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                                                         ABSTRACT 

 

 
As the size of electric power systems are increasing, the techniques to protect, monitor 

and control them are becoming more sophisticated. Government, utilities and various 

organizations are striving to have a more reliable power grid. Various research projects 

are working to minimize risks on the grid. One of the goals of this research is to discuss 

a robust and accurate state estimation (SE) of the power grid. Utilities are encouraging 

teams to change the conventional way of state estimation to real time state estimation. 

Currently most of the utilities use traditional centralized SE algorithms for transmission 

systems. 

 

 

Although the traditional methods have been enhanced with advancement in 

technologies, including PMUs, most of these advances have remained localized with 

individual utility state estimation. There is an opportunity to establish a coordinated SE 

approach integration using PMU data across a system, including multiple utilities and 

this is using Distributed State Estimation (DSE). This coordination will minimize 

cascading effects on the power system. DSE could be one of the best options to 

minimize the required communication time and to provide accurate data to the 

operators. This project will introduce DSE techniques with the help of PMU data for a 

system snapshot. The proposed DSE algorithm will split the traditional central state 

estimation into multiple local state estimations and show how to reduce calculation 

time compared with centralized state estimation. Additionally these techniques can be 

implemented in micro-grid or islanded system. 
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CHAPTER 1 
 

                                             
INTRODUCTION 

 

 
Traditional State Estimation Techniques 

     

    It is often taken for granted that at a flick of a switch, there will always be a reliable 

and uninterrupted source of electrical power. This was not the case, however, during the 

Northeast American power blackout of 2003 which left over 50 million consumers 

without power for more than 48 hours. The blackout claimed 10 lives and caused 

countless injuries, while also totaling an economic loss of approximately 6 billion 

dollars. The Northeast blackout ranks as the largest blackout faced by the North 

American people and the seventh largest on a worldwide scale 

 

In the aftermath of the blackout, the IEEE Power Engineering Society set up a 

committee to understand the major causes of the system failure and provide 

recommendations for preventing blackouts in the future [1]. It was found that the 

starting point of the power outage was an incidental contact between a major high 

voltage transmission line and unmaintained tree branches which had grown beyond 

municipal city limits. The contact caused the line to fault. System operators of the EPG 

are usually notified of such abnormal events by a locally installed Energy Management 

System (EMS). In particular, the EMS provides a tool termed as State Estimation (SE), 

which continually monitors the state and security of the grid. However, at the time of the 

incident, the SE module of the EMS was inactive due to a software bug and thus the 

information of the faulted line was not relayed to the system operator. If a robust, 

efficient and accurate state estimator was in place, the damage caused by the blackout 

could have been greatly limited. 

 

Furthermore, the infrastructure of the EPG has a number of fundamental issues which 

include: fossil fuel based power plants which emit massive carbon emissions into the 



9 
 

atmosphere, ageing technology which will soon not be able to keep up with increasing  

 

power demand, as well as a centralized, hierarchical infrastructure, which does not align 

well with the current deregulated electricity market sector. Driven by the urgent need to 

develop cheaper, cleaner, efficient and sustainable electric power grids, the electric 

power industry is currently undergoing a profound paradigm change towards a smarter 

grid setup. A smart grid represents a vision for digital upgrades of electric power 

transmission and distribution. The key to the smart grid utilization is enabling advanced 

control, communication, computing and monitoring technologies for shuttling numerous 

amounts of information back and forth between the electric utility sector and its 

customers. The distributed nature of restructured power systems and the new 

applications of monitoring and control techniques introduce a different set of indices for 

measuring the reliability of electric power systems. 

 

1.1  OBJECTIVE AND SCOPE OF THE PROJECT 

 

   The focus of this thesis is to discuss the background information on the topic of state 

estimation and PMUs. Then it is, followed by the presentation of the traditional state 

estimation and the system state estimation with and without PMU. It continues with the 

discussion of distributed state estimation utilizing phasor measurements to obtain system 

snapshot, and finally conclude by providing a summary of the report 

 

1.2 THESIS STRUCTURE 

 

Chapter 2 presents the mathematical formulation of the algorithm employed by 

traditional state estimation techniques. It explores system component modeling, 

maximum likelihood estimation, weighted least squares (WLS) estimation (including the 

WLS algorithm and matrix formulation), and a brief discussion concerning statistical 

robustness of the weighted least squares estimator. 

 

Chapter 3 will discuss the application of PMUs in state estimation. It will present some 

reasons for the paradigm change from traditional state estimation to linear methods 

using the PMU data. 
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Chapter 4  will represent the body of the project research and will show the benefits of  

Distributed state estimation over traditional state estimation. It will include the use of 

phasor measurement units to optimize the distributed state estimation, and cover how 

DSE can be applied to provide a bulk power system snapshot. And finally a summary of 

numerical test results and conclusion are provided. 
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CHAPTER 2 

 

 

TRADITIONAL STATE ESTIMATION 
 

 

State estimation is the process of computing a state variable of a system from known 

measurements of a system. In power systems, state estimation refers to the collection of 

enough measurements from the buses around the power system and computing a state 

vector of the voltage at each observed bus. Although no breakthroughs in the 

fundamental concept of state estimation have occurred, the state estimator analysis has 

improved a lot over the past few years. The first step is to collect the non-linear 

measurements and then perform iteration to evaluate the close value of the state variable. 

This chapter presents the mathematical basis for traditional state estimation techniques. 

2.1 Traditional State Estimation Techniques 

   The power system state parameters under consideration are real power flow, reactive 

power flow, current injections, voltages, resistance, reactance, and shunt susceptance    

[2].  Field measurements need to be sent periodically into the control center over a 

SCADA network in traditional state estimation. The real system and the model should 

be closely related to each other. To achieve this, careful construction of transmission 

line parameter and physical system model is required. The rest of this chapter will 

present how to construct the system model in applying traditional state estimation. 

2.2 Model Design 

In power flow analysis the general parameters of importance are transmission line, 

transformers, shunt capacitors or reactors. Since state estimation calculation in the 

power system is the same into the power flow calculation, the parameters used in 

power flow are also used in state estimation calculations [13]. Knowledge of the 

overall topological structure of the power system network is essential in analyzing state 

estimation of the wide area network. 

 

 



12 
 

 

2.2.1.  Transmission Line Component Modeling 

 

   The two-port π-model, equivalent of the transmission line, is used for analysis of state 

estimation purposes. The model, in Fig 2.1, has four parameters and is widely used in 

power flow calculation and most state estimation techniques. 

 

                                         Fig 2.1 Two-port π-model 

In this two port π-model, the losses in the transmission line and the energy stored 

around the conductors as a magnetic field and line charging are represented by 

resistance, inductor models and shunt impedance respectively.All the models 

parameters are in per unit. 

2.2.2 Transformer Modeling 

Below figure shows a transformer Branch model 

                                         Fig 2.2 Transformer Model 
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As can be seen the transformer has series impedance and shunt impedance. The real 

and imaginary parts of the shut impedance are due to eddy current losses and hysteresis 

losses respectively. The inductance is produced from the way the conductors are 

arranged in a coil and the resistance represents the real losses in the coils. The 

transmission line and transformer are connected through at their ends with other parts 

of the network. Tap changing transformer, Fig 2.3., is modeled using series impedance 

in series with the transformer model. 

                                   Fig 2.3 Tap Changing Transformer 

 

2.2.3 Shunt Capacitor and Reactor Modeling 

 
   Modeling of other parameters is crucial to achieve a reliable and controllable power 

system. These parameters are shunt capacitors and reactors. They are used as reactive 

power backups and voltage control. They are installed at specific buses which 

significantly impact the power flow [2]. 

 

                                   Fig 2.4 Shunt capacitor and reactor 
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2.3 The Bus-Admittance Matrix 

 

   To build the network model, transmission line series and shunt impedance, transformer 

impedance, and shunt capacitors and reactors should be defined. Then they can be 

combined together to construct a model of the system. The model is usually named as the 

admittance matrix or the Y-Bus of the power system. Traditionally, a Y-Bus matrix is 

used because of its advantage over an impedance matrix. The Y-Bus takes the following 

form: 

 

I = [

i1
i2
⋮
in

] = [

Y11

Y21

Y31

YN1

Y12 ⋯
Y22 ⋯
Y32 ⋱
YN2 ⋯

Y1N

Y2N

⋮
YNN

] [

v1

v2

⋮
vN

] = Y ∗ V 

 

To construct the admittance matrix usually Kirchoff’s current law is used.  The 

𝑖𝑖𝑡ℎelement of the admittance matrix is the sum of the admittances of all of the lines 

connected to bus i and the   element of the admittance matrix is the negative of the 

admittance between bus i and bus j [2]. 

 

 

2.4 Weighted Least Squares State Estimation Algorithm 

 
As mentioned in the earlier sections power system state estimators use a set of 

redundant measurements taken from the power system to determine the closest system 

state for the given information and assumptions. These measurements help to get the 

best estimation through multiple iterations. The state estimator becomes a weighted 

least squares estimator with the inclusion of the measurement error covariance matrix. 

The measurement error covariance is used to weight the accuracy of each of the 

measurements. The mathematical formulation for the WLS estimator is expressed in 

several texts and in [2, 4, and 5]. Let’s assume a measurement vector denoted by z 

containing ‘m’ number of measurements and a state vector denoted by ‘x’ containing 

‘n’ number of state variables. 
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[z] =

[
 
 
 
 
z1

z2
z3

⋮
zm]

 
 
 
 

                     [x] =

[
 
 
 
 
x1

x2
x3

⋮
xn]

 
 
 
 

                                       (2.7) 

 

The state vector will be organized such that the voltage phase angles will be listed first, 

followed by the voltage phase angles as shown below 

 

𝑥 = (𝜃2 𝜃3 ⋯ 𝜃𝑁 |𝑉1| |𝑉2| ⋯ |𝑉𝑁|)  

  

Usually, traditional state estimation techniques use non-linear functions of the system 

state vector measurements. The vector forms of these functions are 

 

[h(x)] =

[
 
 
 
 
h1(x1 x2 x3 ⋯x4)
h2(x1 x2 x3 ⋯x4)
h3(x1 x2 x3 ⋯x4)

⋮
hm(x1 x2 x3 ⋯x4)]

 
 
 
 

                                           (2.8) 

 

Where h(x) is a measurement function. Each measurement has its own unknown 

error′𝑒′.  The measurement errors, shown in Eq. (2.9) are assumed to be independent 

of one another and have an expected value of zero. 

 

[𝑒] =

[
 
 
 
 
𝑒1
𝑒2
𝑒3

⋮
𝑒𝑚]

 
 
 
 

                                                                 (2.9) 

 
The state equation using non-linear functions can be written 
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[z] = [h(x)] + [e]                                                        (2.10) 

 
From the previous section, the solution to the state estimation problem can be 

formulated as a minimization of following objective function. 

 

J(x) =
∑ (zi − hi(x))

2m
i=1

Rii
⁄                                           (2.11) 

Where ′𝑅′ is the covariance matrix of the measurement errors and is diagonal in 

structure. This represents the summation of the squares of the measurement residuals 

weighted by their respective measurement error covariance. This can be redefined as- 

 

J(x) = [z − h(x)]TR−1[z − h(x)]                                   (2.12) 

 

To find the minimization of this objective function the derivative should be set to zero. 

The derivative of the objective function is represented by 𝑔(𝑥). 

 

g(x) =
∂J(x)

∂x
= −[

∂h(x)

∂x
]
T
R−1[Z − h(x)] = 0 (2.13) 

Let 

H(x) = [
∂h(x)

∂x
]                                                        (2.14) 

Where H(x), is called the measurement Jacobian matrix. Ignoring the higher order 

terms of the Taylor series expansion of the derivative of the objective functions yields 

an iterative solution known as the Gauss-Newton method. 

 

𝐺(𝑥𝑘) =
𝜕𝑔(𝑥𝑘)

𝜕𝑥
= 𝐻𝑇(𝑥𝑘). 𝑅−1. 𝐻(𝑥𝑘) 

                          𝑔(𝑥𝑘) = −𝐻𝑇(𝑥𝑘). 𝑅−1. (𝑧 − ℎ(𝑥)) 

                     [𝐺(𝑥𝑘)]∆ 𝑥𝑘+1 = 𝐻𝑇(𝑥𝑘). 𝑅−1. [𝑧 − ℎ(𝑥𝑘)]         (2.15)                                         

∆𝑥𝑘+1 = 𝑥𝑘+1 − 𝑥𝑘 
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𝑥𝑘+1 = 𝑥𝑘 − [𝐺(𝑥𝑘 )]−1. 𝑔(𝑥𝑘) 

𝒙𝒌+𝟏 = 𝒙𝒌 + [[𝑯(𝒙𝒌)]𝑻𝑹−𝟏[𝑯(𝒙𝒌)]]−𝟏 [[𝑯(𝒙𝒌)]
𝑻
𝑹−𝟏[𝒛 − 𝒉(𝒙𝒌)]] 

 

 From the defined system models such as branch parameters, network topology and 

measurement locations, the measurement function and measurement Jacobian can be 

built.  We know that the only information required to iteratively solve this optimization 

is the covariance matrix of measurement errors, R, and the measurement function, 

h(x).The error covariance matrix should also be constructed. In the first iteration of the 

optimization the measurement function and the measurement Jacobian should be 

evaluated at flat start. The reason of these values is that before we start any calculation 

slack bus with these values should be selected and all the other buses should be 

referenced to that bus. These values are the ideal values in power system power flow 

calculation. In combination with the measurements and results from the initial 

iterations, the next iteration of the state vector can be calculated until the required 

solution is obtained; finally the state of the system is determined. The flow chart of the 

iterative algorithm for WLS state estimation is shown in Fig 2.6. Initially set the 

iteration counter k=0, define the convergence tolerance e, and the iteration limit   𝑘𝑙𝑖𝑚𝑖𝑡  

values.  If k >  𝑘𝑙𝑖𝑚𝑖𝑡 then- terminate the iterations. Calculate the measurement function 

ℎ(𝑥𝑘) the measurement Jacobian 𝐻(𝑥𝑘), and gain matrix 𝐺(𝑥𝑘) = 𝐻𝑇(𝑥𝑘)𝑅−1𝐻(𝑥𝑘), 

then solve ∆𝑥𝑘 from Equation 2.15. Then 𝑖𝑓 |𝛻𝑥𝑘| > 𝑒, then compute till 𝑘 < 𝑘𝑙𝑖𝑚𝑖𝑡 

else, stop. Algorithm is converged to the required solution. 

 

2.5 Power System Measurement Functions 

 

The measurements in the power system include real and reactive power bus injections 

and flows, line current flow magnitude and bus voltage magnitudes. The two-port π-

model is used to construct equations that relate the state vector measurement. The real 

and reactive injection powers to bus  𝑖 are 𝑃𝑖 and  𝑄𝑖 , and are computed as follows: 
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𝑃𝑖 = 𝑣𝑖 ∑ 𝑣𝑗
𝑁
𝑗+1 (𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)                                         (2.16) 

𝑄𝑖 = 𝑣𝑖 ∑ 𝑣𝑗
𝑁
𝑗+1 (𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗)                                        (2.17) 

 

 

 

 

 

                                    

                           

                                                                            

                                                

 

 

 

 

                                                                                                                                                         

                                                                                                                  

                                                                           

                                                                  

                                                                                                                          

 

               Fig 2.5 Flow chart for the WLS State estimation algorithm 

 

Start 

𝑆𝑒𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 𝑘 = 0 𝑆𝑒𝑡 𝑒 𝑎𝑛𝑑 𝑘 

𝑖𝑠 𝑘 < 𝑘𝑙𝑖𝑚𝑖𝑡? 

 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑘 = 𝑘 + 1 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑥 ∗ (𝑘 + 1) = 𝑥(𝑘) + 𝑑𝑒𝑙𝑡𝑎 𝑋(𝑘) 
𝑁𝑜 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ℎ(𝑥) 

𝐵𝑢𝑖𝑙𝑑 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝐻(𝑥) 𝑎𝑛𝑑 𝐺(𝑥) 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑧 − ℎ(𝑥)) 𝑎𝑛𝑑 ∆𝑥(𝑘) 

∆𝑥(𝑘) < 𝑒? 

𝐸𝑛𝑑 
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The conductance and susceptance in the equations follows the notation of the two-port 

π- model. Similarly the real and reactive power flows between bus 𝑖 and bus 𝑗 are 

described as 

 

𝑃𝑖𝑗 = 𝑣𝑖
2(𝑔𝑖 + 𝑔𝑖𝑗) − 𝑣𝑖𝑣𝑗(𝑔𝑖𝑗𝑐𝑜 𝑠 𝜃𝑖𝑗 + 𝑏𝑖𝑗 sin 𝜃𝑖𝑗)                                               (2.18) 

 

𝑄𝑖𝑗 = −𝑣𝑖
2(𝑏𝑖 + 𝑏𝑖𝑗) − 𝑣𝑖𝑣𝑗(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 − 𝑏𝑖𝑗 cos 𝜃𝑖𝑗)                                            (2.19) 

 

Additionally, the line current magnitude from bus i to bus j can be expressed as the 

following.      𝑆𝑖𝑗 is the complex power. 

 

𝐼𝑖𝑗 =
√( 𝑃𝑖𝑗

2 + 𝑄𝑖𝑗
2)

𝑣𝑖

⁄
=

𝑆𝑖𝑗

𝑣𝑖
                                                                                 (2.20) 

 

2.6 Jacobian of Measurements 

The measurement Jacobian is the derivative of the measurement function with respect 

to the state vector. The structure is seen in (2.21). The order of the rows and columns 

of the measurement function corresponds to the order of the measurement vector and 

the state vector respectively. Once constructed, the elements of the Jacobian matrix 

are non-linear functions of the state variable and are re-evaluated for each iteration of 

the estimation solution. The Jacobian measurement structure will be as follows [2]. 

 

[H] =

[
 
 
 
 
 
 
 
 
𝜕|𝑉|

𝜕𝜃
𝜕𝑃𝑖

𝜕𝜃
𝜕𝑄𝑖

𝜕𝜃
𝜕𝑃𝑓

𝜕𝜃
𝜕𝑄𝑓

𝜕𝜃

𝜕|𝑉|

𝜕𝑣
𝜕𝑃𝑖

𝜕𝑣
𝜕𝑄𝑖

𝜕𝑣
𝜕𝑃𝑓

𝜕𝑣
𝜕𝑄𝑓

𝜕𝑣 ]
 
 
 
 
 
 
 
 

                                                                (2.21) 
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The elements of the Jacobian matrix are computed as follows: 

           
a) Elements of Voltage magnitude measurements.  

 

Note that the voltage magnitude is not a function of voltage magnitude or angle at 

any bus besides its own 

 
𝜕𝑣𝑖

𝜕𝑣𝑖
= 1,

𝜕𝑣𝑖

𝜕𝑣𝑗
= 0,

𝜕𝑣𝑖

𝜕𝜃𝑖
= 0,

𝜕𝑣𝑖

𝜕𝜃𝑗
= 0      (2.38, 2.39, 2.40, 2.4 respectively) 

 

 
 

b) Elements of Real power injection measurements. 

 

𝜕𝑃𝑖

𝜕𝜃𝑖
= ∑ 𝑣𝑖

𝑁
𝑗=1 𝑣𝑗(−𝐺𝑖𝑗 sin 𝜃𝑖𝑗 + 𝐵𝑖𝑗 cos 𝜃𝑖𝑗) − 𝑣𝑖

2𝐵𝑖𝑖            (2.22) 

 

𝜕𝑃𝑗

𝜕𝜃𝑗
= 𝑣𝑖𝑣𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗)                                      (2.23) 

 

𝜕𝑃𝑖

𝜕𝑣𝑖
= ∑  𝑁

𝑗=1 𝑣𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 + 𝐵𝑖𝑗 cos 𝜃𝑖𝑗) − 𝑣𝑖
 𝐺𝑖𝑖                  (2.24) 

 

𝜕𝑃𝑖

𝜕𝑣𝑗
= 𝑣𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 + 𝐵𝑖𝑗 cos 𝜃𝑖𝑗)                                         (2.25)    

 

 
c) Elements of Reactive power injection measurements 

 

 
𝜕𝑄𝑖

𝜕𝜃𝑖
= ∑ 𝑣𝑖

𝑁
𝑗=1 𝑣𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗) − 𝑣𝑖

2𝐺𝑖𝑖                   (2.26)       

 
𝜕𝑄𝑗

𝜕𝜃𝑗
= −𝑣𝑖𝑣𝑗(𝐺𝑖𝑗 Cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 Sin 𝜃𝑖𝑗)                                        (2.27)     
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𝜕𝑄𝑖

𝜕𝑣𝑖
= ∑  𝑁

𝑗=1 𝑣𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗) − 𝑣𝑖
2𝐵𝑖𝑖                      (2.28)      

 
𝜕𝑄𝑖

𝜕𝜃𝑗
= 𝑣𝑖(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 + 𝐵𝑖𝑗 cos 𝜃𝑖𝑗)                                                (2.29)              

 
 

d) Elements of Real power flow measurements 

 
𝜕𝑃𝑖𝑗

𝜕𝜃𝑖
= 𝑣𝑖𝑣𝑗(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 − 𝑏𝑖𝑗 cos 𝜃𝑖𝑗)                                            (2.30)       

 
𝜕𝑃𝑖𝑗

𝜕𝜃𝑗
= −𝑣𝑖𝑣𝑗(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 − 𝑏𝑖𝑗 cos 𝜃𝑖𝑗)                                         (2.31)        

 
𝜕𝑃𝑖𝑗

𝜕𝑣𝑖
= −𝑣𝑗(𝑔𝑖𝑗 cos 𝜃𝑖𝑗 + 𝑏𝑖𝑗 sin 𝜃𝑖𝑗) + 2(𝑔𝑖𝑗 + 𝑔𝑖)𝑣𝑖               (2.32)         

 
𝜕𝑃𝑖𝑗

𝜕𝑣𝑗
= −𝑣𝑗(𝑔𝑖𝑗 cos 𝜃𝑖𝑗 + 𝑏𝑖𝑗 sin 𝜃𝑖𝑗)                                             (2.33) 

 
e) Elements of Reactive power flow measurements 

 
𝜕𝑄𝑖𝑗

𝜕𝜃𝑖
= −𝑣𝑖𝑣𝑗(𝑔𝑖𝑗 cos 𝜃𝑖𝑗 − 𝑏𝑖𝑗 sin 𝜃𝑖𝑗)                                         (2.34)   

 
𝜕𝑄𝑖𝑗

𝜕𝜃𝑗
= 𝑣𝑖𝑣𝑗(𝑔𝑖𝑗 cos 𝜃𝑖𝑗 + 𝑏𝑖𝑗 sin 𝜃𝑖𝑗)                                             (2.35)  

 
𝜕𝑄𝑖𝑗

𝜕𝑣𝑖
= −𝑣𝑗(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 − 𝑏𝑖𝑗 cos 𝜃𝑖𝑗) − 2(𝑏𝑖𝑗 + 𝑏𝑖)𝑣𝑖                (2.36) 

 
𝜕𝑄𝑖𝑗

𝜕𝑣𝑗
= −𝑣𝑖(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 + 𝑏𝑖𝑗 cos 𝜃𝑖𝑗)                                             (2.37) 

 
 
The H matrix has rows at each measurement and columns at each variable. Most of the  

 

time, the H matrix contains more zero components and that’s why sparse matrix 
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technique is used in constructing it. This chapter presented traditional state estimation 

techniques and the formulation of the weighted least squares solution of a non-linear 

state estimation algorithm. Regardless of its errors, WLS is the most widely used 

technique in electric utilities and has proven itself over several years. However, PMUs 

will provide a more accurate and time sensitive data, which helps in minimizing 

computational time in the state estimation technique therefore the inclusion of PMU 

data will provide additional advantage as we will see in the next chapter. 
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CHAPTER 3 
     

 

PHASOR MEASUREMENT USAGE IN STATE ESTIMATION 

 

Over the last decades, there have been several developments in traditional state 

estimation techniques; however, the fundamental concepts have not changed that much. 

The basic goal of state estimation is to estimate voltage magnitude and angle at each 

bus in the system based on the measurements and assumptions about the system. A 

state estimator requires ample measurements to find the best possible solution of an 

over-determined system of equations, whose best solution is given by minimizing mean 

square error. In the real world a linear system does not exist as almost everything is 

non-linear. The relationship between the voltages and the other electrical quantities is 

non-linear. The method that is commonly used to estimate the unknown variables in the 

power systems are iterative; we assume some initial values for the parameters that we 

are going to estimate. 

 

As stated previously, in a maximum likelihood state estimation method, the PDF of 

measurements given parameters is required. Because we assume that noise measurements 

have Gaussian probability density function, the WLS method gives us the same result as 

the MLS. So, most of the time the traditional state estimators in power systems utilize the 

WLS approach, which converts the non-linear equations into the linear form by using 

first order Taylor’s series expansion. Phasor technology, which measures the phase angle 

of a system, is evolving. With the growing use of this technology in substations, system 

operators have widely access to new types of measurements. The development of wide 

area monitoring system (WAMS) based on time-synchronized phasor measurement units 

(PMUs) has brought a new opportunity in estimating the state of a system. PMUs provide 

synchronized measurements of voltage phase angles to control system units. The signals 

from the satellite- based GPS system are used to synchronize PMUs. 

 

The measurements obtained from PMU provide many advantages as compared to 
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the Supervisory Control and Data Acquisition (SCADA) measurements. For example 

the measurements of voltage magnitude obtained from PMU are more accurate than the 

measurements from SCADA measurements and it has phase angle measurements that   

cannot 

be obtained from RTUs. The other advantage of PMU is that its entire measurements 

can be synchronized and refreshed at every 20-50ms, which is much faster than the 

SCADA system. 

We can say that PMUs are measuring the system state instead of indirectly estimating it. 

The idea is that the addition of synchronized phasor data as an input to a state estimator 

could improve the state estimation accuracy and reduce computational time. So, adding 

PMUs in a grid is a smart choice [6]. As we have seen in WLS, to obtain the required 

system state the estimator should execute many iterations and accordingly it needs more 

computational time. But in the case of PMU the state of system can be linearly expressed 

in terms of measurements which eliminate the need of iterative SE algorithms. However, 

such estimators do not use the existing traditional SCADA measurements, which reduce 

the measurement redundancy and are required to super pass the noise system. As 

mentioned in [7], a state estimator of multi-area for a wide system is working based on 

the assumption that only the boundary buses are affected from the neighboring utilities. 

The detailed information about the impact of internal buses on boundary buses will be 

explained in chapter 4. In [6], another method for state estimation that uses the phasor 

measurements in state estimation is suggested. In this method, phasor data is used in state 

estimation by keeping the traditional state estimator, because the cost to change the 

existing algorithm is expensive. 

In the following sections we will see two methods of including phasor 

measurements into the traditional state estimator. The first technique is to mix the 

phasor measurements with the traditional measurements and solve as the same 

technique used in the traditional method. The second one is to use the phase 

measurements in the post-processing step of the traditional WLS state estimator. 

 

3.1 Inclusion of PMU Data in Traditional State Estimation 

 

When we employ PMUs in a power system, the measurement vector is augmented. 

Instead of containing only the voltage magnitude, power flows, and power injections 
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provided by conventional measurements, it will also include the phase shifts and the real 

and reactive current flows throughout the system. The augmented measurement vector 

will take on the following form. 

 

𝑧 = (𝑃𝑖𝑛𝑗
𝑇 𝑄𝑖𝑛𝑗

𝑇 𝑃𝑓𝑙𝑜𝑤
𝑇 𝑄𝑓𝑙𝑜𝑤

𝑇 𝑉𝑇 𝛿𝑇 𝐶𝑖𝑗
𝑇 𝐷𝑖𝑗

𝑇  )
𝑇
 

 

3.1.1 Integration of Phasor and Traditional measurements 

 

The phasor measurements obtained from the available PMUs can be added to the 

existing SCADA measurements to increase the accuracy of the state estimation. The first 

method of adding these measurements to the state estimator comes from mixing real and 

reactive power flows of the traditional measurements, injections, and voltage and current 

magnitudes with complex voltage and current phasors. The next step is to follow the 

mentioned traditional state estimation method 

PMU can measure not only the voltage phasor, but also the current phasors. It provides 

the following phasor measurements and their magnitudes. 

  

                                                                𝐼1∠δ1                        𝑣2∠θ2 

                                                                        𝐼2∠δ2          𝑣3∠θ3 

                                       𝑣1∠θ1                                               

                                                               𝐼3∠δ3                𝑣4∠θ4 

                             Fig 3.1 Simple PMU measurement model 

 

The same way as we did in Section 2.6, the total Jacobian H can be computed, but 

now the measurement z will have voltage magnitude, power injections, power flows, 

phase angle, real line current and reactive line current measurements. PMUs have small 

variances compared to the Remote Terminal Units (RTUs) and hence have better 

accuracy. Let’s assume there are two vector measurements vectors 𝑧1 and 𝑧2  

 

PMU 
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[𝑧1] =

[
 
 
 
 
𝑧11

𝑧12
𝑧13

⋮
𝑧1𝑚]

 
 
 
 

             [𝑧2] =

[
 
 
 
 
𝑧21

𝑧22
𝑧23

⋮
𝑧2𝑛]

 
 
 
 

                                       (3.1)  

Where, 

𝑧1= Traditional Measurement and  

𝑧2= Phasor Measurements (Rectangular form) 

S 

We put these measurement vectors in one vector. 

 

[𝑧] = [
𝑧1

𝑧2
] =

[
 
 
 
 

𝑧1

𝑣𝑟𝑒𝑎𝑙
𝑣𝑖𝑚𝑎𝑔

𝐼𝑟𝑒𝑎𝑙

𝐼𝑖𝑚𝑎𝑔 ]
 
 
 
 

                                                                (3.2) 

 

As we have seen in chapter two, the equality of optimization of the measurements 

becomes 

 

      [
𝑧1

𝑧2
] = [

ℎ1(𝑥)

ℎ2(𝑥)
] + [

𝑒1

𝑒2
]                                                                (3.3) 

 

Where, 

ℎ2(𝑥) = A polar form vector of the non-linear function to the obtained phasor 

measurement     .  The measurements error covariance matrix will be 

 

[𝑅] = [
𝑅1

0

0
𝑅2

′ ]                                                                                (3.4) 

 

Where, 

𝑅1 = Traditional measurements error covariance 

𝑅2
′ = Phasor measurements error covariance 
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The state vector is in polar form, and Jacobian matrix measurement will be 

 

[𝐻1(𝑥)] = [
𝐻1(𝑥)

𝐻2(𝑥)
] = [

𝜕ℎ1(𝑥)

𝜕𝑥
𝜕ℎ2(𝑥)

𝜕𝑥

]                                                   (3.5) 

 

Then the weighted square solution is formulated 

 

[𝑥𝑘+1] = [𝑥𝑘 + [𝐺(𝑥𝑘)][𝐻1
𝑇𝑅1

−1][𝑧1 − ℎ1(𝑥
𝑘)] + [𝐺(𝑥𝑘)][𝐻2

𝑇𝑅2
′−1][𝑧1 − ℎ2(𝑥

𝑘)]]                (3.6) 

 

𝐺(𝑥𝑘) = [𝐻1
𝑇(𝑥𝑘)𝑅1

−1𝐻1(𝑥
𝑘) + 𝐻2

𝑇𝑅2
′−1𝐻2(𝑥

𝑘)]2  

 

 

                                                    

 

 

 

                                                    

 

 

                                 Fig 3.2 Block diagram of Non-Linear Iterative Method 

 

 

The equations describing the rectangular components of the complex current flowing 

through the branch can be derived as: 

 

𝐶𝑖𝑗 = |𝑉𝑖𝑌𝑠𝑗| cos(𝛿𝑖 + 𝜃𝑠𝑖) + |𝑉𝑗𝑌𝑖𝑗| cos(𝛿𝑗 + 𝜃𝑖𝑗) − |𝑉𝑖𝑉𝑖𝑗| cos(𝛿𝑖 + 𝜃𝑖𝑗)  

 

𝐷𝑖𝑗 = |𝑉𝑖𝑌𝑠𝑗| sin(𝛿𝑖 + 𝜃𝑠𝑖) + |𝑉𝑗𝑌𝑖𝑗| sin (𝛿𝑗 + 𝜃𝑖𝑗) − |𝑉𝑖𝑉𝑖𝑗| sin (𝛿𝑖 + 𝜃𝑖𝑗)  

SCADA 

Measurements 

Revised State Estimator 
PMU 

Measurements 

Estimated State Vector 
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When the Jacobian H matrix is formed, the following derivatives of 𝐶𝑖𝑗 and 𝐷𝑖j are used. 

 

 
𝜕𝐶𝑖𝑗

𝜕𝑉𝑖
= |𝑌𝑠𝑖| cos(𝛿𝑖 + 𝜃𝑠𝑖) − |𝑌𝑖𝑗|cos (𝛿𝑖 + 𝜃𝑖𝑗)  

 

 
𝜕𝐶𝑖𝑗

𝜕𝑉𝑗
= |𝑌𝑖𝑗| cos(𝛿𝑗 + 𝜃𝑖𝑗)  

 

 
𝜕𝐶𝑖𝑗

𝜕𝛿𝑖
= −|𝑉𝑖𝑌𝑠𝑖| sin(𝛿𝑖 + 𝜃𝑠𝑖) + |𝑉𝑖𝑉𝑖𝑗| sin(𝛿𝑖 + 𝜃𝑖𝑗)  

 

𝜕𝐶𝑖𝑗

𝜕𝛿𝑗
= |𝑉𝑗𝑌𝑖𝑗| cos(𝛿𝑗 + 𝜃𝑖𝑗)  

 

 
𝜕𝐷𝑖𝑗

𝜕𝑉𝑖
= |𝑌𝑠𝑖| sin (𝛿𝑖 + 𝜃𝑠𝑖) − |𝑌𝑖𝑗|sin (𝛿𝑖 + 𝜃𝑖𝑗)  

 

 
𝜕𝐷𝑖𝑗

𝜕𝑉𝑗
= |𝑌𝑖𝑗| sin (𝛿𝑗 + 𝜃𝑖𝑗)  

 

 
𝜕𝐷𝑖𝑗

𝜕𝛿𝑖
= −|𝑉𝑖𝑌𝑠𝑖| sin(𝛿𝑖 + 𝜃𝑠𝑖) − |𝑉𝑖𝑉𝑖𝑗| sin(𝛿𝑖 + 𝜃𝑖𝑗)  

 

𝜕𝐷𝑖𝑗

𝜕𝛿𝑗
= |𝑉𝑗𝑌𝑖𝑗| cos(𝛿𝑗 + 𝜃𝑖𝑗)  

 

 

 

The SCADA measurements, PMU measurements, and Jacobian matrix are available, so 

the computation is the same as the traditional state estimation. Integrating phasor 

measurements into the existing state estimator techniques can result to some challenges. 

These challenges are because of the need to change the existing code, if integration of 

phasor measurement and the traditional measurements are required [17]. However, an 

alternate method of combining phasor measurements to the application of state 

estimation will be discussed below. 
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3.1.2 Inclusion of Phasor measurements into Post processing Technique 

 

The technique that will be discussed is provided in [6] and does not change the 

traditional state estimation algorithm. The phasor measurements are not directly 

applied in the process of state estimation; instead, they are added in the linear post-

processing step. Usually the traditional state estimation techniques follow steps to 

convert the non-linear functions into linear functions. In this scenario the first thing 

that the system should determine is to calculate the state of the system via traditional 

state estimator and then to mix it with the phasor measurements to improve the 

accuracy of the state estimation and the conversion of associated covariance matrix to 

rectangular coordinates is required. 

 
 

 

 

 

 

 

 

 

 

 

 

 
                  

 
 
                            
 
          
                                          Fig 3.3 Post-Processing Linear Method 

SCADA 

Measurements 

Traditional State 

Estimator 

 

Estimated State 

Vector 

Linear State 

Estimator 

PMU Measurements 
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The following equation shows the formula: 

 

𝑐𝑜𝑣([𝑥])𝑟𝑒𝑐 = [𝑅′][𝑐𝑜𝑣([𝑥])][𝑊′]𝑇 = [𝑅1
′ ]                                        (3.7) 

 

Where, W=Rotation matrix. 

 

Then the relationship of the calculated system state and the available phasor 

measurements should be as follows. 

 

[
 
 
 
 
 
 
𝑉𝑟𝑒𝑎𝑙

′

𝑉𝑖𝑚𝑎𝑔
′

𝑉𝑟𝑒𝑎𝑙

𝑉𝑖𝑚𝑎𝑔

𝐼𝑟𝑒𝑎𝑙

𝐼𝑖𝑚𝑎𝑔 ]
 
 
 
 
 
 

=

[
 
 
 
 
 

𝐼 0
0 𝐼
𝐼′ 0
0 𝐼′

𝐶1 𝐶2

𝐶23 𝐶4]
 
 
 
 
 

[
𝑣𝑟𝑒𝑎𝑙

𝑣𝑖𝑚𝑎𝑔
] = [𝐴] [

𝑉𝑟𝑒𝑎𝑙

𝑉𝑖𝑚𝑎𝑔
]                                                             (3.8) 

 

In the above relationship, the identity matrix with a superscript is used to represent states 

without measurements and at the lower part of the relationship or measurement function 

there are system parameters that create a linear relationship of the system state to the line 

current phasor measurements in the measurement vector. The covariance matrix for both 

measurements is given below.  

 

[𝑅] = [
𝑅1

′

0

0
𝑅2

′ ]                                                                                                          (3.9) 

 

Then the solution is 

 

[𝑥′] = [𝐴𝑇𝑅−1𝐴]−1[𝑅−1𝐴][𝑧1]                                                                                 (3.10) 

 

From the aforementioned techniques we can observe that PMU technology provides 

accurate and time-sensitive information for measurement collection. Therefore, the 

inclusion of PMU data in state estimation is advancement over the traditional state 
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estimation. The following section will present a linear formulation of the state 

estimation problem using PMUs. 

 

3.2 PMU DATA IN LINEARIZING STATE ESTIMATION 

 

As it was discussed in the previous section, PMU measurements could be added in 

two different ways, which the addition of phasor measurements by a slightly different 

formulation of the traditional non-linear weighted least squares or the addition of the 

measurements  after  a preliminary system state has already been determined [6]. Even 

though it is not easy to implement PMUs in every substation due to different reasons, 

still a small number of these precise measurements can affect strongly the accuracy of 

the overall state of the system [4]. However, a true application of PMU technology to 

state estimation would include all the traditional measurements of real and reactive 

power injections and current and voltage magnitudes replaced by bus voltage phasors 

and line current phasors in the future. 

 

Acceptance of the PMU technology by all utilities and their implementation in 

desired substations will force the state estimator to function with only PMU 

measurements. This avoids the problem that existed with traditional state estimator. 

Synchronization of PMUs with GPS has alleviated the problem of sending time. Once 

the shortening of sending time has been achieved, the only concern is the issue of time 

in the communication and computational delay between the collection of the 

measurements and the employment of useful information for decision-making by the 

operation and control applications. 

 

The simple two-port π-model is used to figure out the difference between the 

measurements used in a traditional state estimator and the measurements used in a 

linear state estimator. In [4] the formulation of linear state estimation is shown clearly. 

The state variable of the system will be the voltage magnitude and angle at each end of 

the transmission line. Assuming a PMU at each end of a transmission line, all the 

measurements will be voltage phasors; however, because of the capacitance of the 

transmission lines the line current on each side of a single line will not be the same. 
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Consider the π-equivalent of a transmission line shown in the Fig 3.3 below. In this 

case consider all values rectangular [8]. 

 

This is what gives the state equation its linear property. The system state is then the 

following complex vector. 

    

              

 

               

 

  

 

 

 

                             Fig 3.4 Two-Port π-Model of a Transmission Line 

 

 

  [X] = [
vi

vj
]                                                                                                           (3.11) 

 

In the Fig 3.5 (𝑔𝑖𝑗 + 𝑏𝑖𝑗) is the series admittance of the line, and (𝑔𝑠𝑖 + 𝑗𝑏𝑠𝑖)  is the 

shunt admittance of the line and   𝐼𝑖𝑗  is line current flow. The measurement vector will 

be: 

 

[𝑧] =

[
 
 
 
𝑉𝑖

𝑉𝑗

𝐼𝑖𝑗
𝐼𝑗𝑖 ]

 
 
 

                                                                                                            (3.12) 

 

From this measurement vector the system state and voltage measurement can clearly 

be related identically. However, the relationship between the system state and the line 

𝐼𝑖𝑗 = 𝐶𝑖𝑗 + 𝑗𝐷𝑖𝑗 𝑔𝑖𝑗  

 

𝑗𝑏𝑖𝑗 

𝑉𝑖 = 𝐸𝑖 + 𝑗𝐹𝑖 

 

𝑔𝑠𝑗 + 𝑗𝑏𝑠𝑗 𝑔𝑠𝑖 + 𝑗𝑏𝑠𝑖  𝑉𝑖 = 𝐸𝑖 + 𝑗𝐹𝑖  

𝐽 

 

𝐼 

 

− 

 

 

+ 

 

 

+ 

 

 

− 
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flows requires some work that is, first several quantities must be defined. Even though 

they will not be explained in detail, the series admittance and shunt susceptance of the 

transmission line are shown below. 

 

𝑦𝑖𝑗 = (𝑔𝑖𝑗 + 𝑗𝑏𝑖𝑗)
−1                                                                                               (3.12) 

 

𝑦𝑖0 = (𝑔𝑠𝑗 + 𝑗𝑏𝑠𝑗)                                                                                                  (3.13)      

 

𝑦𝑗0 = (𝑔𝑠𝑗 + 𝑗𝑏𝑠𝑖)                                                                                                  (3.14)                    

 

Sparing the derivation using Kirchoff’s laws, the relationship of line current and 

system state is 

[
𝐼𝑖𝑗
𝐼𝑗𝑖

] = [
𝑦𝑖𝑗 + 𝑦𝑖𝑜 −𝑦𝑖𝑗

−𝑦𝑖𝑗 𝑦𝑖𝑗 + 𝑦𝑖𝑜
] [

𝑉𝑖

𝑉𝑗
]                                                                              (3.15) 

 

𝐼𝑖𝑗 = [(𝑉𝑖 − 𝑉𝑗)(𝑔𝑖𝑖 + 𝑗𝑏𝑖𝑗) + 𝑉𝑖(𝑔𝑠𝑖 + 𝑗𝑏𝑠𝑗) ]   

And the complex State Equation is 

 

     

[
 
 
 
𝑉𝑖

𝑉𝑗

𝐼𝑖𝑗
𝐼𝑗𝑖 ]

 
 
 

= [

1 0
0 1

𝑦𝑖𝑗 + 𝑦𝑖0 −𝑦𝑖𝑗

−𝑦𝑖𝑗 𝑦𝑖𝑗 + 𝑦𝑖0

] [
𝑉𝑖

𝑉𝑗
]                                                                         (3.16) 

 

 

 

 

  



34 
 

                              

 
CHAPTER 4 

 

DISTRIBUTED STATE ESTIMATION WITH PHASOR 

MEASUREMENT UNIT 

 

4.1 Introduction 

 
As the electrical power networks of the world continue to grow ever larger, there has 

been an increasing demand for a highly robust, computationally efficient state estimation 

algorithm. Initially, this goal was pursued by taking advantage of the innately sparse 

structure of the state estimation matrices. New algorithms were developed to deal with 

large, sparse matrices and the state estimators kept pace with the power grids for a time. 

Unfortunately, the gains provided by sparse matrix manipulation were limited, and 

eventually the size of the power networks required a new advance in state estimation 

algorithms. 

 

This new advance came in the form of parallel processing. Instead of being limited to a 

single serial processor, the parallel state estimators break the large system down into 

smaller sub-systems which are solved simultaneously on multiple processors. The state 

estimation results from these individual areas are then sent to a second coordinating 

processor where they are combined into a single solution for the entire system. 

 

4.2 Distributed State Estimation Algorithm and scheme 

 

In any individual area in Distributed state estimation, there are three types of busses: 

internal, boundary, and external. Bus n of area 𝑖  is considered to be internal if all of its 

neighboring busses also belong to area 𝑖 .Bus n of area 𝑖   is a boundary bus if at least one 

of its neighbors belongs to an area other than 𝑖. Finally, bus n will be an external bus of 

area i if it belongs to another area but has at least one connection to a boundary bus in 

area 𝑖 . Any line running between two boundary busses of different areas, thus connecting 
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the two areas, is known as a tie line. These four items are illustrated in the Figure 3 with 

busses 21, 22, and 23 being internal, boundary, and external busses to Area 1. There is a 

tie line running between busses 22 and 23 and another between 32 and 113. 

 

 

 

 

 

 

 

 

 

 

                                          Fig 4.1 Distributed Multi-Area Bus Types 

 

 
Since its inception, there have been many specific algorithms developed to carry out this 

parallel state estimation, some of the more successful ones have been detailed in [8]-[13]. 

In most cases, the first level state estimation is identical. The large system is broke down 

into smaller, more manageable areas and the standard state estimation algorithm is 

applied, as was shown in Chapter II. There is a great deal of confusion though about 

what to do from that point. Most of this confusion concerns what to do with the 

boundary measurements. Some algorithms insert a non-existent bus in between the 

boundary busses on tie lines [14]. Other methods based on the work in [15] break the 

system down into non-overlapping systems and then apply the model coordination 

method to come to a solution. More recently though, the work done in [4] and [16] 

has developed the algorithm which will be used in this thesis. 

 

 

In [16] the author first decomposes the system into a group of overlapping subsystems. 

This is accomplished by including the boundary busses and external busses in both areas 

which they are associated with. Once the first stage of state estimation is complete, the 

state vectors for each area are organized in the following manner. 
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𝑥𝑖 = [𝑥𝑖
𝑏𝑇

𝑥𝑖
𝑖𝑛𝑡𝑇

𝑥𝑖
𝑒𝑥𝑡𝑇]                                                                                           

 

For each area 𝑖, the components of the state vector xi are organized by bus type. In the 

equation above, 𝑥𝑖
𝑏𝑇

 is the state vector composed of the voltage magnitude and phase 

angles at the boundary busses, 𝑥𝑖
𝑖𝑛𝑡𝑇  is the state vector composed of the voltage 

magnitude and phase angles at the internal busses, and 𝑥𝑖
𝑒𝑥𝑡𝑇  is the state vector 

composed of the voltage magnitude and phase angles at the external busses. In each area, 

the phase angle of the slack bus will be removed from the appropriate vector 

 

Once this first stage is complete, the estimation coordination must begin. The 

coordinating estimator is not only responsible for the coordinating of the individual area 

results, but must also carry out bad data detection and correction for the boundary 

measurements. The states used in this coordinating estimator include not only the states 

computed for each individual area, but also include the synchronized voltage phasors for 

the slack bus in each area. This state vector is defined in the following manner. 

 

𝑥𝑠 = [𝑥𝑏𝑇
𝑢𝑇]𝑇  

 

𝑥𝑏𝑇
= [𝑥1

𝑏𝑇
𝑥2

𝑏𝑇
⋯ 𝑥𝑛

𝑏𝑇] 𝑇     

 

𝑢𝑇 = [𝑢2 𝑢3 ⋯ 𝑢𝑛]𝑇  

 

The voltage angle of the slack bus in each area measured with respect to the voltage angle 

of the slack bus in the first area is listed as 𝑢𝑖. The global reference bus among the 

individual area slack busses was chosen at random to be the slack bus in the first area, 

and could easily be any of the slack busses in the system. In this case, the 𝑢𝑇 vector 

would start with 𝑢1 and exclude the appropriate entry containing the slack reference bus.  

 

At the second level of state estimation, the coordinating estimator will utilize a 

measurement vector with the following composition. 
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𝑧 = [𝑧𝑢
𝑇

𝑧𝑠𝑝
𝑇 𝑥

𝑏𝑇
𝑥

𝑒𝑥𝑡𝑇]𝑇  

 

In the above measurement vector, 𝑧𝑢
𝑇 is the vector of boundary measurements, 𝑧𝑠𝑝

𝑇   is the 

vector of synchronized phasor measurements, and 𝑥
𝑏𝑟

   and 𝑥
𝑒𝑠𝑡

 are the vectors of boundary 

and external state variables as estimated by the individual areas. This vector of states will 

then be treated as pseudo-measurements by the coordinating estimator .This leads us to 

the measurement model which will be used by the second level state estimator shown 

below. 

 

 

𝑧𝑠 = ℎ𝑠(𝑥𝑠) + 𝑒𝑠       

 

The covariance of these estimated measurements are obtained from the covariance matrix 

of the area from which they come. This covariance matrix is actually the inverse of the 

gain matrix of the area, as shown below. 

 

𝑐𝑜𝑣(𝑥) = 𝑐𝑜𝑣((𝐻𝑇𝑅−1𝐻𝑇)−1𝐻𝑇𝑅−1𝑧))   

 

𝑐𝑜𝑣(𝑥) = 𝑐𝑜𝑣(𝐺−1𝐻𝑇𝑅−1𝑧)  

 

𝑐𝑜𝑣(𝑥) = 𝐺−1𝐻𝑇𝑅−1𝑐𝑜𝑣(𝑧)(𝐺−1𝐻𝑇𝑅−1)𝑇  

 

𝑐𝑜𝑣(𝑥) = (𝐺−1𝐻𝑇𝑅−1)𝑅((𝐻𝑇𝑅−1𝐻)𝐻𝑇𝑅−1)−1)𝑇   

 

𝑐𝑜𝑣(𝑥) = (𝐺−1𝐻𝑇𝑅−1)𝑅((𝐻𝑇𝑅−1)𝑇((𝐻𝑇𝑅−1𝐻)−1))
𝑇
  

 

𝑐𝑜𝑣(𝑥) = (𝐺−1𝐻𝑇𝑅−1)𝑅𝑅−1𝐻𝐻−1𝑅(𝐻𝑇)−1  

 

𝐶𝑜𝑣(𝑥) = 𝐺−1𝐻𝑇𝑅−1𝑅(𝐻𝑇)−1  
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𝑐𝑜𝑣(𝑥) = 𝐺−1     

 

Once the coordinating estimator has reached a WLS solution for the entire area, residual 

testing may then take place, and any faulty measurements will be normalized. While this 

is an excellent procedure since it does not require the sharing of data between the areas, it 

can be improved upon still. 

 

In [4], the author points out that the above technique simply uses the PMUs to measure 

the synchronized voltage angles among the areas and suggests the following. PMUs have 

the ability to measure the real and reactive current phasors. In fact, a single PMU may 

measure a bus voltage phasor and multiple current phasors simultaneously. As the 

measurements taken from PMUs have smaller variance than conventional measurements, 

the estimated state would benefit from the inclusion of these additional PMU current 

measurements. 

 

The first level of state estimation with PMUs would follow the algorithm outlined in 

Chapter II. Once the states of the individual areas have been estimated though, the second 

level algorithm needs to be changed in order to accommodate the additional 

measurements provided by the PMUs. The new measurement vector of the second level 

state estimator will be of the following form. 

 

𝑧𝑠 = [𝑍𝑢
𝑇 𝑧𝑝𝑚𝑢

𝑇
𝑥

𝑏𝑇
𝑥

𝑒𝑠𝑡𝑇]𝑇  

 

𝑧𝑝𝑚𝑢 = [𝑧|𝑣|
𝑇 𝑍𝜃

𝑇 𝑧𝐶
𝑇 𝑧𝐷

𝑇]𝑇  

 

𝑧𝑠 = [𝑧𝑢
𝑇 𝑧|𝑣|

𝑇 𝑧𝜃
𝑇 𝑧𝐶

𝑇
𝑧𝐷

𝑇 𝑥
𝑏𝑇

𝑥
𝑒𝑥𝑡𝑇]𝑇  

 

Above, 𝑍𝑝𝑚𝑢 is the measurement vector from a PMU. The overall measurement vector, 

𝑧𝑠  ,will contain twelve different types of measurements, four from conventional 

measurements, four from PMU measurements, and four pseudo- measurements from the 

first level of estimation. These twelve measurement types are detailed below  
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At this coordination level, the state vector contains the states from the boundary busses, 

as well as the states from the busses supporting a PMU and its neighboring busses. 

𝑥𝑠 = [𝑥𝑏𝑇
𝑥𝑝𝑚𝑢

𝑇 ]𝑇      

 

Including this additional information does indeed increase the performance of the state 

estimator as shown in [4]. 

 

 

At this coordination level, the state vector contains the states from the boundary busses, 

as well as the states from the busses supporting a PMU and its neighboring busses. 

 

𝑥𝑠 = [𝑥𝑏𝑇
𝑥𝑝𝑚𝑢

𝑇 ]𝑇       

 

Including this additional information does indeed increase the performance of the state 

estimator as shown in [4]. 

 

This chapter has laid out the basic theory behind multi-area state estimation, including the 

terminology, measurement types and measurement vector composition. In the following 

chapter, this algorithm will be tested and verified on the IEEE 118 bus test system. Its 

results shall not only be checked for accuracy with a standard state estimator, but its 

ability to detect bad data will also be put to the test. 
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4.3 Results 

 

 

 
Fig 4.2 Plot of residuals vs iterations for IEEE-118 bus system using WLS Preprocessing 

 

The residuals rapidly fall to zero with increasing iterations showing that the WLS 

estimator is working efficiently. 

 

X-axis represents : Iteration cycle 

 

Y-axis represents : |𝑉|2 
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Fig 4.3 Plot of residuals vs iterations for IEEE-118 bus system using WLS 

Postprocessing 

 

Preprocessing Algorithm converges the state estimate faster than post processing 

 

X axis represents : Iteration cycle 

 

Y axis represents : |𝑉|2 
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Fig 4.4 Plot of un-normalized residuals after one iteration cycle for Preprocessing and 

Post processing for IEEE 5, 14, 30 and 118 systems 

 

Using PMU data in state estimation improves the accuracy of the estimation in fewer 

iteration cycles saving computational power and time. 

 

Data :  4 - IEEE 5 Bus System 

            9 – IEEE 14 Bus System 

           14 – IEEE 30 Bus System 

            19 – IEEE 118 Bus System 

 

Legend: Blue - Pre-processing 

              Red – Post-processing 
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Fig 4.5 State Estimate for IEEE118 bus system after one iteration cycle 

a) Distributed State Estimator- RED 

b) Traditional WLS algorithm- BLUE 

 

X axis represents: Bus number 

 

Y axis represents: Voltage magnitude (V) 
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Fig 4.6 State Estimate for IEEE118 bus system after one iteration cycle 

a) Distributed State Estimator- RED 

 b) Traditional WLS algorithm- BLUE 

 

 

The distributed state estimator provides a state estimate which converges with the WLS 

estimate as expected in very few iteration cycles.  

 

X axis represents: Bus number 

 

Y axis represents: Volage Phase (radians) 
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE SCOPE 

 

 
5.1 Conclusion 

 

This report presents traditional state estimation techniques with and without PMUs and 

DSE algorithm utilizing synchronized phasor measurements. The goal was to discuss a 

technique that is replacing the centralized state estimation using a decentralized one to 

enhance the SE computation time and to get accurate data of the power system and 

finally to have a better system snapshot. The contribution of this research was just to 

discuss different techniques of SE and to determine the best possible technique. It 

includes the formulation of the distributed SE approach, development of an algorithm to 

locate PMUs, determination of the slack bus in each subsystem to coordinate the 

distributed SE solution, and the application of sensitivity analysis to determine the 

aggregation level SE measurement set to obtain an aggregated SE solution [50]. The tests 

were done on the IEEE 118 test case. The results obtained on the IEEE 118 bus test 

system demonstrate the efficacy of the proposed approach in significantly reducing the 

computational time and highlight the potential of the proposed approach in obtaining SE 

solutions for large interconnected areas. The results also show that the SE solution 

obtained by the proposed approach have the same accuracy as the integrated SE solution 

as demonstrated by the relative errors in the voltage magnitude and phase angle solutions 

obtained and the values of the performance index at the solution. Therefore, if the wide 

area network is decomposed to subsystems and if the optimal PMU placement is done 

properly based on the available algorithms a system snapshot could be available in almost 

real time and the system operators could monitor and control their system properly. 

 



46 
 

   From this research project I have gained a valuable knowledge about state estimation 

and its importance in power system and the draw backs of the centralized state estimation 

due the increase in size of power system and the coming of new technologies. Most of the  

 

blackouts could have been minimized if there was enough information exchange between 

the system operators; the main reason for that was the lack of real time information 

sharing among the utilities. Deregulation made the power system a more privately 

concerned system. The reason for that is the market situation. The customers got a chance 

to buy electricity from different utilities and this makes the utilities hide information from 

neighboring utilities. Even though there is development in technology such as 

implementation of PMU in power system the centralized type of state estimation needs to 

be replaced by distributed state estimation and in this section I learned a lot in how to use 

DSE. Distributed state estimation is used to estimate a state of a power system by 

sections. For example, an IEEE 118 bus system was assumed to decompose into three sub 

systems. The three sub systems estimate their value based on their own state estimator 

and the PMU is installed on the slack bus to coordinate the DSE solution from each 

system. From the results, when the DSE is used in the sub systems it is better than when 

it is used for the whole system. 

 

Another thing I found is that, DSE can be applied to optimize the renewable energy. 

PMUs are intelligent electronic device which enable to provide real time data from the 

field into the control centers, so when DSE with the help of PMU is applied to different 

energy source the capability to monitor and control the systems is more effective. Say for 

example there is an integrated system of renewable energy, such as wind, solar as well as 

storage devices and the grid. If we use phasor measurement units to monitor and control 

the operation of the system, we have the privilege to control on a real time basis. If there 

is a fault in the wind farm or source we can avoid it by shedding a load or adding an 

additional generator to meet the available consumption. The other main point I have 

taken away is, the importance of smart grid. Our system is changing from time to time 

and currently researchers, utilities, governments and customers are more concerned about 

the importance of smart grid. The goal of smart grid is to make the power system 

operation more robust and to minimize or avoid faults from cascading. So the DSE with 

the help of PMU is one of the best options. The cost of phasor measurement units and 
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other sensors and their cost of installation are very expensive, that is why ideas for 

implementing the PMUs phase by phase are valuable. When PMUs are installed to all the 

buses to monitor the wide area network, there will be no need  

 

 

for state estimation except for the information required to identify the bad data in the 

system. Therefore the application of PMU is one of the greatest applications in power 

system especially in state estimation and it will play a great role in smart grid operation. 

 

5.2 Future Scope 

 

While this thesis was successful in verifying the accuracy of the multi-area state 

estimator, it was unable to see any time savings due to the implementation of said 

estimator. It has been said many times throughout this thesis that the shortened 

computation time was the impetus for the development of multi-area state estimation, and 

as such, this deserves further study. The next logical step would be to increase the size of 

the system and look for the promised reduction in computation time. 
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