasing Reward pattern, the aggressive

state gets the higher reward and vice-versa. This pattern is assigned to the cases which

are likely to improve the performance if aggressiveness is increased. In cases 1 and 2

since accuracy is High and the prefetcher is Late increasing the aggressiveness might

improve the timeliness of the prefetcher without reducing the accuracy, hence they are

assigned with Increasing Reward. Similar argument holds for case 5 in which accracy

is Medium but the prefetcher is Not-Polluting.

The Decreasing Reward is assigned when the prefetcher is creating pollution and

consuming bandwidth unnecessarily. It is evident that in cases 4, 8 and 12 there won’t

be any improvement by increasing the aggressiveness. Since these are Polluting its

better to reduce their degree. Thus, the conservative states are assigned higher reward

and vice-versa. In cases 6 and 10 since the accuracy is not high and they are polluting

they are assigned Decreasing Reward. In case 9, though its Not-Polluting it is assigned

Decreasing Reward pattern to save the bandwidth because the accuracy is Low.

The other two patterns are assigned to cases in which the current state is preferred.

Cases 3, 7 and 11 are not-late and not-polluting hence it is better to remain in the same

state to keep the benefits of timely prefetches. In Decreasing Reward from current

state towards left pattern, the conservative states which are closer to current state get

higher reward compared to other states. Whereas in Decreasing Reward from current

state towards right pattern, the aggressive states which are closer to the current state

get higher reward. These two patterns are clearly depicted for all the possibilities of the

current state in tables 3.3 and 3.4. Case 11 is assigned different pattern from cases 3

and 7, because the accuracy of case 11 is very low and in order to avoid consumption

of more bandwidth its better to assign higher reward to conservative ones closer to the

current state.
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Current State Reward Assignment(1, 2, 4, 8, 16)

1 (1,0.8,0.6,0.4,0.2)

2 (0.6,1,0.8,0.4,0.2)

4 (0.2,0.6,1,0.8,0.4)

8 (0.2,0.4,0.6,1,0.8)

16 (0.2,0.4,0.6,0.8,1)

Table 3.3: Decreasing reward from
center to right

Current State Reward Assignment(1, 2, 4, 8, 16)

1 (1,0.8,0.6,0.4,0.2)

2 (0.8,1,0.6,0.4,0.2)

4 (0.4,0.8,1,0.6,0.2)

8 (0.2,0.4,0.8,1,0.6)

16 (0.2,0.4,0.6,0.8,1)

Table 3.4: Decreasing reward from
center to left

The case is decided by comparing the metrics and the rewards are assigned as per the

patterns discussed in table 3.2 after the end of every interval. This assignment serves

as the adversary for the prefetcher problem. Now the new state i.e., aggressiveness

(Prefetch Degree) is selected by generating a random number and mapping it to the

probability distribution of the arms as discussed in 2.2.2. The reward of the selected

arm is updated according to the pattern assigned to the current case. The rewards of

other states are considered as zero. The new weights are updated according to the

Exp3 algorithm as discussed in the earlier sections. Now, until the end of next interval

prefetcher operates at the newly assigned degree.
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CHAPTER 4

PERFORMANCE STUDY

This chapter deals with the simulation Configuration and the results obtained.

4.1 Simulation Configuration

The simulations are performed using gem5 simulator in full system mode. The prefetcher

is attached to the L2 Cache of ALPHA processor. The effectiveness of Exp3 is exam-

ined for 4-core CMP. The prefetcher is characterized for multi threaded benchmarks

from PARSEC suite. The statistics of each benchmark are collected for sim-medium

input sets. All the results pertain to the Region of Interest (ROI) of simulation for 500

million instructions. The parameter IPC is used to estimate the performance of the pro-

cessor. Each core has an L1 i-cache of size 32kB, 2 way and 2 cycle latency, and an L1

d-cache of size 64kB, 2 way and 2 cycle latency. A common L2 Cache of size 512kB,

8 way and 8 cycle latency is connected to all the cores. All the caches have line size of

64B.

The Exp3 Prefetcher is attached to L2 Cache of the processor. Initially the prefetcher

is set to Middle-of-the-Road Conservative state i.e., Prefetch Degree is initially set to

4. The thresholds Ahigh is set to 0.75, Alow to 0.40, Tlateness to 0.01 and Tpollution is set

to 0.005. These thresholds are determined empirically from simulation results. They

need not be constant, they can be varied during the process execution time based on

processor configuration for improved performance. But these values are considered

to be constant during the simulations of this project. The parameter Tinterval is set to

be equal to half the size of cache blocks i.e., 512 for the current configuration of L2

Cache. Whenever the number of evicted blocks exceeds half the size of cache blocks

the interval is assumed to end and the counters are updated.



4.2 Analysis of Simulation Results

This section presents the performance of the Exp3 Prefetcher compared to three differ-

ent scenarios-No Prefetcher, Stride Prefetcher and FDP Prefetcher. The performance

is characterized using the metric IPC. Fig 4.1 shows the IPC values of different sce-

narios when simulated using PARSEC Benchmarks. Figures 4.3, 4.4 and 4.5 shows

the average values of the metrics accuracy, lateness and cache pollution of each of the

benchmarks in the ROI for FDP and Exp3 prefetchers.

Figure 4.1: Instructions Per Cycle

Clearly Exp3 Prefetcher shows significant improvement over No Prefetcher and

Stride Prefetcher for all the benchmarks. It shows an average improvement of 12.01%

over No Prefetcher and 5.04% over Stride Prefetcher. The best performance of Exp3

Prefetcher is seen in case of freqmine and streamcluster. The Exp3 Prefetcher per-

forms 3.86% and 10.08% better than FDP Prefetcher for freqmine and streamcluster

respectively. Exp3 performs significantly worse compared to FDP Prefetcher in case of

facesim and swaptions. For other benchmarks, FDP and Exp3 are equally good.

Benchmark Granularity FLOPS Locks Locks/FLOPS

blackscholes coarse 1.14 0 0

canneal fine 0.48 34 70.833

facesim coarse 9.1 14541 1597.91

fluidanimate fine 2.49 17771909 7137312.85

freqmine medium 0.0 990025 inf

streamcluster medium 11.6 191 16.466

swaptions coarse 2.62 23 8.778

Table 4.1: Characterization of Benchmarks

Table 4.1 shows the number of FLOPS and locks associated with each benchmark.
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Figure 4.2: Aggressiveness Allocation Figure 4.3: Average Accuracy

Figure 4.4: Average Lateness Figure 4.5: Average Pollution

Fig 4.2 shows the percentage of time during which each state is selected for each bench-

mark. The third column of table 4.1 indicates the number of locks per FLOPS. It is

evident that higher the value of this ratio higher the proportion of time spent in highly

aggressive state and vice-versa. Canneal, Facesim and Fluidanimate remain in aggres-

sive states for longer duration whereas streamcluser and swaptions whose ratio is less

remain in conservative states for longer duration. As the locks per operation increases

there will be more waiting time due to synchronization. Hence large amount of cache

bandwidth is available. This non-utilization of cache bandwidth results in increased

lateness and less pollution. Hence the algorithm assigns very aggressive states to these

benchmarks for longer duration.

Unfortunately the most aggressive and very conservative states (except streamclus-

ter because it is barrier based implemention) shows reduction in the performance. For

most aggressive ones, the excessive prefetching for long time evicts the required blocks

from the cache increasing the cache pollution thus resulting in performance degrada-

tion. These trends for canneal and facesim are evident from the Fig 4.5. In case of
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swaptions, the conservative approach for long time increases the chances of miss in the

cache, thereby leading to more requests in the demand queue which in turn increases

the lateness of prefetch requests as observed in Fig 4.4. This increase in the lateness

attributes the performance degradation. The Conservative prefetching also avoids the

unnecessary evictions from the cache thereby increasing the accuracy without affecting

the pollution, hence the accuracy of the swaptions is high though the performance is

less.

The selected aggressiveness of freqmine and streamcluster is sufficient to incorpo-

rate the required blocks into the cache as these are of medium granularity.The medium

granularity would favour better performance as they require low memory bandwidth at

the caches. This explains the better performance of the medium granularity benchmarks

freqmine and streamcluster.

The lateness of most aggressive and middle-of-the-road benchmarks is better as

the cache lines are burdened with the prefetch traffic and reduce the tendency of the

prefetched data being still backlogged in the buffer.

The most aggressive benchmarks like canneal and facesim have shown high pollu-

tion as expected but the middle-of-the-road conservative ones also perform worse than

FDP in terms of pollution. This is because Exp3 initially explores through all the pos-

sible states, sometimes allowing the low probability ones as well which might result in

evicting the required blocks thereby increasing the pollution.

The trends of accuracy is similar to that of IPC. This is because IPC is a cumulative

effect of the three metrics. Ideally high accuracy, low lateness and low pollution should

result in high IPC. But since the trends of Lateness and Pollution is same across all

the other benchmarks, accuracy is the only deciding factor for IPC. This explains the

similar trends of accuracy and IPC. The Exp3 Prefetcher is found to improve lateness

of almost all the benchmarks but creates pollution overhead because of exploration.

It is aggressive towards high locks/FLOPS ratioed benchmarks and shows improved

performance for medium granularity benchmarks.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This report presented a prefetcher based on Reinforcement Learning Algorithm- Exp3.

This adaptive prefetcher takes into account of the long term benefits unlike other adap-

tive prefetchers which uses limited horizon stochastic control design. The reinforce-

ment learning approach drives the prefetcher towards optimal decision making to achieve

high performance.

The proposed prefetcher shows high performance for workloads with medium gran-

ularity. This prefetcher proves effective to improve the lateness for almost all of the

workloads. But because of the exploration, it adds a little overhead in terms of the

pollution. IPC follows the accuracy trends, as lateness and pollution trends are almost

same across all the benchmarks.

5.2 Future Work

A few changes can be done on the above prefetcher to improve its performance. A

dynamic cache insertion policy can be designed instead of conventional LRU policy

to reduce the pollution incorporated by the prefetcher and also to improve the perfor-

mance. In addition to accuracy, lateness and pollution other metrics like prefetcher

coverage can also be included to get better results. The thresholds of the metrics can

also be dynamically adjusted instead of having deterministic values. The γ value in the

Exp3 algorithm can also be dynamically controlled to choose between uniform selec-

tion and weight based selection of states for improvement in the results. This model

can be adopted and tested on other conventional prefetchers like stream and tagged

prefetchers.
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