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ABSTRACT

There are numerous problems when it comes hardware design. So in order to

solve and optimize these problems we need a high level synthesis of the given

hardware design. We are also motivated to develop an end to end solution that can

generate gate-level netlist directly from the given hardware design. The concept

of using Assignment Decision Diagrams for this high level synthesis of hardware

designs provides us with two major capabilities that are not offered by traditional

representations, which are, the minimization of syntactic variances and the models

for estimating layout quality metrics during synthesis. In addition the diagram

also simplifies many tasks such as allocation and scheduling. So we have tried to

obtain this higher level of abstraction for hardware written in Chisel which is a

Hardware Construction Language designed by U C Berkeley. The language itself

is an embedded language based on Scala. The construction of the internal graph

representation in Chisel is done using runtime reflection. In order to obtain a higher

level design we have leveraged this capability by writing a Scala compiler plugin

that goes through the Scala AST and modifies the AST such that the files generated

by Chisel have ADD modules which represent the higher level synthesis of the

design. We have managed to do this for a few of the main conditional constructs

in Chisel.
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CHAPTER 1

Introduction

There has been a tremendous growth in technology in the past few years and

orders of magnitude increase in the complexity and the size of hardware designs.

This has been primarily driven due to steady growth in the manufacturing process

of the transistors which has led to an exponential increase in the transistor count

and the performance of the devices. There has also been a great increase in the

development of devices that consume lower power and are more efficient.

There are many tools which cater to various stages of a hardware design to

generate the final gate-level netlist. We are trying to develop and end to end solu-

tion that can generate this directly from a given hardware design. Also there are

many other problems that arise due to the increasing complexity of these designs.

One more major problem that arises due to this is the problem of desing variances

based on syntactic variances in the hardware descriptions. Another problem the

issue of testing these complex designs. The aim of this project is try to solve these

problems by generating a higher synthesis level of the given hardware descrip-

tion using something called the Assignment Decision Diagrams or ADD’s [1] and

a new Hardware Construction Language (which is an embedded DSL in Scala)

called Chisel which is being developed by the UCB.

Rest of this report is organized as follows. Chapter 2 gives an overview of

Scala language and the structure of various nodes in it’s AST. Chapter 3 makes the



case for why ADD’s were used as for the higher level synthesis of the Hardware

Design. Chapter 4 gives a detailed description of on the implementation of our

method on some of the constructs in Chisel. Chapter 5 gives a summary of entire

report.
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CHAPTER 2

Scala Syntax Trees

Scala is an acronym for Scalable Language. The language is scalable as a result of

careful integration between the object-oriented and functional language concepts.

Some of the advantages of Scala are that it is object-oriented, functional, seamless

Java interop and the existence of functions as objects. Scala is a very powerful

language with features we feel are important for building circuit generators, is

specifically developed as a base for domain-specific languages, compiles to the

JVM, has a large set of development tools and IDEs, and has a fairly large and

growing user community

There is very little documentation about the Scala Syntax Trees and how to build

them. The figure 2.1 below shows the structure of the Syntax Trees and Type trees in

Scala and their hierarchy. The best way to learn about them is through printing out

the syntax trees for various programs using some compiler flags while compiling

and by looking at the various nodes in the tree using a traverser or transformer

compiler plugin. Some of the most important nodes in the Syntax Tree that are very

useful in the generation of ADDs are listed below. For more information about

the Trees you can go through the Scala compiler source code or through the files

in scala.tools.nsc.ast package especially through NodePrinters.scala or Trees.scala

files.



Figure 2.1: Structures of Boltzmann Machine and Restricted Boltzmann Machine

2.1 ClassDef

This is one of the most important nodes in the AST. It is used to define classes in

the source code. It has four parameters or children, they are mods, name, tparams,

impl. The mods parameter contains information about the scope of the class like

private, public etc, it also contains information about the location of the class in

the source code file. The parameter name contains the name of the class while

tparams contains information about the type of the class. The impl node is of the

type Template node which contains information about the parents of the Class and

the body of the class.

x



2.2 ValDef

This node is used to represent all the declarations of variables both mutable and

immutable. Once again this node consists of mods, name, tpt and rhs as its fields

or children nodes. The mods parameter signifies whether this node is mutable or

immutable (i.e val or var in Scala) and also the scope and location of the node in the

source code. The parameter name consists of the name of the variable described

and tpt is either assigned the inferred type of the variable or meant as a place

holder for the type when it is inferred so as to be bound to the node. The rhs

parameter consists of the value that is being assigned to the variable.

2.3 Apply

This node is used to represent functions in the Scala Syntax Tree and is one of the

most important nodes in our project because Chisel has defined its own functions

for all the operations. It also has its own datatypes and all the functions and

assignments done in Chisel appear as Apply nodes in the AST. It contains two

children nodes fun and args. The fun nodes consists of the function node which is

to be applied on the args node which consists of a list of arguments.

2.4 Select

The Select is also very important as it represents the “.” Operator and some of the

symbols used for functions in the Scala AST. If the name of variable contains a

“.” Then the Select node has two children qual and name to denote the part that

comes before the “.” and name to denote the part that come after “.”. Also various

xi



operators and symbols like “==”, “∨”, “&&” etc are represented using this node

in the AST.

2.5 Block

The block node is usually used to represent blocks of code in the AST. This contains

two children stats and expr. The expr contains the node that has been assigned

the last in the block of code i.e usually the last Apply or ValDef or ClassDef node

in the block. The stats node contains all the other nodes and assignments in that

block of code.

Some other very important nodes in the AST are the Ident, Literal and Constant

nodes which are used to describe the string names or values passed on for the

names of the various classes, methods, values or parameters. Ident and Constant

nodes take just the parameter as a String and the Literal node takes the Constant

node as a parameter to generate a Literal Node which can then may be passed

as argument in the args for an Apply node. Some of the representations of the

various nodes in AST is as follows.

+ Ident(“$plus”)

- Ident(”$minus”)

* Ident(”$times”)

/ Ident(”$div”)

+= Ident(”$plus$eq”)

&& Ident(“$amp$amp”)

xii



‖ Ident(“$bar$bar”)

˜ Ident(“unary $tilde”)

val x = 10 ValDef(Modifiers(0),newTermName(”x”),TypeTree(),Literal(Constant(“10”)))

io.a Select(Ident(”io”),newTermName(”a”))
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CHAPTER 3

Assignment Decision Diagrams

In the following chapter we talk about the importance of ADD’s and how they

help in the high level synthesis of hardware designs.

3.1 Introduction

The primary objective in deriving ADD is to define a representation that is capable

of encapsulating functionality of the described hardware in a unique, precise and

simple manner. These three are very important because of the following reasons

• The uniqueness of the representation will allow synthesis tools to be indepen-

dent of syntactic variances that are present in the input description. Hence,

the ADD has to be able to depict the most parallel representation of a given

description in order to satisfy the uniqueness property.

• In addition to being unique, the representation we are seeking should con-

sists of parts that reflect semantics of the description instead of syntactic

constructs. Each constituent of the presentation should have no direct rela-

tionship with language constructs. We refer to this property as the preciseness

of the representation.

• A simple representation is one that consists of a few number of different

object Types and relationship between each object type. Such representation



can simplify synthesis algorithms because the algorithms have to manage

small number of objects. Since most of the synthesis algorithms are top

ology-graph based, the representation for a synthesis system has to be a form

of topology graph. Thus, a simple representation is, ideally, a graph that

consists of small number of different types of nodes and edges.

The figure below show a sample ADD for a FSMD model.

Figure 3.1: The Assignment Decision Diagram: a) FSMD (Finite State Machine
Datapath) model, b) the ADD

3.2 Advantages of ADD’s

The first task in high-level synthesis is to compile the input description into an

internal representation that is usually in a form of a topological graph. The com-

pilation is usually accomplished by a one-to-one mapping of the input description

into the internal representation. In other words, each language construct in the
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description is realized with a particular topology of nodes in the representation.

Due to the one-to-one correspondence that exist between the constructs of the in-

put descriptions and the schema for the internal representation, these compilers

produce different representations for different descriptions. The internal represen-

tations of two given descriptions could be far different even if the descriptions are

semantically equivalent.

Graphs obtained from the compiler are used by high-level synthesis tasks.

Hence, majority of synthesis algorithms are topological-graph based. These al-

gorithms produce results that are generally depended on topology of the graph.

Meaning, the algorithms would produce different results for graphs with differ-

ent topology, even though those graphs have the same semantics. And since the

compiler produces different graph topologies for different descriptions, as the re-

sult, synthesis tasks would produce different hardware for each of the topology, as

illustrated in Figure below.

Figure 3.2: A general High Level Synthesis approach

ADD can reduce the impact of syntactic variances without unnecessarily in-

creasing the complexity of synthesis tasks by improving the internal representation

and modifying the compiling scheme.
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It is capable of representing different descriptions that have the same semantics

in one unique topology. There are many ways of representing a given description

starting from the most sequential, which is inherent from the description, to the

most parallel representation. ADDs give the most parallel representation to be the

unique representation because it does not contain implicit sequentiality that are

found in the description.

Once we have the ADD we develop a compilation scheme from the input

description into the new representation. The results obtained this kind of transfor-

mation are consistent and dont depend on the ordering or grouping of conditional

branches and/or computations.

Figure 3.3: An overview of the compilation scheme using ADD approach

3.3 ADD representation of the Chisel constructs

This section looks at the ADD representation of two of the main Chisel conditional

constructs. When-Eleswhen This construct is used in the behavioral description

to produce sequential condition-branching effect. The when part is accompanied

by a condition that if evaluates to true will cause the execution of actions in the
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When part, otherwise actions in the elsewhen part are executed if the condition

accompanying the elsewhen construct evaluates to true. For example, consider

the following sample of code,

1 when (C == 0010) {

2 A := B + D

3 } . elsewhen (C != 0010) {

4 A := B − D

5 }

The corresponding ADD representation of this piece of code is as follows.

Figure 3.4: An example of the ADD representation of the when-elsewhen construct

Switch Similar to the when-elsewhen construct, the Switch construct provides

multiway branching capability to the sequential description. Actions in each

branch is executed if its companion evaluates to true.
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The parallel representation of the Switch construct requires simultaneous eval-

uation of conditions and execution of operations in each branches of the Switch.

For example consider the following switch statement.

1 switch (C + E )

2 {

3 i s ( 0 0 0 1 ) { A = 0100 ; }

4 i s ( 0 1 0 1 ) { A = 1111 ; }

5 i s ( 1 0 0 1 ) { A = 0110 ; }

6 }

The corresponding ADD representation of this piece of code is as follows.

Figure 3.5: An example of the ADD representation of the switch construct

xix



CHAPTER 4

Scala Compiler Plugin

This chapter describes the process of converting the given hardware description

to a higher representation level using ADD’s

4.1 Introduction

To overcome the challenges in complexity and the increasing size of hardware

designs we chose the Chisel Hardware Construction Language which is being de-

veloped by U C Berkeley which was primarily designed with goal of Hardware

Construction rather than other traditional Hardware Design Languages which pri-

marily emerged for testing the Hardware Designs. Because the semantics of these

languages are based around simulation, synthesizable designs must be inferred

from a subset of the language, complicating tool development and designer edu-

cation.

Chisel supports advanced hardware design using highly parameterized generators

and layered domain-specific hardware languages. It has the following advantages.

• Hardware construction language (not C to Gates)

• Embedded in the Scala programming language

• Algebraic construction and wiring

• Abstract data types and interfaces



• Bulk connections

• Hierarchical + object oriented + functional construction

• Highly parameterizable using metaprogramming in Scala

• Supports layering of domain specific languages

• Sizeable standard library including floating-point units

• Multiple clock domains

• Generates high-speed C++-based cycle-accurate software simulator

• Generates low-level Verilog designed to pass on to standard ASIC or FPGA

tools

In Chisel all the Datatypes are defined separately from Scala’s internal Datatypes.

The functions operating on these Datatypes are also defined by overriding the de-

fault functions. They also use their own constructs for every definition. As a result

of this we observed that all their methods were just functions that were defined

separately. The language itself works at runtime using reflection to generate the

intermediate graph which is then used to create the Verilog or C++ descriptions

of the hardware. But we didn’t want to lose any of the behavioural information

regarding the hardware description and hence we wrote a compiler plugin that

goes through the AST to generate ADD representations of the code.

Scala has a particular format for writing a compiler plugin which is described

in their site on how to create and initiate a compiler phase and which stage the

plugin can run after by setting some of the parameters in the Singleton created

by extending the PluginComponent class described internally in Scala. Also since
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we are trying to transform the AST we need to extend this singleton with the trait

Transformer. This is very important as if we dont then the Syntax Tree returned

by us will not be actually replaced with the original and given to the remaining

phases of the compiler. Also one more thing that seems to happen is that no mat-

ter where you set your compiler phase to run either after the namer phase (2nd

phase in the compiler which resolves names, attaches symbols to named trees),

the packageobjects phase (3rd phase in the compiler which loads package objects)

and the typer phase (4th phase in the compiler that types the trees i.e infer and

determines the types of all the objects present in the AST) the compiler phase only

seems to run after the typer phase. The different phases of the compiler can be

seen by using the Xshow-phases Ydebug flags while compilation of the code.

In our case we decided to run the compiler after the parser phase where we

dont have to provide information about the types of the objects yet and providing

just placeholders for them in the code is enough. Also the tree generated at this

stage is sufficient in determining all the constructs in Chisel because Chisel has

its own Datatypes and all the operations used by this Datatype are just separately

defined functions. Apart from that all the language constructs of Chisel are also

defined as separate functions in the Chisel library. Hence information about all the

Datatypes and Constructs of the language can be inferred from the tree generated

at this point of time as they it doesnt use any first order types or functions used by

the Scala language they just appear as individual functions in the AST.

We leverage this to generate a list of all the conditional assignments for various

nodes (i.e the output nodes) in the AST.
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4.2 Traversing the AST

The singleton which extends Transform trait in the plugin overrides the transform

function of the trait. This function is called recursively for all the nodes in the AST

by the compiler. Inside this function we check if the node is of the type ClassDef

as all modules in Chisel are Scala classes which extend the parent class Module.

So we also check that the parents of this node contains Module. Once we have the

right node we go through all the children in the body of the ClassDef child Tem-

plate node (this consists of the body of the node and also the parents). Whenever

we come across one of the Chisel constructs of when-elsewhen, otherwise and the

switch constructs in the AST which exist as Apply nodes in the AST we look at the

condition and the body of these nodes. Also we start storing the variables that are

being assigned at this level in a hash table by checking if the Select node which is

the child node of the apply node which we are looking into consists of the “:=”

operator in the name child.

Since the when-elsewhen-otherwise construct is also appears entirely as one

single Apply node we travel recursively through the Apply nodes that are present

in the children of the template block of the ClassDef node. The otherwise node is

in the name part of the Select node which is in turn a part of the fun block of the

Apply node that carries out the function of the otherwise block. The args part of

that Apply node contain the body of the otherwise node i.e assignments that are

made inside this block.
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Similarly when it comes to the elsewhen construct, it also appears in the name

part of the Select node, which in turn is a part of the fun node of the parent Apply

node which in turn is again part of the fun node of another parent Apply node.

The grandparent Apply node contains the args parameter that contains the actual

body of the elsewhen construct i.e the assignments that are made if this condition

actually holds. The parent Apply block contains the args parameter that contains

the condition that this elsewhen block is evaluating against.

The when construct, appears in the fun part of the parent Apply block as an

Ident block in the AST. The parent Apply is again entirely part of the fun block of

another Apply block. The grandparent Apply node of the when construct similar

to the elsewhen construct and contains the body of the actual assignments of that

the when block runs of correct evaluation. Also the part Apply block is similar to

the elsewhen case in that it’s args also contain the condition which the when block

is evaluating against. This is a sample of the Apply node which is a child node

of the ClassDef node that consists of one when, two elsewhen and the otherwise

constructs.
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1 Apply (

2 when( io . opcode . $eq$eq$eq ( UInt ( 0 ) ) ) ( io . output . $colon$eq ( io . a . $plus (

io . b ) ) ) . elsewhen ( io . opcode . $eq$eq$eq ( UInt ( 1 ) ) . u n a r y $ t i l d e ) ( io .

output . $colon$eq ( io . b . $minus ( io . b ) ) ) . elsewhen ( io . opcode .

$eq$eq$eq ( UInt ( 2 ) ) ) ( io . output . $colon$eq ( io . a ) ) . ” otherwise ”

3 Apply (

4 ” io ” . ” output ” . ” $colon$eq ”

5 ” io ” . ” b”

6 )

7 )

Since these constructs are not present as individual nodes and exist together we

recursively iterate through them and at the same time store the conditions and the

arguments these nodes are being assigned in these blocks and add the additional

conditions and assignments these nodes have.

To account for the case of nested constructs we have to store the conditions at least

up to that level. We do this by passing the parentCondition variable recursively

while parsing the graph. Also we need to pass the new condition assigned only

to the args of the grandparent nodes in the case of when and elsewhen nodes and

the parent node in the case of the otherwise node.

4.3 Tranforming the AST

Once we have all the available nodes in the that have been assigned values inside

the class using “:=” which is the operator used specifically in Chisel to assign

values we try to transform the AST.
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Firstly the template calls the pretransform function in the overridden transform

function of the internal Scala Transformer trait, then the superClass implemen-

tation and finally the postTransform function on all the tree nodes generated for

the given source file. So when we have a new class definition that’s actually a

module we store a list of conditions and assignments for those conditions for var-

ious variables in the code. Whatever Tree the the posttransform takes as input

will be substituted with the output Tree that it actually returns. This is how the

transformers class works.

The scala AST is immutable and so change the AST we need to use one of the

internal functions provided in the compiler called treeCopy.

4.3.1 treeCopy

This is a very important function in the compiler that helps us transform the AST’s

of the source code which are immutable. The way it works depends on the node

that you want to replace. For instance in the case of a ClassDef node then we call

the treeCopy.ClassDef function which takes in 5 arguments in this case. The first

argument in the old ClassDef node you’re trying to replace. The remaining four

arguments are the Children of the ClassDef node (i.e mods, name, tparams, impl)

that the new ClassDef node is made up of.

Similarly if you want to replace the ValDef then you call the treeCopy.ValDef

funtion which similar the above function takes in 5 arguments. The first argument

is the original node that you want to replace, and the remaining are the modifiers,

the name, the inferred type of the class or a placeholder for it and the rhs value
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that’s actually being assigned to the node.

4.3.2 newTypeName

Also once we have the list of conditions and assignments for the various variables

in the code we use the treeCopy functions and define the ValDef node for the

initialization of the corresponding ADD modules from the ADD library for these

Chisel constructs written in Scala by Pavan. But it’s very important to note that

the scala AST is not being able to recognize the Class name if just passed as an

Ident or newTerm in the AST. The compiler seems to think that this is just another

variable in the AST and throws up an error when it fails to find it. So we must use

the newTypeName function defined inside the Scala compiler to initialize classes

defined outside. The following is a sample implementation of this function.

1 c l a s s A {

2 p r i n t l n (” Hello ” ) ;

3 }

4 o b j e c t Avi {

5 def main ( args : Array [ S t r i n g ] ) {

6 var t = ValDef ( Modif iers ( 0 ) ,newTermName(” t e s t ” ) , TypeTree ( ) ,

Apply (New( Ident (newTypeName(”A”) ) ) ,newTermName(”< i n i t >”) ) ) ;

7 }

8 }

We can pass empty modifiers since we don’t want to set anything regarding

the scope and the default scope assigned is public, The function newTermName is

also very important in describing TermSymbols in the Scala AST which how all the

other symbols which are not Classes, methods, keywords or types are described.
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So we use it to create a termSymbol for the name of the value in AST so that it

can recognize it as a value and add it to the symbol table for evaluation during the

subsequent phases. The tpt value at the parser phase can be empty as the inferred

type is attached here in the typer phase of the compiler. Hence we just initialize an

emty TypeTree(). The rhs value in this case is a new instance of the class A. Hence

we use the New node which describes the new keyword in the AST and as you

can see since the class name is given to the newTypeName so that the compiler

can correctly map that it’s a type or class in the subsequent phases and not just

another variable.

So once we have the ADD library that has the equivalent representation of these

constructs to their respective modules we can initialize the right classes by creating

appropriate nodes for them in the AST. Also we can then set the conditions and

arguments as inputs and outputs for them by creating apply nodes which make

use of the “:=” operator used in Scala.
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CHAPTER 5

Summary, Conclusions and Future Work

We have tried to build an end to end solution that generates a gate level netlist from

the given hardware description and uses high level synthesis using Assignment

Decision Diagrams so as to overcome some of the challenges posed due to the

increasing complexity and variety of designs. The project is still in a early stage.

We have currently successfully maped the when, elsewhen, otherwise and switch

constructs in the Chisel language which are the major conditional constructs.

The plugin was tested on sample Chisel codes which generated Verilog both

before and after transformation. The functional integrity of the code was verified

using Formal Pro.

Once we have an equivalent graph of all the constructs in the Chisel language

like support for “for” and the “while” loops in the ADD library then we can

directly generate an LUT representation of these various structures in the library

and the various operators used in Chisel. Then these can be used to generate a gate

level netlist for the entire representation. This is an implementation of the method

described in the Section 3.2. Also you can optimize the logic [2] and generate

automated test vectors for this representation mentioned in [3] and in [4].
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