
Simulation of Inertial-Electrostatic Confinement of

Fusion Plasma

A Project Report

submitted by

PRAVEEN GURRALA

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 27, 2014

THESIS CERTIFICATE

This is to certify that the thesis titled Simulation of Inertial-Electrostatic Confine-

ment of Fusion Plasma , submitted by Praveen Gurrala, to the Indian Institute of

Technology, Madras, for the award of the degree of Bachelor of Technology, is a bona

fide record of the research work done by him under our supervision. The contents of

this thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Prof. Harishankar Ramachandran
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 27th May 2014

ACKNOWLEDGEMENTS

I wish to first express my thanks to my research advisor Prof. Harishankar Ramachandran

for his guidance and support in the completion of this thesis. His guidance has been very

essential in the development of the simulation models.

I would like to thank all the professors of IIT Madras who have taught me. This work

would not have been possible without the knowledge given by them.

I would also like to thank Rahul Vadaga for helping me with the software for visualizing

the results of the simulation.

i

ABSTRACT

KEYWORDS: Inertial-Electrostatic Confinement; Monte-carlo Simulation;

Plasma Simulation; Particle-in-cell

Inertial-Electrostatic Confinement (IEC) is a method of trapping ions in convergent ge-

ometries using electrostatic fields. The IEC concept is used in thermonuclear fusion

reactors to improve their efficiency. The present work is aimed at modelling and simu-

lating the operation an IEC fusion reactor.

Particles in the reactor are assumed to have both radial and azimuthal velocities,

and a one-dimensional particle-in-cell model is used to track the motion of the particles

in their plane of motion. Monte Carlo methods for simulating nuclear fusion, elastic

scattering and charge exchange processes have been developed.

The results of the simulation show general agreement with the experiments. How-

ever, significant differences do exist. An explanation has been provided as to how the

model could be improved to reconcile the differences.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES 1

1 INTRODUCTION 2

1.1 Principle of Operation . 2

1.2 Fusion Reactions and Atomic Processes 3

2 THEORY, MODELING AND SIMULATION 6

2.1 Summary of the model . 6

2.2 Electrostatic potential inside the device 7

2.2.1 Theoretical Analysis . 7

2.2.2 Model . 9

2.2.3 Pseudocode . 11

2.3 Ion generation . 11

2.4 Equations of motion . 12

2.4.1 Theory . 12

2.4.2 Model . 13

2.4.3 Pseudocode . 14

2.5 Reactions and atomic processes . 15

2.5.1 Theory . 15

2.5.1.1 Reaction Cross Section 15

2.5.1.2 Fusion reaction and charge exchange reaction . . 16

2.5.1.3 Elastic Scattering 17

iii

2.5.2 Model . 19

2.5.2.1 Model for Fusion Reactions 19

2.5.2.2 Model for Elastic Scattering and Charge Exchange 20

2.5.3 Pseudocode . 21

3 RESULTS AND DISCUSSION 23

3.1 Results of the Simulation . 23

3.2 Conclusion and Improvements . 29

A Simulation Code 31

B Code used for plotting 60

LIST OF TABLES

3.1 Simulation conditions under which the results shown were obtained 23

3.2 Comparison of results with experiments and previous simulations . 29

v

LIST OF FIGURES

1.1 Structure of an IEC device . 3

2.1 Plot of Vacuum Potential as function of radius 8

2.2 Plot of Effective Potential as function of radius 13

2.3 Geometric description of reaction cross section 16

2.4 Elastic scattering between two particles 18

3.1 Potential structure observed by Thorson (Thorson et al., 1997) . . . 24

3.2 Potential structure predicted by Hirsch (Hirsch, 2004) 25

3.3 Plot of electrostatic potential inside the IEC device 26

3.7 Rate of beam background type fusion reaction 26

3.4 Radial distribution of the Deuterium ions 27

3.8 Rate of volume source type fusion reaction 27

3.5 Total number of Deuterium ions as a function of time 28

3.9 Rate of charge exchange process 28

3.6 Total number of fast neutrals as a function of time 29

3.10 Time averaged cathode current . 30

1

CHAPTER 1

INTRODUCTION

Inertial-electrostatic confinement(IEC) is a concept of trapping ions in convergent ge-

ometries like spherical or cylindrical ones using electrostatic fields. Philio Farnsworth

(Farnsworth, 1966, 1968) and Oleg Laverent’yev (Lavrentev, 1975) independently for-

mulated means of electrostatic confinement in the 1950’s to 1970’s, although in his work

Laverent’yev studied plasma confinement using both electrostatic and magnetic fields.

The term interial was borrowed from Farnsworth, who used the term ‘inertial contain-

ment’ for the trapping of positive and negative ions between equipotential boundaries.

The IEC concept is used in thermonuclear fusion reactors to produce particle energies

near the core that satisfy the conditions for nuclear fusion reactions.

1.1 Principle of Operation

In this section the method of operation of an IEC device of a specific configuration

is explained. While the method of operation varies significantly from one device to

another, the basic principle of operation remains same across various device configura-

tions. The device considered here (see figure 1.1) consists of a spherical cathode grid

that is surrounded concentrically by an anode grid. Both the anode and the cathode are

highly (at least 90 %) transparent. A large negative voltage is applied to the cathode,

while the anode is held at ground potential. Ions are introduced into the inter-electrode

space by an ion source that is located outside the anode. The entire arrangement is

housed inside a cylindrical vacuum vessel, and the fuel gas (D2) is fed into this vessel.

Electron-emitters placed outside the anode act as ion-sources by ionizing the fuel gas.

The ions that enter the inter-electrode space are accelerated towards the center of

the device during which they gain fusion relevant energies. Moreover, because of the

spherical focusing of ions towards the center, large ion-densities are produced thereat

Figure 1.1: Structure of an IEC device. The label 1 shows the space outside the anode,
where ions are generated. Ions enter the inter-electrode space through the
anode.

-50 to -150 kV

Anode (grounded)

Cathode

Vacuum Vessel

1

allowing fusion reactions between the ions. It should be noted that the ion trajectories

are not perfectly radial as the ions start with some non-zero azimuthal velocity. In ad-

dition, processes such as elastic collision with the neutral gas atoms contribute to the

deviation from perfectly radial motion. The high transparency of the cathode allows the

ions to make multiple passes around the center, increasing the chances of fusion reac-

tions. Although the IEC concept was first conceived as a means of facilitating ion-ion

fusion reactions (also called as converged core and counter-streaming-ion fusion), it has

been obvserved that the fusion reactivity is dominated by fusion reactions between the

ions and the fast neutrals with the background gas (Meyer, 2007).

1.2 Fusion Reactions and Atomic Processes

In this section a description of the significant atomic processes that occur in the IEC

device is given, followed by a classification of the fusion reactions occuring in the

same. A large number of atomic and molecular processes occur within the space inside

the anode, and some of the significant processes are mentioned below:

1. Charge exchange reactions :
In such reactions electrons are transferred from one reactant species to another.
In the present work only charge exchange reactions of the following type are
considered.

3

D+ (fast) +D (slow) −→ D+ (slow) +D (fast)

The net effect can be thought of as a momentum transfer from the ion to the
neutral background gas atom. In general, charge exchange might lead to many
other effects such as creation of Deuterium anions (Santarius and Emmert, 2012).

2. Ion-impact ionization:
These reactions occur primarily in the regions where the ions acquire energies
high enough to knock off electrons from the gas atoms. Such processes can lead
to avalanche ionization, if the electric field is high enough.

3. Secondary electron emission:
Ions intercepting the cathode grid lead to secondary electron emission, which
inturn can lead to many important effects such as 4.

4. Electron-impact ionization and dissociation:
Fast moving electrons ionize the background gas atoms and also cause dissocia-
tion and subsequent ionization of background gas molecules.

5. Ion-neutral elastic collisions:
Elastic scattering or collisions lead to significant deviations in the ion orbits.

In this work, it assumed that the fuel gas is completely dissociated, and only elastic

scattering and charge exchange processes are considered. The Fusion reactions occur-

ing in an IEC device are classified into several types as explained below (Krupakar Mu-

rali, 2004):

1. Converged-core and Counter-streaming-ion (beam-beam):
In counter-streaming-ion type of fusion, fusion occurs because of the intersection
of ion orbits primarily near the center of the device. In converged-core type, the
streaming ions interact with the dense core formed by the convergence of the ions
into the cathode (inner-grid).

2. Embedded Source (beam-target):
Embedded source reactions occur between the fast moving ions and those trapped
on the outer surface layers of the grid wires.

3. Volume Source(charge-exchange neutral–neutral):
Volume source fusion reactions occur between the fast neutrals(created by charge-
exchange) and the neutral gas. Such reactions occur throughout the volume of the
device.

4. Beam-Background Reactions:
These reactions occur between the energitic ions and the background gas. As
Child-Langmuir like potentials prevail in the device, the ions gain most of their
energy near the cathode, and thus these reactions occur mostly in that region.

4

5. Wall-Surface Reactions (charge-exchange neutral–target):
The reactions between fast neutrals (created by charge-exchange) and the atoms
trapped in the surface layers of the chamber walls are classified under this type.

Depending on the operating regime (gas pressure, power, fuel used etc.), each of the

aforementioned reaction types become important. In the present work, only converged-

core, volume source and beam-background reactions are taken into consideration be-

cause the device is assumed to operate at high pressures, wherein embedded source and

wall-surface reactions have marginal contributions to the total fusion reactivity.

5

CHAPTER 2

THEORY, MODELING AND SIMULATION

In this chapter the model used for simulating Inertial-electrostatic plasma confinement

is given. A brief, incomplete summary of the model is presented in section 2.1 for a

better understanding of the the detailed explanation that follows. In each of the sections

starting from section 2.2 a particular module of the model is discussed including the

theory necessary for developing the same.

2.1 Summary of the model

A summary of the model is given below :

• The model used is a particle-in-cell model.

• We track only Deuterium ions and the fast neutral Deuterium atoms created by
charge exchange processes.

• Only the particles with radius less than that of the anode are tracked.

• The motion of every particle (in its plane of motion) is tracked using its radial
postion, and its radial and azimuthal velocities. The model presented here is
therefore a 1-d model.

• For every particle i at a given radius it is assumed that Ni similar particles are
present at the same radial distance but uniformly distributed in the polar and
azimuthal directions. This assumption is made primarily to reduce the compu-
tational complexity associated with keeping track of every particle in the device.

• For reactions or processes with high probabilities, we assume that in any time step
either all the Ni particles (corresponding to the particle i at a particular radius)
participate in the reaction or all of them do not participate in the reaction.

• For reactions or processes with low probabilities, in any time step some of the Ni

particles (corresponding to the particle i at a particular radius) participate in the
reaction and some do not.

• Only the converged-core, volume source and beam-background type fusion reac-
tions are considered in this model.

• Only charge exchange processes of the type discussed in section 1.2 and elastic
collisions between the Deuterium ions and the background fuel gas are consid-
ered.

• The background fuel gas is assumed to be completely dissociated.

The pseudocode of the entire simulation is given below. How the individual parts of

the simulation are implemented is discussed in the following sections.

1: for every time step do

2: Generate ions

3: Move all the ions according to the electrostatic potential in the device

4: Simulate nuclear fusion reactions

5: Simulate elastic scattering of Deuterium ions

6: Simulate charge exchange process

7: Recalculate the potential inside the device

8: end for

2.2 Electrostatic potential inside the device

2.2.1 Theoretical Analysis

An analytical solution for the vacuum potential is presented in this section. The initial

(when no ions are present) potential distribution in the device can be obtained by solving

the Laplace’s equation. The Laplace’s equation for the electric potential in spherical

coordinates is

1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
= 0 (2.1)

Because of spherical symmetry equation (2.1) can be written as

1

r2
∂

∂r

(
r2
∂V (r)

∂r

)
= 0 (2.2)

The solution of equation (2.2) with the boundary conditions V (ra) = Va and V (rc) =

Vc is the initial potential distribution, where ra and rc are the anode and cathode radii

7

respectively, and Va and Vc are the anode and cathode voltages respectively. For Va =

0, the solution for equation (2.2) for the above mentioned boundary conditions is as

follows:

V (r) =

k
(
1− ra

r

)
, if rc < r ≤ ra

Vc if r ≤ rc

(2.3)

where k =
Vc

(ra/rc)− 1

Figure 2.1: Plot of Vacuum Potential as function of radius

0.00 0.05 0.10 0.15 0.20 0.25

Radius (m)

−80

−70

−60

−50

−40

−30

−20

−10

0

V
(r

)
(k
V

)

Figure 2.1 shows the potential distribution for Va = 0, ra = 0.25m, Vc = −80kV and

rc = 0.05m. The rest of this section involves the derivation of equation (2.3).

Starting with equation (2.2) the following equations can be written:

∂

∂r

(
r2
∂V

∂r

)
= 0

r2
∂V

∂r
= k1

V (r) =
−k1
r

+ k2

8

where k1 and k2 are some constants. Noting the fact that k1 and k2 take different values

in the regions r ≤ rc and r ∈ (rc, ra] , one can write

V (r) =

−
k1
r
+ k2 if r ∈ (rc, ra]

−k′1
r
+ k′2 if r ≤ rc

(2.4)

The first boundary condition, V (ra) = 0 , gives k1 = k2ra. A physically significant

solution must satisfy

lim
r→0

V (r) = finite

Hence k′1 = 0 . Substituting this in equation (2.4) and then using the boundary condition

V (rc) = Vc gives k′2 = Vc.

Using the fact that V (r) is continuous at rc in equations (2.4)

−k1
rc

+ k2 = Vc

Therefore

k2 =
Vc

ra
rc
− 1

and k1 =
raVc
ra
rc
− 1

By substituting the values of k1, k2 k′1 and k′2 in equation (2.4) the potential V (r) is

obtained.

2.2.2 Model

Because of the spherically symmetric charge distribution inside the device, the space

inside the reactor can be assumed to be radially divided into a number of small regions,

forming a 1-dimensional grid of nodes of size n + 1. Approximating differntials with

finite-differences, Poisson’s equation can be written in the difference-form. The po-

tential inside the device has to be recalculted in every time-step until a steady state is

reached. Poisson’s equation in spherical co-ordinates, with spherical symmetry is

1

r2
∂

∂r

(
r2
∂V (r)

∂r

)
=

ρ

ε0
(2.5)

9

At any node j (j 6= 0, n, rc/∆r), the difference equation can be written as

(
rj +

∆r

2

)2(
Vj+1 − Vj

∆r

)
−
(
rj −

∆r

2

)2(
Vj − Vj−1

∆r

)
=
r2jρj

ε0

Vj =
1

2

(
Vj+1 + Vj−1 +

(Vj+1 − Vj−1)× r∆r
r2 +∆r2/4

+
ρjr

2∆r

r2 +∆r2/4

)
(2.6)

The differnce form of the boundary conditions is

Vja = Va (2.7)

Vjc = Vc (2.8)

V0 = V1 (2.9)

where ja = ra/∆r and jc = rc/∆r. Equation (2.9) is obtained by writing the left-hand

side of equation (2.5) as

∂2V

∂r2
+

2

r

∂V

∂r

In the limit r tending to zero, for the above expression to be finite, the derivative of

V (r) at r = 0 should vanish. This gives the equation (2.9). The set of equations in (2.6)

along with the boundary conditions forms a system of linear equations in the variables

Vj (j = 0 to n). This system of linear equations can written in the form

AV = B

whereA is an (n+1)×(n+1) matrix, B is a vector of size n+1, and V is the vector of

unknowns Vj . It is easy to verify that the matrix A is irreducibly diagonally dominant.

Therefore, the system of linear equations can be solved iteratively using the Gauss-

Siedel method. The next section shows how the Gauss-Siedel method is implemented

in the simulation.

10

2.2.3 Pseudocode

The following is the pseudocode for solving the equations (2.14) through (2.18).

1: repeat

2: Copy old potential array

3: for Every node j do

4: Vj ←− 1
2

(
Vj+1 + Vj−1 +

(Vj+1−Vj−1)×r∆r
r2+∆r2/4

+
ρjr

2∆r

r2+∆r2/4

)
5: end for

6: Vja ←− Va {ja is the index of the node at anode }

7: Vjc ←− Vc {jc is the index of the node at cathode }

8: V0 ←− V1

9: Find residual

10: until residual < tolerance

2.3 Ion generation

Deuterium ions are generated in the space outside the anode by ionizing the background

gas using electron-emitters. The generated Deuterium ions enter the inter-electrode

space with non-zero velocities and in random directions. The cathode current depends

on the number of ions entering the inter-electrode space in any time-step. In this model,

it is assumed that a fixed number of ions with a fixed energy are introduced into the

inter-electrode space through the anode. However, their direction is assumed to be

uniformly distributed in [−π/2, π/2], where the angle is taken with reference to the

radius directed towards the center.

11

2.4 Equations of motion

2.4.1 Theory

Under steady state, the ions inside the reactor undergo motion in a central force defined

by a time-invariant potential u(r) . The total energy of any ion is given by

E =
mṙ2

2
+
mr2φ̇2

2
+ u(r)

=
mṙ2

2
+

M2

2mr2
+ u(r)︸ ︷︷ ︸

ueff (r)

(2.10)

=
mṙ2

2
+ ueff (r) (2.11)

where m is the mass of the ion, M = mr2φ̇ is the angular momentum of the ion, and

ueff (r) is the effective potential seen by the ion. Taking the anode potential to be zero,

the trajectory of any ion with total energy less than zero will be bounded. In general, the

above condition does not hold true because ions enter the inter-electrode space from the

region outside the anode with some non-zero velocity. However, when they lose energy

by charge exchange processes, their total energy might become negative.

A reflecting boundary is used at the centre of the device i.e., velocities and radial

positions of ions crossing the center are inverted. This is done because in this model

only the radial positions (and not azimuthal or polar coordinates) of ions are tracked.

In order to understand the motion of the ions, let u(r) in equation (2.10) above be

replaced with the vacuum potential. Figure 2.2 shows a typical plot of the effective

potential, taking the vacuum potential as the steady state potential u(r).

The equations of motion of an ion can be derived by starting with the Lagrangian of

the ion

L(r, ṙ, φ, φ̇) =
mṙ2

2
+
mr2φ̇2

2
− u(r)

12

Figure 2.2: Plot of Effective Potential as function of radius

0.00 0.05 0.10 0.15 0.20 0.25

Radius (m)

−80

−60

−40

−20

0

20

40

60

80

P
ot
en
ti
a
l

(k
eV

)

M2

2mr2

u(r)

ueff (r)

The equations of motion will be given by

∂L

∂r
=

d

dt

(
∂L

∂ṙ

)
and

∂L

∂φ
=

d

dt

(
∂L

∂φ̇

)

which reduce to

mr̈ = mrφ̇2 − ∂u

∂r
(2.12a)

mr2φ̇2 = constant (2.12b)

2.4.2 Model

To simulate the motion of the ions according to equations (2.12a) and (2.12b), the grid

that is used to calculate the potential should be sufficiently large so that the electric field

(or the derivative of the potential) is constant in the region between any two nodes in the

grid. Assuming that the above condition is satisfied, equation (2.12a) between nodes j

13

and j − 1 can be written as:

mr̈ =
mv2φ
r
− q(Vj − Vj−1)

∆r

r̈ =
v2φ
r

+
q(Vj−1 − Vj)

m∆r
(2.13)

where q is the charge of the ion, Vj is the electric potential at the node j, ∆r is the

length of each element of the grid, and vφ = rφ̇ is the azimuthal velocity of the ion for

which the equation is written.

If r is almost constant over a time-step (which also implies from equation (2.12b)

that vφ is constant), r̈ remains constant in that time-step. Thus if the time-step dt is

made sufficiently small that the acceleration remains constant in any time-step, in the

nth time-step the following equations can be written:

r̈n =
v2φn−1

rn−1
+
q(Vj−1 − Vj)

m∆r
(2.14)

drn = ṙn−1dt +
1

2
r̈ndt

2 (2.15)

rn = rn−1 + drn (2.16)

ṙn = ṙn−1 + r̈ndt (2.17)

vφn =
rn−1 vφn−1

rn
(2.18)

where drn and r̈n are the displacement and acceleration in the nth time-step respectively,

and ṙn, rn and vφn are the radial velocity, radial position and azimuthal velocity after

the nth time-step respectively.

2.4.3 Pseudocode

The pseudocode for simulating the motion of the ions is given below:

1: for every time step do

2: for every ion do

3: find the numbers of the nodes, j and j − 1,between which the ion is located

4: find the acceleration using (2.14)

5: calcluate the discplacement using (2.15)

14

6: if ion is crossing cathode then

7: run a die to find if the ion intercepts cathode {This step is explained in the

following section}

8: end if

9: temp←− r vφ {temp is a temporary variable}

10: update the position of the ion (r) using (2.16)

11: update the velocity of the ion (ṙ) using (2.17)

12: vφ ←− temp/r {update the azimuthal velocity of the ion}

13: if the particle passes through the center then

14: invert its position and velocity

15: end if

16: if the particle reaches or crosses the anode then

17: stop tracking that particle

18: end if

19: end for

20: end for

2.5 Reactions and atomic processes

2.5.1 Theory

2.5.1.1 Reaction Cross Section

In this section the formula for the total number of reactions (of a particular type) that

a particle participates in is derived in terms of the reaction cross section. Consider a

reaction taking place between two particles. Let one of the particles be the target. We

are interested in finding the total number of reactions that the target undergoes. Consider

a circle centered around the target with area equal to the reaction cross section. By the

definition of reaction cross section, in any infinitesimal time dt, all the particles that

cross the plane of the target through this circle react with the target (see figure 2.3)

In the frame of the target, the reactant particles of the other type arrive at the target

15

at a velocity say vrel. Then the total number of reactions that the target participates in

is given by

r = σ vrel dt n (2.19)

where n is the number density of the particles approaching the target. It is worth noting

that for reactions in which the target is consumeda the number r must be smaller than

one.

Figure 2.3: All the particles in the cylinder with length vdt react with the target

vdt
Area = reaction cross section

Target particle

|

|

|

|

|

|

2.5.1.2 Fusion reaction and charge exchange reaction

A fusion reaction between two Deuterium atoms can lead to two equally probable sets

of products as shown below.

2
1D + 2

1D −−−−→ 3
2He + 1

0n

−−−−→ 3
1T + 1

1p

Each of the Deuterium atoms in the reaction shown above can be either ionized or

neutral.

The charge exchange reaction that is considered in this model is as follows:

D+ (fast) +D (slow) −−−−→ D+ (slow) + D (fast)

a Here and elsewhere in this document the term consumption is used to refer to a change in the
constitution.

16

2.5.1.3 Elastic Scattering

Figure 2.4 shows the process of elastic scattering between two particles. We are inter-

ested in deriving a formula for the scattering angle of the particle impinging the target.

The target can be made stationary by choosing the frame of reference as the frame of

the target. As shown in the figure 2.4, let particle A be the impinging particle and let

particle B be the target. Let r and φ denote the radial and polar coordinates of parti-

cle A when particle B is chosen as the origin. Because of the conservation of angular

momentum of A about the target B,

mr2
dφ

dt
= constant = mv0b

dφ

dt
=
v0b

r2
(2.20)

where m is the mass of particle A and b is the impact factor (shown in the figure 2.4).

With reference to figure 2.4, the force balance equation in the vertical direction is

F Sin(φ) =
ZAZB e

2Sin(φ)

4πε0 r2
= m

dvy
dt

(2.21)

where ZA and ZB are the atomic numbers of particles A and B respectively, e is the

electronic charge, ε0 is the vacuum permittivity, F is the central force seen by the par-

ticle A and vy is the velocity of particle A in the y-direction. Equation (2.21) can be

rewritten as

m
dvy
dt

dt

dφ
=
ZAZB e

2 sinφ

4πε0 r2
r2

v0b
(2.22)

dvy
dφ

=
ZAZB e

2 sinφ

4πε0mv0b
(2.23)

where equation (2.20) is used to write the right hand side of equation (2.22). Equation

(2.23) upon integration gives

vy(φ) =
ZAZB e

2 cosφ

4πε0mv0b
+ c (2.24)

17

Figure 2.4: Elastic scattering between two particles

θ

φ

F cosφ

F sinφ

b

v
0
 sinθ

v
0
 cosθ

v
0

The constant c is set by using the fact that particle A has zero velocity in the y-

direction when it is far from the target i.e., vy(0) = 0. This gives

vy(φ) =
ZAZB e

2(1− cosφ)

4πε0mv0b
(2.25)

From the figure 2.4 it can also be seen that

vy(π − θ) = v0 sin θ (2.26)

Using equation (2.25) for the left hand side of equation (2.26), we can write

ZAZB e
2(1 + cosφ)

4πε0mv0b
= v0 sin θ

ZAZB e
2

8πε0E
= b tan

(
θ

2

)
(2.27)

θ = 2 cot−1
(
b
8πε0E

ZAZB e2

)
(2.28)

where E is the kinetic energy of the impinging particle. Equation (2.28) gives the scat-

tering angle in terms of the impact parameter b and the kinetic energy of the impinging

particle.

For the case of scattering of Deuterium ions from the background Deuterium gas

18

atoms, ZA = ZB = 1, and because of debye shielding by the electrons of the target

Deuterium atoms, the impact parameter b has a certain limiting value beyond which the

central force exerted by the target on the impinging ion becomes very small. The lim-

iting value of the impact parameter depends on the distribution of the electrons inside

the target Deuterium atom, and a closed form expression for it may not exist. However,

the Bohr’s radius a0 can be taken as an upper bound on this limiting value. Paar (Paar,

2010) discusses how the same result can be obtained using quantum mechanical scat-

tering theory. The impact parameter of any ion can thus be assumed to be uniformly

distributed in (−a0, a0).

2.5.2 Model

2.5.2.1 Model for Fusion Reactions

The number of reactions that a particle participates in any small time dt is given in

equation (2.19). It has also been mentioned that for reactions in which the reactant

particle is consumed, like nuclear fusion reactions, this number (r) will be less than

onea b. This number can therefore be interpreted as the probabiltity that the particle

undergoes a reaction. As mentioned in section 2.1, we assume that for every particle i at

a given radius ri, Ni similar particles are present at the same radial distance uniformly

distributed in the polar and azimuthal directions. LetX be the random variable denoting

the total number of reactions due to these Ni particles in any infinitesimal time dt .

Then X will have a Binomial distribution with parameters (Ni, r). In every time step,

a realization of X should be generated, and the value of Ni should be decremented by

this value. Since only Deuterium ions and fast Deuterium atoms are being tracked in

this model, the only effect of the nuclear fusion reactions as per the model will be a

decrement in the value of this number Ni.
aWhile calculating this number for reactions with the background gas atoms, the background gas

atoms are assumed to be at rest as their velocities are negligible compared to the velocities of ions and
fast neutrals

bIt turns out that this number is less than one for elastic scattering also, which is not a reactant
consuming process.

19

2.5.2.2 Model for Elastic Scattering and Charge Exchange

Unlike nuclear fusion reactions, in the processes of elastic scattering and charge ex-

change, the products consist of particles that need to be tracked. Therefore the effect of

such processes will be that out of the Ni particles some particles change their state and

some do not. If the process being considered is elastic scattering, the change of state is

a change in the direction of motion (scattering), and if the process is charge exchange,

the change in the state can be seen as a change in the momentum of the particle. In

addition to changing the momentum of the reactant ion, a charge exchange process also

creates a fast neutral Deuterium.

Because the effects of elastic scattering and charge exchange are more than those of

fusion reactions, modelling them in a way similar to nuclear fusion reactions would in-

crease the computational time and memory. An alternative to the model suggested in the

previous section is to assume that in any time step, either all the Ni particles participate

in the process of elastic scattering or charge exchange, or all of them do not participate,

the probability with which they participate being given by r in equation (2.19). Such an

assumption eliminates the computational cost associated with simulating all the effects

of these processes. However, an approach such as this can capture the effects of charge

exchange and elastic scattering to a reasonable degree of accuracy if the total number

of time steps in the simulation is large. To see why this is so, consider N trials of a

Bernoulli process with parameter p. Let the random variable Z denote the number of

successes in the N trials. Then Z will have a binomial distribution with parameters

(N, p). The mean and the variance of Z can be verified to be

〈Z〉 = Np〈
(∆Z)2

〉
= Np (1− p)

Therefore √〈
(∆Z)2

〉
〈Z〉 =

√
(1− p)
Np

(2.29)

20

For p� 1, √〈
(∆Z)2

〉
〈Z〉 ' 1√

Np
(2.30)

Therefore if number of trials N is made large such that Np� 100, then realizations of

Z lie close to the mean Np with a high probability.

Relating the above result to the number of charge exchange and elastic processes,

it can be seen that increasing the number of time steps increases the number of trials

of each of these processes. The method of simulating reactions that is described in the

previous section and the one descibed in this section differ only in the number of trials

made. From the result (2.30) we can then conclude that these two methods differ only in

their accuracy if it can be ensured that the product Np is large, where N is the number

of trials perfomed in the second method and p is the probability of the process that is

being simulated. In other words, both methods yield approximately the same number

of reactions in any shell inside the device, albeit, to varying degrees of accuracy.

The model mentioned in this section can also be applied to simulate the loss of

particles due to their interception by the cathode. The fraction of cathode opacity can

be used as the probability for such a process to occur.

2.5.3 Pseudocode

The pseudocode for simulating the fusion reactions is as follows:

1: for every particle i do

2: Find the probability of reaction (r)

3: Generate a realization of a random variable X distributed binomially with pa-

rameters (Ni, r)

4: Ni ←− Ni − x
5: end for

The pseudocode for simulating elastic scattering is as follows:

1: for every ion i do

21

2: Compute the total velocity of the ion

3: Compute the probability of scattering (r) from equation (2.19)

4: Generate a realization of a random variable K uniformly distributed in [0, 1]

5: if k < r then

6: Generate a realization of the impact parameter {Impact parameter is uniformly

distributed in (−a0, a0) as mentioned in section 2.5.1.3}

7: Compute the scattering angle according to equation (2.28)

8: Compute the angle in which the ion is travelling from the radial and azimuthal

velocities

9: Update this angle by adding to it the scattering angle

10: Update the radial and azimuthal velocities

11: end if

12: end for

The following is the pseudocode for the charge exchange process:

1: for every ion i do

2: Compute the total velocity of the ion (vion)

3: Compute the probability of charge exchange (r) from equation (2.19)

4: Generate a realization of a random variable K uniformly distributed in [0, 1]

5: if k < r then

6: Generate a realization of a random variable L uniformly distributed in [0, 1]

7: Compute the angle in which the ion is travelling from the radial and azimuthal

velocities

8: vCX ←− (1− l) vion {vCX is the total velocity of the fast neutral created}

9: vion ←− l vion

10: Update the radial and azimuthal velocities of the ion

11: Compute the radial and azimuthal velocities of the fast neutral assuming that

it travels in the same direction as the ion

12: Total number of fast neutrals of type i at the given radius←− Ni

13: end if

14: end for

22

CHAPTER 3

RESULTS AND DISCUSSION

3.1 Results of the Simulation

The results of the simulation for the conditions shown in table 3.1 are presented in

this chapter. The results show general agreement with the experimental observations.

However, significant differences do exist.

Table 3.1: Simulation conditions under which the results shown were obtained

Cathode current ∼ 1.2mA
Neutral gas pressure 2mtorr
Anode radius 0.25m
Cathode radius 0.05m
Anode voltage 0
Cathode voltage −80 kV

Figure 3.3 shows the plot of the vacuum potential in steady state. A large potential

well is seen near the center of the device. While the presence of such potential wells has

been predicted (see figure 3.2 (Hirsch, 2004)) and experimentally verified (see figure 3.1

(Thorson et al., 1997)), the cathode current in such cases is much larger than what is

observed here a. The particle-in-cell code simulation of Tomiyasu (Tomiyasu et al.,

2003) also indicates only a small potential well (∼ 200V) for a cathode current of

40mA.

A possible reason for this deviation could be the absence of electrons in the model

presented here. Electrons with small energies taking birth near the cathode (either by

secondary electron emission or by ion impact ionization as described in section 1.2)

will be trapped in the potential well created by the Deuterium ion space charge, and

this, in turn, decreases the size of the well.
aIt should be noted that direct control over the cathode current does not exist. The cathode current

can be controlled only by controlling the flux of the ions from the ion source.

Figure 3.1: Potential structure observed by Thorson (Thorson et al., 1997)

Figure 3.4 shows the radial distribution of the Deuterium ions. A peak is observed

near the anode (ra = 0.25m) because of the large residence time of the ions thereat.

The peak near the center is due to spherical focusing of ions. A small rise in the ion

density is found near the cathode (rc = 0.05m) as the low energy ions created by charge

exchange processes are trapped in the potential well near the cathode.

Figures 3.5 and 3.6 are plots of the total number of Deuterium ions and the total

number of fast neutrals in the device as a function of time. It can be seen that the number

of ions reaches a steady state (steady oscillations) in 2µs, while the total number of fast

neutrals appears to become steady only after a much longer time. Due to the spherical

focusing of ions, the current of the ions through the cathode is much higher than that of

the fast neutrals. Thus the rate of loss of ions due to collisions with cathode (the main

loss process for ions) will be much higher than that of the fast neutrals. Consequently,

the number of fast neutrals is expected to become steady only after a longer time.

Figures 3.7 through 3.9 show the rates of various reactions or processes. No fu-

sion reactions of the converged core or counter-streaming-ion type have been observed.

24

Figure 3.2: Potential structure predicted by Hirsch (Hirsch, 2004)

Possible reasons for this could be that the current is too small so that the ion density is

not high enough for such fusion reactions to occur. Also a large potential well near the

center causes the ions to slow down, with the effect that the ion energy is small where

the ion density is largest. Converged core and counter-streaming-ion fusion reactions

can be expected to be seen by including electrons in the simulation model as the trapped

electrons would decrease the well depth as explained before. The fusion reaction rates

indicate higher neutron and proton production rates (∼ 107/s) than those obtained by

other numerical methods (J F Santarius, 2002). The neutron and proton production rates

are also closer to the experimental production rates (J F Santarius, 2002).

25

Figure 3.3: Plot of electrostatic potential inside the IEC device

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Radius(m)

−80000

−70000

−60000

−50000

−40000

−30000

−20000

−10000

0

10000

φ
(r

)

Potential inside IEC

V acuum Potential

Steady State Potential

Figure 3.7: Rate of beam background type fusion reaction

0 10 20 30 40 50 60 70 80 90

Time(µs)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

R
ea
ct
io
n
ra
te

(1
/s

)

26

Figure 3.4: Radial distribution of the Deuterium ions

0.00 0.05 0.10 0.15 0.20 0.25

Radius(m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

I
on

D
en
si
ty

(1
/m

3
)

×1014

Figure 3.8: Rate of volume source type fusion reaction

0 10 20 30 40 50 60 70 80 90

Time(µs)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
ea
ct
io
n
ra
te

(1
/s

)

×107

27

Figure 3.5: Total number of Deuterium ions as a function of time

0 2 4 6 8 10 12 14

Time(µs)

0.2

0.4

0.6

0.8

1.0

1.2

N
u
m
be
r
of

I
on
s

×1011

Figure 3.9: Rate of charge exchange process

0 10 20 30 40 50 60 70 80 90

Time(µs)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
a
te
of

ch
a
rg
e
ex
ch
a
n
g
e
pr
oc
es
s

(1
/s

)

×108

The plot of time-averaged cathode current is shown as a function of time in fig-

ure 3.10. The figure shows a steady state value of ∼ 1.2 mA. Typical values of the

cathode current are higher than this steady state value by an order of magnitude.

28

Figure 3.6: Total number of fast neutrals as a function of time

0 10 20 30 40 50 60 70 80 90

Time(µs)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
u
m
be
r
of

f
a
st
n
eu
tr
a
ls

×1011

3.2 Conclusion and Improvements

Table 3.2: Comparison of results with experiments and previous simulations

Quantity Experimental Tomiyasu Present work
Potential Well/Bias ∼ 1/3 � 1 > 1
Ions —– Steady Steady oscilla-

tions
Cathode current —– Steady state behavior

matches
Fast neutrals —– Steady state behavior

matches
Fusion reaction rate 1.3× 107a 8.8× 105b ∼ 107c

Table 3.2 shows how the model presented here compares with the experiments and

the PIC simulation of Tomiyasu (Tomiyasu et al., 2003). The following is a list of

modifications and/or additions that need to be made to improve the model presented

here. The suggestions are made in the decreasing order of the impact they have on the

model.

• Electrons have to be included in the model as already mentioned in this chapter.
a100kV, 30mA
b100kV, 40mA
c80kV, 1.2mA

29

Figure 3.10: Time averaged cathode current

0 10 20 30 40 50 60

Time(µs)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
a
th
od
e
C
u
rr
en
t

(m
A

)

Electrons are generated by electron-emitting filaments placed outside the anode,
by ionization of background gas, and also by emission from the cathode when
struck by fast ions.

• Unlike collisions with the background gas, where only one of the reactant species
is tracked, ion-ion collisions are paired events, and modelling them as binary
collisions would be highly inefficient as that would require pairing of particles in
every time step and colliding the pairs. An efficient method for modelling ion-ion
collisions has to be developed. The present work does not take ion-ion collisions
into consideration.

• The model has to be extended to the region outside the anode to simulate im-
pact ionization of the background gas by the electrons generated by the elecrton-
emitters.

• In the present model, Euler technique is used for integration of the equations of
motion. Euler intergration introduces a slight drift in the energy of the particles.
Leapfrog integration can be used instead to overcome this defect and obtain more
accurate particle trajectories.

• In some experiments, a thrid intermediate grid that is given RF excitation is used
to support ionization of the fuel gas. The grid is covered with a fine mesh to
confine electrons around the it, and as the electrons oscillate around the grid they
produce ionization of the background gas. The model has to be extended to study
the stability of the plasma under various configurations of RF excitation.

30

APPENDIX A

Simulation Code

The #pragma directives are used for parallelizing the code.

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#include<time.h>

#include<string.h>

#include<gsl/gsl_integration.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_randist.h>

#include<stdarg.h>

#define HALF_PI

#define Nmax 100000

#define Nmax_CX 100000

#define T 800000

static double K = 1.3806488 * pow(10,-23) ;

// conversion factor from mtorr to pascal

static double FACTOR = 0.133322368 ;

static double EPSILON = 8.854187 * pow (10 , -12) ;

static double E = 1.6 * pow(10,-19) ;

static double PI = 3.14159265 ;

double f (double x, void * params) {

double energy = *(double *) params ;

double m = 8 *PI* EPSILON * energy / (E*E) ;

double f = pow(HALF_PI - atan(m*x) , 2) ;

return f;

}

int main()

{

clock_t start=clock();

//==//

// Begin Declarations

//==//

double r = 0.0025 ; // Delta r or grid size

double R_and = 0.25 ; // Anode radius

double R_cat = 0.05 ; // Cathode radius

int N ; // No. of space elements or

N = (int)(R_and/r) ; // No. of elements in grid

double Vcat = -80000.0 ; // Cathode potential

double Vand = 0 ; // Anode potential

int i, j, k ; // Iteration variables

int l ; // Indexing variable

l = (int)(R_cat/r) ;

int Niter = 7500 ; // Total no.of iterations for finding potential

double Vl[N+1] ; // Potential array

double Vl_old[N+1] ; // Potential arrays to store copy

double residual[Niter] ; // Array to store residual

double max ; // max is used to find maximum residual

double V[(2*N)+1] ; // Potential array to store potential

// on right and left sides

double rad[(2*N)+1] ; // Radius array to plot the solution

//==//

// Initialization

//==//

for(i=0;i<=N;i++)

{

Vl[i] = 0 ;

Vl_old[i] = 0 ;

}

Vl[l] = Vcat ;

32

Vl[N] = Vand ;

//==//

// Begin Iteration loop to find the Vacuum potential

//==//

for(i=0 ; i<Niter ; i++)

{

// Copy old arrays

for(k=0 ; k<=N ; k++)

{

Vl_old[k] = Vl[k];

}

for(j=1 ; j<=N-1 ; j++)

{

if(j != l)

// Difference form of Laplace’s equation

Vl[j] = (Vl[j+1]+Vl[j-1]) * 0.5 +

(Vl[j+1]-Vl[j-1]) * 0.5 * (j+1) / (pow((j+1),2) + 0.25) ;

}

// Difference equation at r=0

Vl[0] = Vl[1];

// Assert boundary conditions

Vl[l] = Vcat;

Vl[N] = Vand;

// Find residual

max = 0;

for(k=0 ; k<=N ; k++)

{

if(fabs (Vl[k] - Vl_old[k]) > max)

max = fabs (Vl[k] - Vl_old[k]);

}

33

residual[i] = max;

// Termination criteria on residual

if(max < pow(10,-5)) break;

}

//==//

// End iteration loop to find the Vacuum potential

//==//

//==//

// Write vacuum potential data to the file vacuum_potential.txt

//==//

FILE *fp ; // File pointer

char *ptr ; // Pointer to store name of data folder

char actualpath[1000] ; // Array to store name of file

system("mkdir -p data") ; // Create data folder

ptr = "data";

realpath (ptr , actualpath) ; // Store path of the data folder in actualpath

strcat (actualpath , "/vacuum_potential.txt") ;

fp = fopen (actualpath , "w") ;

if(fp == NULL)

{

printf("fp is NULL\n") ;

return(0) ;

}

// Combine Vl and reversed Vl and print to file

for(i = 0 ; i <= (2*N) ; i++)

{

V[i] = (i<N) * Vl[(N-i)*(i<N)] +

(i==N) * Vl[N-i] +

(i>N) * Vl[(i-N)*(i>N)] ;

rad[i] = -(i<N)*r*(N-i) +

(i>N)*r*(i-N) ; // When i=N, R=0

34

fprintf(fp , "%f\t%f\n" , V[i] , rad[i]) ;

}

fclose(fp) ;

//--//

//==//

// The following code simulates the motion of ions

//==//

//--//

//==//

// Begin Declarations

//==//

double cathode_transparency ; // Cathode transparency

static double x[Nmax] ; // Radii positions of ions

static double Nx[Nmax] ; // Nx[j] stores no. of ions at x[j]

static double dx[Nmax] ; // Radial Displacement of ions

static double v[Nmax] ; // Radial Velocity of ions

static double v_az[Nmax] ; // Azimuthal velocity of ions

double v_azi ; // Initial azimuthal velocity

static double x_CX[Nmax_CX] ; // Radii positions of CX neutrals

static long Nx_CX[Nmax_CX] ; // Nx_CX[j] stores no. of ions at x_CX[j]

static double v_CX[Nmax_CX] ; // Total Velocity of CX neutrals

static double v_r_CX[Nmax_CX] ; // Radial velocity of CX neutrals

double dt = pow(10 , -10) ; // Time step

double acc ; // Acceleration

int ion_no ; // Number of ions that are added

int mean_ion = 1 ; // Mean no. of ions added in each time step

double r_add = R_and ; // Radius where to add ions

double phi[N + 1] ; // Potential array

double phi_old[N + 1] ; // Potential array to store old values

double r_kill = 0.25 ; // Radius below which ions are killed

static double tin[T] ; // Total ion no.

static double tcxn[T] ; // Total no. of charge exchange neutrals

static double time[T] ; // Array to store time

double q_ion ; // Ion charge

35

double m_ion ; // Mass of ion

double rho[N + 1] ; // Array to store density of ions

double vol ; // Volume

double ion_den[N + 1] ; // Array to store Ion density

double CX_den[N + 1] ; // Array to store CX neutral density

double v_avg[N + 1] ; // Array to store Average velocity of ions

double v_avg_CX[N + 1] ; // Array to store Average velocity of CX neutrals

double v_az_avg[N + 1] ; // Array to store Average azimuthal velocity

double ion_den_avgt1[N + 1]; // Ion density average over time

double ion_den_avgt2[N + 1]; // Stores copy of the average ion density

double phi_avg[N + 1] ; // Potential average over time

double sigma_DD ; // D+ D+ Reaction Cross-section

double sigma_DDe ; // D+ D Elastic Scattering Cross-section

double sigma_CX ; // D+ D Charge Exchange Cross-section

double sigma_CXDD ; // CX neutral- D Fusion Cross-section

double sigma_DDb ; // D+ D Fusion Reaction Cross-section

int n_DD ; // No. of D+ D+ fusion reactions

int n_CX ; // No. of charge exchange reactions

int n_CXDD ; // No. of CX neutral - D reactions

int n_DDb ; // No. of D+ D fusion reactions

double DD_avg ; // Time averaged no. of D+ D+ fusion reactions

double CX_avg ; // Time averaged no. of charge exchange reactions

double CXDD_avg ; // Time averaged no. of CX neutral - D reactions

double DDb_avg ; // Time averaged no. of D+ D fusion reactions

double n_gas ; // Number density of neutral gas

double p_gas = 2 ; // Pressure of neutral gas in mtorr

double a_0 = 5.29 * pow(10,-11);// Bohr radius

double N_inst = pow(10,8) ; // No. of instances of the 1-d simulation

double nc ; // A variable for counting Cathode Current

double nc_avg =0 ; // Average cathode current

double na ; // A variable for counting Cathode Current

double na_avg = 0 ; // Average anode current

double energy = 0 ; // A variable to store the energy in context

double theta ; // Stores the value of an angle in context

double theta_d ; // Stores deviation in an angle

double vel ; // Stores velocity in context

double temp ; // Temporary variable

36

double temp2 ; // Temporary variable

int len = 0 ; // Temporary variable

int tempint = 0 ; // Temporary integer variable

int flag = 0; // A flag

double factor_1 ; // A constant factor

long jmax = 0 ; // Maximum index of an existing ion

q_ion = 1.6 * pow(10 , -19) ;

m_ion = 2 * 1.66053892 * pow(10 , -27) ;

v_azi = sqrt (4 * pow(10 , 1) * 1.6 * pow(10 , -19) * 2 / m_ion) ;

n_gas = p_gas * FACTOR / (K * 300) ;

factor_1 = 8 * PI * EPSILON / (E * E) ;

sigma_DD = pow (10 , -40) ;

sigma_CX = pow (10 , -30) ;

sigma_DDb = sigma_DD ;

sigma_CXDD = sigma_DD ;

sigma_DDe = pow (10 , -30) ;

cathode_transparency = 0.95 ;

// Setup a gsl random no. generator called rng

gsl_integration_workspace * w = gsl_integration_workspace_alloc(1000) ;

gsl_rng_env_setup() ;

const gsl_rng_type * Z ;

Z = gsl_rng_default ;

37

gsl_rng * rng ;

rng = gsl_rng_alloc (Z) ;

double result, error_1 ;

gsl_function F;

F.function = &f;

F.params = &energy;

//==//

// Initialization

//==//

#pragma omp parallel for

for(i=0 ; i<Nmax ; i++)

{

x[i] = 0 ;

dx[i] = 0 ;

v[i] = 0 ;

v_az[i] = 0 ;

Nx[i] = 0 ;

x_CX[i] = 0 ;

v_CX[i] = 0 ;

Nx_CX[i] = 0 ;

}

// Initialize potential and average ion density

#pragma omp parallel for

for(i=0 ; i<=N ; i++)

{

phi[i] = Vl[(i-1) * (i!=0)];

ion_den_avgt1[i] = 0;

ion_den_avgt2[i] = 0;

}

//==//

// Open file ion_no.txt for writing total ion no. and time data

// and file ion_den2.txt for writing time averaged ion density

38

//==//

// Open ion_no.txt

ptr = "data";

realpath (ptr , actualpath) ; // Store path of the data folder in actualpath

strcat (actualpath , "/ion_no.txt") ;

fp=fopen (actualpath , "w") ;

if(fp == NULL)

{

printf("fp is NULL\n") ;

return(0);

}

// Open ion_den2.txt

FILE *id ; // File pointer

realpath (ptr , actualpath) ;

strcat (actualpath , "/ion_den2.txt") ;

id = fopen (actualpath , "w") ;

if(id == NULL)

{

printf("File pointer is NULL\n");

return(0);

}

// Open Convergence.txt

FILE *fp_convergence ;

ptr = "data" ;

realpath (ptr , actualpath) ;

strcat (actualpath , "/Convergence.txt") ;

fp_convergence = fopen (actualpath , "w") ;

if(fp_convergence == NULL)

{

printf("Could not open Convergence.txt\n");

return(0);

}

// Open reactions.txt

FILE *fp_reactions ;

39

ptr = "data" ;

realpath (ptr , actualpath) ;

strcat (actualpath , "/reactions.txt") ;

fp_reactions = fopen (actualpath , "w") ;

if(fp_reactions == NULL)

{

printf("Could not open reactions.txt\n");

return(0);

}

// Open cathode_current.txt

FILE * fp_current ;

ptr = "data" ;

realpath (ptr , actualpath) ;

strcat (actualpath , "/Current.txt") ;

fp_current = fopen (actualpath , "w") ;

if(fp_current == NULL)

{

printf("Could not open Current.txt\n");

return(0);

}

// Open Average_potential.txt

FILE * fp_avg_pot ;

ptr = "data" ;

realpath (ptr , actualpath) ;

strcat (actualpath , "/Average_potential.txt") ;

fp_avg_pot = fopen (actualpath , "w") ;

if(fp_avg_pot == NULL)

{

printf("Could not open Average_potential.txt\n");

return(0);

}

//==//

// Begin iterating over time steps

//==//

for(i=0 ; i<=T ; i++)

40

{

// Add ions

len = mean_ion; // len is temporary variable

for(j=0 ; j<Nmax ; j++)

{

if(Nx[j]==0 && len!=0)

{

x[j] = r_add -

r * rand() / RAND_MAX ; // Need not type cast here

temp = (float) rand() / RAND_MAX ;

v[j] = -v_azi * cos(temp * PI / 2) ;

v_az[j] = v_azi * sin(temp * PI / 2) ;

dx[j] = 0 ;

Nx[j] = (int) N_inst ;

len-- ;

}

if(len == 0) break;

if((len!=0) && (j == (Nmax-1)))

{

printf("FILLED!\n") ;

return(0) ;

}

}

nc = 0 ;

na = 0 ;

jmax = 0 ;

// Initialization

#pragma omp parallel for

for (j=0 ; j<=N ; j++)

{

v_avg[j] = 0 ;

v_az_avg[j] = 0 ;

ion_den[j] = 0 ;

41

v_avg_CX[j] = 0 ;

}

// Move every ion in one time step

#pragma omp parallel for private(len,acc,temp,tempint)

for(k=0 ; k<Nmax ; k++)

{

if(Nx[k] != 0)

{

#pragma omp critical

if (k > jmax)

jmax = k ;

len = (int)(x[k] / r) ; // len is a temporary variable

// used for indexing

// Calculate acceleration

acc = (phi[len - 1] - phi[len]) * q_ion / (m_ion * r) +

pow(v_az[k] , 2) / x[k] ;

// Calculate displacement

dx[k] = v[k] * dt +

acc * dt * dt / 2 ;

// Stop if displacement in a time

// step is greater than grid size

if(fabs(dx[k]) > r)

{

printf("dx is %f\n" , dx[k]) ;

printf("x is %f\n" , x[k]) ;

//return(0) ;

}

// Check if ion is crossing cathode

if((x[k]-R_cat)*(x[k]+dx[k]-R_cat) < 0)

{

temp = (double)rand() / RAND_MAX ;

42

//tempint = gsl_ran_binomial(rng , temp , Nx[k]) ;

if (temp < (1-cathode_transparency))

{

Nx[k] = (int) 0 ;

#pragma omp atomic

nc += Nx[k] ;

}

}

temp = v_az[k] * x[k] ; // temp is a temporary variable

// that stores old angular momentum

// Update positon of ion

x[k] += dx[k] ;

// Update velocity of ion

v[k] += acc * dt ;

// Update azimuthal velocity

v_az[k] = temp / x[k] ;

if(x[k] < 0)

{

x[k] = -x[k] ;

v[k] = -v[k] ;

}

// Kill the ions that touch the anode

if(x[k] >= R_and)

{

#pragma omp atomic

na += Nx[k] ;

Nx[k] = (int) 0 ;

}

if (Nx[k] != 0)

{

43

len = (int)((x[k] + r/2) / r) ;

#pragma omp atomic

ion_den[len] += Nx[k] ;

// Uncomment this block for non-parallel code

//#pragma omp atomic

//v_avg[len] = (v_avg[len] * (ion_den[len]-Nx[k]) + fabs(v[k])*Nx[k])

// / ion_den[len] ;

// Comment the following three lines for non-parallel code

#pragma omp atomic

v_avg[len] *= ion_den[len] - Nx[k] ;

#pragma omp atomic

v_avg[len] += fabs(v[k]) * Nx[k] ;

#pragma omp atomic

v_avg[len] /= ion_den[len] ;

// Uncomment this block for non-parallel code

//#pragma omp atomic

//v_az_avg[len] = (v_az_avg[len] * (ion_den[len]-Nx[k]) + fabs(v_az[k])*Nx[k])

// / ion_den[len] ;

// Comment the following three lines for non-parallel code

#pragma omp atomic

v_az_avg[len] *= ion_den[len] - Nx[k] ;

#pragma omp atomic

v_az_avg[len] += fabs(v_az[k]) * Nx[k] ;

#pragma omp atomic

v_az_avg[len] /= ion_den[len] ;

}

}

if(Nx_CX[k] != 0)

{

#pragma omp critical

if(k > jmax)

jmax = k ;

44

// Check if particle is crossing cathode

if((x_CX[k]-R_cat)*(x_CX[k] + v_r_CX[k]*dt - R_cat) < 0)

{

temp = (double)rand() / RAND_MAX ;

if(temp < (1-cathode_transparency))

{

Nx_CX[k] = (int) 0 ;

}

}

x_CX[k] = x_CX[k] + v_r_CX[k] * dt ;

if(x_CX[k] < 0)

{

x_CX[k] = -x_CX[k] ;

v_CX[k] = -v_CX[k] ;

}

if(x_CX[k] >= R_and)

Nx_CX[k] = (int) 0 ;

if(Nx_CX[k] != 0)

{

len = (int)((x_CX[k] + r/2) / r) ;

#pragma omp atomic

CX_den[len] += Nx_CX[k] ;

}

}

}

// Calculate ion density at each radius

#pragma omp parallel for private(vol)

for (j=0 ; j<=N ; j++)

{

45

vol = 4 * PI * pow((j + 1) * r , 2) * r ;

ion_den[j] = ion_den[j] / vol ;

}

// Initialize no. of reactions to zero

n_DD = 0 ;

n_CX = 0 ;

n_CXDD = 0 ;

n_DDb = 0 ;

// Simulate ion-ion fusion, ion-Background gas fusion, elastic scattering

// and charge exchange

#pragma omp parallel for private(len,temp,vel,tempint,energy,temp2,theta,theta_d)

for (j=0 ; j<jmax ; j++)

{

// Ion- Ion Fusion

if (Nx[j] != 0)

{

len = (int)((x[j] + r/2) / r) ;

vel = sqrt(pow(fabs(v_avg[len]-v[j]) , 2)

+ pow(fabs(v_az_avg[len]-v_az[j]) , 2)) ;

temp = ion_den[len] * vel * sigma_DD ;

tempint = gsl_ran_binomial(rng , temp , Nx[j]) ;

if(tempint != 0)

{

if (tempint > Nx[j])

tempint = Nx[j] ;

Nx[j] = (int) (Nx[j] - tempint) ;

#pragma omp atomic

n_DD += tempint ;

printf("DD:%d\n" , tempint) ;

46

}

}

// Ion -Background gas

if (Nx[j] != 0)

{

vel = sqrt(pow(v[j],2) + pow(v_az[j],2)) ;

temp = n_gas * vel * sigma_DDb ;

tempint = gsl_ran_binomial(rng , temp , Nx[j]) ;

if(tempint != 0)

{

if (tempint > Nx[j])

tempint = Nx[j] ;

Nx[j] = (int) (Nx[j] - tempint) ;

#pragma omp atomic

n_DDb += tempint ;

printf("DDb:%d\n" , tempint) ;

}

}

/*

// Elastic scattering for large no. of scatterings

if(x[j] != 100)

{

vel = sqrt(v_az[j] * v_az[j] + v[j] * v[j]) ;

energy = 0.5 * m_ion * pow(v[j],2) ;

gsl_integration_qag (&F, 0, a_0, 0, 1e-6, 1000, 6, w, &result, &error_1);

result = result / (n_gas*fabs(v[j])*sigma_DDe) ;

result = sqrt(result *(4 / a_0)) ;

47

theta_d = n_gas*vel*sigma_DDe * gsl_ran_gaussian (rng, result) ;

theta = atan2(v_az[j] , v[j]) ;

//printf("Theta % 0.8f\n", theta) ;

//printf("Theta_d % 0.8f\n", theta_d) ;

//printf("Sin % 0.8f\n", sin(theta+theta_d)) ;

//printf("Cos % 0.8f\n", cos(theta+theta_d)) ;

v_az[j] = vel * sin(theta + theta_d) ;

v[j] = vel * cos(theta + theta_d) ;

}

*/

/*

// Elastic scattering as a binomial process

if(Nx[j] != 0)

{

vel = sqrt(v_az[j] * v_az[j] + v[j] * v[j]) ;

temp = n_gas*vel*sigma_DDe ;

tempint = gsl_ran_binomial(rng , temp , N_inst) ;

if (Nx[j] < tempint)

tempint = Nx[j] ;

if(tempint != 0)

{

energy = 0.5 * m_ion * pow(v[j],2) ;

temp = factor_1 *energy ; // factor_1 = 8*pi*epsilon/(e*e)

// Generate an RV uniformly distriuted in (-a0,a0)

temp2 = 2 * (gsl_rng_uniform_pos(rng) - 0.5) * a_0 ;

temp2 = temp2 * temp ;

48

if(temp2 != 0)

theta_d = atan(1 / temp2) ;

else

theta_d = PI ;

theta = atan2(v_az[j] , v[j]) ;

for(k=0 ; (k <= Nmax) && (tempint != 0) ; k++)

{

if(Nx[k] == 0)

{

x[k] = x[j] ;

v[k] = vel * cos(theta + theta_d) ;

v_az[j] = vel * sin(theta + theta_d) ;

Nx[k] = (int) tempint ;

tempint = 0 ;

Nx[j] = (int)(Nx[j] - Nx[k]) ;

}

}

}

}*/

// Simulate elastic scattering as a Bernoulli process

if(Nx[j] != 0)

{

temp = (double)rand() / RAND_MAX ;

if (temp < n_gas*vel*sigma_DDe)

{

vel = sqrt(v_az[j] * v_az[j] + v[j] * v[j]) ;

energy = 0.5 * m_ion * pow(v[j],2) ;

temp = factor_1 *energy ; // factor_1 = 8*pi*epsilon/(e*e)

// Generate an RV uniformly distriuted in (-a0,a0)

temp2 = 2 * (gsl_rng_uniform_pos(rng) - 0.5) * a_0 ;

49

temp2 = temp2 * temp ;

if(temp2 != 0)

theta_d = atan(1 / temp2) ;

else

theta_d = PI ;

theta = atan2(v_az[j] , v[j]) ;

v_az[j] = vel * sin(theta + theta_d) ;

v[j] = vel * cos(theta + theta_d) ;

}

}

/*

// Simulate charge exchange as a binomial process

if(Nx[j] != 0)

{

vel = sqrt(pow(v[j],2) + pow(v_az[j],2)) ;

temp = sigma_CX * vel * n_gas ;

tempint = gsl_ran_binomial(rng , temp , N_inst) ;

if (Nx[j] < tempint)

tempint = Nx[j] ;

if (tempint != 0)

{

len = (double)rand() / RAND_MAX ;

flag = 0 ; // Set flag to 1 after finding one CX neutral

theta = atan2(v_az[j] , v[j]) ;

for(k=0 ; k< Nmax_CX ; k++)

{

50

if ((Nx_CX[k] == 0) && (flag !=1))

{

flag = 1 ; // Flag set

x_CX[k] = x[j] ;

v_CX[k] = (1 -len) * vel ;

v_r_CX[k] = v_CX[k] * cos(theta) ;

Nx_CX[k] = (int) tempint ;

}

if ((Nx[k] == 0) && (len != 4))

{

x[k] = x[j] ;

v[k] = len * vel * cos(theta) ;

v_az[k] = len * vel * sin(theta) ;

Nx[k] = (int) tempint ;

Nx[j] = (int) (Nx[j] - Nx[k]) ;

len = 4 ; // Now use len as a flag

}

if((len == 4) && (flag == 1))

break ;

}

n_CX += tempint ;

printf("CX:%d\n" , tempint) ;

}

}

*/

// Simulate charge exchange as a Bernoulli process

if(Nx[j] != 0)

{

temp = (double)rand() / RAND_MAX ;

vel = sqrt(pow(v[j],2) + pow(v_az[j],2)) ;

if (temp < sigma_CX * vel * n_gas)

51

{

len = (double)rand() / RAND_MAX ;

flag = 0 ; // Set flag to 1 after finding one CX neutral

theta = atan2(v_az[j] , v[j]) ;

for(k=0 ; k< Nmax ; k++)

{

#pragma omp critical

if (Nx_CX[k] == 0)

{

if (k > jmax)

jmax = k ;

Nx_CX[k] = Nx[j] ;

flag = 1 ; // Flag set

}

if(flag == 1)

{

x_CX[k] = x[j] ;

v_CX[k] = (1 -len) * vel ;

v_r_CX[k] = v_CX[k] * cos(theta) ;

break ;

}

}

v_az[j] = len * vel * sin(theta) ;

v[j] = len * vel * cos(theta) ;

#pragma omp atomic

n_CX++ ;

}

}

52

// Simulate CX neutral - Background gas fusion

if(Nx_CX[j] != 0)

{

temp = n_gas * fabs(v_CX[j]) * sigma_CXDD ;

tempint = gsl_ran_binomial(rng , temp , Nx_CX[j]) ;

if(tempint != 0)

{

if (tempint > Nx_CX[j])

tempint = Nx_CX[j] ;

Nx_CX[j] = (int)(Nx_CX[j] - tempint) ;

#pragma omp atomic

n_CXDD += tempint ;

printf("CXDD:%d\n" , tempint) ;

}

}

}

// Count number of existing ions

tin[i] = 0 ;

tcxn[i] = 0 ;

#pragma omp parallel for

for (j=0 ; j<jmax ; j++)

{

if (Nx[j] != 0)

#pragma omp atomic

tin[i] += Nx[j] ;

if(Nx_CX[j] != 0)

#pragma omp atomic

tcxn[i] += Nx_CX[j] ;

}

time[i] = (i+1) * dt * pow (10 , 10) ;

53

fprintf (fp , "%lf\t%lf\t%lf\n" , time[i] , tin[i], tcxn[i]) ;

if ((i % 1000) == 0)

printf ("%d\n" , i) ;

// Recalculate potential using new charge distribution

// Initialize

#pragma omp parallel for

for (j=0 ; j<=N ; j++) rho[j] = 0 ;

// Calculate charge density in units of Coulomb * epsilon

#pragma omp parallel for private(len,vol)

for (j=0 ; j<jmax ; j++)

{

if(Nx[j] != 0)

{

len = (int)((x[j]+ r / 2) / r) ; // len is temporary variable

vol =4 * PI * len * len * pow (r, 3) * (len != 0) +

4 * PI * pow (r , 3) * (len == 0);

#pragma omp atomic

rho[len] += q_ion * Nx[j] / (EPSILON * vol) ;

}

}

// Solve Poisson’s equation

for (j=0 ; j<Niter ; j++)

{

// Copy old array

for (k=0 ; k<=N ; k++) phi_old[k] = phi[k] ;

// Difference form of Poisson’s equaiton

for (k=1 ; k<=N ; k++)

{

if (k != l)

phi[k]=(phi[k+1] + phi[k-1]) * 0.5 +

(phi[k+1] - phi[k-1]) * 0.5 * k / (k * k + 0.25) +

54

rho[k] * k * k * 0.5 * r / (k * k + 0.25) ;

}

// Difference equation at r=0

phi[0] = phi[1] ;

// Assert boundary conditions

phi[N] = Vand ;

phi[l] = Vcat ;

// Find residual

max = 0 ;

for(k=0 ; k<=N ; k++)

{

if((phi[k] - phi_old[k]) > max)

{

max = fabs(phi[k] - phi_old[k]) ;

}

}

// Break if desired accuracy is reached

if(max < pow(10,-5)) break;

}

// Compute time averaged ion density and phi

// temp = 0 ;

#pragma omp parallel for

for(j=0 ; j<=N ; j++)

{

// Update phi_avg

phi_avg[j] = (phi_avg[j] * i + phi[j]) / (i + 1) ;

// Copy old ion density

ion_den_avgt2[j] = ion_den_avgt1[j] ;

// Update ion density average

ion_den_avgt1[j] = (ion_den_avgt1[j] * i + ion_den[j]) / (i + 1) ;

55

if(fabs(ion_den_avgt2[j] - ion_den_avgt1[j]) > temp)

temp = fabs(ion_den_avgt2[j] - ion_den_avgt1[j]) ;

}

// Compute time averaged quantities

DD_avg = (DD_avg * i * dt + n_DD) / ((i+1) * dt) ;

CX_avg = (CX_avg * i * dt + n_CX) / ((i+1) * dt) ;

CXDD_avg = (CXDD_avg * i * dt + n_CXDD) / ((i+1) * dt) ;

DDb_avg = (DDb_avg * i * dt + n_DDb) / ((i+1) * dt) ;

nc_avg = (nc_avg * i * dt + nc * q_ion) / ((i+1) * dt) ;

na_avg = (na_avg * i * dt + na * q_ion) / ((i+1) * dt) ;

//nc_avg = nc*q_ion/dt ;

/*if(temp < 75 && flag == 0)

{

flag = i ;

for(j=0 ; j<=N ; j++)

ion_den_avgt1[j] = ion_den[j] ;

}

*/

// Cathode current

fprintf(fp_current , "%lf\t%lf\n" , nc_avg , na_avg) ;

// Print time averaged ion density to a file

//for(j=0 ; j<=N ; j++)

// fprintf(id , "%f\n" , ion_den_avgt1[j]) ;

// Print time averaged potential to a file

//for(j=0 ; j<=N ; j++)

// fprintf(fp_avg_pot , "%f\n" , phi_avg[j]) ;

// Print error in ion density to Convergence.txt

fprintf (fp_convergence , "%d\t%f\n" , i , temp) ;

// Print time averaged no. of reactions to reactions.txt

fprintf (fp_reactions, "%f\t%f\t%f\t%f\n" , DD_avg , CX_avg , CXDD_avg , DDb_avg) ;

56

}

//==//

// End iterating over time steps

//==//

// Close files

fclose(fp);

fclose(id);

fclose(fp_convergence) ;

fclose(fp_reactions) ;

fclose(fp_current) ;

fclose(fp_avg_pot) ;

// Write steady_state potential data to the file potential_steady_state.txt

ptr = "data" ;

realpath (ptr , actualpath) ;

strcat (actualpath , "/potential_steady_state.txt") ;

fp=fopen (actualpath , "w") ;

if(fp == NULL)

{

printf("fp is NULL\n") ;

return(0) ;

}

for(j=0 ; j<=N ;j++)

fprintf(fp , "%f\t%f\n" , phi_avg[j] , r * j) ;

fclose(fp);

// Write ion flux data to the file ion_flux.txt

ptr = "data" ;

realpath (ptr , actualpath) ;

strcat (actualpath , "/ion_flux.txt") ;

fp = fopen (actualpath , "w") ;

if(fp == NULL)

57

{

printf("fp is NULL\n") ;

return(0) ;

}

for(j=0 ; j<=N ; j++)

fprintf(fp , "%f\t%d\n" , 1 / (4*PI*pow((j+1)*r , 2)*v_avg[j]) , j) ;

fclose(fp);

// Write final ion density data to the file ion_density.txt

ptr = "data" ;

realpath (ptr , actualpath) ;

strcat (actualpath , "/ion_density.txt") ;

fp = fopen (actualpath , "w") ;

if(fp == NULL)

{

printf("fp is NULL\n") ;

return(0) ;

}

for(j=0 ; j<=N ; j++)

fprintf(fp , "%f\n" , ion_den_avgt1[j]) ;

fclose(fp);

// Print output

printf("j\trho[j]\n") ;

for(j=0 ; j<=N ; j++) printf("%d\t%f\n" , j , rho[j]) ;

clock_t end=clock();

double comptime=(end-start)/(double)CLOCKS_PER_SEC;

printf("elapsed time:\t%f\n",comptime);

// Plot using python script

system("python plot.py") ;

58

}

59

APPENDIX B

Code used for plotting

from matplotlib import rc

rc(’font’,**{’family’:’serif’, ’size’:’13’, ’serif’:’serif’})

rc(’axes’, **{’grid’:’False’, ’labelsize’:’16’, ’titlesize’:’16’})

rc(’text’, usetex=True)

from pylab import*

import os

V = []

r = []

TPN = []

TCXN = []

time = []

phi = []

r2 = []

DD = []

CX = []

CXDD = []

DDb = []

f = open (os.path.realpath (’../data/vacuum_potential.txt’) , "r")

lines = f.readlines()

f.close()

for line in lines:

l = line.split()

V.append(l[0])

r.append(l[1])

f = open (os.path.realpath (’../data/potential_steady_state.txt’) , "r")

lines = f.readlines()

f.close()

for line in lines:

l = line.split()

phi.append(l[0])

r2.append (l[1])

phi_ss = []

phi_ss = phi[::-1]

phi_ss = phi_ss[0:-1]

phi_ss = phi_ss + phi

figure(0)

title("$Potential\ inside\ IEC$")

xlabel("$Radius(m)$")

ylabel("$\phi(r)$")

plot(r , V , ’-g’)

plot(r , phi_ss , ’-r’)

plot(r , V , ’go’ , markersize = 3)

plot(r, phi_ss , ’ro’ , markersize = 3)

plot(r , V , ’-g’)

plot(r , phi_ss , ’-r’)

legend((’$Vacuum\ Potential$’ , ’$Steady\ State\ Potential$’) , prop={’size’:10})

grid()

f = open (os.path.realpath (’../data/ion_no.txt’) , "r")

lines = f.readlines()

f.close()

for line in lines:

l = line.split()

time.append(l[0])

TPN.append (l[1])

TCXN.append(l[2])

time = [float(i)/10000 for i in time]

figure(1)

#title("$Plot\ of\ Total\ Number\ of\ Particles\ Vs\ Time$")

xlabel("$Time(\mu s)$")

61

ylabel("$Number\ of\ Ions$")

#plot(time , TPN , ’-r’)

#plot(time , TCXN , ’-g’)

#plot(time , TPN , ’ro’ , markersize = 2)

#plot(time , TCXN , ’go’ , markersize = 2)

plot(time , TPN , ’-r’)

#plot(time , TCXN , ’-g’)

#legend((’$Ions$’,’$CX\ Neutrals$’))

grid()

xlim(0 , 20)

figure(11)

xlabel("$Time(\mu s)$")

ylabel("$Number\ of\ fast\ neutrals$")

#plot(time , TCXN , ’go’ , markersize = 2)

plot(time , TCXN , ’-g’)

grid()

f = open (os.path.realpath (’../data/ion_density.txt’) , "r")

ion_den = f.readlines()

f.close()

figure(2)

plot(r2 , ion_den , ’-k’)

plot(r2 , ion_den , ’ro’ , markersize = 5)

#title("$Plot\ of\ Ion\ Density\ at\ steady\ state$")

xlabel("$Radius(m)$")

ylabel("$Ion\ Density\ (1/m^3)$")

grid()

f = open (os.path.realpath (’../data/reactions.txt’) , "r")

lines = f.readlines()

f.close()

for line in lines:

l = line.split()

DD.append(l[0])

CX.append(l[1])

CXDD.append (l[2])

DDb.append (l[3])

62

figure(3)

xlabel("$Time(\mu s)$")

ylabel("$Reaction\ rate\ (1/s)$")

#plot(time , DD , ’-r’)

#plot(time , DD , ’ro’ , markersize = 2)

plot(time , DD , ’-r’)

#title(’DD’)

grid()

figure(4)

xlabel("$Time(\mu s)$")

ylabel("$Rate\ of\ charge\ exchange\ process\ (1/s)$")

#plot(time , CX , ’-g’)

#plot(time , CX , ’go’ , markersize = 2)

plot(time , CX , ’-g’)

ylim(0 , 3.6*10**8)

#title(’CX’)

grid()

figure(5)

xlabel("$Time(\mu s)$")

ylabel("$Reaction\ rate\ (1/s)$")

#plot(time , CXDD , ’bo’ , markersize = 2)

plot(time , CXDD , ’-b’)

#title(’$CXDD$’)

grid()

figure(6)

xlabel("$Time(\mu s)$")

ylabel("$Reaction\ rate\ (1/s)$")

#plot(time , DDb , ’yo’ , markersize = 2)

plot(time , DDb , ’-y’)

#title(’DDb’)

grid()

Uncomment this block for plotting ion density as a function of time

’’’

63

ion()

ion_den = []

f= open (os.path.realpath(’../data/ion_den2.txt’) , "r")

lines = f.readlines()

f.close()

figure(7)

for i in range(len(time)) :

if(i%1000 == 0) :

clf()

title(’$Plot\ of\ ion\ density$’)

xlabel(’$Radius(m)$’)

ylabel("$Ion density(1/m^{3})$")

ylim(0 , 3*10**12)

plot(r2 , lines[i*len(r2):(i+1)*len(r2)] , ’ro’ , markersize = 4)

draw()

plot(r2 , lines[i*len(r2):(i+1)*len(r2)] , ’-k’)

draw()

ioff()

’’’

cathode_current = []

anode_current = []

f = open (os.path.realpath (’../data/Current.txt’) , "r")

lines = f.readlines()

f.close()

for line in lines:

l = line.split()

cathode_current.append(1000*float(l[0]))

anode_current.append (1000*float(l[1]))

figure(8)

#plot (time , cathode_current , ’-r’)

#plot (time , anode_current , ’-g’)

#plot (time , cathode_current , ’ro’ , markersize=2)

64

#plot (time , anode_current , ’go’ , markersize=2)

plot (time , cathode_current , ’-r’)

#plot (time , anode_current , ’-g’)

ylim(0 , 1.41)

xlim(0 , 60)

grid()

#legend (("$ Cathode\ Current\ (mA) $" , "$ Anode\ Current\ (mA) $"))

#title("$Cathode\ Current\ Vs\ Time$")

xlabel(’$Time(\mu s)$’)

ylabel("$Cathode\ Current\ (mA)$")

figure(9)

#plot (time , anode_current , ’go’ , markersize=2)

plot (time , anode_current , ’-g’)

xlabel(’$Time(\mu s)$’)

ylabel("$Anode\ Current\ (mA)$")

ylim(0 , 200)

xlim(0 , 20)

grid()

flux = []

j = []

f = open (os.path.realpath (’../data/ion_flux.txt’) , "r")

lines = f.readlines()

f.close()

for line in lines:

l = line.split()

flux.append(l[0])

j.append (l[1])

#figure(10)

#plot(j,flux,’r+’)

#plot(j,flux,’-k’)

#grid()

show()

65

REFERENCES

1. Farnsworth, P. T. (1966). Electric discharge device for producing interactions between
nuclei. US Patent 3,258,402.

2. Farnsworth, P. T. (1968). Method and apparatus for producing nuclear-fusion reac-
tions. US Patent 3,386,883.

3. Hirsch, R. L. (2004). Inertial-electrostatic confinement of ionized fusion gases. Journal
of Applied Physics, 38(11), 4522–4534.

4. J F Santarius, G. L. K. B. B. C. S. K. M. G. R. P. R. F. R. J. W. W., R P Ashley,
Modeling d-d operation of the uw iec experiment. In 5th US-Japan Workshop on IEC
Fusion. 2002.

5. Krupakar Murali, S. (2004). Diagnostic study of steady state advanced fuel (D–D
and D–3 He) fusion in an IEC device. Ph.D. thesis, Ph. D. dissertation, University of
Wisconsin, Madison.

6. Lavrentev, O. A. (1975). Electrostatic and electromagnetic high-temperature plasma
traps. Annals of the New York Academy of Sciences, 251, 152–178.

7. Meyer, R. (2007). Inertial electrostatic confinement: theoretical and experimental
studies of spherical devices. Ph.D. thesis, University of Missouri–Columbia.

8. Paar, H., An Introduction to Advanced Quantum Physics. Wiley, 2010. ISBN
9780470665091.

9. Santarius, J. F. and G. A. Emmert (2012). Iec device core physics explorations.

10. Thorson, T. A., R. D. Durst, R. J. Fonck, and L. P. Wainwright (1997). Convergence,
electrostatic potential, and density measurements in a spherically convergent ion focus.
Physics of Plasmas (1994-present), 4(1), 4–15.

11. Tomiyasu, K., J. Santarius, and G. Kulcinski, Numerical simulation for uw-iec de-
vice. In 6th US-Japan Workshop on IEC Fusion. 2003.

66

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Principle of Operation
	Fusion Reactions and Atomic Processes

	THEORY, MODELING AND SIMULATION
	Summary of the model
	Electrostatic potential inside the device
	Theoretical Analysis
	Model
	Pseudocode

	Ion generation
	Equations of motion
	Theory
	Model
	Pseudocode

	Reactions and atomic processes
	Theory
	Reaction Cross Section
	Fusion reaction and charge exchange reaction
	Elastic Scattering

	Model
	Model for Fusion Reactions
	Model for Elastic Scattering and Charge Exchange

	Pseudocode

	RESULTS AND DISCUSSION
	Results of the Simulation
	Conclusion and Improvements

	Simulation Code
	Code used for plotting

