
DESIGN AND IMPLEMENTATION OF GENERIC MULTI-

CHANNEL STORAGE CONTROLLER 

 
 

A PROJECT REPORT 
 

 

submitted by 

 

 

MADUGULA SRINIVAS SANTOSH KUMAR 

 
 

in partial fulfillment of the requirements  

for the award of the degree of 

 

 

 

MASTER OF TECHNOLOGY (DUAL DEGREE)  

in 

ELECTRICAL ENGINEERING 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

DEPARTMENT OF ELECTRICAL ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY MADRAS 

MAY 2015 



ii 

 

  



iii 

 

 

CERTIFICATE 

 

This is to certify that the project entitled “Design and implementation of generic multi-

channel storage controller”, submitted by M Srinivas Santosh Kumar, in partial fulfillment 

of the requirements for the award of the degree of MASTER OF TECHNOLOGY (Dual 

Degree) in Electrical Engineering, at Indian Institute of Technology, Madras, is a record of 

bonafide work carried out by him during the academic year 2014-2015.  

 

 

 

 

 

 

Prof. V. Kamakoti 

Designation and Guide  

Department of Computer Science and Engineering  

Indian Institute of Technology, Madras  

Chennai 600 036 

 

 

 

 

Date: 11th May, 2015 

  



iv 

 

 



v 

 

ACKNOWLEDGEMENT 

I owe my sincere gratitude to all those people who are responsible for the successful 

completion of this project and because of whom my graduate experience has been one that I 

would cherish forever. My deepest gratitude to my adviser Prof. V. Kamakoti whose energy, 

passion and support has been a tremendous source of inspiration throughout my project. I 

would like to extend my sincere thanks to my co-adviser G. S. Madhusudhan for guiding me 

through ups and downs of the project. I am fortunate to have advisers who gave me freedom 

to explore on my own and at the same time helped me to recover when I faltered. I would like 

to express my special thanks to Maximilian Singh, Sireesh and other project-mates at RISE 

lab for their valuable inputs and discussions. I am also very grateful for my friends for their 

technical inputs and making my life at IITM an exhilarating experience. I would like to thank 

my family for their valuable support and encouragement which made my life wonderful and 

I dedicate this project to my family and friends. 

 

M S Santosh Kumar 
 

 

 

 

 

  



vi 

 

 



vii 

 

ABSTRACT 

 

With the increasing IO bandwidth requirements of the current day processing environment, 

the storage enterprise is rapidly moving towards flash storage technologies with NAND flash 

being the prominent among them. While NAND flash offer significant advantages over the 

traditional magnetic storage disks in terms of low access time, high throughput, reliability and 

IO parallelism, they also add additional complexities due to write after erase, limited number 

of block erase operations and bad block management. In order to efficiently handle these 

issues, a software stack called Flash Translation Layer (FTL) is traditionally used. Apart from 

handling these traditional issues, with the increasing shift towards multi-channel SSDs 

consisting of multiple channels, multiple-chips per channel, multiple dies per chip and 

multiple planes per die, FTL algorithms which take advantage of this underlying topology by 

exploiting the inherent parallelism plays a major role in the overall performance of the storage 

device.  This resulted in various FTL algorithms with increased complexity, potential 

advantages and disadvantages of host-side FTL or device-side FTL implementations, page-

based translation or hybrid translations etc. to be examined.  

In this context, there is a need for a generic platform for research evaluations while 

maintaining commercial grade features for interoperability and extensibility and this project 

aims at providing such a solution. A generic multi-channel storage controller with parametric 

design variables and support for plug-and-play host-side or device side FTL implementations 

has been designed, implemented and evaluated. For increased maintainability and abstraction, 

it is implemented in versatile hardware description language Bluespec System Verilog. The 

implemented design is simulated and integrated with high performance, low latency bus 

interface, PCI Express, and emulated functionally using FPGA as a basis for the proof of 

concept. 

 

Keywords: Multi-channel storage controller, NVM Express storage, NAND flash memory, 

Solid state drive, generic storage controller. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Over the years, thanks to Moore’s law and wide research community, processing power has 

almost increased 100 times over a decade, however, the storage IOPS have almost remained 

flat. As an old saying goes “A chain is no stronger than its weakest link”, the same can be said 

about the performance of database systems. Magnetic HDDs have been the most common 

storage choice for database applications for over a decade. But given that the current day 

scenario of increasing cloud based applications, and thirst to increase cloud performance, 

looking to extract the performance from CPU clock cycles is no longer a viable solution, not 

when the current day CPUs can run at billions of cycles a second and rotating disks require 

milliseconds to complete an I/O operation. The storage is so far only measured in terms of 

capacity and performance through CPU clock cycles however as the “storage gap” continuous 

to increase, the storage speed exerts a tremendous impact on the performance. With the cloud 

applications sprouting all over the world, increasing trend towards cloud virtualization, all 

necessitate access to larger amounts of data in shorter amount of times, requires the problem 

of “storage gap” to be solved. 

In this context, on one hand extensive research is being carried out in terms of developing 

techniques to avoid expensive random I/O, they could probably mask the poor I/O 

performance a bit but doesn’t provide a permanent solution to the problem. On the other hand, 

huge amounts of research is focused on developing new storage technologies. Some of them 

include Phase Change Memories, Memristor technologies, NOR flash, NAND flash etc. Of 

these, NAND flash technology storage shows tremendous potential in meeting the current day 

requirements. 

Apart from problem with I/O access speeds, HDDs also face challenges in terms of 

excessive power consumption. This is major problem in data centers where the power 
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consumption costs can be very high. In addition, the mechanical components of HDDs make 

them vulnerable to external shocks and increase maintenance costs.  

 

 

 Figure 1.1: CPU vs HDD performance increase (Source: Intel measurements) 

 

Fortunately, NAND flash technology, unlike HDDs, exhibit almost zero seek times, 

relatively lesser power consumption and are extremely resilient to external shocks. Figure 1.2 

shows a comparison of SSDs with NAND flash technology and HDDs. The cost/byte of 

NAND flash is also coming down significantly with advances in fabrication technologies. 
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Figure 1.2: SSDs vs HDDs characteristics (Source: Forward Insights) 

 

With so much market potential, could be well put in the famous words “there ain’t no such 

thing as free lunch”, NAND flash comes along with its own set of restrictions. In particular, 

flash chips have two-tier hierarchical structure consisting of pages and blocks. Each block 

consists of a certain number of pages and all writes and reads are exhibited at the granularity 

of pages. However, unlike traditional storage media, these pages cannot be over-written, they 

needs to erased before a new set of data is to be programmed and this erase can happen only 

at the level of block. In addition, the erase latency is much higher when compared to the 

program latency. Also, there are only a limited number of erase cycles before failure of the 

block. All these new restrictions resulted in extensive research to exploit the full potential of 

NAND flash technology. Now, this places a huge significance on storage controller 

architecture and a need for an open-source research platform. In these lines has been launched 

the project Lightstor, aimed at building a complete Solid state development kit with support 

for state of art protocols, interconnects, parametrized design variables, modularity and 

extensibility.  
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When it comes to storage technology, the host interconnect technology and topology also 

plays a major role in determining the overall performance and hence LightStor storage 

controller has generic host interfaces. In this thesis, the storage controller is developed with 

PCI Express interconnect, however, Lightstor aims at combining the storage controller with 

RapidIO as well and LightNVM, which is an extended version of NVM Express specification 

supporting both host-side and device side Flash translation.  

The designed controller fits naturally into both the interconnect technologies and is tested 

with PCI Express interconnect. It also supports both device and host-side Flash translation 

interfaces and hence combined with LightNVM provides a complete research platform for 

evaluating the advantages and disadvantages of various architectural techniques. 

Thesis Overview  

The rest of this thesis is organized into the following phases. 

Background 

 Familiarization of concepts in NAND flash technology. 

 Familiarization of host interface protocols like NVM Express and PCI Express, 

traditional design principles and literature review. 

 Introduction to high-level hardware-description language Bluespec system Verilog and 

reason for the choice. 

 Familiarization with Linux device drivers and kernel modules. 

Conception and scope 

 Introduction to the concept of generic multi-channel storage controller 

 Introduction to system-level architecture and definitions of blocks from the 

perspective of storage controller. 

 Scope of this thesis 

Architectural design 

 Design and implementation of generic multi-channel NVM controller. 

 Design and Implementation of PCI Express wrapper 
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Testing and evaluation 

 Design of test environment and FPGA emulation techniques. 

 Functional testing and evaluation results. 

 Synthesis results and optimizations 

Extensibility and Future work 

 Design choices and ways of extending generic controller to other use cases. 

 Summary and future work 
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CHAPTER 2 

 

BACKGROUND 

 

 

This chapter introduces the basic concepts that are necessary for understanding the following 

chapters. It is also essential for a storage controller architect to understand the underlying 

NAND flash technology and intrinsic behavior in order to better tune the architectural features 

for unleashing the complete potential of NAND flash. 

 Since NAND flash technology has been around for years now, there is much to learn than 

that can be said in this thesis. However, an abridged version of concepts have been presented 

at various levels starting from NAND flash cell technology, why’s and what’s of current day 

NAND flash architecture, their integration with storage architectures, host protocols, and 

specifications 

2.1 NAND FLASH TECHNOLOGY 

Flash as a memory technology has been around for more than two decades now. Flash has 

been invented by Dr. Fujio Masuoka of Toshiba corp. in 1984. Following shortly, Intel has 

commercialized NOR flash memory as storage medium for storing BIOS and firmware for 

various consumer products. Although flash technology started with NOR topology, the 

NAND topology has been found to have tremendous benefits, as we will see shortly. 

Following 2009, NAND flashes have found its way into various storage devices including 

memory cards, USB flash drives, solid-state drives and even as non-volatile caches. The major 

impact of NAND flash as a storage technology is in the replacement of magnetic HDDs with 

Solid State Drives (SSDs). While the concept of SSDs have been around for a while, only the 

capabilities and ever-lowering cost of NAND flash technology has made it finally viable. The 

following sections will look at flash as a cell and build towards NAND flash chips, including 

their advantages and restrictions followed by the storage controller design. 
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2.1.1 Flash cell 

A flash cell is made of a floating gate transistor which resembles a conventional MOSFET 

except that it has two gates (see Figure 2.1). A primary gate (or) control gate which is 

electrically isolated by a surrounding oxide insulator creating a floating node, hence the name 

“floating gate transistor” and a secondary gate which is connected to the gate terminal is only 

capacitively coupled with the floating gate. The floating gate behaves as an excellent electron 

“trap”, which can retain charge for years because of complete isolation and this electron trap 

constitutes a memory bit. The act of injecting and removing electrons from the floating gate 

are called program and erase respectively.  

 

Figure 2.1: Floating gate flash memory cell [1] 

 

The act of programming or erasing is carried out using Fowler-Nordheim Tunneling. When 

a strong electric field is applied across the oxide, due to quantum mechanical tunneling, the 

electrons tunnel through the oxide tunneling barrier and gets trapped on the floating gate. The 

presence and absence of the charge on the floating gate results in different threshold voltages 

of the memory cell. This can be sensed by applying voltage with value between these threshold 

voltages on the secondary gate and test for conduction of channel which determines the logical 

bit stored in the memory cell. 

This charge trapping mechanism raises two important reliability issues, charge retention 

and degradation. The problem of charge retention arises due to multiple leakage paths like 

leakage through secondary gate, cell side wall oxide etc. The process of tunneling degrades 
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the oxide layer leading to certain number of erase cycles before it becomes usable. Typically, 

NAND flash cells have 10 years of charge retention and 1k to 100k program/erase cycles. 

2.1.2 Flash organization 

The flash cells are typically organized into memory arrays of two different topologies. NOR 

topology and NAND topology. NOR topology is shown in Figure 2.2 and NAND topology in 

Figure 2.3.  From the application perspective, the major difference between these topologies 

is the access granularity and access time. NOR flash are byte/bit addressable and allows 

applications to run directly, similar to main memory, and are typically used for code storage 

as in BIOS or as NVRAM. NAND flash, on the other hand, doesn’t allow fast random access 

at byte-level, are typically accessed in pages and access time for the first byte is quite higher 

when compared to NOR flash while the sequential read from the same page is faster. 

Though the NOR flashes allow for fast random access, they have high erase times, larger 

area, higher cost per byte, lesser maximum erase cycles and high power consumption.  While 

NAND flash on the other hand has much lesser area with higher integration density and hence 

lesser cost per bit and lesser power consumption. This makes NAND flash more suitable for 

secondary storage such as Solid state disks and the initial slow random access is not a strong 

drawback because typically data is accessed in large sequential blocks by processing systems. 

This is because of paging mechanisms in memory structures, exploiting locality of reference 

in main memory. From here on, we only refer to NAND flash topology. 

The memory cells in NAND flash are placed in a matrix to optimize the silicon area. 

Logically, a NAND flash is organized into pages and blocks. A block is the smallest erasable 

unit. A block is divided into multiple pages and page is the smallest addressable unit for 

reading and writing. Each page is composed of main area and spare area. The main area is 

typically of size 4 or 8 KB which is used for data storage and spare area is of the order of 

hundreds of bytes per page and typically used for storing ECC information and system 

pointers. 
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Figure 2.2: NOR Flash structure [2] 

 

 

Figure 2.3: NAND flash structure [2] 
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Because of this particular organization, write-after-erase and limited number of 

program/erase cycles per block, a storage controller is needed to ensure correct operation and 

retrieval of data. 

The NAND flash is also characterized by the number of bits they hold per cell. SLC (Single 

Level per Cell) flashes hold 1 bit of information per cell whereas MLC (Multiple Levels per 

Cell) flashes can hold more than one bit of information per cell. MLC increase the integration 

density and hence reduce cost/bit, however, they have higher access times, lesser erase cycles 

and higher power consumption. 

2.1.3 Recent developments in storage technologies 

One of the recent development is to replace the Floating gate transistor with Charge trap 

flash. This technology uses silicon nitride as a trap layer instead of a floating gate made of 

poly silicon to increase the integration density and number of write-erase cycles. It however 

has a more complex fabrication process and higher cost as of now. One interesting 

development in increased integration density is 3D flash allowing the flash cells to be 

fabricated across various silicon layers on a single chip instead of a single 2D silicon layer. 

Also, current research is focused in exploiting other storage technologies like 

magentoresistive RAM, phase-change memories and millipede memories. Phase-change 

memories show tremendous potential in replacing flash in the near future, however it hasn’t 

yet achieved much commercial success. 

2.2 NAND FLASH STORAGE CONTROLLER 

Now that we are familiar with the flash organization, in order to see the need for keenly 

architected storage controller and techniques, let us consider a naïve approach in which a flash 

chip is provided as is and the controller simply translates the host interface commands into 

flash reads and writes. In particular, let us consider a page write. Since we cannot overwrite 

any page, each write would require an erase and program of the corresponding page and since 

erase can happen only at the block level, all other pages in the block have to be read and 

written back following the erasure. Given that an erase block would contain 128 pages or 
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more, such an overhead is easily intolerable. Also, in case of power failure, the data that is 

read out pre-erase could be potentially lost. In addition, given limited erase cycles, such a 

strategy would lead to permanent failure of the blocks containing pages which are frequently 

written and in this strategy once few of the blocks fail, the NAND flash is rendered useless 

given the static address mapping between host addresses and physical addresses.  

These problems with this naïve approach are very quickly attended to by the research 

community and techniques that are used to overcome this are presented below. 

2.2.1 Dynamic address translation 

There is one major problem with this naïve approach i.e., the complete erasure of a block even 

when we are writing only to a single page. This problem can easily be solved by replacing the 

static mapping from the host addresses to physical NAND flash addresses with a “persistent” 

dynamic mapping. In this approach, if a write needs to be executed, a clean page is located on 

the flash and the data is directly programmed into it and the persistent map is updated. Note 

that the map has to be “persistent” and again this leads to another challenge in terms of how 

you would maintain such a “persistent” map. Also note that this map has to be accessed on 

every write. So, accessing the map from flash is not an option, considering high access time. 

Traditionally, this map is maintained on SRAM/DRAM memory and the persistency is 

maintained by writing them back to NAND flash on shutdown and bringing them into memory 

on power on. This would require the memory cells to be equipped with a battery to handle 

situations of power failure. However, this approach with page-level address translation would 

require large amounts of DRAM cells increasing the silicon area, power consumption and 

cost. Hence several space-efficient implementations such as Block Associative Sector 

Translation (BAST) [3], Fully Associative Sector Translation (FAST) [4] have been proposed 

which does some of the translations at block level and some at page level. This hybrid 

approach though not as efficient as page level mapping can reduce the precious silicon space. 

Techniques like Demand-based flash translation layer (DFTL) [5] can be used to reduce the 

storage space while still using page-based mapping and also improve the NAND flash 

lifespan. 
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2.2.2 Garbage collection 

Of course, the dynamic address translation doesn’t prevent us from block erasure. We will 

need to erase the blocks at some point to continue writing new or modified pages. This process 

is called Garbage collection. Once a logical page is re-mapped, the older page is marked for 

erasure. The algorithms to execute garbage collection is very important in maintaining 

performance and endurance of NAND flash. Naïve approach, as we have seen, results in huge 

garbage collection overhead, since an entire block has to be erased for every page write, and 

there has been extensive research which takes garbage collection overhead also into account 

during translation to yield better performance. Some of the attempts can be found in Fast and 

Endurant Garbage Collection (FeGC)[6], Garbage Collection Algorithm based on Area and 

Block (GCbAB)[7] etc. 

2.2.3 Wear levelling 

Wear levelling is the policy of distributing the block erases evenly across the NAND flash in 

order to keep all the blocks of NAND flash alive as much as possible. Note that simple “out 

of place” updates considering the history of block erasures need not necessarily be an efficient 

wear levelling algorithm because such an algorithm would not handle static data, the data that 

is not frequently updated. The blocks with frequently updated data and blocks with static data 

co-exist in typical workload conditions resulting in certain blocks to be erased frequently than 

others. Hence the blocks with static data would need to be moved to ensure proper wear 

levelling. This would result in wear levelling also to do extra data movement and wear 

levelling overheads are important. Significant research has been focused on this as well, 

techniques like hot-cold swapping [8], evenness aware algorithm [9] etc. are proposed. 

2.2.4 Bad block management 

Bad blocks are those which have failed and not suitable for further data storage. This could 

happen during manufacturing of NAND flash itself or during NAND life time because of 

limited erase endurance. It is one of the reasons why Error Correction Codes (ECC) has to be 

implemented on the NAND flash controller to detect and correct errors and marks block as 

bad block if the error is uncorrectable. A persistent bad block map, typically a bit map, is also 

maintained inside the controller for this purpose. 
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All the techniques described above are collectively referred to as Flash Translation Layer 

(FTL). Since this is inherently software, now the obvious question to ask is where to 

implement the FTL. Whether it needs to be done on the device-side i.e., inside the storage 

controller or on the host-side? Before we answer this question, we will need to look at another 

aspect of FTL corresponding to I/O parallelism in NAND flash. 

2.3 I/O PARALLELISM AND MUTLI-CHANNEL CONTROLLER 

With the ever increasing thirst for I/O speeds especially in this world of overflowing data, 

simple replacement of magnetic HDDs with flash wouldn’t meet the demand, we need high 

bandwidth flash array architectures. Also, with the host I/O interfaces like PCI Express and 

RapidIO providing huge bandwidth, the bandwidth of a single flash chip is no match to the 

bandwidth offered by these interfaces. Operating a single flash chip connected to such high 

bandwidth interfaces would simply be a wastage of power and area especially in SSDs. Note 

that increasing the number of flash chips per package would increase both the integration 

density and read/write throughput. Hence it is natural to go for multi-chips operating in 

parallel. There are couple of ways to achieve this. 

2.3.1 Die level parallelism and interleaving  

The idea is to increase the number of dies per channel as shown in Figure 2.4. And then the 

operations on a single channel can be interleaved i.e., a second chip on the channel can be 

addressed when the first one is busy. For example, the write operations to a single channel to 

various dies within in the channel can be interleaved as shown in the Figure 2.5. The amount 

of parallelism in this approach is of course limited by the program time in case of write but 

way before that, this approach is limited by the channel parasitic loading and hence doesn’t 

give complete write parallelism. Typically, there would be 2/4 dies per channel. 
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Figure 2.4: Multiple die connected to single flash channel 

 

 

Figure 2.5: Interleaving within a flash channel 

 

2.3.2 Channel level parallelism and multi-channel controller 

Here the idea is to increase the number of channels as shown in Figure 2.6. This approach will 

shift all the complexities into the memory controller which now needs to handle multiple 

requests and data coming from multiple channels. This solution is however much more 

scalable and flexible than the previous one. Now what prevents us from increasing the number 

of channels indefinitely? Of course, the power consumption. Multiple channels operating in 

parallel draw huge amounts of current in parallel, increasing the power consumption. 

In practice, both the solutions are used within a given chip i.e., multiple channels per 

controller and multiple dies per channel. In addition there are other kinds of parallelism like 

plane level parallelism within in a die. This however allows limited amount of parallelism 

because of several restrictions. 
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Figure 2.6: Multi-channel flash controller with multiple die per channel 

  

Now that, we have seen the inherent I/O parallelism offered by the current day flash 

memory architectures, in order to fully utilize the offered bandwidth, the distribution of I/O 

access patterns of the underlying NAND flash plays a very important role in determining the 

performance. Hence apart from the functions described in the earlier section, it is now also 

the role of Flash Translation Layer to distribute the I/O requests across the channels and 

across the chips so that multiple chips operate as parallel as possible. 

2.3 HOST-SIDE vs DEVICE-SIDE FTL 

The Flash Translation Layer is now responsible for dynamic address translation, garbage 

collection, wear-levelling, bad-block management and I/O parallelism. Efficient handling of 

all of them plays a very important role in determining the overall performance of an SSD. 

Naturally, as FTL algorithms evolve, there will also be an increase in the complexity and 

hence the increased resources required for handling the FTL. In this context, we examine the 

potential advantages and disadvantages of handling FTL on host-side and on device-side. 

 Availability of tremendous computing resources and buffer space at the host side 

increases the flexibility of the FTL to incorporate more efficient and complex 

algorithms. For eg. Page mapping FTL, which is more efficient than block mapping 
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or hybrid mapping FTL but requires larger buffer space for mapping tables, is easy to 

implement on host-side than on the device-side. 

 Implementing FTL on host-side would consume precious CPU resources that would 

ideally be handling more IOPS. 

 Direct access of host-side FTL to incoming I/O request information enables the host-

side FTL to exploit inherent IO parallelism in SSDs more efficiently. See Parallel 

Issue Queuing [10] for an example on how host can schedule conflict-free I/O requests 

before reaching the controller. 

 Dynamic channel contention aware data scheduling is not directly possible with host-

side FTL without real time communication of device internal contention with host-

side stack. Real time communication with host side is difficult to achieve due to high 

latency of host-device communication interface. 

 Host-side FTL can provide operating system support for various storage interfaces 

going beyond the traditional block device interface such as key-value stores, atomic 

IO access etc. [11] providing storage efficient APIs especially to cloud application 

vendors. 

 Device-side FTL has the advantage of hiding the flash internals from the host and 

providing simple read/write interfaces to the host where as host-side FTL requires 

modifications to the OS layer and raises OEM qualification issues. 

 Host-side FTL has the advantage of keeping storage controller architecture easier and 

reducing the cost of the overall storage chip while it might not deliver a bootable drive 

because the system must be booted for flash-management software to execute and 

enable the storage device. 

 

Despite the above advantages and disadvantages, there is still much research to be done on 

this front, while most of them are use-case specific. In this context, it is essential to have a 

generic multi-channel controller which supports both host and device side FTL. The current 

thesis combined with LightNVM, which we will discuss shortly, are attempts to build such a 

controller. Also research oriented towards hybrid solutions is essential and this thesis aims at 

providing a research platform for the same. 
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The remainder of this section looks at various host interface protocols needed for 

development of this generic multi-channel controller. 

2.4 NVM EXPRESS SPECIFICATION 

NVM Express (NVMe) [12] is a scalable host controller interface designed as a standard 

protocol for next generation non-volatile storage media. The NVMe originally intended for 

PCIe based SSDs, however is almost independent of the kind of interface and can be easily 

extended to interfaces other than PCIe. The NVM Express abstracts the device internals to the 

host through simple read/write commands. However, if we want standardized flash controllers 

which support host-side FTL, additional commands are to be added on top of the standard 

NVM Express specification. This exactly is done in LightNVM specification which supports 

NVMe devices and also provide extensions for host-side FTL implementations. 

In this section we will discuss the general flow and command structure of NVM Express 

compatible device and in the following section we will discuss the additional command 

support added in LightNVM to enable host-side FTL implementations. 

2.4.1 General command flow in an NVMe device 

Figure 2.7 shows the general command flow in NVMe device. NVM Express uses main 

memory as a common communication point between host and the controller for most of its 

operations. All the commands and data reside in the main memory and a new command or 

data arrival into the main memory is merely notified to the controller through memory mapped 

configuration registers. 

All the commands follow a paired submission and completion queue mechanism. 

Command queues are simply circular buffers with a fixed slot and reside in the main memory. 

Commands are placed by the host into a submission queue and completions are placed by the 

controller in the completion queue. Multiple submission queues may utilize the same 

completion queue. A maximum of 64 I/O queues is supported by the specification however 

the controller can support only a few which is advertised by the controller capabilities. Among 

these queues there are a pair of special queues called Admin submission queue and Admin 

completion queue. They exist for the purpose of controller management and control ( for eg: 

creation and deletion of I/O queues, aborting commands etc.) and there is a special command 
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set called Admin command set which may only be submitted to Admin submission queue. 

Similarly there is an I/O command set which can be submitted to any of the I/O submission 

queues.  

Whenever the host wants to send an Admin command or an I/O command to the controller, 

it places the command in the respective submission queue (SQ) and updates the submission 

queue tail doorbell of the corresponding submission queue, which resides in the one of 

memory mapped registers of the controller. In this way, the controller gets notified about the 

existence of a new command in the corresponding queue and then the controller can fetch the 

SQ entry in order from the SQ but there is no guaranteed order in the execution of the 

commands, the commands can be executed out of order.  

Every SQ is associated with a completion queue (CQ), which is specified during the 

creation of the SQ using create submission queue command. Multiple SQ can be associated 

with a single CQ. Whenever the controller completes the execution of a command, the 

controller writes a command completion into the CQ and lets the host know through an 

interrupt or phase bit.  

A phase bit is part of the CQ entry which is flipped whenever the controller has wrapped 

around the top of the completion queue (remember that completion queue is a circular buffer). 

Initially the host sets the phase tag values for all the completion queues to be 0 and when the 

controller goes through the first round, it updates the phase tag with 1 and once it goes through 

the next round, it updates it with 0 and so on. The host can know about the new completion 

entry by polling the phase bit or through an interrupt. Once the host processes the completion 

queue entry, it updates the completion queue head doorbell which resides in the controller 

memory mapped registers to let the controller know that the entry can be reused. 

2.4.2 Configuration registers 

The configuration registers are mainly used for two purposes: setting the state of the controller 

and notifying the controller about new commands in the main memory.  These registers can 

be directly accessed by the host, memory mapped to the host address space and are un-

cacheable. Table 2.1 outlines the controller registers and their functions. 
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Figure 2.7: General command flow in an NVMe device [12]. 

 

Table 2.1 Configuration registers of an NVMe device 

Controller register Function 

 

Controller capabilities 

Indicates basic capabilities of the controller 

to the host, like max and min page size, 

supported command sets, arbitration 

mechanism etc. 

Version 
Indicates major and minor version of NVMe 

spec that the controller supports 

Interrupt Mask set Used to mask interrupts for specific CQs 

Interrupt Mask clear Used to clear previous set mask 
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Controller configuration 
Used to modify controller settings based on 

controller capabilities register 

Controller status Holds the current status of the controller 

NVM subsystem reset If supported, it is used to reset the controller 

Admin Submission queue base address 
The base address of admin SQ in main 

memory. 

Admin completion queue base address 
The base address of the admin CQ in main 

memory 

Submission queue doorbell registers 
To inform the controller about new 

commands. 

Completion queue doorbell registers 

To inform the controller that the completion 

in the main memory are processed by the 

host. 

 

2.4.3 Controller Admin Command set 

The controller admin command set is used for setting the state of the controller, get controller 

features and controller initialization. Table 2.2 briefs the admin commands defined in the 

NVM Express specification. 

 

Table 2.2:  Admin Command set for an NVMe device 

Admin command Description 

Abort 

Used to abort specific commands previously 

submitted to admin or I/O SQ. It is the best 

effort by the host and doesn’t guarantee an 

abort by the controller. 
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Asynchronous Event Request 
Control asynchronous status report of the 

controller. 

Create I/O completion queue Creates a new completion queue 

Create I/O submission queue Creates a new submission queue. 

Delete I/O completion queue Deletes an existing completion queue. 

Delete I/O submission queue Deletes and existing submission queue. 

Firmware Activate 

Used to verify that a valid firmware image is 

downloaded and to commit that revision to a 

specific firmware slot. 

Firmware Image download 
Used to download all or portion of firmware 

for future update of controller. 

Get features 
Retrieves the attributes of the features 

specified 

Get Log page Get extended status info from the controller 

Identify 
Get information regarding the controller, 

namespaces etc. 

Set features Set controller features 

I/O command set specific Additional defined command sets 

Vendor specific 
Additional commands defined by the 

vendor. 

 

2.4.4 NVM I/O command set 

The I/O command set is targeted towards the underlying non-volatile memory. Table 2.3 

briefs the I/O commands specified in NVM Express specification. 
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Table 2.3: I/O commands set for an NVMe device 

NVM I/O command Description 

Flush 
Flush the contents of cache to underlying non-

volatile memory 

Write 
Write data from main memory to non-volatile 

memory. 

Read 
Read data from non-volatile memory to main 

memory. 

Write Uncorrectable 

Used to mark a logical block as invalid. Any 

further reads from this block returns an error. 

However, to clear invalid logical block status, a 

write has to be performed on the logical block. 

Compare 
Compare logical blocks of memory without 

moving the data to host. 

Write zeros Write zeros to main memory block. 

Dataset Management 
Assign attributes like access latency etc. to a block 

range. 

Reservation related commands 

It is used in multi-controller environment to 

acquire and release namespace registrations. A 

namespace is set of non-volatile memory which 

can be formatted to logical blocks. 

Vendor specific 
Additional commands which can be extended by 

the vendor. 
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Of all the commands specified above, Read, write and flush commands are mandatory and 

the rest are optional. 

2.4.5 Address exchange – Physical region page and scatter gather list 

A single I/O command can specify multiple pages of data transfer. The size and structure of 

the I/O command is fixed, however multiple page transfer requires multiple main memory 

addresses and multiple NAND flash addresses to be specified. In NVM Express, the NAND 

flash logical addresses in a given I/O command are contiguous and hence only require a base 

address and length. Therefore, these fields are fixed and included in the command structure 

itself. However, the main memory addresses need not be contiguous and hence requires 

address lists. These addresses are specified outside the command structure and the command 

only consists of a pointer to these structures. There are two ways of specifying these address 

lists in NVMe. 

2.4.5.1 Physical region page (PRP) entry and list 

A Physical region page (PRP) entry is a pointer to the main memory page. These are fixed 64-

bit entries consisting of page base address and offset as shown in Figure 2.8 .The offset is zero 

for all PRP entries except for the first PRP entry in the command or PRP list. 

 

Figure 2.8: Layout of PRP entry [12] 

 

The value of ‘n’ in the Figure 2.8 depends on the size of the memory page 

A PRP list is a set of PRP entries in a single page of contiguous memory. The list identifier 

itself is a PRP entry pointing to the PRP list residing in the main memory. There are certain 

address fields available within the command as we will see in the next section. PRP lists is 

used to specify the addresses if the data transfer could not be described in the command itself. 
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2.4.5.2 Scatter Gather List (SGL) 

A SGL is a data structure in main memory used to describe a data buffer without any alignment 

requirement. An SGL consists of segments and each segment is a Qword aligned data structure 

in contiguous region of main memory describing a complete data buffer or additional 

segments. Basically, it forms a linked list kind of description of main memory buffers. For 

exact details of SGL data structure refer to [12]. These descriptors allow a more flexible 

description of data location however it adds complexity and increased overhead to the 

underlying controller because of its complex structure. 

2.4.6 General Command structure 

The commands in NVM Express are a fixed 16 DWord data structures. The general command 

structure is described below. 

DWord 0 

Command Dword0 consists of four fields.  

1. Command Identifier: A unique identifier for the command when combined with SQ 

identifier. 

2. PRP or SGL transfer: This field specifies whether PRPs or SGLs are used for any 

data transfer associated with the command. All the admin commands will use PRPs. 

3. Fused operation: In fused operation, a complex command is created by fusing two 

simpler commands. The field specifies if the commands is a fused command or not. 

4. Opcode: This field specifies the opcode of the commands to be executed. 

DWord 1 (Namespace Identifier) 

This Dword specifies the namespace ID that this command corresponds to. If no namespace 

ID is used for this command, this field is cleared to 0. 

DWord 2 – Dword 3: Reserved 

DWord 4 – Dword 5 (Metadata pointer) 

This field contains the address of a contiguous physical buffer of metadata. 

DWord 6 – Dword 7 (PRP Entry 1) 

Specifies the first PRP used for the command.  
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DWord 8 – Dword 9 (PRP Entry 2) 

This field specifies second PRP, this is either a PRP address or a pointer to a PRP list used for 

the command. Since the command has two PRP entries, if the data transfer corresponds to 

more than two PRP entries, than this field specifies a pointer to PRP list, else it specifies a 

PRP entry. 

DWord 10 – Dword 15 (PRP Entry 2) 

Command specific data. Refer to [12] for detailed description of this field. 

2.5 LIGHTNVM SPECIFICATION 

LightNVM specification extends the NVM Express specifications to support host-side FTL 

implementations. It allows the controller to off-load all or a subset of the features of Flash 

Translation Layer (FTL) like logical to physical address mapping, persistency of page tables 

etc. and also other functionalities like ECC for flash. To support this functionality, the 

command set is extended. Some of the extended commands are provided below. 

2.5.1 Extended admin commands 

Table 2.4 gives the description of the extended admin commands. 

Table 2.4: LightNVM extended admin command set 

Extended admin command Description 

Set responsibility command 

It allows the host and device to negotiate its 

responsibilities like hardware ECC vs ECC 

by host, device-side FTL vs host-side FTL. 

Get Logical to Physical Translation table 
The controller returns a range of logical to 

physical translation table to the host. 

Get Bad blocks table 
The controller returns a bit map of bad 

blocks. 

Set bad block table The host sets the bad block table entries. 
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In addition to the new commands described in Table 2.4, the Identify and Get features 

commands are also extended to support LightNVM specific attributes like number of channels 

in the controller, address space per channel etc. 

2.5.1 Extended I/O commands 

Unlike the I/O commands of NVM Express specification where the NAND flash addresses 

are contiguous in a single I/O command, in LightNVM I/O command, the NAND flash 

addresses need not be contiguous and hence a mechanism similar to the PRP lists is provided 

to handle multiple NAND flash addresses per command. The I/O commands are extended to 

support two different implementations. 

Hybrid I/O 

 In case of hybrid I/O, the device manages the persistency of mapping table and host 

offloads the consistency and durability of translation tables. Hence with every write 

command, the host sends the updated translation table entries using an approach similar to 

PRP lists and the device updates its local translation table. In case of a read the host would 

send only the logical addresses and device would look up the local translation table for 

physical addresses. 

Physical I/O:  

In this case, the host manages all the metadata and the persistency of translation tables. In 

this case, the host will only send a physical address list using a mechanism similar to PRP 

lists for every read and write command. 

In addition to read/write I/O commands, an additional erase command is also provided. 

2.6 PCI EXPRESS SPECIFICATION 

PCI Express (PCIe) [13] is a high speed serial interconnect standard. It replaces the earlier 

parallel bus architecture of PCI, PCI-X while still maintaining software compatibility. It can 

no longer be called a bus. A better way is to describe it as a network tree consisting of switches, 

endpoints and root complex. Figure 2.9 gives an overview of PCI Express architecture. 
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2.6.1 Outline 

The root complex connects the processor and memory subsystem to PCI Express switch fabric 

consisting of end point devices which can generate or consume PCI Express packets, or switch 

devices, which are responsible for extending the root complex ports and routing the packets 

upstream and downstream. 

 

Figure 2.9: PCI Express topology [14] 

 

Physically, PCI Express devices connect through lanes. Each lane is a full-duplex serial 

byte stream, transporting data packets in “byte” format simultaneously in both directions. A 

PCI devices can consist of one or more lanes in the powers of two. Lane counts are written 

with a prefix “x”. A “PCIe Gen3 4x” device implies that the device supports Gen3 PCI Express 

specification and consists of 4 physical lanes. The combination of lanes between devices is 

called a link. 

PCI Express uses a packet-based layered protocol just like an Ethernet protocol, consisting 

of transaction layer, a data link layer and a physical layer as shown in Figure 2.10. The 

physical layer consists of analog interfaces and logic circuits required for encoding and 

differential transmission on the link using the available number of lanes. The data link layer 

is responsible for making sure that the packets arrives correctly by adding its own headers and 
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Link CRC. Note that if the data link layer gets a positive acknowledgment from the upstream 

partner, it only means that the packet safely reached a nearby switch, no end-to-end 

acknowledgment is ever made in PCI Express nor is necessary. The transaction layer is the 

PCIe upper most layer and is responsible for building the packets, hereby referred to as TLP 

(Transaction Layer Packet). In this thesis, we only work at the transaction layer and only the 

description of the same is provided in the section below. For description of other layer refer 

to [13]. 

 

Figure 2.10: PCI Express layers 

 

2.6.2 Transaction Layer protocol 

PCIe uses a packet based protocol to exchange information between transaction layers of two 

components communicating over a link. Transactions are mainly carried out through requests 

and completions. There are mainly two kinds of requests – read request and a write request. 

The origin of the request can either be at the root complex or at the end point. However, for 

the end point to do bus mastering i.e., to be an originator of a read/write request , there are 

two-things that needs to done. Firstly, the endpoint should be granted bus mastering by setting 
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the “Bus master enable” bit in one of the standard PCIe configuration registers. Secondly, 

the host software must program the PCIe BAR (Base Address Register) with an allotted 

physical address space to the PCIe endpoint. 

2.6.2.1 Request packet 

A general PCI Express write/read packet is shown in the Figure 2.11. 

 

Figure 2.11 PCIe request packet format [13] 

 

The following is the brief description of various fields in the packet. 

 The Fmt field, together with the Type field determine whether it is a read request or a 

write request. For the write request, the Fmt is 0x2 and type is 0x0, for a read request, 

the Fmt is 0x0 and type is 0x0.  

 The R fields indicates that the fields are reserved. 

 The TC field stands for Traffic Class and is used to create Virtual Channels to setup 

independent flow control for packets. Nevertheless, this field is almost always set to 

zero. 
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 The Attr field is used to set packet order rules and no snoop attribute. The default value 

of this field is also zero which implies PCI strongly ordered model and hardware 

enforced cache coherency. 

 The TD bit is also normally set to zero. It indicates that there is no extra CRC on the 

TLP Digest field of the packet. It is usually unnecessary since the link layer has its 

own CRC and makes sure it is error resilient. 

 The Length field in case of write indicates that the amount of data payload present in 

the packet (Data 0, Data 1 etc. in figure 2.12) in DWords. In case of read, it indicates 

the number of DWords that needs to be read starting from the address specified in the 

Address field. 

 The Requester ID corresponds to the sender ID, this is set in PCIe configuration space 

registers. 

 The tag field is simply ignored by the receiver in case of a write and the sender can 

place anything in that field. In case of read, tag is significant. The completer of the 

read copies this field into the completion TLP and this allows the requester to match 

the completion with its outstanding requests. Multiple outstanding requests from a 

single device is allowed and hence the requester uniquely tags all its outstanding 

requests to identify the responses. 

 The 1st BE DW (Byte Enable DWord) allows to choose which of four bytes in the first 

data DW are valid when the length is 1 and it is zero if length is greater than 1. 

 The last BE DW indicates byte enable for last DW of request. If length is 1, this field 

is zero, else it has to be set. 

 The Address field is simply the address to which the first DW has to be written or read 

from and rest of DWords are written in contiguous address. 

 The DWords of PCIe are specified in Big Endian format. Note that typical Intel 

processors are Little Endian. 

2.6.2.2 Completion Packet 

 The structure of a completion TLP is shown in the Figure 2.12. 
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Figure 2.12: PCI Express completion packet [13] 

 

The following is the brief description of various fields in the packet. 

 The first DW is similar to that of a request packet. The Fmt and Type fields which 

are used to identify the completion packet are set to 0x2 and 0xA respectively. 

 The Length field corresponds to the length of the completion. Note that the length 

of the completion can be less than the number of DWs requested for. When this 

happens, the response is split across several completions.  

 The Byte count field indicates the number of bytes yet to be transmitted including 

those in the current packet. This field is useful in case of split completions. 

 The Lower address field is the lower 7 bits of the address of the first byte of the 

data presented in the completion TLP. This again will be useful in case of split 

completions. 

 The Completer ID corresponds to the sender ID.  

 The Requester ID corresponds to the requester ID. It is same as the requester ID of 

the read request packet which requested for the completion. 

 The Status field being zero indicates that the completion is successful, else it 

indicates rejection.  

 The BCM field is zero, except when the packet originates from PCI-X bridge. 
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2.7 OTHER RELATED PROTOCOLS 

The ONFI (Open NAND Flash Interface) [15] protocol is a standard high-speed interface 

specification for NAND flash devices.  

  RapidIO protocol [16], similar to PCI Express protocol is a high speed host 

interconnect protocol, however, it has much better performance and lesser transmission 

overhead. It has the capability to replace standard PCI Express protocol, especially in multi-

processor environment or Ethernet protocols. 
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CHAPTER 3 

 

ARCHITECTURAL DESIGN AND IMPLEMENTATION 

 

 

This chapter briefly introduces system level architecture and high-level description of the 

blocks from the perspective of a storage controller. Following the description, we will look at 

the scope of the work presented in this thesis from this perspective and a brief introduction to 

Bluespec System Verilog in which the current controller is implemented. Then we will delve 

into the architectural description and implementation details of each of the storage controller 

blocks.  

3.1 SYSTEM LEVEL ARCHITECTURE 

Figure 3.1 shows a block diagram of the system level architecture. 

 

Figure 3.1: System level controller architecture 
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At the system level, the storage topology is divided into the following. 

3.1.1. CPU/Host:  

The CPU/host can be single or multi-processing entity that makes use of the underlying 

controller for IO accesses to a non-volatile memory. The IO accesses can be at various levels 

of abstraction as supported by the underlying controller which includes, host-side FTL or 

device-side FTL, Physical IO or Hybrid IO etc., that issues and processes commands as per 

the NVM Express specification. The host is mainly responsible for the following  

 Software initialization of the underlying controller and programming the state of the 

underlying controller based on the capabilities of the controller. 

 Setting up I/O submission and completion queues and submission of I/O commands 

to the appropriate queues based on the priority of the IO command. 

 Setting up and updating queue doorbells to indicate the completion or arrival of a new 

IO command in the appropriate queue. 

 Handling or off-loading logical to physical address translation based on the specific 

use case of device-side FTL or host-side FTL implementations. 

 Handling or off-loading garbage collection and translation table maintenance based on 

capabilities of the underlying controller and per the use case. 

3.1.2 Main Memory: 

The main memory corresponds to the memory address space accessible for bus mastering by 

the controller where the host maintains IO command queues, buffers to transfer the read data 

from the NVM or from which data is to be transferred to the NVM and those memory pointers 

which store metadata and address lists associated with an IO command. 

Main memory would also act as a cache for storing translation tables in case of device-side 

FTL implementations while the persistency of translation tables may be maintained by 

underlying non-volatile medium. 

3.1.3 I/O interconnect:  

I/O interconnect plays a very important role in the performance of the entire system. It is 

responsible for the transfer of data between the main memory and the controller. The latency, 
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overhead of the protocol, bandwidth and signaling speed of the I/O interconnect forms a 

crucial role in the performance of the system as whole. In addition, the topology of 

interconnect and original goal of interconnect design also places a major role in 

interoperability of the system. For eg: PCI Express is designed to connect peripheral devices 

to a host processor and has a tree-based structure with a central root complex and switches 

connecting the nodes flowing down the tree. Because of this topology, PCI Express natively 

doesn’t support peer-to-peer host connectivity and using such an I/O interconnect in a 

distributed processing system or storage provides a challenge. RapidIO, on the other hand, 

was designed to work as a fabric interconnect enabling ease of peer-to-peer communications 

and better routability making it an interesting choice for storage systems, however lack the 

advantage of being natively present in the traditional motherboards and hence the extra cost. 

3.1.4 NVM Controller: 

NVM Controller forms a bridge between the bus controller and the NAND flash controller. It 

is mainly responsible for the following. 

 Providing host configuration and control registers. 

 Fetching, execution and dispatch of IO commands issued by the host into the IO 

queues. 

 Providing a generic interface for integration with any peripheral bus/fabric controller 

(eg: PCI Express/ RapidIO ) and providing a generic host interface and device FTL 

interface for host-side and device-side FTL implementations respectively.  

 Pipelined execution and parallelization of IO commands across channels, deciding the 

IO bandwidth and channel utilization. 

 Coalescing the response on completion of an IO command and returning the status to 

host.   

3.1.5 PCIe/RapidIO controller: 

The PCIe / RapidIO Controller provides a bridge between the NVM Controller generic host 

interface and transaction interface of the PCIe / RapidIO core. It validates the transaction 

packets received from the host, dispatches them across the generic NVM Controller interfaces, 

constructs bus specific transaction packets/signals from the payload responses generated by 
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NVM Controller interfaces and provides appropriate wait logic for resource conflicts from 

generic NVM interfaces to bus/fabric interfaces. 

3.1.6 FTL Processor:  

FTL Processor on the device has use case specific roles depending on whether the 

implementation use host-side or device-side FTL.  

In case of host-side FTL implementations, since the translation is already done on the host-

side, it merely acts as a meta-data processor and scheduler. It interprets the meta-data provided 

from the host IO commands, generates and schedules NAND flash commands across the 

channels based on the physical block address of the issued IO command.  

In case of device-side FTL implementations, FTL modules takes in the IO commands 

consisting of main memory page address, logical block address and length of IO request and 

returns back scheduled NAND commands to NVM controller channels consisting of physical 

block addresses, main memory address and length post-translation. 

3.1.7 NAND Flash controller:  

NAND flash controller provides a bridge between NVM Controller generic NAND interface 

and ONFI interface of NAND flash chips. Every channel has an independent NAND flash 

controller and each NAND flash controller can control one or more NAND chips. It executes 

NAND commands issued by the NVM Controller and returns the status of the NAND 

command to the NVM controller. It also implements error correction for reliable NAND data 

reads, and also maintains persistent bad block tables and returns them to the NVM Controller 

when requested for. 

3.2 SCOPE OF WORK 

This thesis deals with the architectural design and implementation of generic mutli-channel 

NVM Controller, integration of NVM Controller with PCI Express bus interface and testing 

the SOC through FPGA emulation. The PCI Express is chosen for all its advantages and 

because of its ready availability on any traditional mother board and Xilinx FPGA. For the 

purposes of this thesis, the NAND flash controller and the underlying NAND flash are 

emulated using BRAMs in the simulation and BRAMs/DDR3 in FPGA emulation. The focus 
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of the current thesis is on architectural features of the NVM Controller to design a highly 

scalable, low latency, high throughput storage controller while providing generic interfaces 

for interoperability and extensibility. A comprehensive simulation environment with 

automatic test case generator and configurable speed NAND flash model are also designed 

for functional and performance testing. It also prototypes functional testing of the controller 

through FGPA emulation and host-side linux kernel module designed specifically for testing 

purposes. It also attempts to prove the potential of the designed controller architecture through 

simulations and evaluations. 

3.3  BLUESPEC SYSTEM VERILOG 

The complete design of blocks and most of the testing environment w.r.t this thesis is written 

in Bluespec System Verilog (BSV). It has been chosen for its advantages and some of them are 

described here.  

BSV raises the abstraction level of hardware, especially the control logic when compared 

to the traditional hardware description languages like Verilog and VHDL. It models hardware 

using atomic rules which fire based on explicit and implicit conditions. The explicit conditions 

are user-defined and implicit conditions are inferred from the methods used inside the rules. 

BSV models interfaces between blocks using methods which has implicit enable and ready 

signals. Hence, whenever the method of a module is invoked, in other words, whenever an 

input is provided or output from the module is used in the rule, the implicit conditions of the 

method are automatically applied to the rule firing conditions. In this model, the conditions of 

when an input or an output of a module can be accessed can be encoded in method conditions 

of that module and the Bluespec compiler will make sure those conditions are met whenever 

we use those module instantiations. This particular feature of Bluespec makes the design of 

control logic much easier and reduces the development time drastically. It also makes the 

reasoning of correctness easier since designer only needs to think in terms of step-by-step 

execution of rules and the rule conditions. 

In addition, BSV offers highly parametrisable constructs, overloaded interfaces and 

functions which enables the designer in developing generic and scalable hardware. This 

feature makes the design highly modular and hence extremely maintainable which is very 

useful especially when designing generic hardware like the one in this thesis. It has powerful 
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static type checking which removes huge amounts of potential bugs during the stage of 

compilation itself. 

It also provides pre-defined library elements like FIFOs, BRAMs etc. which are modelled 

using BSV methods. This makes the modelling of control logic in pipelined designs using 

FIFOs and buffers much easier. The code written in BSV will also be compact because of all 

the above described features increasing the flexibility of design.  

Despite its advantages, it also has some disadvantages in terms of area and timing of the 

generated logic. A more controlled implementation of the logic in Verilog/VHDL would result 

in better area and timing. Also, interfacing with modules written in Verilog/VHDL will be 

difficult because of different interface modelling abstraction of both these languages. 

The rest of the chapter is focused on design and implementation and is divided into three 

sections: 

 Design and Implementation of NVM Controller 

 Design and Implementation of PCI Express wrapper 

 Design and Implementation of round robin arbiter.  

3.4 DESIGN AND IMPLEMENTATION OF NVM CONTROLLER 

The NVM Controller implements the host protocol specified in Section 2.4 and some of 

features in Section 2.5. The architecture is an extended version of work presented in [17]. 

However, it only forms as a basis for the current architecture with significant changes and 

extended features. To enable modularity and performance, some of the state machines and 

architectural features are re-designed, while some remained the same. However, for the sake 

of completeness, some of the state machines that are un-changed are also presented briefly in 

this chapter. 

 The top level data flow of the NVM Controller is shown in Figure 3.2. The commands that 

are handled by the controller are divided into four parts: 

 Commands that change the state of the controller and does not require data transfer. 

(Execute Command). All other commands are dispatched to respective state machines. 
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 Commands that request controller capabilities/features and requires data transfer. 

(Data Structure Command Execution). 

 Commands that are targeted towards the underlying physical NAND flash. (Data 

Transfer Command Execution) 

 Commands that are processed by the additional plugins to the controller. (Out of band 

commands, not implemented in the current version). 

 

Figure 3.2: Top level data flow of NVM Controller 

 

Each of the above commands go through independent data paths and are executed in 

parallel. However since the responses to the host, that are to be sent, should go through a 

single IO interface (PCI Express in this case), all those paths which require access to the host 

IO interface will request a PCIe arbiter and the arbiter allocates grants in a round-robin 
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fashion. Each executed command generates a Completion to the host which is handled by 

Completion State Machine. 

3.4.1 Interfaces to NVM Controller: 

The NVM Controller has the following interfaces. 

Configuration Interface: 

The configuration interface provides a memory mapped host control registers. It consists of a 

read_ method and a _write method. All the access are either Dword aligned or native width 

accesses as per the NVM Express specifications.  

IO Transmit Interface: 

The Read and Write requests by the NVM Controller to the main memory goes through this 

interface. This interface is similar to an AXI4 Interface. It has following methods: 

 write_ method returns 1 if the request is a write and 0 if it is a read. 

 data_ method returns the data to be written if the request is a write request else it is 

invalid. The data width can be set as 32/64/128 or higher using WDC parameter. 

 address_ denotes the main memory address to which the data is to be transferred to or 

requested from depending on whether it is a write request or a read request 

respectively. 

 payload_length_ denotes the size of data to be transferred or being requested in 

DWords to or from the main memory. 

 data_valid_ indicates if the data returned by other methods is valid or invalid. 

 tag_ method represents a unique ID for each outstanding read request. This tag has to 

be returned to the controller along with the read completion which is used by the 

controller to identify which IO client does the completion data belongs to. 

 wait_ method, when called, indicates the controller that the IO interface is not ready 

and hence the controller retains the current state of the methods. A single strobe of 

data transfer is complete when data_valid_ is asserted 1 and wait_ method is asserted 

0 simultaneously. 
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Interrupt Inteface: 

The interrupt interface generate an interrupt to the host when a new command completion has 

been sent to the main memory. It has two methods: vector_rdy method which indicates that 

there is an interrupt and vector_number which indicates the interrupt vector. 

Completion Interface: 

All the completions for read requests sent by the NVM Controller to main memory comes 

through this interface along with appropriate tag_ corresponding to that request. The data 

width of the completion is same as the data width used for transmission and is set by WDC 

parameter. 

NAND flash interface: 

This interface is used for all command transactions with the underlying NAND flash. If the 

NVM Controller wants to perform a read request on the NAND flash, the request is sent 

through request_address_ method, similarly if it has to perform an erase request, the request 

is sent through request_erase_address_ method. If the NAND flash is ready with the data 

corresponding to a read request, then a _interrupt is to be generated by the NAND flash and 

the data is taken in through _data_in method when controller is ready. If the controller wants 

to perform a write operation on NAND flash, the address and data is provided to the NAND 

flash through data_out_ method and once the NAND flash completes the write, the status of 

write is returned through write_status_ method. 

FTL Processor interface: 

This interface is used to communicate with the FTL processor module. All the I/O commands 

consisting of opcode, logical block address, length, main memory address and metadata are 

sent through ifc_ftl_processor_in interface and the scheduled NAND commands consisting of 

opcode, physical block address, length and main memory address are to be sent by the FTL 

processor to the NVM Controller through ifc_ftl_processor_out interface. The PRP addresses 

corresponding to read commands and write commands are to be sent separately through 

put_prp_read and put_prp_write methods. Separate methods are added in order to facilitate 

priority execution in the later versions.  
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The number of NAND flash interfaces,  ftl_processor_out interfaces and the corresponding 

channel logic scales automatically with the NO_CHANNELS parameter. 

3.4.2: Fetch State Machine: 

Figure 3.3 shows the data flow of the Fetch State machine. The Fetch state machine is 

responsible for fetching the commands en-queued by the host in IO queues, present in main 

memory, into the controller for execution. 

IDLE 

If any of the Submission Queues available is enabled and there are IO commands yet to be 

processed i.e. the queue is non-empty, then each of those Submission Queues requests the 

Submission Queue Arbiter, which is round-robin arbiter, for access to the fetch state machine. 

Once one of the Submission Queue gets the grant, the fetch state machine switches its state 

from IDLE to FETCHING_COMMAND state. 

FETCHING_COMMAND 

In FETCHING_COMMAND state, it requests the IO interface arbiter (PCIe arbiter in this 

case) for access to the host IO interface and once access is obtained, a read request is sent to 

the corresponding command address of granted submission queue with a fixed request tag for 

fetch state machine, and the fetch state switches to WAIT_FOR_COMMAND state. The 

command address is calculated from the submission queue base address, which is stored 

locally on Create Submission Queue command, and the Submission Queue head pointer. 

WAIT_FOR_COMMAND 

Once the completion with tag corresponding to the fetch state machine is received through the 

controller’s completion interface, the command is en-queued into internal execution queue 

for execution, the corresponding Submission Queue head pointer is incremented and fetch 

state switches back to IDLE.  
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Figure 3.3: NVM Controller fetch state machine 
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3.4.3 Execute/Dispatch state machine: 

Figure 3.4 shows the data flow of Execute/Dispatch state machine. The commands that are to 

be processed by the controller are divided into four types as specified in the introduction of 

Section 3.3. It is the function of the Execute/Dispatch state machine to either execute those 

commands which doesn’t require any data transfer and takes only single cycle to complete 

(or) dispatch the commands to appropriate state machines like Data Structure Command 

Execution and Data Transfer Command Execution. 

IDLE 

If there are commands present in the Internal Execution Queue, en-queued by the fetch state 

machine, execute state machine switches from IDLE state to one of the execute states 

depending on the type of command. If the command comes from the submission queue with 

ID zero, then it is an admin command and the state switches to EXECUTE_ASQ_COMMAND 

else it is an NVM Command and the state switches to ISQ_CHECK_ABORT.  

EXECUTE_ASQ_COMMAND 

The supported commands that are executed in EXECUTE_ASQ_COMMAND state includes 

Create/Delete IO queues, Identify Command, Abort Command and Set/Get features command.  

On execution of Create/Delete IO Queue command, the corresponding IO Queue is 

enabled or disabled and the base address of the IO queue is written into the IO base address 

register and IO Queue head is initialized to zero. The base address register and IO queue head 

are used in calculation of address of the command to be fetched in fetch state machine. 

Identify Command returns an identify data structure as required by the NVM Express 

specification and since it requires a data transfer, this command is dispatched to Data 

Structure state machine. 

Abort Command adds the ID of an IO command submitted previously by the host, into one 

of the submission queues, to the Abort List. However, aborting the command would only be 

successful, if the corresponding IO command is not yet processed by Execute State machine. 

Get/Set features either returns/sets the capabilities of the controller and hence changing the 

state of the controller based on the NVM Express specification. 
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ISQ_CHECK_ABORT 

The LightNVM I/O Commands that are supported are Read NAND, Write NAND and Erase 

NAND. All these are commands are to be checked for a possible abort against the Abort List 

in ISQ_CHECK_ABORT before proceeding to EXECUTE_ISQ state.  

EXECUTE_ISQ 

In execute ISQ state, the I/O commands are dispatched to Data Transfer Command Queue. 

 

 

Figure 3.4: NVM Controller execute state machine 

 

3.4.4: Data Transfer State Machine: 

The Data Transfer State Machine processes commands en-queued by the Execute Command 

state in the Data Transfer Command Queue. Since all these commands are targeted towards 
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an underlying NAND flash, the state machine is so designed to incorporate genericity of FTL 

processing, extensibility of NAND interfaces while still maintaining performance. The high 

level block diagram of the Data Transfer State Machine is shown in Figure 3.5. 

 

Figure 3.5: Block diagram of NVM controller data transfer state machine 

 

This state machine is further divided into the following four parts operating independently 

and in a pipeline. 

 PRP Transfer 

 FTL Processing/Scheduling 

 Data Transfer 

 Status Coalescing 

3.4.4.1 PRP Transfer: 

The PRP Transfer logic is responsible for fetching the list of main memory addresses and the 

list of NAND flash addresses corresponding to the pages that needs to be written to (or) read 
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from and send them to the FTL processor. In case of device-side FTL implementations, no 

NAND flash address list needs to be fetched since the IO requests point to contiguous NAND 

addresses based on NVM Express Specification, however, in case of host-side FTL 

implementations since the translation is done on the host-side, NAND physical address list is 

also needed for IO command processing. Depending on whether the controller implements 

hybrid IO or physical IO (see section 2.5), the one to one logical addresses and physical 

addresses is to be received or physical address alone has to be received respectively.  

To handle all these three cases while maintaining the use case specific changes to 

minimum, the PRP transfer state machine categorizes the transfers into two parts, PRP 

TRANSFER (main memory address list) which is common for all the implementations and 

Metadata transfer, which corresponds to physical address list in case of physical IO host-side 

implementations, one to one physical and hybrid address list in case of hybrid IO host-side 

implementations and ignored in case of device-side FTL implementations. The METADATA 

TRANSFER state has to be modified appropriately based on the use case, however this 

modification is minimal and only requires routing the data to different FTL interfaces. The 

following lines of this section discusses host-side physical IO use case which is currently 

implemented and then presents how the state machine is to be modified for the other two use 

cases. 

Figure 3.6 shows the state flow of PRP transfer state machine. 

IDLE 

If the data transfer command queue, which is en-queued by the Execute state machine is non-

empty, PRP transfer state machine sends the IO command to the FTL processor, stores the 

command attributes to the Command completion reorder buffer (CCROB) and switches its 

state from IDLE state to SEND_PRP1 state. The IO command is tagged with the address of 

the CC-ROB which needs to be returned back along with the scheduled command post-FTL 

and is used in status coalescing. 
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Figure 3.6: NVM Controller PRP transfer state machine 
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SEND_PRP1 

In SEND_PRP1 state, the PRP1 address is send to the FTL processor, the buffer space for the 

storing the PRP lists of the outstanding commands has to be provided inside the FTL processor 

with the current implementation. However, this can be moved into the CC-ROB and PRP lists 

can be fetched only when required i.e., post-FTL scheduling of the write command and post-

completion for a read command. In case of read and write commands, PRP1 address 

corresponds to first main memory address of data transfer. In case of erase command, PRP1 

address corresponds to the NAND physical block address (and not main memory address) that 

needs to be erased and FTL processor needs to interpret it so.  

The main memory address for the data transfer are specified within the IO command 

for single page and two-page transfer, however for multi-page transfer, a PRP list is used. (See 

section 2.4.5.1). So, depending on the size of transfer, the PRP transfer state switches to 

SEND_PRP2, if it is a two-page transfer (or) REQUEST_PRP_LIST state if it is a multi-page 

transfer (or) REQ_METADATA state if it is a single page transfer  

SEND_PRP2 

In SEND_PRP2 state, the PRP2 address is sent to the FTL processor and the state switches to 

GET_METADATA state. 

REQUEST_PRP_LIST  

In case of REQUEST_PRP_LIST state, the PCIe arbiter is requested for access and once the 

grant is obtained, it sends a request for PRP list fetch and switches to GET_PRP_LIST state. 

GET_PRP_LIST 

In GET_PRP_LIST state, the state machine waits until a completion corresponding to the PRP 

transfer state machine has been received and once the completion is received, the PRP list is 

forwarded to FTL processor. On completion of the PRP list transfer, it switches to 

REQ_METADATA state. 

REQ_METADATA and GET_METADATA 

The REQ_METADATA and the GET_METADATA states are similar to that of the PRP list 

states and once the metadata is obtained, it is sent to the FTL processor and the state machine 

returns to IDLE state. 



50 

 

In the case of Physical IO host-side FTL, the metadata corresponds to a list of physical address 

to which the data is to be written to or read from the NAND flash and current implementation 

corresponds to this. However, in case of hybrid IO host-side FTL, the metadata corresponds 

to one to one logical and physical block address and hence has to be sent along two different 

FTL interfaces, one corresponding to logical block address and physical block address. In case 

of device-side FTL, the metadata depends on the use-case. If there is no metadata, the 

metadata transfer states can be skipped altogether. 

3.4.4.2 FTL Processing/ Scheduling: 

For host-side FTL implementations, FTL processor merely acts as meta-data interpreter and 

scheduler. It receives the metadata from the PRP transfer state of the controller and provides 

it to the scheduler. The scheduler evicts the NAND commands with physical addresses to the 

Data Transfer logic corresponding to the appropriate channel of the controller. The FTL 

module, in this case, also provides buffer storage for the PRP lists and physical address list. 

In case of device-side FTL implementations, the FTL processor receives the IO commands 

from controller, does the page translation to be implemented in a software stack residing on 

the on-board processor and presents the mapped commands to the scheduler. The Scheduler 

evicts the mapped commands to corresponding IO channels of the NVM Controller. The logic 

for the device-side FTL algorithm is not in the scope of this thesis, only the logic for handling 

host-side FTL, interfaces for handling device-side FTL and scheduler is implemented in this 

thesis. 

The physical address presented to the scheduler is divided to two parts: 1) Channel address 

and 2) local address. The no. of bits of the physical address corresponding to the local address 

is parametrized based on the NAND_MEM_SIZE, which corresponds to the size of the 

NAND flash per channel. This requires that the size of the NAND flash channel to be aligned 

to Channel address, else the continuity of the address space is lost and hence is not desirable. 

This restriction is not a limitation since most of the commercial NAND chips comes with sizes 

in powers of two and hence are implicitly Channel address aligned.  This also reduces the 

complexity of scheduler significantly when compared to using unaligned addresses. The one-

hot encoding of the Channel address selects the channel to which the post-FTL commands 

are to be dispatched as shown in the Figure 3.7 
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Figure 3.7 NVM Controller channel scheduler 

 

3.4.4.3 Data Transfer 

The Data Transfer logic is replicated across each channel and the replication is parametrized 

based on NO_CHANNELS parameter. The data transfer logic interacts with the NAND flash 

interface of the controller and evicts the scheduled commands to the NAND flash channel 

controller. In addition it also fetches the data from the main memory corresponding to a 

WRITE command or transfers the data to the main memory in case of a READ command. 

The Data Transfer logic is divided into two pipeline stages as shown in Figure 3.8, 

Command issue logic and Command completion logic. 

Command Issue Logic:  

Command Issue logic dispatches the scheduled instructions and required attributes into the 

appropriate NAND flash interface. The description of NAND flash interface is provided in 

section 3.4.1.   
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Figure 3.8: NVM Controller pipelined data transfer logic 

 

Figure 3.9 gives an overview of command issue logic and the following lines describes it.  

 If the command is a READ or ERASE command, the commands are directly 

dispatched to request_address_ and request_erase_address interfaces of the NAND 

flash channel. 

 If the command is a WRITE command, the data to be written also needs to be fetched 

from the main memory. For this, the PCIe arbiter is requested and once the grant is 

obtained, a read request is issued to the PCIe from the PRP address associated with 

the command. Recall that PRP addresses are sent to the FTL processor and FTL 

processor provides the buffer storage for PRP addresses. The FTL processor returns 

the PRP address and tag along with the scheduled command. 

 Once the data is obtained from PCIe, the data is transferred through data_out_ 

interface. 
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 Once the READ/WRITE/ERASE command is dispatched, they are enqueued into 

Finished command buffer for command completion post-acknowledgment from the 

NAND flash channel controller. 

 Since the completion of a READ command requires PRP address to which the read 

data needs to be sent, these PRP addresses returned by FTL post-scheduling are stored 

in a FIFO and used during command completion stage. Note that this forces the 

completion for READ commands to arrive in-order, however, out-of-order completion 

for READ commands can be made possible by replacing the FIFO with buffer similar 

to Command Completion ROB or by storing PRP addresses in CC-ROB (as suggested 

in Section 6.1.4 ) and exposing the command tag to NAND flash channel controller. 

 The completion of WRITE/ERASE command doesn’t require any additional 

information and hence only the command tag is stored in the finished command buffer. 

 

Figure 3.9: NVM Controller data transfer state machine command issue logic 
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Command Completion Logic: 

The Command completion logic completes the data transfer command processing on reception 

of the response from NAND flash channel controller. Figure 3.10 gives an overview of 

command completion logic. The following lines describes the logic. 

 If the command is a write NAND or erase NAND, the status of the command is tagged 

to the command and it is moved from finished command buffer to completed command 

buffer. 

 If the command is a read NAND command, since the data from the NAND is to be 

written to the main memory, the PCIe arbiter is requested. Once the request is granted, 

the NAND interface is enabled and the data from the NAND interface is transferred to 

PCIe using the PRP address stored in Command Issue stage. 

 Once the data transfer is complete, the read NAND command is moved from finished 

command buffer to completed command buffer with the status tagged. 

 

Figure 3.10: NVM Controller data transfer state machine command completion logic 
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3.4.4.4 Status coalescing 

The Status Coalescing logic takes the completed commands processed by the data transfer 

logic and reports back to the CC-ROB where the command attributes are stored at the 

beginning of data transfer state machine. Once the entire IO request is completed, the 

completions are sent in-order to the host. This is however not a requirement of the NVM 

Express specification, but this reduces the complexity of logic of CC-ROB because it can be 

implemented as a simple circular buffer. It is to be noted that the buffer size of CC-ROB 

should be chosen carefully based on the no. of outstanding requests to NFC that are possible 

at a given time and number of outstanding commands in the pipeline. Since completions are 

committed in order, large IOs can block completion of smaller IOs following it. Out-of-order 

completion can also be permitted by implementing the CC-ROB as a set of registers and a 

queue consisting of a list of free registers and is left as an implementation choice or future 

work. 

A single status entry per command is currently implemented. However, this will be 

inefficient for larger IOs since the entire IO needs to be re-tried by the host in case of a failure. 

For host-side FTL implementations, it would be useful to send a single status bit per every 

page, since it would reduce the overhead of retry while simultaneously identifying the bad-

blocks. But a single status bit per page of an IO would require the maximum number of pages 

per IO command be limited. Since this feature is not been added to the specification yet, 

currently the implementation is left with single bit per entire IO. However since the status 

coalescing from NAND interface and CC-ROB updates are done at the granularity of page, 

adding single status bit per page would be straight forward. The implementation of the status 

coalescing in shown in Figure 3.11 and described in the following lines. 

 If the Completed command buffer of each channel is not empty, they request command 

completion round robin arbiter and one of them gets the grant. 

 The command tag and page tag (page tag is not currently used since only single status 

bit per IO is implemented else page tag should also be used) is used to update the entry 

of CC-ROB and number of pending acknowledgments is reduced by 1.  

 The command tag corresponds to address of CC-ROB with which all commands in 

pipeline are tagged in PRP Transfer state machine, the page tag corresponds to the 
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page no. within the IO command and the pending acknowledgements corresponds to 

no. of pages yet to be acknowledged. 

 Once the pending acknowledgments at the head of CC-ROB becomes zero, the 

command is en-queued in the completion queue which is taken on by Completion state 

machine, and the head is updated. 

 

 

Figure 3.11: NVM controller data transfer state machine status coalescing 

 

3.4.5 Data Structure State Machine: 

The Data structure state machine processes commands en-queued by the Execute state 

machine in data structure command queue. These commands only transfer pre-defined data 

structures to the host which holds information about the controller, namespaces or special 

configurations. Figure 3.12 shows an overview of data structure state machine and the 

following lines describes it. 

 When an entry is present in the data structure command queue, the state is switched 

from IDLE state to TRANSMIT state. 

 In TRANSMIT state, based on the type of command Identify namespace, Identify 

Controller and LBA range type, the data structure pre-defined in BRAMs is 
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transmitted to PCIe following the same procedure as any other PCIe client in the 

controller by first requesting and send it when grant is obtained. 

 

Figure 3.12 NVM Controller data structure state machine [17] 

 

3.4.6 Completion State Machine: 

The Completion state machine is responsible for sending the command completions using the 

info en-queued by various state machines including data transfer state machine, data 

structure state machine, fetch state machine and execute state machine in their respective 

completion queues. The general data flow of completion state machine is shown in Figure 

3.13 and described below. 

 When an entry is present in any of completion queues, the completion state machine 

switches its state from IDLE to SEND state. 

 The SEND state requests the PCIe access and sends the completion to the appropriate 

completion queue based on, the completion queue id corresponding to the submission 

queue id of the completed command, and updates the tail pointer of the corresponding 

completion queue. It also generates an interrupt to the host. 

 The interrupt masks can be controlled by the host via controller configuration 

interface. The host can also set an Aggregation threshold for each of the submission 

queues except the Admin submission queue and can receive an aggregated interrupt 

when the single interrupts exceeds the set threshold. 
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Figure 3.13: NVM Controller completion state machine 
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3.5 DESIGN AND IMPLEMENTATION OF PCIE WRAPPER 

The PCI Express wrapper translates the generic NVM Controller interface into PCI Express 

packets for communication with the host. The PCI Express packets are presented on an AXI4 

stream interface compatible with Xilinx 7 series integrated PCI Express core [18]. The main 

functions of the PCI Express Wrapper include 

 Detecting PCI Express TLPs sent by PCI Express core and transmitting it to 

corresponding NVM Express interface 

 Conflict resolution for simultaneous requests of PCI Express interface 

 Convert requests from NVM express generic interface to PCI Express TLP requests. 

 Split requests which exceed maximum payload length of PCI Express. 

3.5.1 Interfaces to PCI Express wrapper 

The PCI Express wrapper has three interfaces: receive interface, transmit interface and config 

space interface. The receive and transmit interfaces are standard full-duplex AXI4 stream 

interfaces. 

Receive interface:  

The TLPs (Transaction Level Packets) sent by the host are to be presented by the PCI Express 

bus controller (Xilinx 7 series PCIe core in this case) on the 128-bit rx_in_tdata bus of the 

receive interface. The signal rx_in_tvalid indicates the validity of data on rx_in_tdata bus. 

The signal _rx_out_tready indicates that the PCI Express wrapper is ready to receive the TLP. 

The simultaneous assertion of _tvalid and _rx_out_tready indicates that the current data on 

the _rx_in_tdata bus is processed by the PCI Express Wrapper and the core can present the 

next set of data on the next clock cycle. The signal _rx_new_packet_assert and 

_rx_end_packet_assert should indicate the start and begin of the TLP. 

The receive interface also allows for straddled packets that is a new packet transmission 

can start in the same cycle in which another packet ends if the packet that ends only occupies 

the lowest significant Qword of the 128-bit interface. This is allowed in order to prevent 

wastage of bandwidth due to misalignment. 
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Transmit interface:  

The TLPs (Transaction Level Packets) that are to be sent to the host by the PCIe Wrapper are 

presented to the PCIe bus controller on the 128-bit _tx_data_out bus. The _tx_out_tvalid 

indicates that the data presented on _tx_data_out is valid and the acceptance of the data is 

assumed by simultaneous assertion of _tx_in_tready signal by the bus controller. The signal 

_tx_out_eof_assert indicates the end of packet and _tx_out_byte_enable indicates the valid 

bytes within the 128-bit data stream. The bytes in 128-bit data stream will be contiguous, the 

_tx_out_byte_enable indicates invalid bytes only if they are at the end of the packet. 

The PCI Express wrapper mainly consists of two state machines receive state machine, 

which handles the TLP presented on receive interface and routes them to the appropriate 

interfaces of NVM Controller, and transmit state machine, which translates the NVM 

controller transmit signals into TLPs and presents them to PCI Express bus controller 

3.5.2 Receive State Machine 

The data flow of receive state machine is shown in Figure 3.14. From the NVM controller 

perspective, there are three kinds of TLPs that can be received by the controller. 

 TLPs that write to NVM controller configuration interface. 

 TLPs that request a read from NVM controller configuration interface. 

 Completions from the host as a response to an earlier read request by the NVM 

controller. These responses go to the completion interface of NVM controller. 

The flow is described in the following lines. 

 Initially, the state machines get triggered into DECIDE_INTERFACE state when a 

valid TLP is available on the receive interface and when new packet signal is asserted. 

 The type of the packet is decided based on the format and type fields of a PCI Express 

packet (see 2.6.2 Transaction Layer protocol). If it is a configuration read packet, since 

a response needs to be sent to the host, the packet is enqueued into the config_read 

FIFO which is handled by transmit state machine. If it is a configuration write packet, 

the data is written into the configuration write interface of NVM Controller. If it is a 

completion packet, the state machine switches to COMPLETION state. 
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 The length of the completion received is determined by the length field of PCI express 

packet and the state machine stays in COMPLETION state until the entire completion 

is received and transmitted to NVM controller and switches back to 

DECIDE_INTERFACE state. If a new packet is asserted at the end of the packet, i.e., 

a straddled packet then the partial data is stored and switches to CONFIG_READ or 

CONFIG_WRITE or COMPLETION state where the rest of data is received and 

executed. 

 

Figure 3.14: PCI Express wrapper receive state machine 
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3.5.3 Transmit State Machine 

The data flow of transmit state machine is shown in Figure 3.15. There are three types of 

packets that needs to be transmitted to the host by transmit state machine. 

 Write request with payload to main memory from NVM controller. 

 Read request to main memory from NVM Controller 

 Completion to an earlier read request by host which is stored in config read FIFO by 

receive state machine 

The flow is described in the following lines 

 There are two clients for transmit state machine. One is from the pending responses 

for earlier config read requests enqueued by receive state machine in config read FIFO, 

the other is the request from NVM Controller. 

 If config read request is available, then a wait signal is issued to NVM controller pcie 

interface to hold NVM controller pcie requests until config read requests is processed 

and the state machine switches to MRC_TRANSFER (Memory Read Completion ) state 

 If data request from the NVM controller is available a header is sent to pcie based on 

the type of data request, read or write and the state switches to DATA_TRANSFER. 

 If both requests are available, the config read request is given priority. 

 In MRC_TRANSFER state a memory read completion packet is created and sent to 

PCI core. 

 In DATA_TRANSFER state depending on the payload length of the request, the packet 

is sent as is or is split across multiple transactions. The maximum payload length of a 

PCIe transaction can be set using MAX_PAYLOAD_LENGTH parameter. 

3.6 DESIGN AND IMPLEMENTATION OF ROUND ROBIN ARBITER 

The round-robin arbiter is one of the components of NVM Controller. However it is presented 

here in a separate section because the architecture of round-robin arbiter plays an important 

role in determining the timing of the NVM controller especially, the I/O queue arbiter which 

resides in the critical path as the number of I/O queues increases beyond 64.  
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Figure 3.15: PCI Express transmit state machine 

 

Round robin arbiter exists as a library element in Bluespec, however the round-robin arbiter 

in Bluespec library has O(n) delay where n is the number of clients and quickly hits the critical 

path. The round-robin arbiter implemented in this section has O(log n) delay, parametrized 

and the operation is divided into stages which can easily be pipelined, if needed.  

3.6.1 Logic description 

The general architecture of the round robin arbiter is shown in the Figure 3.16 

Let N be the length the request vector R which is the input to the round robin arbiter. The 

value of the Mth element of the request vector R denoted by RM is 1 if the client M requests for 

the grant else it is zero. Let G be the grant vector and the Pth element of the grant vector Gp is 

1 if the Pth element gets the grant else it is zero and it also obeys that only one or none of the 

elements gets a grant in a given cycle.  
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Figure 3.16: Architecture of round-robin arbiter 

 

Now the priority of round-robin arbiter is defined in the following way. If client M got the 

grant in the previous cycle, then the priority is highest for the client next to M in the right-

ward sense of rotation and decreases as one goes towards the right. Let f (G) denote a 

thermometer encoding of grant vector G. If Pth client got the grant and hence the value of GP 

is 1, then V = f(G) is defined as VK = 1 for all K > P else 0. For eg. the thermometer encoding 

of grant vector 0001000 is 0001111. 

Now we will need to achieve a wrap-around priority functionality in order to implement a 

round-robin arbiter. This is achieved by considering two vectors. Let us take the request vector 

masked with the thermometer encoding of the previous grant vector and call it the masked 

vector. Now if the masked vector is non-zero, i.e., at least one of the clients following the 
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previously granted client is a requester, then passing the masked vector through a find-first-

set based priority logic will give the grant vector. If the masked vector is zero then passing the 

unmasked request vector through find-first-set based priority logic would give the grant 

vector. 

Therefore, the priority mask in Figure 3.16 corresponds to thermometer encoding the 

previous grant vector and select logic corresponds to determining if the masked vector is zero. 

“find-first-set” based priority logic is implemented using “OR parallel prefix computation 

tree”. 

3.6.2 Parallel prefix computation OR tree 

The “parallel prefix computation OR tree” is shown in the Figure 3.17. It enables the 

arbitration logic to find quickly the first request which is asserted, resulting in the ability to 

find the next valid requestor with the minimal possible logic cones. It also has the advantage 

that the output of this OR PPC logic is a thermometer encoded vector of the current grant 

vector which will enable us to calculate the next masked vector without additional logic. The 

next mask would be the current thermometer encoded vector right shifted by one bit. The grant 

vector can be obtained from the thermometer encoding by the shifting the vector by one bit 

towards the right and exclusive ORing with itself. This corresponds to binary decoding in 

Figure 3.16.  

The PPC tree itself has to be parametrized. For this purpose, the wires at the output of each 

level of PPC are divided into groups and group size at level ‘l’ is given by 2l starting with l = 

0. If the number of clients is N, number of levels is given by ceil (log (N)). The advancement 

from one level to next happens by “OR”in every odd group with the last element of previous 

even group as shown in Figure 3.17. 

Note that all the PPC tree does is to OR every element of the vector with all the previous 

elements. By doing this, all the elements following the first element with value 1, will also be 

made one which is the thermometer encoding of the required result and binary decoding will 

give the required result.  
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Figure 3.17: Parallel prefix computation OR tree 

 

3.6.3 Extensions 

For PCIe arbiter, which is the sticky arbiter, all that is need is to be done is ignore the right 

shifting of next mask vector calculated from current grant vector so that the current granted 

client has priority in the next cycle as well. For area-optimized version, the select logic is 

moved before the OR-PPC tree, this would only require a single arbiter, however additional 

delay of select logic is added. The arbiter can also be easily pipelined by grouping the levels 

into pipeline stages. 
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CHAPTER 4 

 

EVALUATION AND RESULTS 

 

 

This chapter outlines the testing procedure used, evaluation and interpretation of results in 

both hardware and software for unit tests of NVM Controller, PCI Express wrapper and then 

the integrated tests. It is to be noted, only preliminary testing for the blocks has been presented 

in this thesis, this does not qualify as a complete verification environment. In addition, ASIC 

synthesis results for NVM Controller are also presented at the end. 

The FPGA used for the both the synthesis and emulation is Xilinx ac701 evaluation kit 

which consists of on-board PCIe Gen2 4x lane PHY and the PCI controller is a provided as a 

soft-core IP, 7 series integrated PCI Express. In all the tests below the 7 series integrated PCI 

Express is used with 128-bit data width and at a clock frequency of 125 MHz (125 MHz is 

because of 4 Gbit/sec speed per lane of PCI Gen2 post 8b/10b decoding). 

4.1 TESTING OF PCI EXPRESS WRAPPER 

The functionality of PCI Express wrapper is both tested in simulation and hardware. Figure 

4.1 shows the simulation setup for unit test of PCI Express Wrapper. In simulation, towards 

the PCI core a testbench which delivers PCIe read packets and write packets to PCI Express 

interface is used and on the NVM Express side, a model with NVM Controller interfaces is 

created. 

 

Figure 4.1: PCIe Wrapper simulation test environment 
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4.1.1 NVM Controller model 

Though the model emulates the NVM Controller interfaces, the functioning of model is much 

simpler than that of the actual NVM Controller so that the bugs in NVM Controller doesn’t 

affect that of the PCI Express wrapper. The model configuration interface consists of the 

following memory-mapped registers which control the data flow of the NVM controller 

model.  

 Address register: It holds the pcie address for read/write data transfer. 

 Length register: It holds the length of the data transfer. 

 Write register: When this register is set, it implies that the data transfer is a write, if 

it is unset, it implies that the data transfer is a read. 

 Warps register: This register is to be set only for read data transfer. For read data 

transfer, number of warps indicate the number of continuous data transfers that are 

initiated by the model even while the previous requests are outstanding. This register 

is used in the hardware to calculate request to response PCIe latency. 

 Start register: When this register is set, the model initiates the data transfer based on 

the values set in all the previous defined registers. Hence this register should not be 

set until all the previous registers are configured properly. 

4.1.2 Simulation flow 

In simulation, the testbench configures the data flow control registers (address, length, write 

and warps ) which are memory-mapped, by creating PCIe write TLPs and correct register 

setting is checked by creating PCIe read TLPs in order. Then the testbench initiates the data 

transfer by setting start register. The type of the data transfer can be configured by changing 

the values written to the data flow control registers by the testbench. In case the data transfer 

is a read (note that read here refers to read w.r.t model), the testbench responds with a 

completion packet consisting of random data and the data is checked for in the model BRAM 

where the read data is stored. In case of write, the data transfer is checked for the timing at the 

testbench interface. 
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4.1.3 Hardware emulation 

In hardware, the configuration shown in the Figure 4.2 is used. The PCI Express wrapper is 

connected to Xilinx 7 series integrated PCI Express core towards the host interface and to the 

NVM Controller model towards the NVM Controller interface. On the host-side, a PCI 

Express driver which can be inserted in run-time in the linux kernel using kernel modules is 

developed. The following is the description of driver. 

 

Figure 4.2: PCIe Wrapper hardware emulation environment 

 

4.1.3.1 Kernel module testbench 

The kernel driver makes use of linux PCI express API to talk to the FPGA emulated PCIe 

device. It initializes the data flow configuration registers which are memory mapped to PCIe 

BAR and checks that the configuration is set properly by reading them back using write and 

read API provided by linux kernel. Then the driver allocates DMA (Direct Memory Access) 

coherent write and read buffers in the kernel space through DMA APIs to/from which the data 

is transferred from/to the controller model via pci express wrapper. First a write data transfer 

is initialized and once the transfer is complete, a read data transfer is initialized, the read data 

is then compared with the written data for transmission errors, this validates that the 

preliminary PCIe wrapper functionality.  

4.1.3.2 PCI Express speed test 

Also PCI Express data rate and request-response time has been evaluated using the above 

described setup. For this purpose, additional hardware counter is instantiated in the NVM 

controller model which is also memory mapped to the configuration interface and hence can 

be read by the host. Before initiating the read data transfer, the counter is set to zero by the 
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kernel driver and the once the data transfer start register is set, the counter automatically starts 

counting and stops as and when complete data as per the length set in the length register is 

received by the model. This register is then read by the kernel driver and noted. The above 

process is repeated from 1 to 32 pages and a graph, shown in Figure 4.3, of number of clock 

cycles elapsed vs number of pages transferred is plotted. From this graph, the speed and 

latency can be calculated using the following formula. 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑦𝑙𝑒𝑠 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 = 𝑐𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑝𝑎𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∗ 𝑛𝑜. 𝑜𝑓 𝑝𝑎𝑔𝑒𝑠 + 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 

 

Figure 4.3: PCI Express speed test (number of clock cycles vs number of pages) 

 

Hence the slope of the graph, cycles elapsed vs number of pages, gives the average cycles 

elapsed in 1 page data transfer and latency is given by the y-intercept. From the average cycles 

per page, the data rate can be calculated as 

𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 = (4096 ∗ 8 ∗
𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑝𝑎𝑔𝑒(𝑠𝑙𝑜𝑝𝑒) 
) 𝐾𝑏𝑖𝑡𝑠/𝑆𝑒𝑐 

The clock frequency in this case is 125 MHz and the slope is obtained to be 277.4 

cycles/page therefore the data rate is 14.76 Gbit/s and latency is obtained to be  83.04 cycles 

i.e., 0.664 uS.  
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Theoretical maximum speed of a PCIe Gen 2 4x is 16 Gbit/s, however in practice and in 

this particular setup on which the test is done, we obtain only 14.76 Gbit/s. Interestingly, the 

relationship between clock cycles and number of pages is very linear as seen in Figure 5.3 and 

fits our model perfectly !!. The reason is that the variations in PCIe latency is very few clock 

cycles and in the scale of our graph which is of 1000 cycles, the variation is quite small to 

observe. So, the latency looks almost constant. 

4.2 TESTING OF NVM CONTROLLER 

To test NVM Controller, we need to emulate the main memory and NAND flash. For this 

purpose a main memory model and NAND flash model is created using BRAMs in Bluespec. 

The testbench used is an extension of the testbench written in the previous work [17]. 

4.2.1 Simulation test environment 

The simulation test environment is shown in the Figure 4.4. 

 

Figure 4.4: NVM Controller simulation environment 
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4.2.1.1 Main memory model 

The main memory model consists of configurable sized dual-port BRAM which holds I/O 

submission queues and completion queues. One of ports is allowed for access to NVM 

Controller and the other port is used by the testbench for initialization, creation of I/O queues 

and checking completions. Since only one port is allowed for NVM Controller¸ unlike real 

environment both write and read from main memory cannot happen in parallel. 

4.2.1.2 NAND flash model 

The NAND flash model is also a configurable sized single port BRAM. It provides NAND 

flash interface abstraction to the NVM Controller. Every channel of NVM Controller is 

connected to one NAND flash model and all the channels of NVM controller can operate 

independently.  

Apart from providing the storage space, it also provides an additional functionality to 

throttle NAND flash interface speed by enabling the rules and interface methods once in every 

NO_CYCLE_DIVIDE cycles. The parameter NO_CYCLE_DIVIDE is used to control the 

speed of NAND flash interface in order to emulate a real NAND flash which works at much 

lesser speed than the NVM Controller without creating the hassle of Clock Domain Crossing. 

This speed throttling is used in evaluating the performance of multi-channel controller and 

hence giving us an insight into the controller limitations etc. 

4.2.1.3 Test case generator  

The test case generator is written in C++ which creates the initialization data in the main 

memory including random I/O commands, random addresses and random data based on the 

available main memory size and NAND flash size. The number of commands, number of 

pages per command and type of commands are parametrized in the test case generator and 

hence it can generate test cases for different scenarios. The I/O queues are given a fixed 

address map and the test case generator places the I/O commands in the respective addresses 

of the main memory. It also creates random data for NAND flash initialization. The generated 

main memory and NAND flash contents are exported to a text file which is later used by the 

top level testbench. 
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4.2.1.4 Top level testbench 

The top level testbench instantiates the main memory and NAND flash model, and connects 

them appropriately, the number of channels and bit width of the testbench is also 

parameterized. The instantiated main memory model and NAND flash model are initialized 

with the contents generated by the test case generator. The top level does the initialization of 

the NVM Controller like setting admin submission queue and completion queue base 

addresses, setting controller capabilities and checking the set capabilities etc. Once the 

initialization is done, it creates the I/O submission and I/O completion queue based on the 

address map used by the test case generator and writes the submission queue tail doorbell to 

the controller configuration registers. Since the I/O commands are already initialized in the 

I/O queues present in the main memory, the controllers starts fetching the commands and 

processes it. The completions sent by the controller are also checked for their status by the top 

level testbench. 

4.2.1.5 Post-processing data check 

The post-processing data check is also a script written in C++. It takes in the initial main 

memory and nand flash contents generated by the test case generator, final main memory and 

nand flash contents generated by the top level testbench, executes the I/O commands in main 

memory and compares the final data with the expected data. 

4.2.1.6 Limitations and extensions 

This kind of approach for verification has known limitations and hence needs to be extended. 

Firstly, the I/O commands are not en-queued in the I/O queues at run time but are initialized 

in the main memory and are never altered. So, the maximum number of I/O commands is 

limited by the I/O queue size whereas in real situations the executed commands are replaced 

with new commands through wrap around functionality of the queues. This limitation 

however can be alleviated by adding extra logic to enqueue the commands generated by the 

test case generator in run time, first by initializing a command buffer with the generated 

commands and enqueuing the commands into main memory queues at run time.  

Secondly, the data check is also not carried out at run-time, therefore this requires that the 

entire execution to be completed even if the error resides much before the completion, this 

consumes lot of simulation cycles. Also, the final main memory contents needs to dumped 
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into a text file for comparison, however, unlike Verilog or VHDL languages, Bluespec doesn’t 

have any methodology to dump entire BRAM contents at one shot, we will need to traverse 

through the entire BRAM one by one and print the contents to a file. This again consumes lot 

of simulation cycles. This however is not a limitation of the approach but is the limitation of 

Bluespec !!. 

4.2.2 Simulation speed tests 

Using the environment described in the earlier section, the NVM controller is evaluated for 

its performance. Read and write commands with various page sizes and various commands 

for each size is generated using the test case generator and the simulation cycles is measured 

from the write of door-bell register to the completion of all the commands. In this simulation, 

the NVM controller is assumed to be the bottleneck and hence NAND flash runs at same speed 

as the whole design, while in practice the throughput is almost certainly limited by NAND 

flash bandwidth. However, this simulation gives an insight into the overhead incurred by the 

design and the NVM Express protocol. Figure 4.5 shows the maximum speed that can be 

obtained using the controller for read and write commands of different page sizes. 

 

Figure 4.5: NVM Controller simulation speed test 
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Initially, for smaller page I/O, the speed is lesser because the percentage of overhead 

introduced due to fetch, execute and PRP fetch stages when compared to the data transfer is 

quite higher. For any command, the overhead encountered due to fetch and execute is constant, 

however the overhead encountered due to PRP fetch increases proportionally. When 

compared to the fetch and execute overhead, the PRP fetch overhead is significantly lesser. 

As the number of pages increases, the percentage of overhead incurred due to the significant 

constant part decreases and hence the speed increases. Also, we need to observe that the 

variation from small I/O to large I/O is very less and quickly increases to maximum value. 

Also, the write speed is lesser than the read speed, this is because of an extra response to 

request cycle from main memory simulation environment and has nothing to do with the 

controller itself. However, request to response latency is typical of any I/O interface and is 

much larger than a single cycle in practice, this is hidden by channel data buffer of NVM 

controller. In this case, the latency is not hidden because the NAND flash also operates at 

same speed as the NVM controller, while in practice, NAND flash interface is the bottle neck 

and the extra latency will be hidden.  

The actual speed of the controller depends on the speed of the I/O interface. In this case, 

the I/O interface is taken to be PCIe Gen 2 4x interface with maximum theoretical speed of 

16 Gbit/sec and we get a maximum speed of 15.83 Gbit/s. A better metric that is independent 

of the speed of the I/O interface, is the percentage of bandwidth utilization which is given by 

%𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝐼𝑂 𝑖𝑛𝑡𝑒𝑓𝑎𝑐𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 

In this case, the maximum percentage bandwidth utilization is (15.83/16) ~ 98.9%. This 

when combined with the hardware PCI express Gen 2x practical evaluation in the previous 

section gives a maximum speed of 14.6 Gbit/s. This however, is not real hardware evaluation 

and only an estimate. The real hardware speed evaluation is not possible with current test 

driver because the current test driver cannot handle multiple outstanding requests and is to be 

evaluated with complete LightNVM stack and forms part of the future work. 

In order to evaluate, the performance of the controller in the real situation in which NAND 

flash interface is the bottleneck, the functionality of the NAND flash model to throttle the 
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speed of NAND flash interface as specified in section 4.2.1.2 is used. The NAND flash 

interface is throttled by configuring NO_CYCLE_DIVIDE to 25 and since the simulation is 

run at 125 MHz, cycle divide of 25 implies that the NAND flash is operating at 5 MHz. Along 

with 128-bit data-width, it emulates a NAND flash interface working at an average of 5*128 

Mbit/s = 640 Mbit/s. Figure 4.6 shows the normalized NAND flash interface utilization with 

two values of channel command buffer size. The utilization is normalized to single channel 

and for easy comparison. The interface utilization for single channel controller is obtained to 

be 99.9%. 

 

Figure 4.6: Normalized NAND interface utilization vs number of channels 

 

Ideally, if the number of channels doubles, the NAND interface utilization should also 

double. As we can see from Figure 4.6, the actual utilization deviates from the ideal as the 

number of channels increases for two reasons. 

 For the case in which number of channels is less than 16, the deviation is because of 

channel buffer skewing. That is the test cases are random and hence are globally uniformly 

distributed across the channels. However, locally the I/O commands need not necessary be 

uniform and this results in channel skewing i.e., when I/O commands are locally skewed 

towards one or more channels, their channel buffers becomes full, halting the command 

processing in other channels. This results in reduced average interface utilization and this 
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effect is pronounced more as the number of channels increases because of the increase in 

number of halted channels. Increasing the size of channel command buffer reduces skewing 

and hence the channel utilization increases. 

For number of channels greater than 16, since the NAND flash interface is emulated at 640 

Mbit/s which is 1/25th of NVM controller bandwidth which is 16 Gbit/s, beyond 16 channels, 

the NVM controller becomes the bottleneck and hence the utilization doesn’t increase. 

4.2.3 Hardware emulation 

4.2.3.1 FPGA test configurations 

In hardware, two configurations are used for testing. The first configuration is a straight data 

path from PCIe to NVM controller to NAND flash model as shown in Figure 4.7. This 

configuration is similar to the simulation environment except that the main memory model is 

replaced with actual main memory and the NAND flash model is still constructed with 

BRAMs. The number of BRAMs in the NAND flash model is however limited because of 

resource constraints in an FPGA. So this configuration can only be used with a maximum of 

4 pages. 

 

Figure 4.7: NVM controller hardware test configuration 1 

 

In the second configuration shown in Figure 4.8, the NAND flash model is emulated with 

an on-board DDR3. This is done by creating an AXI4 stream wrapper around the NVM 

Controller NAND flash interface and is connected to Xilinx AXI datamover which converts 

AXI4 stream to AXI4 lite without any additional latency. The AXI4 lite from Xilinx AXI 

datamover is connected to an AXI interconnect including other peripherals like Microblaze, 
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AXI UARTlite, DDR3 etc The number of pages in this approach is only limited to the DRAM 

size which is around 1 GB and is sufficient for our purposes. Also, it provides more visibility 

into the hardware than the earlier one because of on-board microblaze.  

 

Figure 4.8: NVM controller test configuration 2 

In both the configurations, similar to the kernel testbench in FPGA emulation of PCIe 

wrapper and NVM controller model in section 4.1.3.1, a linux device driver is created that 

adheres to NVM Express specifications. The following section describes the kernel module 

and testing process. 

4.2.3.2 Linux kernel module 

The kernel module is built with the linux nvme driver as a reference but removing the interface 

to the user space so that the data flow is in the control of the driver. Similar to the functioning 

of the top level testbench in simulation, on insertion of the kernel module using “insmod”, the 

driver attaches itself to the underlying device based on the device Id and vendor Id of the pcie 

core. The driver then allocates DMA coherent memory for admin I/O queues in the kernel 

space and writes the queues base addresses to the memory mapped registers of NVM 

controller configuration interface as specified by the NVM Express specification. Then the 

driver creates the I/O queues and DMA coherent receive and send buffers and submits create 

completion queue and create submission queue commands to the admin queue and waits for 

the completion. The completion is checked using phase tags (see section 2.4.1) since interrupts 

are not yet implemented in the PCIe wrapper. This is for the reason that an unexpected 

interrupt can simply hang the kernel without any information for the cause of error and hence 
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it is decided that the completion be checked with phase tag functionality initially and then 

implement interrupts.   

Once the I/O queues are created, the driver initializes the send buffer with random data and 

submits a write command to the I/O queue and on completion the same data is read back into 

the receive buffer and compared with the send buffer for correctness. In test configuration 2, 

the microblaze is also used to monitor the data received on the hardware side and this 

information is sent to host through AXI UART lite. 

4.3 Synthesis results  

The NVM Controller including the PCI Express wrapper is evaluated for maximum clock 

frequency and area in ASIC synthesis. All the results below are obtained using Cadence RTL 

compiler and UMCIP 65 nm library at operation conditions of 1.35V and 1100F. 

Figure 4.9 shows the maximum clock frequency of the NVM Controller with PCI Express 

wrapper when configured with various channels and I/O queues. 

 

Figure 4.9: NVM controller maximum clock frequency Vs No. of channels and I/O queues 

 

The maximum clock frequency decreases with increase in number of channels and number 
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frequency with no. of channels is not very significant when compared to the performance 

increase due to increase in number of channels. For eg. for I/O queue size of 16, the clock 

frequency decreases from 1.72 GHz to 1.26 GHz i.e., 0.73x decrease, whereas the 

performance increases by approximately 16x from single channel to 16 channels. Overall, the 

clock frequency is above 1 GHz for all the above cases and with 128 bit data width and 98.9% 

bandwidth utilization (see section 4.2.2), the controller can deliver speeds as high as 

100Gbit/s. Also, note that the clock frequency, given a fixed number of channels, almost 

remains same for 8 and 16 I/O queues and decreases at 32 I/O queue size and again remains 

the same for 32 and 64 I/O queues. This is because, for queue size greater than or equal to 32, 

the I/O queue arbiter forms the critical path and hence the clock frequency is determined by 

the delay of the arbiter logic and this is why the design of arbiter logic is significant in 

determining the performance. 

Figure 4.10 shows the clock frequency of NVM controller using round robin arbiter 

provided in Bluespec library and the one designed in section 3.6 of this thesis, for I/O queue 

size of 32, 64 and 128 at which the arbiter logic is the critical path with a fixed number of 8 

channels per controller. 

 

Figure 4.10: Performance of BSV arbiter vs Custom arbiter 
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As we can see, the maximum clock frequency achieved by using BSV arbiter is less than 

that of the custom arbiter in all the three cases. But more importantly, the decrease in the 

frequency with BSV arbiter as the number of I/O queues increases is much more than that of 

the custom arbiter. From queue size of 32 to 128, the BSV arbiter decreases from 1.21 GHz 

to 0.82 GHz which is 47.5% reduction whereas the custom arbiter reduces from 1.38 GHz to 

1.10 GHz which is only 25% reduction. The BSV arbiter doesn’t scale well with increase of 

I/O queues because of O(N) delay whereas the custom arbiter has O(logN) delay. 

Figure 4.11 shows the variation of combinational area with channels, for a fixed I/O queue 

size of 64 and clock frequency of 1GHz and Figure 4.12 shows the variation of sequential area 

with channels. 

 

Figure 4.11: Combinational area vs No. of channels 
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Figure 4.12: Sequential area vs No. of channels 

 

As expected, the sequential and combinational area increases with increase in number of 

channels. In this case, the absolute value of sequential area is not of much importance since 

the buffers are currently synthesized using Flip-flops, while in practice, they would need to 

be synthesized using SRAM cells. However, the point of importance is the trend of area 

increase. The trendline in Figure 4.11 and Figure 4.12 shows ideal proportional increase of 

area w.r.t channels and as we can see the actual area closely matches this. Now, this in 

combination with the results of clock frequency proves that the designed controller is indeed 

scalable.  
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CHAPTER 5 

 

 EXTENSIBILITY AND FUTURE WORK 

 

 

This chapter begins by outlining some of the general design choices that have been taken in 

designing generic NVM controller and possible extensions. A summary of what this thesis 

has achieved is presented towards the end followed by future work. 

5.1 GENERAL DESIGN CHOICES AND EXTENSIONS 

5.1.1 Global data buffer vs Distributed data buffer 

Traditional implementation of storage controller use data buffer for two reasons. Firstly, to 

hide the host I/O interface latency and then it can be also used as a volatile cache for frequently 

accessed pages. Current implementation has one data buffer per channel (distributed data 

buffer) and the size of which is to be determined by the host I/O interface latency and NAND 

flash channel speed, however, a single global buffer for all the channels combined is also a 

possible implementation.  

A single global buffer has some disadvantages in terms of performance. Firstly, since the 

global buffer is shared across channels, skewed I/O requests can severely affect the 

performance of other channels. This is because, if I/O requests are skewed towards some of 

the channels, the global data buffer gets quickly filled and the rest of the channels will remain 

idle until there is enough space in the data buffer. However, a distributed data buffer is resilient 

to this because if there are skewed I/O requests, once the corresponding channel data buffers 

gets full, simply the data fetch for those particular channels will halt and rest can proceed 

without disturbance.  

Secondly, in case of global buffer, since the address space is shared across channels, 

additional arbitration logic is to be incorporated across the channels post-data fetch and since 

throughput of the data buffer should match the channel throughput, the data buffer should 
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operate at higher frequency than the controller itself necessitating clock domain crossing and 

synchronization logic. This additional overhead is avoided in the distributed data buffer. 

However, global buffers can be advantageous when FPGA based storage controller is 

designed since most of the commercially available FPGAs have on-board DRAMs which can 

act as shared data buffer. The distributed data buffer on FPGAs would need to be implemented 

using BRAMs but this is limited by the amount of BRAM size of FPGA. Another way to 

implement distributed data buffer is to allocate fixed address spaces to each channel but then 

the advantage of not requiring arbitration and clock synchronization logic will be lost. The 

second implementation is recommended for FPGAs, if the data buffers cannot be implemented 

using on-board BRAMs and is directly supported by current controller. 

5.1.2 External interface protocol 

The external interface plays an important role in extensibility and flexibility of operation with 

the external peripherals. Currently, Bluespec based interface is provided towards the NFC. 

This enables the NFC written in Bluespec to easily interface with the NVM Controller. Also, 

the interface is so designed so that no additional complexity needs to be added to translate the 

interface to standard interface like AXI for interaction with standalone IPs. AXI wrappers 

around the NFC are also written and used in the testing of NVM controller without any 

additional latency and can be extended for interfacing with standalone IPs. 

5.1.3 Impact of buffer sizes on performance 

NVM controller offers several design parameters that can be configured especially the buffer 

sizes. Overdesign of buffer sizes would simply waste the chip area and increase power 

consumption however under-design would impact performance. Hence the impact of buffer 

sizes is briefly provided here for later calibration. 

The size of Channel command buffer directly impacts the resilience of the controller to 

skewed I/O requests. The multi-channel FTL can ensure that the commands are globally 

uniformly distributed across the channels whereas the resilience towards local distribution is 

provided by the size of this buffer. If the size of this buffer is too small, a local skewing of I/O 

commands towards a subset of channels could halt the execution of commands by other 

channels, if the size of this buffer is too large, it would simply waste the chip area.  
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The size of Command completion ROB should at least be equal to the number of 

outstanding commands in the complete pipeline. If it less than that, it prevents the buffers in 

the pipeline from being utilized completely. The current command completion ROB uses a 

circular buffer implementation. In this implementation, the size of the buffer should be large 

enough to tolerate the maximum delay of command completion by a channel NFC else it 

would block the execution of commands by other channels because of the buffer being full. 

In case the implementation is extended to using free register queue and allow out of place 

completion delivery to host, then the buffer size should be same as number of maximum 

outstanding commands in pipeline. 

The size of channel data buffers should be enough to hide the data fetch latency of the host 

I/O interface.  

5.1.4 Extending for out-of-order command execution 

The current implementation provides for out of order execution of commands targeted across 

channels in order to not block any channel from execution because of any other channel. This 

is implicit in the current pipeline architecture however the commands targeted at a single 

channel are executed in order. It could be advantageous to provide for out-of-order command 

execution within the channel for better performance (for eg: certain sequential reads given 

more priority than writes etc.). The generic controller can be extended for this purpose.  

Firstly, the command completion ROB must be implemented using free register queues 

instead of circular buffer. The free register queue would maintain the free entries in the 

command ROB and the completed entries can be ejected out of order as when the I/O 

commands has been completed. Additional select logic similar to select logic presented in 

arbitration tree should also be added for ejection. All the I/O commands that are ready to be 

ejected will request the arbitration tree and one of them gets the grant based on the position 

and once the entry is ejected, the entry id is added to free register queue. This implementation 

would add extra complexity and hence is left optional depending on the use case. 

Then, the PRP buffers are to be moved into the command completion ROB, currently they 

are provided by FTL processor, with fetch-on-demand logic implementation and expose the 

command tag to underlying NFC. 
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5.2 SUMMARY AND CONCLUSIONS 

In this thesis, the concept of generic multi-channel storage controller is explored, architected 

and implemented. The entire design is focused in promoting an extensible and interoperable 

platform. Also generic interfaces supporting host-side FTL and device-side FTL have been 

added. Various design parameters are exposed for use case specific tuning. An elaborate test 

environment with automatic random test case generators and simulation models written in 

Bluespec and C++ have been developed. In addition, PCI Express wrappers and linux kernel 

modules have been developed for testing of the controller in an FPGA environment. The 

designed controller is evaluated for its performance and limitations. 

It has been shown that the current controller utilizes 98.9 % of the host I/O interface 

bandwidth, can potentially provide bandwidth as high as 100Gbps with 65nm ASIC design 

and is highly scalable. The designed controller outperforms all commercially available storage 

controllers, in terms of functionality and genericity, up to date and hence forms the high 

performance storage controller part for much bigger vision of LightStor project with a 

complete SOC consisting of on-board processor, encryption and deduplication engines. 

5.3 FUTURE WORK 

The current system forms a much simpler version of the controller than that envisioned by the 

Lightstor project. In the current thesis, the NAND flash controller and NAND flash are 

abstracted out and emulated using BRAMs and DDR. However, the controller needs to be 

integrated with NAND flash controller and tested with actual NAND flash model. The 

controller only contains preliminary support for LightNVM specification. The support for 

hybrid I/O and storage of translation tables in the controller through a cache hierarchy is to be 

added. In the current implementation, the processor is used only for debugging purposes, 

however the processor can be integrated with the NVM controller command flow to support 

additional commands like SMART, LOG etc or extended support for databases. The current 

controller is tested with a preliminary kernel driver supporting simple data transfers, however, 

it needs to be tested with actual LightNVM software stack, including host-side FTL layer. 

Other extensions could be replacing the PCI Express host interface with RapidIO interface, 

adding on-board peripherals like encryption and deduplication engine. 
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