
Fourier Analysis of Boolean
Functions

Allen Philip J

2nd May 2014

Contents

1 Introduction 1
1.1 What are Boolean Functions . 1
1.2 Application of Boolean Functions . 1
1.3 Overview . 2

2 Fourier Analysis of Boolean Functions 3
2.1 Fourier Transformation . 3

2.1.1 Vectors and Bases . 3
2.1.2 The Fourier Transform . 3

2.2 Boolean Fourier Expansion . 4
2.2.1 Fourier Expansion for any Boolean Function 4

2.3 Parity Function as Orthonormal Basis 5
2.3.1 Inner Product . 6
2.3.2 Orthonormality of the Basis 6
2.3.3 Standard Fourier Results . 6

3 Influences and Social Choice Theory 9
3.1 Boolean Functions and Social Choice Theory 9

3.1.1 Influences and Social Choice Theory 9
3.1.2 Geometric Interpretation of Infuences 10

3.2 Total Influence . 10

4 Special Classes of Boolean Functions 13
4.1 Motivation behind Special Class of Boolean Functions 13
4.2 Decision Trees . 13

4.2.1 Important Results for DTs . 14
4.3 DNFs and CNFs . 14

5 Spectral Learning 17
5.1 What do we mean by Spectral Learning 17

5.1.1 Learning Model . 18
5.2 Small Fourier Spectrum . 18
5.3 Learning Theory . 19

5.3.1 Chernoff Bound . 19
5.3.2 Approximating Single Coefficient 19
5.3.3 Approximating Low Degree Boolean functions 20

i

Contents Contents

5.4 Goldreich Levin Theorem . 21
5.4.1 Restrictions . 22
5.4.2 Goldreich Levin Theorem . 23

5.5 Learning Decision Trees . 24
5.6 Leaning DNFs . 25

5.6.1 Random Restrictions . 25
5.6.2 Hastad’s Switching Lemma . 26

6 Read-Once Functions 29
6.1 What are Read-Once Functions? . 29
6.2 Representation of ROFs . 29
6.3 Analysing ROFs . 30
6.4 Fourier Spectrum of ROF after reduction to short DT 30
6.5 ROF under Random Restrictions . 31

Bibliography 33

ii

1 Introduction

1.1 What are Boolean Functions

Boolean (or switching) function is a function of the form f : {0, 1}n → {0, 1}, where
{0, 1}nis a Boolean domain in n dimentions, Consequently {0, 1}represent logic True
or False. The output of a Boolean function is a Boolean value which is either True
or False,

It is possible to represent to every boolean function using n variables x1, x2 . . . , xnand
two such formulas may be considered logically equivalent if and only if they express
the same Boolean functions for all inputs in {0, 1}n.

1.2 Application of Boolean Functions

Boolean functions find their application in a broad variety of fields ranging from
circuit design to social choice theory. A few of them have been briefly discussed
below:

• Boolean functions have diverse applications in the field of cryptography. For
example, boolean functions are the building blocks of symmetric cryptographic
systems which are fundamental tools in the design of all types of digital security
systems. A more detailed illustration of this facet of the boolean functions can
be found in [2].

• Boolean functions in coding theory might be used to depict the indicator func-
tions for the set of messages in a binary error-correcting code. As illustrated
in [5], we can find a more elaborate analysis of boolean functions in the field
of cryptography and error correcting codes.

• In cooperative game theory, monotone Boolean functions are called simple
games (voting games); this notion is applied to solve problems in social choice
theory as depicted in [7].

• Any digital circuit born out of a combination of a number of AND, OR, and
NOT gates can be represented as a boolean function in n variables with a
boolean output. An introduction to the field of cooperative boolean game
theory can be found in [4].

1

1.3 Overview Introduction

Due to such deeprooted dependance of Boolean functions across so many diverse
streams and fields, it becomes imperative to have a strong understanding of these
boolean functions and find means to analyse them effectively.

1.3 Overview

We will start off with the fourier transformation and its application towards boolean
functions and state and prove some important results pertaining to the same and
try to gain an intuitive understanding as well. People familiar with the basics of
Fourier analysis can move to sec. 2.2 where we will interpret the fourier expansion
of boolean functions as a combination of parity functions.
Then we learn about one of the most important parameters of boolean functions,
influences whose applications are broad and discussed in detail in sec. 3.1.1
Then we look at alternative means of representing Boolean functions which aim
at interpreting and understanding the boolean functions more efficiently from an
intuitive and mathematical perspective, with the two common special classes be-
ing Boolean functions as Decision Trees in sec. 4.2 and DNFs (Disjunctive Normal
Forms) in sec. 4.3.
The next section deals with Spectral Learing techniques aimed at learning a boolean
functions using just some of its significant fourier coeffecients within a certain error
limit and extending the same to Decision Trees and DNFs over the course of which
we’ll be discussing about some extremely powerful and useful theorems, that is, the
Goldreich Levin Theorem and Hastad’s Switching Lemma which have revolutionzied
the field of Boolean complexity theory. Sections until which serve as a survey and
the references from which the information found in this survey are drawn are duly
cited under the Bibliography.
Finally we discuss about Read-Once functions which are again another unique class
of boolean functions which have not yet been explored entirely. We try to get some
intuitive understanding on going about to bring about some technique to reduce the
depth of ROFs to contant depth circuits and try to prove some results stating the
same or proving otherwise.

2

2 Fourier Analysis of Boolean
Functions

2.1 Fourier Transformation

We are all well aware of the textbook definition of Fourier transformation which
is often described as taking a function in the “time-domain” and expressing it in
the “frequency-domain”. To make sense of this notion we will use vector spaces
to motivate that the Fourier Transform infact represents some sort of a “change of
basis” for a function and a more detailed explanation can be found for the same in
[1].

2.1.1 Vectors and Bases

Consider a vector in R2and call it v. Let e1, e2represent the two standard basis
vectors of R2.To write v in terms of them we need a way to somehow say “how
much” of v is in the direction of e1, e2. Let’s say we have a ’projection’ operation
which takes v and squishes it onto e1and let’s call it proje1v and similarly proje2v.
The magnitude of these projection quantities can be viewed as to what extent the
vector v is close to the respective basis vector.

So we have a nice coordinate system representing our vector by projecting it onto
the basis vectors. But suppose this particular set of basis vectors are not convenient
for our problem and we’d like to look at it from a different persepective. We can
always chose a new one and represent the vector by projecting them onto the new
set of basis vectors as illustrated before.

2.1.2 The Fourier Transform

With the above mentioned premise we can proceed to the actual fourier transform
and try to make some sense of it intuitively. A function f with it’s coordinate repre-
sentation can be thought of as the vector above with each xthcoordinate representing
its distance from the origin. We can express it in terms of a basis using a list of n
numbers, one for each x.

3

2.2 Boolean Fourier Expansion Fourier Analysis of Boolean Functions

Now, the goal of the Fourier Transform is to decompose f into oscillations; which
we can think of it as analogous to our previous goal of decomposing v into its
components along certain basis vectors. If we can accomplish this for f , then we
can write f as a sum of frequencies.1

2.2 Boolean Fourier Expansion

The Fourier Expansion of a Boolean function f : {−1, 1}n → {−1, 1}2 is essentially
the representation of the same as a real, multilinear polynomial meaning no variable
xiappears squared, cubed etc. Let us try to understand this with help of an example
which can be found in [17].

Example. A min2 function essentially evaluates the minumum of the two boolean
values and is defined as follows:

min2(+1,+1) = +1

min2(−1,+1) = −1
min2(+1,−1) = −1
min2(−1,−1) = −1

Then min2 can be expressed as a multilinear polynomial,

min2(x1, x2) = −1
2 + 1

2x1 + 1
2x2 + 1

2x1x2

which is the Fourier expansion of min2.

2.2.1 Fourier Expansion for any Boolean Function

Theorem. For any Boolean function we can say that its Fourier expansion is,

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

Proof. There is an intuitive way in order to represent the Fourier expansion for any
boolean function as a multilinear polynomial representation as illustrated in [17].
In order to achieve this, we define an indicator polynomial which for each point
a ∈ {−1, 1}n

I{a}(x) =
(1 + a1x1

2

)(1 + a2x2

2

)
. . .
(1 + anxn

2

)
1For more details kindly refer to [1]
2Note: Here {-1,1} are analogous to the previous representation of {0,1}

4

Fourier Analysis of Boolean Functions 2.3 Parity Function as Orthonormal Basis

which takes value 1 when x = a and value 0 when x ∈ {−1, 1}n \ {a}. Thus f has
the polynomial representation

f(x) =
∑

a∈{−1,1}n

f(a)I{a}(x)

Multiplying through the indicator polynomial we end with the fourier expansion as

f(x) =
∑
S⊆[n]

f̂(S)xS

where f̂(S) is the fourier coeffecient of f on S, and xS is a multilinear polynomial
in n, that is3

xS =
∏
i∈S

xi = χS(x)

Hence for any Boolean function we can say that its Fourier expansion is,

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

2.3 Parity Function as Orthonormal Basis

We had already discussed in sec. 2.1 that Fourier transformation can infact be
thought of as “change of basis” of sorts. Over the course of this section we would
like to show that the basis is infact that of parity functions and is an orthonormal
basis using excerpts fom [15, 8].

In the case of the fourier expansion of boolean functions, observe the function charac-
terised by χS(x). Take note that it is in fact a logical parity function or an exclusive-
or (XOR) of the bits (xi)i∈S. And in case we stack out all the possible subsets of
[n], we can conclude that we can represent the function f as a linear combination
of parity functions (over the reals).

f =
∑
S⊆[n]

f̂(S)χS

More generally, we deduce that in fact that they are a linearly independent basis for
the vector space formed by the boolean function which in turn shows the uniqueness
of the fourier expansion.

3Note: x∅ = 1 by convention

5

2.3 Parity Function as Orthonormal Basis Fourier Analysis of Boolean Functions

2.3.1 Inner Product

Definition 1. We define an inner product on a pair of functions f, g : {−1, 1}n → R
by

< f, g >= 2−n
∑

x∈{−1,1}n

f(x)g(x) = Ex∼{−1,1}n [f(x)g(x)]

The inner product can be interpreted also as the point-wise distance between the
functions f, g and hence if the two functions are equivalent the inner product
would go to 1 while if the functions are orthogonal the inner product vanishes to
0. Therefore, the inner product can also be depicted using the notation ‖f‖2 =√
< f, f >,and more generally,

‖f‖p = E[|f(x)|p]
1
p

2.3.2 Orthonormality of the Basis

Going back to the basis of parity functions, the crucial fact underlying all analysis
of boolean functions is that this is an orthonormal basis.
We know that for x ∈ {−1, 1}n it holds that χS(x)χT (x) = χS4T (x) where S4T
represents the symmetric difference. The proof is as follows:

χS(x)χT (x) =
∏
i∈S

xi
∏
i∈T

xi =
∏

i∈S4T
xi

∏
i∈S∩T

x2
i =

∏
i∈S4T

xi = χS4T (x).

Also we know that if S = ∅ then E[χS(x)] = E[1] = 1.4 Otherwise,

E

∏
i∈S

xi

 =
∏
i∈S

E[xi] = 0

Using the above two results, the orthonormality of the basis functions follows suit.
Theorem. The 2n parity functions χS : {−1, 1}n → {−1, 1} form an orthonormal
basis for the vector space V of functions {−1, 1}n → R. That is,

< χS, χT >=

1 S 6= T

0 S = T

2.3.3 Standard Fourier Results5

Theorem. Parseval’s Theorem: For any f : {−1, 1}n → R ,

< f, f >= Ex∼{−1,1}n [f(x)2] =
∑
S⊆[n]

f̂(S)2

4Since the xi are random and hence (1/2)(+1) + (1/2)(−1) = 0.
5For more fourier results and information pertaining to the results presented below, kindly refer

to [14]

6

Fourier Analysis of Boolean Functions 2.3 Parity Function as Orthonormal Basis

where E is the expected value of f.f using the uniform distribution on {0, 1}n.

Proof. The parseval’s identity can be proven as follows

Ex[f 2(x)] = Ex

[(∑
S

f̂(S)χs(x)
)(∑

T

f̂(T)χT (x)
)]

=
∑
S

∑
T

f̂(S)f̂(T)Ex [χS∪T (x)]

If S 6= T , then Ex [χS∪T] is zero evident from the orthogonal property of boolean
functions. Therefore the expression reduces to

< f, f >=
∑
S⊆[n]

f̂(S)2

In particular if the function is boolean-valued then∑
S⊆[n]

f̂(S)2 = 1

Theorem. Plancheral’s Theorem: For any f, g : {−1, 1}n → R ,

< f, g >= Ex∼{−1,1}n [f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S)

Proof. A similar approach can be drawn as to the Parseval’s identity except we have
two different functions here and the sets should be split appropriately as follows:

< f, g >=< f̂SχS, ĝTχT >= f̂S ĝT < χS, χT >=
∑
S⊆[n]

f̂(S)ĝ(S)

Definition 2. Distance Function: For any f, g : {−1, 1}n → {−1, 1}, we define
their (relative hamming) distance to be

dist(f, g) = Pr
x

[f(x) 6= g(x)],

the fraction of inputs on which they disagree.

7

3 Influences and Social Choice
Theory

3.1 Boolean Functions and Social Choice Theory

As discussed earlier, we know that boolean functions play a dominant role in Social
Choice Theory, which has been discussed in detail in [11], and one of the parameters
of paramount interest to us is ’Influence’. Social Choice Theory is often widely dis-
cussed by economists, political scientists, mathematicians, and computer scientists
addressing one fundamental question primarily which is how to best analyse or make
sense of the aggregate opinions of many agents. This is quite significant especially
in the scenario of citizens voting in an election, getting a consensus in a committee,
or analysing scenarios requiring a collective decision in general.
Boolean functions in general have a very appealling and convenient interpretation
with respect to social choice theory. For example, as boolean function f : {−1, 1}n →
{−1, 1}can be thought of as a voting rule or a social choice function for an election
with 2 candidates and n voters; and the votng rule could be as simple as aMajority
function to decide the winner of the election.

Majn : {−1, 1}n → {−1, 1}

here Majn(x) = sgn(x1 + x2 + . . .+ xn) for n odd.

3.1.1 Influences and Social Choice Theory

Having established the aforementioned interpretation of Boolean functions, we can
begin addressing the burning questions of Social Choice Theory. So naturally we’d
like to measure the ′power′ or ′influence′ of the ith voter in order to see how sta-
ble/unstable the constituency is. In more mathematical terms, it can be defined as
the probability that if the ithvoter were to differ the outcome of the election would
change.
Definition 3. The influence of coordinate i can be defined as:

Infi[f] = Prx∼{−1,1}n

[
f(x) 6= f(x⊕i)

]
where x⊕i = (x1, x2, . . . xi−1,−xi, . . . , xn). For more information on influences of
boolean functions refer [10].

9

3.2 Total Influence Influences and Social Choice Theory

3.1.2 Geometric Interpretation of Infuences

The Boolean function could also be represented as a Hamming cube [15]with is just
the representation of a cube over n dimensions with the edges representing all the
possible coordinates in {−1, 1}n.

Figure 3.1: Hamming Cube in R3

Definition 4. The distance between any two points in the hamming cube which is
called the hamming distance is defined as:

Dist(x, y) = #{i : xi 6= yi}

Having established the Hamming Cube we can now try to understand the geometric
interpretation of Influence. All the edges in the Hamming Cube which agree in all
coordinates and differ only on the ith coordinate are called dimension− i edges and
if any of those edges have f(x) 6= f(y) then its called a boundary edge.

Take for example the Maj3 function which is depicted in the figure below. The
edges characterized by a grey colour correspond to function value of +1 and those
with a white coloured edge have function value of −1. The boundary edges for the
same have been highlighted in black. Intuitively, the influence can be defined as the
fraction of dimension− i edges in a Hamming Cube which are boundary edges.

3.2 Total Influence

Definition 5. Total Influence, as one might have guessed from the nomenclature, is
the sum of the influences of a boolean function over all its n coordinates. In formal
terms, the total influence of f : {−1, 1}n → {−1, 1}

I[f] =
n∑

i=1
Infi[f]

10

Influences and Social Choice Theory 3.2 Total Influence

Figure 3.2: Maj3 function

Total influence, from a social choice theory, can be intuitively understood as the
succeptibility of the voting results (boolean function value) to fluctuate if any of
the voters were to differ. From a coding theory stand point, if the boolean function
representing a code transmitter have very high influence, if the reciever decodes the
signal with an error its more likely to give a wrong function value.

11

4 Special Classes of Boolean
Functions

4.1 Motivation behind Special Class of Boolean
Functions

We know that a boolean function in general can be expressed as f : {−1, 1}n →
{−1, 1} which is a very generic and standard notation. It doesn’t give us any other
information about the boolean function other than the fact it takes values from
{−1, 1}n and returns a real value. Morever, it is quite generic and exhaustively
represents all the exisiting boolean functions. In general this can prove detrimental
to further understand and analyse boolean functions in detail since some of the
boolean functions in real-time applications have simpler forms and need not be
analysed under this generic banner. Hence we need a more convenient representation
wherein it increases our ease of function interpretation and analysis for these special
class of boolean functions.
Any form of representation, though it may be limited to a specific class of boolean
functions, if it can address efficiently some of the questions posed above or provide
an eloquent platform to interpret or analyse the boolean functions, its worth consid-
eratition. Another good representation would be if the model shows high correlation
with prevelant pre-existing models which can be robustly used across a wide array
of fields like graphs say.
Another guideline for building an a special representation for boolean functions
is to incorporate the boolean logic in the function representation. The canonical
representation is purely mathematical and has no concept boolean logic incorporated
into it but we know that boolean functions can be expressed as a combination of logic
gates. The options are virtually limitless and we explore different avenues thereby
building a stronger understanding and grasp on boolean functions in general.

4.2 Decision Trees

A Decision Tree is a binary tree where each internal node is labeled with a variable,
and each leaf is labeled with either 0 or 1. An assignment to the variables deter-
mines a unique path from the root to a leaf and at each internal node the children

13

4.3 DNFs and CNFs Special Classes of Boolean Functions

correspond to the paths taken when the variable takes value 0 or 1. The value of the
function at the assignment is the value at the leaf reached. A more mathematical
representation of the boolean function would be:

f =
∑

paths,P

f(P).ICp (4.1)

where ICp is indicator variable of all the variables in the path P of the decision tree.
The depth of the decision tree is length of the longest path from the root to the

Figure 4.1: Decision Tree computing Sort3

leaf and is denoted by DT − depth(T). Similarly for a function f , we define depth
DT −depth(f) as the minumum depth of a decision tree that computes the function
f. Note that every boolean function on n variables can be represented by a decision
tree with at most 2n nodes and depth at most n.

4.2.1 Important Results for DTs

We know that deg(f), where f is a boolean function, is the number of variables in
the largest term of its fourier expansion. Given that the decision tree T be of depth
k, then

deg(f) ≤ k (4.2)
This follows from boolean expression as in eqn(4.1), where we select only variable
in every level and since variables can’t repeat the maximum degree of the function
in such a representatio would be the DT − depth(f).

4.3 DNFs and CNFs

In boolean logic, a disjunctive normal form (DNF) is a standardization of a logical
formula which is a disjunction of conjunctive clauses; otherwise put, it is an OR

14

Special Classes of Boolean Functions 4.3 DNFs and CNFs

of ANDs also known as a Sum of products. Similarly, a formula is said to be in
conjuctive normal form (CNF) if its in conjunction of clauses; that is its an AND of
ORs. Besides being natural from a computational point of view, these representation
classes are close to the limit of what complexity theorists can “understand” owing
to the strong Fourier concentration properties they exhibit.
The size of the term in the number of variables in the term. The size of the DNF
formula, however, is the number of terms it has and is denoted by DNFsize(f).
The width of the DNF formula is the size of the largest term in the formula and is
dentoed by DNFwidth(f).
For example the DNF representation of the Sort3 function, which take the value 1
if x1 ≤ x2 ≤ x3 and 0 otherwise, would look like:

Sort3(x1, x2, x3) = (x1 ∧ x2) ∨ (x̄2 ∧ x̄3) ∨ (x̄1 ∧ x3)

where ∧ represents logical AND and ∨ represents logical OR. The size of the above
DNF is 3 and its width is 2.

15

5 Spectral Learning

5.1 What do we mean by Spectral Learning

Our goal over the course of the upcoming sections would be to assess the “complex-
ity” of a boolean functions it terms of our ability to “learn” the function. Intuitively,
we can interpret learning a boolean function as an effective means of reconstructing
the boolean, within a certain error limit, when given limited access to the actual
boolean function. In a real time scenario, this could mean like a signal a transmit-
ted using a boolean function generator and our goal at the transmitter side is to
correctly estimate the source boolean function from the corrupt signal transmitted
to the reciever side. The following section is built on the the intuition from [14] and
a more detailed description can be found there.

This leads us to the question what factors are required to correctly estimate a
boolean function. We learnt that a boolean function can be represented as∑S⊆[n] f̂(S)χs.
Notice that if we can identify a collection F in [n] that have very large fourier co-
effecients we can effectively reconstruct the function as ∑S⊆F f̂(S)χs wherein we
ensure that the maximum amount of information in retained in this new function
and the error arises due to the subsets of [n]−F .

Let us take a example to cement our intuitive understanding of the same as illus-
trated in [14]. Let f be a boolean function such that for some unknown γ it holds
that f̂(γ) = 0.99 and no other information of the function f is available. The intu-
itive hypothesis would be h(x) = f̂(γ)χγ = 0.99χγ. Now we’d like to estimate the
squared error for the same. The error function would be errh(x) = |f(x) − h(x)|.
The expected square error would be,

E
[
(f − h)2

]
=
∑
β 6=γ

f̂(β)2

+
(
f 2(γ)− f 2(γ)

)
= 1− f 2(γ) = 0.0199

Knowing any more information of the fourier coefficients would further significantly
reduce the expected square error. For example, if f(α) = 0.005 then expected square
error is,

E
[
(f − h)2

]
= 1− f 2(α)− f 2(γ) = 0.019875

17

5.2 Small Fourier Spectrum Spectral Learning

5.1.1 Learning Model

The learning model has a class of functions F which we wish to learn. Out of this
class there is a specific function f ∈ F which is chosen as a target function. A
learning algorithm has access to examples. An example is a pair < x, f(x) > where
x is an input and f(x) is the value of the target function on the input x. After
requesting a finite number of examples the learning algorithm outputs a hypothesis
h. The error of a hypothesis h with respect to the function f , is defined to be
error(f, h) , Pr [f(x) 6= h(x)] , where x is distributed uniformly over {0, 1}n.
We discuss two models for accessing the examples. In the uniform distribution
model the algorithm has access to a random source of examples. Each time the
algorithm requests an example a random input x ∈ {0, 1}n is chosen uniformly and
the example < x, f(x) > is returned to the algorithm. In the membership queries
model the algorithm can query the unknown function f on any input x ∈ {0, 1}n
and receive the example < x, f(x) > .

A randomized algorithm A learns a class of functions F if for every f ∈ F and
the algorithm outputs an hypothesis h such that with probability at least 1− δ the
error is less than ε.The algorithm A learns in polynomial time if its running time is
polynomial in n, 1/ε, and log 1/δ.

5.2 Small Fourier Spectrum

In the previous section we showed how to approcimate a single coeffecient. But in
most cases the boolean function can only be approximated by taking into consider-
ation a small number of fourier coeffecients. Broadly there are two ways in which
they are commonly analysed which have the almost the same method of operation.

Definition 6. We say that the Fourier spectrum of f : {−1, 1}n → R is ε−concentrated
on degree up to k if ∑

S⊆[n],|S|>k
f̂(S)2 ≤ ε

Similarly we say that the Fourier spectrum of f : {−1, 1}n → R is ε−concentrated
on degree up to collection F if ∑

S⊆[n],|S|/∈k
f̂(S)2 ≤ ε

The fundamentals of the boolean learning theory are built on this sutle yet powerful
premise. If we have estimated by some means that the fourier spectrum is concen-
trated in low degree or in a collection then the next question to be addressed is
how do we construct our hypothesis, and what is the order of performance for that
process.

18

Spectral Learning 5.3 Learning Theory

5.3 Learning Theory

Before getting into the crux of Learning Theory which has been build upon [14], we
must familiarize ourselves with the chernoff bound which will be used extensively
through the subsequent sections.

5.3.1 Chernoff Bound

In probability theory, the Chernoff bound [6] gives exponentially decreasing bounds
on tail distributions of sums of independent random variables. It is a sharper bound
that the other well-known Markov’s Inequality and Chebyshev Inequality.

Theorem. Chernoff Bound [6]: Let X1, X2, . . . Xn be independent and identi-
cally distributed random variables such that, Xi ∈ [−1,+1], E[Xi] = p and Sn =∑n
i=1Xi. Then

Pr
[
|Sn
n
− p| ≥ λ

]
≤ 2e−λ2n/2

5.3.2 Approximating Single Coefficient

Consider the example taken in sec. 5.1 where we try to reconstruction the function
from just one large fourier coefficient. But notice however that the hypothesis h(x)
is a function from {−1, 1}n to R and not to {−1, 1}. It makes sense thereby to
construction another function z : {−1, 1}n → {−1, 1} given by

z(x) = sgn(h(x))

where sgn(x) is the sign function which takes the value −1 if x < 0 and +1 is x > 0.

We know that the fourier coefficient of a boolean function, in terms of the inner
product, can b expressed as:

f̂(S) =< f, χS >= E[f.χs]

This expectation term can basically be estimated given random access to the func-
tion wherein we query the function and it returns a function value and the value of
x corresponding to it, tha is, of the form (x, f(x)). Therefore the value from the
ith query could be considered as the value of the ith random variable and over m
iterations we can evaluate the Chernoff bound over some error limit of say λ. Here
Sn would translate into the approximate value of fourier coefficient which is denoted
by f̃(γ). Doing so we would get,

Pr[|f̂(γ)− f̃(γ)| ≥ λ] ≤ 2e−λ2m/2 ≤ δ

19

5.3 Learning Theory Spectral Learning

where we substitute the term on RHS as δ. Therefore we can say with high prob-
ability that |f̂(γ) − f̃(γ)| ≤ λ and consequently |f̂(γ) − f̃(γ)|2 ≤ λ2 if appropriate
values are taken for m,λ.

Re-evaluating the expected square error loss we get,

E[(f − h)2] = E[(f − f̃(γ)χγ)2] =
∑
α 6=γ

f̂(α)2 + (f̂(γ)− f̃(γ))2

E[(f − h)2] ≤ 1− f 2(γ) + λ2

It should be noted that h is not the desired function but rather z. Essentially we
should now show that

Pr[f(x) 6= sgn(h(x))] ≤ E[(f − h)2]

This is can be quite easily proved through the following series of steps.

Pr[f(x) 6= sgn(h(x))] = 2−n
∑
x

I[f(x) 6= sgn(h(x))]

where I is an indication function and equals #x : {f(x) 6= sgn(h(x))}and

E[(f − h)2] = 2−n
∑
x

[f(x)− h(x)]2

Taking two cases,
|f(x)− h(x)| > 1, f(x) 6= sgn(h(x))

|f(x)− h(x)| ≥ 0, f(x) = sgn(h(x))

Therefore Pr[f(x) 6= sgn(h(x))] ≤ E[(f − h)2] and hence

E[(f − z)2] ≤ 1− f 2(γ) + λ2

Here intuitively we can understand that λ2 is the additional error term introduced
due to estimating the fourier coefficent at γ since the error term originally had been
1− f 2(γ).

5.3.3 Approximating Low Degree Boolean functions

As discussed earlier, most of the functions innnnnnn general can be approximated
only by considering a small number of coefficients. In this sections, let’s consider
that the Fourier spectrum of f : {−1, 1}n → R is ε−concentrated on degree up to k
such that ∑

S⊆[n],|S|>k
f̂(S)2 ≤ ε

20

Spectral Learning 5.4 Goldreich Levin Theorem

Sample m examples, < xi, f(xi) >. For each S, with |S| ≤ d, compute as =
1
m

∑m
i=1 f(xi)χs(xi). And the output function z(x) is defined as

z(x) =
∑
|S|≤d

aSχs(s)

Learning theorem states that E[(f − z)2] ≤ ε+ λ, which can be proved as follows.
First we claim that teh algorithm approximates each coefficient within λ with a high
probability. That is,

Pr[|aS − f̃(γ)| ≥ λ] ≤ 2e−λ2m/2 ≤ δ

The error in z(x) is bounded by,

E[(f − z)2] ≤ ε+
∑
|S|≤d

(f̂(S)− aS)2 ≤ ε+
∑
|S|≤d

λ2 ≤ ε+ nd.λ2

Let nd.λ2 ≤ α⇒ λ ≤
√

α
nd . And hence proved that

E[(f − z)2] ≤ ε+ λ

To find the lower bound on m, we know that the learning theorem holds with
probability 1− δ, therefore,

2e−λ2m/2 ≤ δ

which holds true for
m ≥ 2nd

α
ln

(
2nd
δ

)

5.4 Goldreich Levin Theorem

Until now we discussed how to apply the learning theorem to obtain an approximate
function within good error limits for a single coeffecient case and a low degree
concentrated case. We could easily extend the same to the case where the fourier
spectrum is restricted to a collection F which would be a far more powerful result
and all the other results can be derived from it by making smart substitutions.
Now the question becomes how do we find this collection F wherein the bulk of
the fourier spectrum is concentrated. To answer this question, the Goldreich Levin
Theorem was formulated. Goldreich Levin theorem in some sense could be called
the “opposite” of learning theory: cryptography. At the highest level, cryptography
is concerned with constructing functions which are computationally easy to compute
but computationally difficult to invert.
Before we venture into the Goldreich Levin statement and proof, which has been
drawn from [16], we need to look at some pre-requisites which are crucial to under-
standing the same.

21

5.4 Goldreich Levin Theorem Spectral Learning

5.4.1 Restrictions

One of the most common operations on boolean functions f : {−1, 1}n → R is
restriction to subcubes. Suppose [n] into two sets, J and J̄ = [n] \ J . If the input
bits in J̄ are fixed to constants, the result is a function {−1, 1}J → R.

Definition 7. Let f : {−1, 1}n → R and let (J, J̄) be a partion on [n]. Let S ⊆
J .Then,

FS|J̄f(z) = f̂J |z(S) (5.1)

Notice that in the above definition the function on the LHS is a function of z while
fixing S whereas the function on the right is a function of S while fixing z.

Proposition 8. With the setting of the above definition, we have the fourier expan-
sion as

FS|J̄f(z) =
∑
T⊆J̄

f̂(S ∪ T).zT (5.2)

i.e,
F̂S|J̄f(T) = f̂(S ∪ T) (5.3)

This can be proved quite easily as illustrated in detail in Ryan O’Donnell’s page1.

Corollary. Let f : {−1, 1}n → R and let (J, J̄) be a partion on [n]. Let S ⊆ J and
z ∼ {−1, 1}J̄ is chosen uniformly at random. Then

Ez[f̂J |z(S)] = f̂(S) (5.4)

Ez[f̂J |z(S)2] =
∑
T⊆J̄

f̂(S ∪ T)2 (5.5)

Proof. The first statement can be immediately proved by taking T = ∅ in eqn(5.2).
Coming to the second statement we need to apply the definition first, then the
parseval’s theorem and finally apply the proposition in eqn(5.2) as follows

Ez[f̂J |z(S)2] = Ez[FS|J̄f(z)2] =< FS|J̄f(z),FS|J̄f(z) >=
∑
T⊆J̄

F̂S|J̄f(T)2 =
∑
T⊆J̄

f̂(S∪T)2

1http://www.contrib.andrew.cmu.edu/~ryanod/?p=560#propfrestr-subcube-formula

22

Spectral Learning 5.4 Goldreich Levin Theorem

5.4.2 Goldreich Levin Theorem

The Goldreich Levin Theorem[16] is a learning algorithm that the solves the problem:
Given query access to a target function f : F n

2 → F2,where F represents the boolean
logic domain and not real 0 and 1, the algorithm finds all of the linear functions
with which f is at least slightly correlated. Equivalently, it is an algorithm which
finds all of the noticeably large fourier coefficients of f .
Before we proceed we must define what we mean by “linear” with regard to boolean
functions.

Definition 9. A function f : F n
2 → F2 is linear if either of the following equivalent

conditions hold:

• f(x+ y) = f(x) + f(y) for all x, y ∈ F n
2

• f(x) = a.x for some a ∈ F n
2 that is, f(x) = ∑

i∈S xi for some S ⊆ [n]

We can intuitively understand the linearity of a boolean function in terms of its
proximity to any of its basis functions. If it has a very large fourier coefficient which
means that its highly correlated with one of the parity functions. Essentially the
Goldreich-Levin Theorem finds all the fourier coefficients or the parity function in
the decreasing order of correlation.

Theorem. Given query access to a target f : {−1, 1}n → {−1, 1} as well as input
0 < τ ≤ 1, there is a poly(n, 1/τ)-time algorithm with high probability outputs a list
L = {U1, U2, . . . , Ul} of subsets of [n] such that:

• |f̂(U)| ≥ τ ⇒ U ∈ L

• U ∈ L ⇒ |f̂(U)| ≥ τ/2

And by parseval’s theorem we know that |L| ≤ 4/τ 2

Proof. The Goldreich Levin theorem essentially seeks the fourier coefficients f̂(U)
with magnitude at least τ . Given any candidate U ⊆ [n] we distinguish them as
large, |f̂(U)| ≥ τ or small, |f̂(U)| ≤ τ/2. The trouble is that there are 2n potential
candidates and going through all of them would make the algorithm exponential.
Hence the Golreich Levin theorem employs a divide and conquer strategy where we
measure measure the fourier weights of f on various collection of sets.

Initially, all 2n set U are implicitly put in a single “bucket”. The algorithm essentially
repeats the following loop:
• Select any bucket B containing 2m sets, m ≥ 1
• Split it into two buckets B1,B2 of 2m−1 sets each.
• “Weigh” each Bi, i = 1, 2; that is, estimate ∑U∈Bi

f̂(U)2

23

5.5 Learning Decision Trees Spectral Learning

• Discard B1or B2if its weight estimate is at most τ 2/2

The algorithm stops once all the buckets contain just 1 set and then it outputs the
list of these sets. The buckes are indexed by an integer 0 ≤ k ≤ n and a subset
S ⊆ [k]. The bucket Bk,Sis defined by

Bk,S = {S ∪ T : T ⊆ {k + 1, k + 2, . . . , n}}

Note that the |Bk,S| = 2n−k. The initial bucket is B0,∅ and the algorithm always
splits a bucket Bk,S into two buckets Bk+1,S and Bk+1,S∪{k+1}. The final singleton
buckets will be of the form Bn,S = {S}.

All that is left is to estimate∑U∈Bi
f̂(U)2 and subsequently apply Chernoff bound to

obtain the approximate value of the fourier coeffients in the corresponding bucket.
This is done as follows23

∑
U∈Bi

f̂(U)2 =
∑

U∈Bk,S

f̂(S ∪ T : T ⊆ {k + 1, k + 2, . . . , n})2 = Ez∼{−1,1}J̄ [f̂J |z(S)2]

Ez∼{−1,1}J̄ [f̂J |z(S)2] = Ez∼{−1,1}J̄

[
Ey∼{−1,1}J [f(y, z)χS(y)]2

]
= Ez∼{−1,1}J̄

[
Ey,y′∼{−1,1}J [f(y, z)χS(y).f(y′, z)χS(y′)]

]
where y, y′ are independent. A Chernoff bound can be applied which implies that
O(log(1/δ)/ε2) samples are sufficient to estimate it with mean ε and confidence 1−δ.

Combining both this result with the fact that in the divide-and-conquer rule we
must make at most 4n/τ 2 estimates which inturn implies that the algorithm runs
for O(log(1/δ)/ε2, n/τ 2). In general we can ensure that we get all the weightings to
be accurate with high probability with the overall runtime of the algorithm being
poly(n, 1/τ).

5.5 Learning Decision Trees

The approach would be same as in the previous cases. We would like to find when
the fourier concentration of the function f is concentrated that is up to what degree
are the bulk of the fourier spectrum concentrated. The beauty of the decision tree
model is illustrated here[12].

Proposition. Let f : Fn
2 → {−1 , 1}be computable by a decision tree T of size s and

let ε ∈ (0, 1]. Then the spectrum of f is ε- concentrated on degree up to log(s/ε).

2As illustrated in http://www.contrib.andrew.cmu.edu/~ryanod/?p=589
3From eqn(5.5)

24

Spectral Learning 5.6 Leaning DNFs

Proof. To prove this construct another decision tree H which is essentially obtained
by truncating T at depth log(s/ε) and we add a leaf with value +1. Let the prob-
ability of reaching one of these leaves be ε, therefore Pr[T 6= H] ≤ ε. Since H
is a decision tree we can write a term4 for each leaf and we are guarenteed that
exactly one term is true for each input. Each term for the decision tree H has at
most t variables and all the coefficients of sets larger than size t is zero. Therefore,
Ĥ(S) = 0 for any S such that |S| > log(s/ε) which inturn implies Pr[T 6= H] ≤ ε
and hence the spectrum of f is ε- concentrated on degree up to log(s/ε).

5.6 Leaning DNFs

DNFs are known to exhibit very strong fourier spectrum characteristics in general.
In order to understand the dynamics behind the DNFs fourier spectrum we need to
look into Random restricions which are pivotal to the study of not just DNFs but
all boolean functions in general as eloquently put in [3].

5.6.1 Random Restrictions

In this section we describe the method of applying random restrictions and study
some quintessential properties governing them. This is a very “Fourier-friendly” way
of simplifying the boolean functions as we’ll come to see below.

Definition 10. For δ ∈ [0, 1], we say that J is a δ-random subset of N if it is
formed by including each element of N independently with probability δ. We define
a δ-random restriction on {−1, 1}n to be a pair (J |z), where first J is chosen to be a
δ-random subset of [n] is free if i ∈ J and is fixed if i /∈ J . An equivalent definition
is that each coordinate i is (independently) free with probability δ and fixed to ±1
with probability (1− δ)/2 each.

The properties exhibited by random restrictions are very much similar to the restric-
tions we discussed earlier in sec. 5.4.1 but only differ due to the fact that the set J
is associated with a probability dependent on δ. For instance, in the case of normal
restrictions we have Ez[f̂J |z(S)] = f̂(S) but in the case of random restrictions, since
the set has a probability of δ|S| associated with it, we get

Ez[f̂J |z(S)] = Pr[S ⊆ J].f̂(S) = δ|S|f̂(S) (5.6)

and similarly,

Ez[f̂J |z(S)2] =
∑
T⊆J̄

Pr[T ⊆ J̄].f̂(S∪T)2 =
∑
U⊆[n]

Pr[U∩J = S].f̂(U)2 =
∑
U3S

δ|S|(1−δ)|U\S|f̂(U)2

(5.7)
where U represents all the subsets of [n] containing the set S.

4A term is basically a conjuction of all terms in the path from root to leaf

25

5.6 Leaning DNFs Spectral Learning

5.6.2 Hastad’s Switching Lemma

Hastad’s Switching Lemma is one of the most powerful tools in boolean complexity
theory. The switching lemma essentially analyses the effect of random restrictions
on DNFs. It goes on to say that under such random restrictions the DNFs seems to
get simplified in surprising ways, that is, under random restriction with very high
probability the DNF can reduce to a short Decision Tree therefore enabling us to
draw strong strong fourier spectrum properties from it.

Theorem. Hastad’s Switching Lemma[15, 13] Let f : {−1, 1}n → {−1, 1} be
a width w DNF. Let (J |z) be a δ-random restriction on it where δ � 1/w, then

Prz[DT − depth(fJ |z) ≥ k] ≤ (5δw)k

Looking at the RHS and given that δ � 1/w, we know that δw � 1 and hence
consequently (δw)k � 1 and very close to 0. Let’s try to understand this statement
intuitively. On applying a δ-random restriction one of the three following things can
occur:
• First and by far the most likely, one of the literals in a term may be fixed to
False and we can delete it
• Otherwise all the literals in the term may be made True in which the DNF

reduces to a constant function
• The last possibility is when at least one of the term’s literals is left free and

the rest are fixed to True.
Notice that only in the third scenario that the DNF is not trivialized by the random
restriction.
The proof for the Hastad’s Switching Lemma is beyond the scope of this survey and
a detailed analysis of the switching lemma can be found in the Switching Lemma
Primer by Paul Beame5.
Having established the Hastad’s Switching Lemma we can now talk about the fourier
spectrum of the DNF.

Lemma. [15] Let f : {−1, 1}n → {−1, 1} and let (J |z) be a δ-random restriction,
δ > 0. Fix k ∈ N+and write ε = Prz[DT − depth(fJ |z) ≥ k]. Then the fourier
spectrum of f is 3ε-concentrated on degree up to 3k/δ.

Proof. The key observation to be made is that DT − depth(fJ |z) < k implies that
deg(fJ |z) < k from sec. 4.2.1. This can be mathematically represented as

E(J |z)

 ∑
|S|≥k

f̂J |z(S)2

 ≤ ε

5homes.cs.washington.edu/~beame/papers/primer.ps

26

Spectral Learning 5.6 Leaning DNFs

E(J |z)

 ∑
|S|≥k

f̂J |z(S)2

 =
∑
|S|≥k

[
E(J |z)f̂J |z(S)2

]
Using the result from eqn(5.7) we get,

=
∑
|S|≥k

∑
U⊆[n]

Pr[U ∩ J = S].f̂(U)2 =
∑
U⊆[n]

Pr(J|z)[|U ∩ J | ≥ k].f̂(U)2

The distribution of |U ∩ J | is Binomial(|U |, δ) the mean for which is |U |.δ. When
|U | ≥ 3k/δ this random variable has mean at least 3k, and a Chernoff bound shows
Pr[|U ∩ J | ≥ k] ≤ exp(−2

3k) ≤ 2
3 . Thus we get

ε ≥
∑
U⊆[n]

Pr(J|z)[|U ∩ J | ≥ k].f̂(U)2 ≥
∑

|U |≥3k/δ
(1− 2/3).f̂(U)2

and hence ∑|U |≥3k/δ f̂(U)2 ≤ 3ε as claimed.6

6The proof follows suit from http://www.contrib.andrew.cmu.edu/~ryanod/?p=811

27

6 Read-Once Functions

6.1 What are Read-Once Functions?

Read-Once booleans functions are certainly one of the most interesting special fam-
ilies of Boolean functions. A function f can be called read-once if it can be repre-
sented by a Boolean expression using the operations of conjunction, disjunction and
negation, in which every variable appears exactly once. We call such an expression
a read-once expression for f . For example the function

f0(a, b, c, d, e, f) = ab ∨ ac ∨ de ∨ ef

is a read-once function since it can be factored into the expression
f0 = a(b ∨ c) ∨ e(d ∨ f)

which is a read-once expression. 1

6.2 Representation of ROFs

Figure 6.1: Canonical ROF representation

The above figure illustrates the canonical form of representing the ROFs. One of
the the stark differences between DNFs and ROFs is that the depth is not restricted
to 2 as in the case of DNFs but instead can extend up to O(n).

1For more information on Read-Once Functions refer [9]

29

6.3 Analysing ROFs Read-Once Functions

6.3 Analysing ROFs

We would like to study the effects of random restrictions on read-once functions and
check if with high probability it reduces to a DT of small depth so that we can draw
useful fourier spectrum inferences from the ROF function. Consider a Decision Tree
of depth d and a read-once function of depth d. Let both the DT and the ROF
be in canonical form. The number of variables be n say, for the decision tree. The
maximum depth of the decision tree would be n and if it had been a DNF it will be
2 but in the case of the ROF it need not be bounded.
Therefore if we were to substitute variables in order to try and achieve a constant
function, in the case of the decision tree if we were to substitute O(depth) variables
carefully chosen we can reduce it to a constant function. But in the case of a read-
once function, in general, by substituting value for one variable we eliminate just
the variable symmetrically next to it. This means that we should essentially make
O(n/2) substitutions which is quite a formidable task while employing a random
restriction.
Now we should address two questions pertaining to the above statement.

1. If there were to exist a random restriction on the ROF such that it reduces
to a decision tree of small depth with very high probability, does it imply a
fourier concentration result for the ROF?

2. Is it possible if at all to obtain a random restriction which reduces the ROF
to a short decision tree?

Essentially we would like to either prove or state otherwise the above propositions
to further our understanding of ROFs.

6.4 Fourier Spectrum of ROF after reduction to short
DT

As mentioned earlier, in this section we work under the assumption that we have
a random restriction which reduces the ROF to a short DT with high probability.
The statement can be formally drawn as:

Lemma. Let f : {−1, 1}n → {−1, 1} corresponding to a read-once function and
let(J |z) be a δ-random restriction, δ > 0. For integer values of k > 0 we write
ε = Prz[DT − depth(fJ |z) ≥ k]. We would like to see if we could get a stronger
bound that the case for DNFs.

E(J |z)

 ∑
|S|≥k

f̂J |z(S)2

 ≤ ε

30

Read-Once Functions 6.5 ROF under Random Restrictions

E(J |z)

 ∑
|S|≥k

f̂J |z(S)2

 =
∑
|S|≥k

[
E(J |z)f̂J |z(S)2

]
Using the result from eqn(5.7) we get,

=
∑
|S|≥k

∑
U⊆[n]

Pr[U ∩ J = S].f̂(U)2 =
∑
U⊆[n]

Pr(J|z)[|U ∩ J | ≥ k].f̂(U)2

The distribution of |U ∩ J | is Binomial(|U |, δ) the mean for which is |U |.δ. When
|U | ≥ 3k/δ this random variable has mean at least 3k, and a Chernoff bound shows
Pr[|U ∩ J | ≥ k] ≤ exp(−2

3k) ≤ 2
3 . Thus we get

ε ≥
∑
U⊆[n]

Pr(J|z)[|U ∩ J | ≥ k].f̂(U)2 ≥
∑

|U |≥3k/δ
(1− 2/3).f̂(U)2

and hence ∑|U |≥3k/δ f̂(U)2 ≤ 3ε.2 Notice that at no point we were able to factor
any distinguishing property exhibited by ROFs and hence we were unable to get a
stronger bound than one for DNFs. In fact we can go on to say that for any boolean
function f : {−1, 1}n → {−1, 1} if it can be reduced to a short decision tree by some
random restriction with high probability then we can say that the fourier spectrum
of f is 3ε-concentrated on degree up to 3k/δ.

6.5 ROF under Random Restrictions

A minterm can be viewed as a subtree of a ROF which is essentially constructed
by considering both the children while encountering an AND gate and pick one of
the children while encountering a OR gate. As illustrated in the figure below, it
essentially represents an AND tree linked by OR.
Our goal is to show that under a random restriction the probability that minterms
more than width k exist is very low or very high. For a ROF of the canonical
form, we have the width of the minterm as n/4. Consider the example illustrated
above wherein the minterm constructed has width 4 coherent with our previous
proposition. Now if we want to evaluate the probability that under a δ-random
restriction the ROF reduces to a depth 2 ROF, we need to show that at least one
minterm with width 2 exists with high probability. And we can say that there will be
n/2 minterms in all for the canonical representation hence in our case 8 3minterms
in all. In the following we bound the probability that any given minter, reduces to
a small width term.
Consider a read-once function of the canonical form with n variables and depth
log2n. We use this canonical form as the limiting worst-case scenario and analyse

2The proof follows suit from http://www.contrib.andrew.cmu.edu/~ryanod/?p=811
32*2*2 cases resulting from the choices at the OR gates

31

6.5 ROF under Random Restrictions Read-Once Functions

Figure 6.2: Minterm of a Read-Once Function

this. In doing this we intend to decrease the width of the minterm of this canonical
ROF under a δ-random restriction by 2. The probabity associated with it assuming
for even depth d = log2n is obtained by setting one of the two variables in the AND
nodes right above the leaf nodes. Since there are n/4 variables at depth d for the
minterm subtree we should make n/4 substitutions and the probability associated
will be

Pr[depth− 2] = [δ.(1− δ)/2 + δ.(1− δ)/2]n/8 = [δ.(1− δ)]n/8

Now essentially this is for reducing the depth of the minterm by 2 say we intend to
decrease the overall depth of the ROF to t through a δ-random restriction. Then
we should union bound the above probability over (n− t)/2 iterations with n being
constantly updated over every iteration.

Pr[depth− t] =
n∑

i=t+2
[δ.(1− δ)]n/8 ≤ (n− t)

2 [δ.(1− δ)]n/8 ≤ (n− t)
2 2−n/4

The second part of the inequality rises from the fact that the maximum value taken
by δ.(1− δ) is 1/4 when δ = 1/2. As we can observe from the above equation that
the probability that the minterm reduce to depth t under a δ-random restriction is
extremely small and we can say with high probability that a ROF does not reduce
to a short decision tree under a random restriction.

32

Bibliography

[1] The fourier tranformations - but why? intuitive mathematics. Electronic
Medium, June 2012.

[2] Carlisle M Adams. Symmetric cryptographic system for data encryption,
April 23 1996. US Patent 5,511,123.

[3] Paul Beame. A switching lemma primer. Technical report, University of Wash-
ington, 1994.

[4] Wolfram Buttner and Helmut Simonis. Embedding boolean expressions into
logic programming. Journal of Symbolic Computation, 4(2):191–205, 1987.

[5] Claude Carlet. Boolean functions for cryptography and error correcting codes.
Boolean Models and Methods in Mathematics, Computer Science, and Engi-
neering, 2:257, 2010.

[6] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for
the analysis of randomized algorithms. Cambridge University Press, 2009.

[7] Paul E Dunne, Wiebe van der Hoek, Sarit Kraus, and Michael Wooldridge.
Cooperative boolean games. In Proceedings of the 7th international joint con-
ference on Autonomous agents and multiagent systems-Volume 2, pages 1015–
1022. International Foundation for Autonomous Agents and Multiagent Sys-
tems, 2008.

[8] Christophe Garban and Jeffrey E Steif. Noise sensitivity and percolation. Pref-
ace vii Schramm-Loewner Evolution and other Conformally Invariant Objects
1 Vincent Beffara Noise Sensitivity and Percolation 49, page 49, 2012.

[9] Martin Charles Golumbic, Aviad Mintz, and Udi Rotics. An improvement
on the complexity of factoring read-once boolean functions. Discrete Applied
Mathematics, 156(10):1633–1636, 2008.

[10] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean
functions. In Foundations of Computer Science, 1988., 29th Annual Symposium
on, pages 68–80. IEEE, 1988.

[11] Jerry S Kelly. Social choice theory. Springer, 1988.

[12] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier
spectrum. SIAM Journal on Computing, 22(6):1331–1348, 1993.

33

Bibliography Bibliography

[13] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits,
fourier transform, and learnability. Journal of the ACM (JACM), 40(3):607–
620, 1993.

[14] Yishay Mansour. Learning boolean functions via the fourier transform. In The-
oretical advances in neural computation and learning, pages 391–424. Springer,
1994.

[15] Ryan O Donnell. Analysis of boolean functions. Lecture Notes. Available online
at http://www. cs. cmu. edu/odonnell/boolean-analysis, 9:13–49, 2007.

[16] Ryan O Donnell. The goldreich-levin theorem. In Proceedings of the 40th annual
ACM symposium on Theory of computing, pages 569–578. ACM, 2008.

[17] Ryan O Donnell. Some topics in analysis of boolean functions. In Proceedings
of the 40th annual ACM symposium on Theory of computing, pages 569–578.
ACM, 2008.

34

	Contents
	1 Introduction
	1.1 What are Boolean Functions
	1.2 Application of Boolean Functions
	1.3 Overview

	2 Fourier Analysis of Boolean Functions
	2.1 Fourier Transformation
	2.1.1 Vectors and Bases
	2.1.2 The Fourier Transform

	2.2 Boolean Fourier Expansion
	2.2.1 Fourier Expansion for any Boolean Function

	2.3 Parity Function as Orthonormal Basis
	2.3.1 Inner Product
	2.3.2 Orthonormality of the Basis
	2.3.3 Standard Fourier ResultsFor more fourier results and information pertaining to the results presented below, kindly refer to mansour1994learning

	3 Influences and Social Choice Theory
	3.1 Boolean Functions and Social Choice Theory
	3.1.1 Influences and Social Choice Theory
	3.1.2 Geometric Interpretation of Infuences

	3.2 Total Influence

	4 Special Classes of Boolean Functions
	4.1 Motivation behind Special Class of Boolean Functions
	4.2 Decision Trees
	4.2.1 Important Results for DTs

	4.3 DNFs and CNFs

	5 Spectral Learning
	5.1 What do we mean by Spectral Learning
	5.1.1 Learning Model

	5.2 Small Fourier Spectrum
	5.3 Learning Theory
	5.3.1 Chernoff Bound
	5.3.2 Approximating Single Coefficient
	5.3.3 Approximating Low Degree Boolean functions

	5.4 Goldreich Levin Theorem
	5.4.1 Restrictions
	5.4.2 Goldreich Levin Theorem

	5.5 Learning Decision Trees
	5.6 Leaning DNFs
	5.6.1 Random Restrictions
	5.6.2 Hastad's Switching Lemma

	6 Read-Once Functions
	6.1 What are Read-Once Functions?
	6.2 Representation of ROFs
	6.3 Analysing ROFs
	6.4 Fourier Spectrum of ROF after reduction to short DT
	6.5 ROF under Random Restrictions

	Bibliography

