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Abstract

This report presents a study of subsynchronous resonance. The ieee �rst benchmark
model [1] is used for this purpose. The study includes modeling of synchronous generator,
turbine-shaft rotating elements and network elements. The stability of this system is
studied by determining the eigenvalues. The system stability is studied for di�erent
values of the series capacitor. Three phase fault is modeled in the network and the
system is simulated to determine the transient response.
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Notations

ωB base angular frequency

Ψk �ux linkage along the kthaxis after transformation and normalization k =
d, q, F, 1D, 1Q, 2Q

ωi angular frequency of the ithmass

vd, vq, v0 transformed and normalized generator voltages

T
′
d, T

′′
d , T

′
q , T

′′
q short circuit time constants

Xd, X
′
d, X

′′
d , Xq, X

′
q, X

′′
q generator reactances

E
′
f excitation

va, vb,vc phase voltages at generator terminals

Hi inertia constant of the ithmass

δi position of the ithmass

T
′
e electrical torque

Kij spring constant

Ti mechanical torque of the ithturbine section

ri ratio of the steady state mechanical torque of the ithturbine section to T
′
m

T
′
m Total mechanical torque

id, iq currents �owing in the network

vc voltage across the capacitor

vt voltage of the in�nite bus

XL sum of reactance of transformer, transmission line and the in�nite bus

XL1 sum of reactance of transformer and transmission line

X2 reactance of in�nite bus

XC series capacitor reactance
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R total resistance

D damping factor in pu torque per pu speed deviation,

DHP ,DIP ,DLA,DLB self damping coe�cients

DHI ,DIA,DAB,DBG,DGE mutual damping coe�cients

P power generated by the generator

V voltage at the generator bus

I current �owing out of generator terminals

φ phase angle of voltage at generator

ψ phase angle of current
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1 Introduction

Subsynchronous resonance (SSR) is a case where the electric network exchanges signi�-
cant amount of power with the mechanical system. This phenomenon arises as a result
of the interaction between a �xed series capacitor, used for compensating transmission
lines and the turbine generator shaft. This results is excessively high oscillatory torque
on machine shaft causing fatigue and damage. Since the two shaft failures at Mohave
station in Navada in 1970 and 1971, subsynchronous resonance has become topic of inter-
est in utilities where this phenomenon is a problem, and the determination of conditions
that excite these SSR oscillations are important to those who design and operate these
power systems [2-3].

1.1 Introduction to SSR

The formal de�nition of SSR is provided by IEEE [4] to be,

Subsynchronous resonance is an electric power system condition where the electric net-
work exchanges energy with a turbine generator at one or more of the natural fre-
quencies of the combined system below the synchronous frequency of the system.

Subsynchronous resonance can exist in a power system wherein the network has natural
frequencies that fall below the nominal frequency of the network voltages. Currents
�owing in the ac network have two components: one component at the frequency of
the driving voltages and another sinusoidal component at a frequency that depends
entirely on the elements of the network. Park's transformation makes the 50/60Hz
component of current appear, as viewed from the rotor, as a dc current in the steady
state, but the currents of frequency that depends on the network elements are transformed
into currents of frequencies containing the sum and di�erence of the two frequencies.
The di�erence frequencies are called subsynchronous frequencies. These subsynchronous
currents produce shaft torques on the turbine-generator rotor that cause the rotor to
oscillate at subsynchronous frequencies. The presence of subsynchronous torques on
the rotor causes concern because the turbine-generator shaft itself has natural modes of
oscillation. It happens that the shaft oscillatory modes are at subsynchronous frequencies.
If the induced subsynchronous torques coincide with one of the shaft natural modes of
oscillation, the shaft will oscillate at this natural frequency, with a high amplitude. This
is called subsynchronous resonance, which causes shaft fatigue and possible damage or
failure[5].
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1.2 Report outline

Chapter 2 gives the equations to model synchronous generator, turbine shaft system, and
the network. It includes a discussion on Park's transformation to convert the network
equations into Park variables. Chapter 2 also presents fault analysis. In Chapter 3, small
disturbance stability is evaluated while varying the value of series capacitor reactance.
Chapter 4 describes the results of the simulation.
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2 Equipment Modeling

The IEEE �rst benchmark model is used for the study of subsynchronous resonance [1].
Fig. 2.1 shows the single line diagram of this sysytem.

Figure 2.1: network for sub synchronous resonance studies

2.1 Generator modeling

The following generator equations were taken from [6]

dΨd

dt
= −ω2Ψq − ωBvd (2.1)

dΨq

dt
= ω2Ψd − ωBvq (2.2)

dΨ0

dt
= −ωBv0 (2.3)

dΨF

dt
=

1

T
′
d

(−ΨF +Ψd −
X

′
d

X
′
d −Xd

E
′
f ) (2.4)

dΨ1D

dt
=

1

T
′′
d

(−Ψ1D +Ψd) (2.5)

dΨ1Q

dt
=

1

T ′
q

(−Ψ1Q +Ψq) (2.6)
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dΨ2Q

dt
=

1

T ′′
q

(−Ψ2Q +Ψq) (2.7)

Ψ0 = X0i0 (2.8)

id =
1

X
′′
d

Ψd + (
1

Xd
− 1

X
′
d

)ΨF + (
1

X
′
d

− 1

X
′′
d

)Ψ1D (2.9)

iq =
1

X ′′
q

Ψq + (
1

Xq
− 1

X ′
q

)Ψ1Q + (
1

X ′
q

− 1

X ′′
q

)Ψ2Q (2.10)

Neglect the zero component termsΨ0, v0

2.2 Modeling rotating masses

The following equations are used to model the rotating masses [6]

Figure 2.2: rotating masses

The masses corresponding to i = 1, 2, 3, 4, 5, 6 are
mass 1 : exciter
mass 2 : generator
mass 3 : low pressure B
mass 4 : low pressure A
mass 5 : intermediate pressure
mass 6 : high pressure

dδ1
dt

= ω1 − ωo (2.11)

dδ2
dt

= ω2 − ωo (2.12)

dδ3
dt

= ω3 − ωo (2.13)

dδ4
dt

= ω4 − ωo (2.14)
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dδ5
dt

= ω5 − ωo (2.15)

dδ6
dt

= ω6 − ωo (2.16)

dω1

dt
=

ωB

2H1
[K12(δ2 − δ1)] (2.17)

dω2

dt
=

ωB

2H2
[K23(δ3 − δ2)− k̄12(δ2 − δ1)− T

′
e] (2.18)

dω3

dt
=

ωB

2H3
[T3 +K34(δ4 − δ3)−K23(δ3 − δ2)] (2.19)

dω4

dt
=

ωB

2H4
[T4 +K45(δ5 − δ4)−K34(δ4 − δ3)] (2.20)

dω5

dt
=

ωB

2H5
[T5 +K56(δ6 − δ5)−K45(δ5 − δ4)] (2.21)

dω6

dt
=

ωB

2H6
[T6 −K56(δ6 − δ5)] (2.22)

Use T
′
e = Ψdiq −Ψqid and re-write equation (2.18) as

dω2

dt
=

ωB

2H2
[K23(δ3 − δ2)−K12(δ2 − δ1)− (Ψdiq −Ψqid)] (2.23)

Including damping in the analysis modi�es the equations of the rotating masses to the
following [7]

dω1

dt
=

ωB

2H1
[K12(δ2 − δ1)−DGE

ω1 − ω2

ωo
] (2.24)

dω2

dt
=

ωB

2H2
[K23(δ3 − δ2)−K12(δ2 − δ1)− (Ψd(

1

X ′′
q

Ψq + (
1

Xq
− 1

X ′
q

)Ψ1Q

+(
1

X ′
q

− 1

X ′′
q

)Ψ2Q)−Ψq(
1

X
′′
d

Ψd + (
1

Xd
− 1

X
′
d

)ΨF

+(
1

X
′
d

− 1

X
′′
d

)Ψ1D))−DGE
ω2 − ω1

ωo
−DBG

ω2 − ω3

ωo
] (2.25)

dω3

dt
=

ωB

2H3
[T3 +K34(δ4 − δ3)−K23(δ3 − δ2)−

DBG
ω3 − ω2

ωo
−DAB

ω3 − ω4

ωo
−DLB

ω3 − ωo

ωo
] (2.26)
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dω4

dt
=

ωB

2H
[T4 +K45(δ5 − δ4)−K34(δ4 − δ3)−

DAB
ω4 − ω3

ωo
−DLA

ω4 − ωo

ωo
−DIA

ω4 − ω5

ωo
] (2.27)

dω5

dt
=

ωB

2H5
[T5 +K56(δ6 − δ5)−K45(δ5 − δ4)−

DIA
ω5 − ω4

ωo
−DIP

ω5 − ωo

ωo
−DHI

ω5 − ω6

ωo
] (2.28)

dω6

dt
=

ωB

2H6
[T6 −K56(δ6 − δ5)−DHI

ω6 − ω5

ωo
−DHP

ω6 − ωo

ωo
] (2.29)

2.3 Network equations

The following simpli�edRLC circuit is used to model the network

Figure 2.3: network for modeling the RLC elements

Writing network equations in a,b,c phases, we get two sets of normalized equations

−

 va
vb
vc

 +
1

ωB
XL

 dia
dt
dib
dt
dic
dt

+R

 ia
ib
ic

+

 vca
vcb
vcc

+

 vta
vtb
vtc

 =

 0
0
0

 (2.30)

 ia
ib
ic

 =
1

ωBXC

 dvca
dt

dvcb
dt

dvcc
dt

 (2.31)
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The above set of equations are transformed to

−vd +
ω2

ωB
XLiq +

XL

ωB

did
dt

+Rid + vcd + vtd = 0 (2.32)

−vq −
ω2

ωB
XLid +

XL

ωB

diq
dt

+Riq + vcq + vtq = 0 (2.33)

dvcd
dt

= idωBXC − ω2vcq (2.34)

dvcq
dt

= iqωBXC + ω2vcd (2.35)

Transform the Park parameters vtdand vtqinto Kron parameters.

vtq + jvtd = (VtQ + jVtD)e
−jδ2

vtd = VtD cos(δ2)− VtQ sin(δ2) (2.36)

vtq = VtQ cos(δ2) + VtD sin(δ2) (2.37)

2.4 Fault modeling

The following circuit model is used for deriving network equations for simulating transient
response during fault [1]
Writing equations in a,b,c phases before the fault is cleared from any of the three phases:

Figure 2.4: network for fault analysis
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 0
0
0

 = −

 va
vb
vc

 +
1

ωB
XL1

 dia
dt
dib
dt
dic
dt

+R

 ia
ib
ic

+

 vca
vcb
vcc

+
1

ωB
X2

 di2a
dt
di2b
dt
di2c
dt

+

 vta
vtb
vtc

 (2.38)

 0
0
0

 = − 1

ωB
XF

 di1a
dt
di1b
dt
di1c
dt

+
1

ωB
X2

 di2a
dt
di2b
dt
di2c
dt

+

 vta
vtb
vtc

 (2.39)

 ia
ib
ic

 =
1

ωBXC

 dvca
dt

dvcb
dt

dvcc
dt

 (2.40)

Using the relation
i2abc = iabc − i1abc

And doing Park's Transformation we get,

0 = −vd +
ω2

ωB
(XL1 +X2 −

X2X2

XF +X2
)iq +

1

ωB
(XL1 +X2 −

X2X2

XF +X2
)
did
dt

+

Rid + vcd + vtd(1−
X2

XF +X2
) (2.41)

0 = −vq −
ω2

ωB
(XL1 +X2 −

X2X2

XF +X2
)id +

1

ωB
(XL1 +X2 −

X2X2

XF +X2
)
diq
dt

+

Riq + vcq + vtq(1−
X2

XF +X2
) (2.42)

dvcd
dt

= idωBXC − ω2vcq (2.43)

dvcq
dt

= iqωBXC + ω2vcd (2.44)

Use equation (2.41) to equation (2.44) to model the network during the fault
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3 Small disturbance stability analysis

Use
P = V I cos(φ− ψ) (3.1)

I =
P

V cos(φ− ψ)

and then ψ can be found using

ψ = φ− cos−1(
P

V I
) (3.2)

VD, ID, VQ, IQ are found using the following equations

VD = V sinφ (3.3)

VQ = V cosφ (3.4)

ID = I sinψ (3.5)

IQ = I cosψ (3.6)

Consider equation (2.1) to equation (2.7), the two algebraic equations (2.9) and (2.10)
and equation (2.11) to equation (2.16). Equate the derivatives to zero. Use subscript
oto denote initial value of the state variables

0 = −ω2oΨqo − ωBvdo (3.7)

0 = ω2Ψd − ωBvq (3.8)

0 =
1

T
′
d

(−ΨF +Ψd −
X

′
d

X
′
d −Xd

E
′
f ) (3.9)

0 =
1

T
′′
d

(−Ψ1D +Ψd) (3.10)

0 =
1

T ′
q

(−Ψ1Q +Ψq) (3.11)
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0 =
1

T ′′
q

(−Ψ2Q +Ψq) (3.12)

0 = ω1 − ωo (3.13)

0 = ω2 − ωo (3.14)

0 = ω3 − ωo (3.15)

0 = ω4 − ωo (3.16)

0 = ω5 − ωo (3.17)

0 = ω6 − ωo (3.18)

and

id =
1

X
′′
d

Ψd + (
1

Xd
− 1

X
′
d

)ΨF + (
1

X
′
d

− 1

X
′′
d

)Ψ1D

iq =
1

X ′′
q

Ψq + (
1

Xq
− 1

X ′
q

)Ψ1Q + (
1

X ′
q

− 1

X ′′
q

)Ψ2Q

we get the following relations:

ω1o = ω2o = ω3o = ω4o = ω5o = ω6o = ωo (3.19)

we assume that
ωo = ωB

therefore,

Ψqo = −vdo (3.20)

Ψdo = vqo (3.21)

ΨFo = Ψdo −
X

′
d

X
′
d −Xd

E
′
fo (3.22)

Ψ1Do = Ψdo (3.23)

Ψ1Qo = Ψqo (3.24)
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Ψ2Qo = Ψqo (3.25)

ido =
1

X
′′
d

Ψdo + (
1

Xd
− 1

X
′
d

)(Ψdo −
X

′
d

X
′
d −Xd

E
′
fo) + (

1

X
′
d

− 1

X
′′
d

)Ψdo

which gets simpli�ed to

ido =
(Ψdo − E

′
fo)

Xd
=

(vqo − E
′
fo)

Xd
(3.26)

which is equal to

iqo =
1

X ′′
q

Ψqo + (
1

Xq
− 1

X ′
q

)Ψqo + (
1

X ′
q

− 1

X ′′
q

)Ψqo

which gets simpli�ed to

iqo =
Ψqo

Xq
=

−vdo
Xq

To get δo,

vqo + jvdo = Xdido − jXqiqo + E
′
fo

vqo + jvdo + jXq(iqo + jido) = Xdido + E
′
fo −Xqido

(VQo + jVDo) + jXq(IQo + jIDo) = (Xdido + E
′
fo −Xqido)e

jδo

δo = ∠(VQo + jVDo) + jXq(IQo + jIDo) (3.27)

also,

vqo = Re{e−jδo(VQo + jVDo)} (3.28)

vdo = Im{e−jδo(VQo + jVDo)} (3.29)

iqo = Re{e−jδo(IQo + jIDo)} (3.30)

ido = Im{e−jδo(IQo + jIDo)} (3.31)

Therefore, Ψqo,Ψdo,ΨFo,Ψ1Do,Ψ1Qo,Ψ2Qo, E
′
focan be found

Now consider equation (2.26) to equation (2.29) and equate their derivatives to zero
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0 =
ωB

XL
(vd −

ω2

ωB
XLiq −Rid − vcd − vtd) (3.32)

0 =
ωB

XL
(vq +

ω2

ωB
XLid −Riq − vcq − vtq) (3.33)

0 = idωBXC − ω2vcq (3.34)

0 = iqωBXC + ω2vcd (3.35)

From equation (3.34), we get

vcqo = XCido (3.36)

And from equation (3.35), we get

vcdo = −XCiqo (3.37)

We can substitute for vcqo and vcdo and �nd vtdo and vtqo
VtD and VtQ are found using

VtD = Im{ejδ2(vq + jvd)} (3.38)

VtQ = Re{ejδ2(vq + jvd)} (3.39)

To �nd δ and torque (T ) values in steady state, consider equation (2.17) to equation
(2.22)

0 =
ωB

2H1
[K12(δ2 − δ1)] (3.40)

0 =
ωB

2H2
[K23(δ3 − δ2)−K12(δ2 − δ1)− T

′
e] (3.41)

0 =
ωB

2H3
[T3 +K34(δ4 − δ3)−K23(δ3 − δ2)] (3.42)

0 =
ωB

2H4
[T4 +K45(δ5 − δ4)−K34(δ4 − δ3)] (3.43)

0 =
ωB

2H5
[T5 +K56(δ6 − δ5)−K45(δ5 − δ4)] (3.44)

0 =
ωB

2H6
[T6 −K56(δ6 − δ5)] (3.45)

T
′
e = P ; T3 = r1T

′
e; T4 = r2T

′
e; T5 = r3T

′
e; T6 = r4T

′
e; r1, r2, r3, r4 values are provided
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δ = δ2o = δo (3.46)

δ3o =
T

′
e

K23
+ δ2o (3.47)

δ4o =
T

′
e − T3
K34

+ δ3o (3.48)

δ5o =
T

′
e − T3 − T4

K45
+ δ4o (3.49)

δ6o =
T

′
e − T3 − T4 − T5

K56
+ δ5o (3.50)

3.1 Eigenvalues of the system

Table 3.1: Computed Eigenvalues for the First Benchmark Model with Damping with
XC = .35

Eigenvalue number Real Part, (s−1) Imaginary Part,(rad/s)

1,2 -4.7121744130 +616.6209083590

3,4 -3.7008370093 +298.1489949776

5,6 -0.7304785937 +202.7832149399

7,8 -1.2872748318 +160.2733094920

9,10 -2.9058597402 +136.7709702242

11,12 -0.3706471041 +127.2403263027

13,14 -0.3999191450 +99.8004681100

15 -32.9865535860

16 -20.3727594459

17,18 -0.7519406710 +10.2114921725

19 -3.8483197170

20 -0.3151077171

3.2 Variation of eigenvalues with change in capacitance

The series capacitor reactance is varied from 10% to 100% of transmission line reactance,
and the real parts of eigenvalues are plotted.
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Figure 3.1: graph of eigenvalues with di�erent values of capacitance
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4 System Simulation

Parameter values for simulation taken from [1] are presented
Generator power output P = 0.9 pu
Generator power factor PF = 0.9 pu (lagging)
Fault reactance XF = 0.04 pu
Series capacitor reactance XC = .350 pu

4.1 Fault simulation

A three phase fault is simulated using the equations described in Section 2.4, and capac-
itor voltage, generator current and generator electrical torque are plotted.

Figure 4.1: response curves for transient case
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