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Abstract

This report presents a study of subsynchronous resonance. The IEEE first benchmark
model [1] is used for this purpose. The study includes modeling of synchronous generator,
turbine-shaft rotating elements and network elements. The stability of this system is
studied by determining the eigenvalues. The system stability is studied for different
values of the series capacitor. Three phase fault is modeled in the network and the
system is simulated to determine the transient response.



Notations

wp base angular frequency

Wy flux linkage along the k'"axis after transformation and normalization k =
d7q7F’]‘D7]‘Q72Q

w; angular frequency of the i**mass
Vg4,Vq, Vo transformed and normalized generator voltages

! /! / /! . . .
T,,T,;,T,T, short circuit time constants

/ " / "
Xa, Xy, X g, Xq, Xy, X, generator reactances
E} excitation
Vg, Up, Ve phase voltages at generator terminals

inertia constant of the i**mass

.

i position of the i*"mass

T electrical torque

K;; spring constant

T; mechanical torque of the i*"turbine section

T ratio of the steady state mechanical torque of the i*turbine section to T;n
T Total mechanical torque

id,lq currents flowing in the network

Ve voltage across the capacitor

Uy voltage of the infinite bus

X sum of reactance of transformer, transmission line and the infinite bus
X1 sum of reactance of transformer and transmission line

X5 reactance of infinite bus

Xco series capacitor reactance



R total resistance
D damping factor in pu torque per pu speed deviation,
Dyp,Dip,Drpa,Dpp self damping coefficients

Dy1,Dia,Dap,Dpa,Dge mutual damping coefficients

P power generated by the generator

Vv voltage at the generator bus

I current flowing out of generator terminals
o} phase angle of voltage at generator

P phase angle of current



1 Introduction

Subsynchronous resonance (SSR) is a case where the electric network exchanges signifi-
cant amount of power with the mechanical system. This phenomenon arises as a result
of the interaction between a fixed series capacitor, used for compensating transmission
lines and the turbine generator shaft. This results is excessively high oscillatory torque
on machine shaft causing fatigue and damage. Since the two shaft failures at Mohave
station in Navada in 1970 and 1971, subsynchronous resonance has become topic of inter-
est in utilities where this phenomenon is a problem, and the determination of conditions
that excite these SSR oscillations are important to those who design and operate these
power systems [2-3].

1.1 Introduction to SSR

The formal definition of SSR is provided by IEEE [4] to be,

Subsynchronous resonance is an electric power system condition where the electric net-
work exchanges energy with a turbine generator at one or more of the natural fre-
quencies of the combined system below the synchronous frequency of the system.

Subsynchronous resonance can exist in a power system wherein the network has natural
frequencies that fall below the nominal frequency of the network voltages. Currents
flowing in the ac network have two components: one component at the frequency of
the driving voltages and another sinusoidal component at a frequency that depends
entirely on the elements of the network. Park’s transformation makes the 50/60H z
component of current appear, as viewed from the rotor, as a dc current in the steady
state, but the currents of frequency that depends on the network elements are transformed
into currents of frequencies containing the sum and difference of the two frequencies.
The difference frequencies are called subsynchronous frequencies. These subsynchronous
currents produce shaft torques on the turbine-generator rotor that cause the rotor to
oscillate at subsynchronous frequencies. The presence of subsynchronous torques on
the rotor causes concern because the turbine-generator shaft itself has natural modes of
oscillation. It happens that the shaft oscillatory modes are at subsynchronous frequencies.
If the induced subsynchronous torques coincide with one of the shaft natural modes of
oscillation, the shaft will oscillate at this natural frequency, with a high amplitude. This
is called subsynchronous resonance, which causes shaft fatigue and possible damage or
failure[5].



1.2 Report outline

Chapter 2 gives the equations to model synchronous generator, turbine shaft system, and
the network. It includes a discussion on Park’s transformation to convert the network
equations into Park variables. Chapter 2 also presents fault analysis. In Chapter 3, small
disturbance stability is evaluated while varying the value of series capacitor reactance.
Chapter 4 describes the results of the simulation.



2 Equipment Modeling

The IEEE first benchmark model is used for the study of subsynchronous resonance [1].
Fig. 2.1 shows the single line diagram of this sysytem.

Figure 2.1: network for sub synchronous resonance studies
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2.1 Generator modeling

The following generator equations were taken from [6]

dw
d—td = —wo¥, — wpYg (2.1)
dv
dtq =waVy — wpYy (2.2)
d¥
dvp 1 X,
il R R I il T ) 2.4
a o, R B (24)
d d
d¥1p 1
= —(=V1ip + ¥y) (2.5)
dt T,
d¥, 1
dtQ = = (~Vig +Ty) (2.6)
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dt T(;/( 2Q+ (I)

Vo = Xoig

1 1 1 1

4= <7 Va+ (o — )V ;=
ia= ~rVa (Xd Xd) Ft( J
1 1 1 1

= gt (5 — e+ (5 -
X; X, X, X,

dUs0

Neglect the zero component terms Wy, vg
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2.2 Modeling rotating masses
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The following equations are used to model the rotating masses [6]
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Figure 2.2: rotating masses
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The masses corresponding to ¢ = 1,2,3,4,5,6 are
mass 1 : exciter

mass 2 : generator
mass 3 : low pressure B
mass 4 : low pressure A
mass b : intermediate pressure
mass 6 : high pressure

déy
dt

ddy
dt

dés
dt

sy
dt

= W1 — Wo
= Wy — Wp
= w3 — Wo
= W4 — Wp

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)



ar W T W (2.15)
%6 = W6 — Wo (2.16)
- - [K15(35 — 1)) (2.17)

dt 2H
dcbzf 2H, 511, 2305 = 02) = Fuz(0 = 01) = ] (2.18)
% ~ 2H, o T+ Kaa(0a = 03) — Kog (85 — 62)] (2.19)
% ~ 2H, o [T K (85 — 64) — K34(3s — 03)] (2.20)
% " 2H; o, [T + Koo = 85) = Kas (85 — 00)] (2.21)
ot = o, T~ (0o =00 222)

Use T, = Wyi, — W igand re-write equation (2.18) as

dwy . .

dt 2H [K23((53 — 52) K12(52 - 51) - (\I/dlq — \I’qld)] (2.23)
Including damping in the analysis modifies the equations of the rotating masses to the
following [7]

dw1 W1 — W9

“ar 2H a1r, 12002 = 00) = Dop= =] .
duso 1 1 1
w2 _ Ko3(83 — 02) — K12(82 — 61) — (Va7 Vg + (5 — -7) ¥
di 2H [ 23(53 52) 12(52 51) ( d(X(/Z/ q + (Xq X(;) 1Q
1 1 1 1
- v - ¥, v )V
+(X:] X:Jl) ZQ) (Xcli/ d+(Xd X’) F
1 1 w2 — w1 w2 — W3
- _ i} - D — D 2.25
+(Xd Xd) 10)) = Pep——~ BG— - ] (2.25)
dw
cT; - 2H BTy + Koy (84 — 83) — Kog(83 — 82) —
w3 — w w3 — W W3 — Wo
Dpg 3w Y 3w *—Dip 3w ] (2.26)
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d
= PBIT o+ Kas(85 — 64) — Ka(84 — 63)

dt 2H
DABw4 —s DLAw4 — e DIAw4 7(*)5]
Wo o Wo
Qs 9B ip (86— 8s) — Kas (65 — 61) —
T A 56(d6 — 05 45(05 — 04
DA 2= _pphT e py, s _WG]
Wo Wo Wo
dwg WB W — Ws We — Wo
X6 _ 9B 17y Ksg(dg — 05) — D D
7 2H6[6 56(06 — 05) L HP— > ]

2.3 Network equations

The following simplified RLC' circuit is used to model the network

Figure 2.3: network for modeling the RLC elements

v, v,
+ Ve |
X, R X,

(2.27)

(2.28)

(2.29)

Writing network equations in a,b,c phases, we get two sets of normalized equations

1 % iq Uca Vta 0
— | v | + wa L % +R| % |+ | vy |+ ] v | =10
B % ic Vee Ute 0
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The above set of equations are transformed to

w ) di
_Ud—f-éXqu ; dtd 4+ Rig+ veqg + viq =0
Xy di
—Vg — :XL d+73g+qu+ch+th =0
dveg .
d; = iqwpXc — W2VUcq
dv .
d;q = ZqWBXC + Woleq

Transform the Park parameters vigand vyginto Kron parameters.

vig + juia = (Vig + jVip)e 7%

Vtd = ‘/tD COS((52) — VtQ sin(52)
Vg = Vig cos(d2) + Vip sin(d2)

2.4 Fault modeling

(2.32)

(2.33)

(2.34)

(2.35)

The following circuit model is used for deriving network equations for simulating transient

response during fault [1]

Writing equations in a,b,c phases before the fault is cleared from any of the three phases:

Figure 2.4: network for fault analysis
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0 = — Vp + —X11 % + R | 1 +
0 ) wB dic )
(& dt C
Vca 1 dleta Vta
vep | +—Xa | L |+ | vy
v, wB dize v
cc dt tc
0 1 Yo 1 v Uta
0| =-—Xr don | 4 — X, L I
0 ol 7 L
ia L[ %
i | = dscb
; wpXc | 4%
¢ dt
Using the relation
7:2abc = iabc - Z.labc
And doing Park’s Transformation we get,
w2 X2X2 . 1 X2X2
0 = - —(X Xg— —F— — (X Xog— —F
vd+w3( LA XF+X2)ZQ+WB( LA Xr+ Xy
Xo
Rig+veg + vyg(l — ——————
w2 X2X2 . 1 X2X2
0 = —vg——Xp1+Xo——""")ig+—Xp1+X9g— —"——
P S L Rl R
Xo
Ri, + veg + v (1 — —————
q cq tq( Xp +X2)
d
Z;d = iqwBX(C — Waleq
dv .
d;q = quBXc + Woleq

Use equation (2.41) to equation (2.44) to model the network during the fault
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(2.44)



3 Small disturbance stability analysis

Use
P =VIcos(¢p—1) (3.1)
- P
Vcos(¢ — o)
and then 1 can be found using
P
= qb—cos_l(ﬁ) (3.2)

Vb, Ip, Vg, Igare found using the following equations

Vp =Vsing (3.3)
Vo =Vcoso (3.4)
Ip = Isiny (3.5)
Ig = I cosy) (3.6)

Consider equation (2.1) to equation (2.7), the two algebraic equations (2.9) and (2.10)
and equation (2.11) to equation (2.16). Equate the derivatives to zero. Use subscript
oto denote initial value of the state variables

0= —(.UQO\I/qO — WRY4o (37)
0= (,UQ\I’d — vaq (3.8)
1 X ,
0= (—Vp4+¥y— —F—2_F 3.9
7o (Ur ) (39)
1
0= ,,(*‘1/11) +\I’d) (310)
Td
1
0==(—W1p+ ¥, (3.11)
Tq
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1

0= T—(;,(—\IJQQ—F\II,])
0=wi —w,
0=wy —w,
0=w3—wy
0=w4s— w,
0=ws —wy
0=wg— wo
and
id = );g‘l’d—F(;d—;;l)‘I’F‘F(;:j —;&/)‘1’10
iy = ;é,qjﬁ(;q— ;Q%Q“;;;_;g”’w

we get the following relations:
W1lo = W20 = W30 = W4p = W50 = Weo = Wo

we assume that

Wo = WpRB
therefore,
\I’qo = —Vdo
Vo = Vqo
Upo =T X p
Fo — ¥do X:i — Xd fo
V1o = Yo
\Ileo = \I’qo
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(3.12)
(3.13)
(3.14)
(3.15)
(3.16)
(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
(3.23)

(3.24)



Uo00 = Vyo (3.25)

1 11 X, 11

ido = —7 Va0 + (=— — — ) (V4o —
ldo Xd do (Xd Xd)( do

which gets simplified to

(\deo - Efo) (qu - Efo)

o = = 3.26
ldo Xd Xd ( )
which is equal to
1 1 1 1 1
igo = 57 Vgo + (+ — 7/)\11110 + (7/ - 7//)\11110
X, X, X, X, X,
which gets simplified to
P % _ —Udo
L= _
! Xq Xq
To get b,
Vgo + JVdo = Xdido — §Xqiqo + By,
Vgo + JVdo + 5 Xq(igo + Jido) = Xdido + Ego — Xqido
(Vo + Vo) + i Xq(Igo + jIpe) = (Xdido + Efo — Xqido)e’®
50 = A(VQO + jVDo) + jXq(IQo + jIDo) (327)
also,
vgo = Re{e ™% (Vo + Vo) } (3.28)
vao = Im{e % (Vo + iVpo)} (3.29)
igo = Re{e % (Ig, + jIpo)} (3.30)
igo = Im{e % (Ig, + jIp,)} (3.31)

Therefore, Wgo, U o, ¥ 5o, V10, ¥1Qo0, Yago, Ep,can be found
Now consider equation (2.26) to equation (2.29) and equate their derivatives to zero
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wB

0= (va - w—Xqu Rig —
[09) 5] w2 . .
0= E(Uq + @XLZd — RZq — Ve

0 = igwpXc — waleq

0= ’iquXC + Wolcq

From equation (3.34), we get
Veqgo = Xcido
And from equation (3.35), we get

Vedo = _XCiqo

We can substitute for vey, and ve4, and find veq, and vige

Vip and Vi are found using

Vip = Im{e?® (vg + jva)}
Vig = Re{e?®(vq + jvg)}

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.39)

To find ¢ and torque (7') values in steady state, consider equation (2.17) to equation

(2.22)

0= 8 —[K12(62 — 1))

2H,

0= I, [K23(53—52) Ki2(02 — 1) —

2

0= 2H BTy + Ksu (64 — 83) — Kas(d3 — 62)]

0= 2H4 [T4 + K45(65 — 04) — K34(04 — 63)]

0= 2H [T5 + K56(66 — 05) — Ky5(05 — 64)]
0=~ [Ty — Ks6(66 — 65)]

2H6

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

/ / ’ / / .
T, =P; T3 =m1T,; Ty =1rT,; Ts = r3T,; Ts = r41,; r1,72,73, 74 values are provided
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§ = 30 = 0, (3.46)

T
030 = —& + oy 3.47
3 K23+ 2 ( )
T — T,
S4p = =& 530 4
4 Ko + 03 (3 8)
T — Ty —T
Js0 =~ 4 5y (3.49)
Kys

T, — T3 — Ty — T
K6

560 = + 550 (350)

3.1 Eigenvalues of the system

Table 3.1: Computed Eigenvalues for the First Benchmark Model with Damping with
Xco=.35
Eigenvalue number | Real Part, (s~ 1) ‘ Imaginary Part,(rad/s) ‘

1,2 -4.7121744130 £616.6209083590
3,4 -3.7008370093 1£298.1489949776
9,6 -0.7304785937 £202.7832149399
7,8 -1.2872748318 £160.2733094920
9,10 -2.9058597402 £136.7709702242
11,12 -0.3706471041 £127.2403263027
13,14 -0.3999191450 1£99.8004681100
15 -32.9865535860
16 -20.3727594459
17,18 -0.7519406710 £10.2114921725
19 -3.8483197170
20 -0.3151077171

3.2 Variation of eigenvalues with change in capacitance

The series capacitor reactance is varied from 10% to 100% of transmission line reactance,

and the real parts of eigenvalues are plotted.
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Figure 3.1: graph of eigenvalues with different values of capacitance
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4 System Simulation

Parameter values for simulation taken from [1] are presented
Generator power output P = 0.9 pu

Generator power factor PF = 0.9 pu (lagging)

Fault reactance XF = 0.04 pu

Series capacitor reactance X¢ = .350 pu

4.1 Fault simulation

A three phase fault is simulated using the equations described in Section 2.4, and capac-
itor voltage, generator current and generator electrical torque are plotted.

Figure 4.1: response curves for transient case
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