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ABSTRACT 

 

 

KEYWORDS: Blind Source Separation, Underdetermined Source Separation, 

Compressed Sensing, Sparse Signal Representation, l1-minimization, Homotopy. 

 

In this work we aim to solve the underdetermined Blind Source Separation [7] problem 

using sparse representation. For reconstruction of such sparse representations, we use 

Compressed Sensing [5], [6] framework, an emerging technique for efficient sparse data 

reconstruction. We use the two-staged approach proposed in [1], replacing the l1-

minimization algorithm in its second stage with a Homotopy based algorithm.  The scope 

of this work is the separation of N audio source signals from M linear mixture signals 

each of which is a linear combination of the sources, while the proportions of mixing are 

unknown and  the system is underdetermined, i.e. M<N. We restrict ourselves to the case 

where there are only two mixture signals i.e. M=2. This document demonstrates the 

results of using a Homotopy algorithm, a Compressed Sensing (CS) (see [5] and [6]) 

based approach towards the above mentioned problem and compares it with that of l1-

norm minimization approach against various data sets. 
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CHAPTER 1 

 

INTRODUCTION 

Human acoustic systems are very efficient in distinguishing the sources from a mixture of 

audio signals, classically referred to as the cocktail party problem. On the other hand, it is 

quite difficult task for a machine to solve the same problem with very limited prior 

information about the sources and the mixing environment. Blind Source Separation 

(BSS) [7] is one of the widely used techniques to address this problem. In practice, 

however, we encounter the cases in which the number of mixtures obtained is less than 

the number of sources, i.e. the underdetermined case. 

In this document, we present the results of an approach to a problem which aims to 

separate N sources from a set of M mixtures each of which is a linear combination of the 

sources, while the mixing matrix is unknown. In the case of Underdetermined Blind 

Source Separation [7] problem, the number of mixtures M is smaller than the number of 

sources N i.e. M<N, considering the noiseless case. The Independent Component 

Analysis (ICA) and Principle Component Analysis (PCA) (see [8], [9]) are some of the 

widely used techniques to approach the BSS problem, however solutions involving sparse 

signal representations (see [1],[2]) have been shown to be efficient for the solution of 

Underdetermined BSS problem.  

When based on sparse representation, a two-staged approach is usually employed to 

recover the source signals, assuming that the sources are sparse signals. The first stage 

involves estimation of the unknown mixing matrix and the second involves the use of a 

non-linear optimization algorithm to recover the source signals. Following a similar 

approach, we propose to use a Compressed Sensing (CS) [5], [6] based algorithm for the 

second stage of the solution.  

In this document, we propose to introduce the Homotopy algorithm to replace the l1-

minimization algorithm in the solution described in [1] to solve the above mentioned 

problem and discuss the results obtained from this alteration. 
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1.1. The Basic Problem 

Let us consider M distinct sensors which give a corresponding output x
t
, an M-

dimensional column vector at a given discrete time instant t, and let X be an M×T matrix 

corresponding to the sensor data up to time instant T i.e., t=1, 2,…, T (i
th

 row of X 

denotes the i
th

 mixture signal acquired by the i
th

 sensor and j
th

 column of X is x
j
 for every 

j<T). Similarly, let S be the N×T matrix of underlying source signals with each row 

representing one of the source signals and let A be the mixing matrix of the order M×N. 

In the noiseless case, the problem of blind source separation [7] consists of finding the 

solution to the following system of equations: 

     (1) 

Where, X is the only known quantity in the above equation in the case of solving BSS 

[7] Problem. This equation can be further split into numerous equations as  

      (2) 

Where, s
t
 is the N-dimensional column vector corresponding to the source signals at a 

given instant t. When we further decompose the matrix A into a set of column vectors a
j
 

for j = 1, 2…, N, we can rewrite Eq. (2) as 

                    (3) 

Where, sj
t
 is the corresponding element of the matrix S. Without loss of generality, 

we normalize all the a
j
’s to unit length. The solution to the system of equations (3) is 

demonstrated in two steps. The first step involves the estimation of the column vectors 

a
j
’s and the estimate of the mixing matrix  is obtained. In the second step, we proceed 

towards solving the system of equations (2) for each discrete time instant t and thus 

obtain the estimation of the source matrix . For the second step, for solving the set of 

equations (2) in of M<N, we employ the Compressed Sensing (CS) [5], [6] based 

methods to obtain the solution. 
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CHAPTER 2 

 

APPROACH TO THE SOLUTION 

2.1. Step 1: Estimation of Mixing Matrix 

Following equation (3), if we assume that, at every time instant t, only one of the sj
t
’s is 

significant compared to the other components, i.e. all the other sj
t
’s are zeroes or close to 

zero, then the corresponding x
t
’s are aligned along one of the directions a

j
’s. Thus, given 

that the source matrix is sparse enough, we can find that in the scatter plot of x
t
, a density 

of data points demonstrate a tendency to cluster themselves along the directions of a
j
’s. 

Hence, if we could obtain the vectors along which the scatter plot aligns, we can obtain 

the estimate of the mixing matrix. However, in most cases we encounter, the data in the 

time domain is not sparse. When a scatter plot of such data is plotted, we see that they 

don’t necessarily align themselves along any particular direction. Hence the data sets in 

time domain is often not sparse enough for the above approach. Figure 2.1 shows an 

example of scatter plot of a data set in time domain. In the case of this data, M=2 and the 

scatter plot of row vectors x1 and x2, the row vectors obtained from the rows of the 

mixture matrix X, plotted against each other. From the plot, the points seemed to spread 

uniformly to a large extent and hence making it a very difficult task to estimate the 

column vector directions a
j
’s. Since we need a sparser data in order to estimate the 

mixing matrix, a possible approach is to look for a linear transform T in the domain of 

which, the data can be sparser. Since the transform is linear, the equation (1) on 

transforming to the domain of T becomes 

        (4) 

Due to the transform T being linear, the mixing matrix is preserved. Transformation to 

frequency domain satisfies the criteria that are specified above as frequency domain is 

sparser than the time domain.  

For transformation to frequency domain, each signal is processed into frames of length 

L with a hopping distance d as the distance between the starting points of successive 

frames. Each frame is multiplied with a Hanning Window of length L and transformed 
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with a standard FFT of length L.All the transformed frames are concatenated into a single 

vector. In our work, L is taken as   of the sampling rate and d is approximately 0.3L. 

The scatter plot obtained in the transform domain was much more encouraging as the 

data points can be clearly seen to cluster along certain directions. Figure 2.2 shows the 

scatter plot of the data set plotted in Figure 2.1 in the frequency domain. 

 

Figure 2.1:  Scatter plot of row vectors x1 and x2 for the data in the SixFlutes dataset in 

                   time domain. 
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Figure 2.2: Scatter plot of row vectors x1 and x2 for the data in the SixFlutes dataset in 

                   frequency domain 

Now, since we have a scatter plot whose points clearly cluster along some of the 

directions, we need to establish a mathematical method to obtain the directional vectors 

in those specific directions. From the scatter plot, we can observe that the points that are 

farther from the origin tend to be closer to the directional vectors, thus making them the 

points that can contribute more towards finding the vectors. The approach we take is to 

define a potential function that is a function of the distance of the data points from the 

origin and also their inclination. In the case of M=2, we made use of the potential 

function described in [1] and the idea is to find the angles at which the potential function 

attains its peak values on a polar plot. The calculation of potential function is described in 

Appendix A. Once we obtain these angles, the directional vectors a
j
’s are estimated to be 

the unit vectors along these angles.  

It is to be noted that the number of peak values in the polar plot is equal to the number 

of a
j
’s we acquire and thus equal to the number of source signals we estimate. Thus 

proper care should be taken in finding the location of the peaks of the polar plot. A 

reliable method is to down sample the data from potential function and to use polynomial 

interpolation to up sample it. This ensures that the polar plot is smoother and helps in 
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getting the exact number of peaks we intend to get. It is also recommended to define a 

certain lower threshold in finding the peaks in order to avoid the insignificant peaks, but 

it usually depends on the mixture signal data set and also we may miss a significant peak 

when the threshold is not properly set. 

After the estimated column vectors are obtained, they are concatenated column wise to 

get the estimated mixing matrix . However, the order of the concatenation is of no 

importance as it only effects the row wise ordering of sources in the source matrix, but 

nevertheless, the individual source signals obtained are unaffected by this. 

 

Figure 2.3: Polar plot of the potential function obtained for the data in the SixFlutes  

                   dataset 

 

2.2. Step 2: Estimation of the Source Signals 

After successfully obtaining the estimated mixing matrix , we proceed towards solving 

the equation (2). Even though  is known, this system of equations is underdetermined. 

Since the source signals are sparse in the transform domain, Compressed Sensing [5], [6] 

based techniques can be employed to solve the set of equations. In this document, we 
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have used the Homotopy based algorithm to solve the set of equations, explained in detail 

in the next chapter. 
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CHAPTER 3 

 

THE HOMOTOPY APPROACH 

3.1. The Algorithm 

In the Homotopy based approach (see [3], [4]), we initialize the solution as a zero 

vector and construct a sparse solution in an iterative basis until the solution is under 

required tolerance. Homotopy is an approach to the solution to the Least Absolute 

Shrinkage and Selection Operator (LASSO) (see [10]) problem described by the 

unconstrained optimization problem 

                   (5) 

Where Y is a column vector of frequency domain representation of the mixture signal 

matrix X, h is the corresponding temporary solution that is updated with every iteration. λ 

is a parameter that is also updated by the end of every iteration. As h moves closer to the 

solution, λ moves closer to zero. In a geometric sense, Homotopy iteratively selects the 

column vectors and moves in a direction that is equiangular with all the selected column 

vectors, and eventually forms a linear combination of the all the vectors that is closest to 

the solution.  

Since we are presently dealing with vectors in with complex entries, we use a 

complex-valued Homotopy based algorithm to arrive to a generalized solution for the 

above problem. In the approach via Homotopy, we start with a large  and with h =0 

as the initial solution to the problem. The algorithm terminates as λ→0, when h 

converges to the solution to the ‘noiseless’ sparse recovery problem 

  s.t        (6) 

which is the also known as the l1-norm minimization problem. In case of ‘noisy’ 

sparse recovery problem, we should change the stopping condition from λ→0 to 

                                     (7) 
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Where,  denotes the tolerance of error in reconstruction. Now, let us define a 

function fλ such that, 

           (8) 

If for a given λ, if h is the minimizer of fλ, then its sub differential at h is zero. So from 

equation (8) we get 

       (9) 

where the sub differential  of  is defined by 

               (10) 

Where h(i) and ω(i) are the i
th

  components of h and ω respectively. Let c denote the 

correlations between the mixing matrix and the residue and I denote the support of h, 

both of which are given by 

 

 

Thus the condition  can be equivalently written as 

                      (11) 

which can be further written as 

                   (12) 

where ,  and  denote the complement of I, correlations on the support I and 

the components of h on I respectively. The conditions established in (11) are to be 

maintained by the algorithm throughout process of tracing the solution path. In every step 

l, the step size  and the moving direction  have to be found in order to 

update the solution to  
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           (13) 

After every iteration, we update the parameter λl as  

                                 (14) 

Let us define the support of hl,  for the l
th

 step of the solution. Since 

the components of hl corresponding to Il always follow (11), we have 

                    (15) 

On the other hand, we also have to update the remaining elements of cl, so we have 

                          (16) 

Using (12) in the above equation, we get 

                (17) 

Now, we define 

 

 

Using the above definitions in (17), we get 

    (18) 

When we put equations (13) and (11) in equation (15), we get equation (19), from 

which we can solve for dl entries corresponding to Il and setting the remaining 

components of dl to zero, i.e., 

                   (19) 

 

Thus, so far we have successfully transformed the conditions in (12) in to equations 

(15) and (18) which can be more easily applied during the algorithm. When we generally 

look at the conditions in (12), we see that the condition breaks either when one of the 
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non-zero components of hl crosses zero or when one of the zero components of hl 

becomes non-zero, whichever of them happens first while hl moves in the direction dl. 

The algorithm updates the direction dl towards which we move towards the solution when 

this condition breaks. 

First, let us consider the case where one of the components of hl corresponding to Il 

crosses zero. Now we have to find the least value of the step size  for which this 

happens. Now, we define 

    (20) 

Thus in the above set, we include all the indices in Il for which the step size  is real. 

We define the step size obtained in this step as 

         (21) 

Coming to the other case, where one of the components of hl corresponding to Il
c
 

becomes non-zero. So the correlation corresponding to that component also satisfies (13), 

i.e.  for  we have 

 

which implies 

     (22) 

For simplicity of solving the above equation, let us define  

 

 

 

 

Now we can see that for solving (22) for , we end up solving the quadratic equation  
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 (23) 

We solve the above equation for all  and consider only the smaller solution for 

each i. Thus, out of all the solutions obtained for each , we consider the smallest 

solution and define the step size obtained as 

     (24) 

As the step size is the maximum real number for which (13) and (18) are maintained, 

the step size we decide should be the minimum of the step sizes obtained from both the 

cases above. Thus, we get 

       (25) 

If the step size obtained is from , the corresponding index is added to the set Il. Else, 

it is removed from the set and thus the set Il is updated along with the other parameters 

before we go to the next step. These steps are repeated until (7) is satisfied. 

At the beginning of the algorithm, hl and dl are initialized as zero vectors. Il and λl are 

initialized as the position and absolute value of the largest entry of c0 respectively. In 

every iteration, dl is determined from (19) and then  and  are calculated as 

mentioned above. After determining  from (25), hl, λl and Il are updated accordingly. 

The algorithm continues until (7) is satisfied.  
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CHAPTER 4 

 

SIMULATION AND RESULTS 

4.1. Performing Measures 

After the estimated source matrix  is obtained in the frequency domain, it is transformed 

back into time domain. Since the transformations in both ways involve multiplication of 

the signals with the Hanning window, the edges of the source matrix obtained are forced 

to zero. Hence when error is measured by taking norm of the difference between the 

original and estimated signals, it does not go below a certain value, no matter how close 

the signal is estimated to the original one. Thus, this method of estimating the 

performance is not recommended as this method does not show the closeness of the 

estimated signal to the original one. 

Since the norm of absolute error is not a reliable measure of estimation of 

performance, 0we use relative error of the estimated source matrix obtained using 

Homotopy based approach with respect to that of the l1-minimization method used in [1]. 

As signals recovered from both of these methods involve multiplication of the Hanning 

window, the relative error measured in this case is more reliable. Thus, to measure the 

performance of our approach, we use the Signal to Noise Ratio (SNR) for the recovered 

signal with respect that of l1-minimization given by 

                   (6) 

Where,  denotes the signal recovered via Homotopy based approach and  denotes 

the signal recovered using l1-minimization method. 
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4.2. Simulation and Results 

The above approach was tested on some of the sound examples mentioned in [12]. These 

sound samples can be classified into static and dynamic signals, whose results are 

discussed separately below. Table 4.1 shows the relative SNR values obtained for each of 

the recovered signals for various datasets. The parameter used for measuring the potential 

function is as described in [1]. 

The approach was first tested on the SixFlutes data, which is a steady source. The data 

set consists of 6 different musical notes from a flute mixed linearly in two different 

proportions. Figure 2.2 shows the scatter plot corresponding to this dataset. From this plot 

we see that the mixture signals in the frequency domain aligned very neatly in the 

directions of the column vectors and hence the estimated mixing matrix is estimated more 

accurately. When the algorithm was tested on this data, the estimated sources obtained 

showed no difference when played and heard, as compared to the original sources. When 

the plots of the estimated sources were examined, it was found that each of these signals 

were very close to the original sources, except that the edges have been forced to zero.. 

This was due to the multiplication of the signals with the Hanning window during the 

transformations to frequency domain and back. It was also observed that the sources tend 

to converge towards the solution obtained using the l1-minimization approach, as the 

tolerance was reduced. It was also observed that the relative error of both the methods 

were well under the tolerance value forced on the Homotopy algorithm. This was an 

expected observation as the LASSO solution is known to converge to the solution of l1-

minimization problem as λ→0. 

 

 

 

 



 15 

Table 4.1: Relative SNR values obtained for each recovered signal from the respective  

                 datasets, when tolerance for Homotopy is set to 1×10
-5

.  

 Source 1 Source 2 Source 3 Source 4 Source 5 Source 6 

SixFlutes 163.39       161.93   162.33   162.78   163.49   163.83   

SixFluteMelodies 162.48 164.82   165.54   163.23   164.14   162.36   

FourVoices 164.29   164.98 163.54   161.71 - - 

 

Next, the approach was used on another data set SixFluteMelodies, this time a mixture 

of six different pieces of flute melodies mixed linearly in two different proportions. This 

dataset was comparatively more complicated as each of the melodies contained various 

musical notes played in different sequences. From the scatter plot corresponding to this 

dataset (see Figure 4.1 (a)), we can see that the dataset is of lower sparsity than that of the 

previous one. Most of the points away from the origin align along four directions, but we 

see that the most of the points that align along the remaining two directions are not very 

far away from the origin. This affects the potential function, as the peaks at these angles 

are considerably smaller than the rest of the four peaks, as seen in figure 4.1 (b). Hence 

the threshold to be set for finding the directions a
j
’s should be set considerably lower to 

separate all the six sources. When each of the recovered signals is played, a little 

background sound corresponding to other signals is heard. In terms of relative error, this 

dataset shows the same trait as that of the previous dataset.  
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(a) 

 

(b) 

Figure 4.1: Scatter plot of row vectors x1 and x2 for the data in the SixFluteMelodies  

                   dataset in frequency domain represented by (a) and polar plot (b) of its  

                   corresponding potential function. 
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After applying the algorithm on the steady sources, we move forward to test it on the 

dynamic sources. The result of this data is of utmost importance as most of the acoustic 

signals we encounter are from the dynamic sources and separation of dynamic sources 

has been a special interest in communication engineering. The approach was used on the 

data set FourVoices, a mixture consisting of recordings of voices of four different 

individuals mixed linearly in two different proportions. Figures 4.2 (a) and (b) show the 

mixed signals corresponding to this data set. Figures 4.3 (a), (b), (c), (d) show the plots of 

the original sources before mixing. The scatter plot corresponding to this dataset (see 

Figure 4.4 (a)) shows that the density of points around the direction vectors is in a more 

distributed fashion as compared to the previous cases. Most of the points are clustered 

around the origin. As a result, the potential function (see figure 4.4 (b)) does not have 

sharp peaks as found in the previous cases. Also, since the potential function is not 

smooth, down sampling and interpolation of the function was necessary in order to avoid 

finding the insignificant peaks, as mentioned in section 1.2. When each of the recovered 

signals is played, the voices in the other sources were faintly heard in the background, but 

only one of the voices was clearly heard in each of the recovered signals, dominating the 

others. In terms of relative error, this dataset shows the similar traits as that of all the 

previous datasets. Figures 4.5 (a), (b), (c), (d) show the plots of the recovered signals. 

 

(a) 

 

(b) 

Figure 4.2:  The two mixture signals (a) and (b) for the data in the FourVoices dataset 
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(a) 

 

 (b) 

 

 (c) 

 

 (d) 

Figure 4.3: The plots original source signals (a), (b), (c) and (d) for data in the 

                   FourVoices dataset 
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(a) 

 

(b) 

Figure 4.4: Scatter plot of row vectors x1 and x2 for the data in the FourVoices dataset in  

                   frequency domain represented by (a) and polar plot (b) of its corresponding 

                   potential function. 
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(a) 

 

 (b) 

 

(c) 

 

(d) 

Figure 4.5: The plots of estimated source signals (a), (b), (c) and (d) for data in the  

                   FourVoices dataset 
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4.3. Conclusion 

The introduction of the Homotopy algorithm to the approach described in [1] was 

observed to be successful for solving the underdetermined BSS problem. The recovered 

signals using this alteration in the approach also converge to the ones using l1-

minimization approach. 

Since the solution to the LASSO also converge to the l1-minimization problem, other 

approaches towards solving the former could be tested in this approach, since Homotopy 

was proved to show good results. One of such algorithms of interest is Least Angle 

Regression (LARS) algorithm [11], which is another approach towards solving the 

LASSO problem. LARS works similar to the Homotopy algorithm, but the difference lies 

in the ways both methods select the covariate vectors. LARS selects the covariate vectors 

which is most correlated with the response and move towards the direction that is 

equiangular to all the covariate vectors selected so far. 
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APPENDIX A 

CALCULATION OF POTENTIAL FUNCTION  

We define a potential function based on the points of the scatter plot with frequency 

domain representation of mixed signals. The function is given by  

 

Where,  is the distance of each point x
t
,  is the angle of each point x

t
 and  is a 

scaling parameter. And, g(α) is a basis function. The basis function is defined such that 

the potential function at considers the contribution from only the points around the 

direction . In our work, we define our basis function as  

 

The number of points  is taken based on the resolution of the potential function 

required. We define 

 for k=1,2,…,K, 

Where, the resolution of the potential function is dependent on K. The parameter  has a 

huge effect on the potential function. The number of maxima of the potential function is 

hugely dependent on . Thus the proper choice for the parameter  depends on the 

dataset itself. In the datasets, we use  =55, which works well with all the datasets used 

so far, and we set K=1080. 

 

 


