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ABSTRACT

KEYWORDS: Fourier Theory; Area Complexity; Logic synthesis; Boolean Cube.

Logic synthesis deals with obtaining the minimized equivalent representation of a

Boolean function and mapping it to minimum number of logic gates available. A

complex logic function requires more physical space on a chip, and incurs higher

manufacturing cost in terms of time and money. This motivates the study of area

complexity of circuits. This problem relates with obtaining a measure of the area

requirement of the circuit without actually mapping it to a gate-library. Mapping

circuits to a gate library is computationally taxing and time-consuming, especially as

the number of inputs increases. Getting an estimate of area requirement of circuits

without going through the logic design flow is therefore very useful.

Moreover, the results obtained using synthesis and mapping are heavily dependent

on the synthesis tool and the mapping library used. In this thesis, an effort has been

made to capture the inherent hardness of a Boolean function that is a fundamental

outcome of its truth table and is independent of Boolean optimisation techniques and

technology. The idea is to get an estimate of this inherent hardness of the function,

treating it solely as a mathematical entity, without bringing into the picture the

variations and bias introduced my electronic design flow tools.

For a combinational circuit, area-complexity is a measure that estimates the logic

area of the circuit without mapping to logic gates. Several measures like literal count,

number of primary input/outputs, etc. have been used in the past to measure area-

complexity. More recently, there have been efforts to measure area-complexity using

the theory of Boolean Difference and Taylor Expansion for Boolean function.

In this thesis, Fourier Theory for Boolean Cube is studied and an effort has been

made to interpret the Fourier coefficients to get a better understanding of

combinational circuits. A novel area-complexity measure using Fourier Theory

applied on Boolean functions is proposed in this work. How the area-complexity of
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circuits can be captured using the energy distribution in the Fourier spectrum of these

Boolean functions has been demonstrated. The proposed area complexity metric was

evaluated on a sizeable collection of randomly generated circuits and area and gate

count estimates were computed. The results were then compared against area, gate

count and run time corresponding to traditional logic synthesis using Berkeley SIS

package with MCNC library. The proposed area complexity metric is accurate within

10% (within 5% for 95% of the predictions). Also, estimating area using Fourier

Transform approach poses significantly smaller computational effort as compared to

traditional logic synthesis and the computing effort versus number of inputs, outputs

rises as a much slower exponential when measured against the traditional approach.

The proposed method achieves a speed up of more than 15 times over logic synthesis

for circuits with 10 inputs of more and 5 outputs of more. Finally, the results obtained

using the area-complexity metric are compared with those given by Synopsys Design

Compiler using NanGate 45nm Library to ensure robustness of the proposed metric

with respect to logic synthesis platforms and technologies.
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NOTATION

B Binary set {0, 1}
Bn Boolean Cube of n dimensions, same as {0, 1}n
Bx The set containing logic ‘True’, ‘False’ and ‘Don’t Care’,

denoted by {0, 1,−} or {0, 1,×}
x̄ Logical complement of Boolean variable x
− Logical don’t care
φ Empty set
Ω Universal Set
3 Such that
S1 × S2 Cartesian product of sets S1 and S2

(S, •) Binary structure of set S and binary operation •
GF (2) Galois Field of order 2
Fx Cofactor of Boolean function F with respect to a Boolean variable x
⊕b Bitwise XOR
∧b Bitwise AND
j Square root of -1
a · b Dot product of vectors a and b
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CHAPTER 1

INTRODUCTION

Very Large Scale Integration (VLSI) refers to the process of creating integrated chips

containing millions of transistors packed together in a chip. Over the years, the circuits

implemented inside these chips have become huge and complicated making manual

optimization of the circuit impossible. Today more and more complex logic is being

transferred on smaller and smaller chips. This is possible only with the intervention

of computer aided tools which can automate the process of chip manufacturing. As a

result, many computer-aided designing (CAD) tools have been developed which can

automate chip manufacturing process.

Electronic Design Automation (EDA) refers to a fixed set of steps followed by

many VLSI-CAD tools for circuit design and chip manufacturing. Fig. 1.1 shows the

different steps in the EDA flow. The process starts with a circuit specification which is

abstracted by the tool into computer understandable representation. The circuit is then

“synthesized” which transforms the circuit specification in terms of basic logic gates.

A blueprint of this network of gates needs to be prepared which is done by the physical

design optimization phase. Once the blueprint is ready, actual manufacturing of chips

take place. Each step in the CAD flow in-turn has a series of algorithms which

optimize one or the other parameters of the circuit. e.g. Physical design aims at

optimizing the layout area, the routing space, etc. Wang et al. (2009) provides a

detailed explanation for each step in the EDA flow.

Logic synthesis is a process which transforms the desired circuit functionality into

a network of logic gates. The different steps in logic synthesis are: (a) abstraction of

the circuit specification into a Boolean network, (b) minimization of the network and

(c) mapping it in terms of given gate-library. Logic synthesis is broadly classified as

technology independent synthesis and technology dependent synthesis. In technology

independent synthesis, initial circuit representation is in terms of basic logic gates

(such as AND, OR and NOT). At this point, the smallest representation of the circuit is

obtained using various optimization algorithms. This phase is also called as logic



Figure 1.1: Electronic Design Automation Flow

minimization or logic optimization. The next step is the technology mapping phase

where the circuit is implemented in terms of specific libraries of cells. Once

technology mapping is done, timing and power optimizations are performed. Finally

the circuit is ready for the layout and manufacturing processes. Of the vast field of

logic synthesis, we study logic minimization in detail.

Logic minimization deals with obtaining the smallest equivalent representation of

a given Boolean function. This research explores the concept of area complexity of

circuits. This problem relates with obtaining a measure of the area requirement of the

circuit without actually mapping it to a gate-library.

1.1 Motivation

A complex circuit requires more physical space on a chip, and incurs higher

manufacturing cost in terms of time and money. This motivates the study of logic

minimization. This motivates the study of logic minimization. Studying

area-complexity of a function is useful as it gives a hint of how “complex” the function
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is. Using the concept of area-complexity, more resources can be spent to optimize a

logically “complex” function than a simple one.

Area-complexity of a logic circuit refers to estimation of the logic area required by

the circuit without actually mapping it to logic gates. The area complexity of a circuit

can be measured in terms of the number of inputs, literals, logic gates, etc. With the

advancement of technology, the logic circuits are increasing in size and becoming more

complicated. To aid the CAD tools in optimizing such large circuits, it is necessary to

associate some parameter with the circuits at the logic optimization level itself. The

only available description of the circuit at this level is the functional description of the

circuit. Area-complexity of a circuit is one such measure which utilizes the functional

description and gives a qualitative comparison between different circuits. Designing

an area-complexity measure which is quick and effective in analysing the functions

at the logic optimization phase forms the motivation behind studying area-complexity

problem.

Moreover, the results obtained using synthesis and mapping are heavily dependent

on the synthesis tool and the mapping library used. The idea is to get an estimate of this

inherent hardness of the function, treating it solely as a mathematical entity, without

bringing into the picture the variations and bias introduced my electronic design flow

tools. With this motivation, an effort has been made to capture the inherent hardness of

a Boolean function that is a fundamental outcome of its truth table and is independent

of Boolean optimisation techniques and technology.

Over the past few decades, there has been a rapidly increasing effort to shrink all

electronic systems and to pack larger functionality on the same area of silicon. The area

footprint of functions on silicon after logic synthesis has therefore become of utmost

importance. The layout area occupied by Boolean circuits is considered as a complexity

measure of Boolean functions. Traditionally, it is known that functions with roughly

equal number of 1s and 0s in their truth table are more complex than those whose truth

tables are dominated by 1s or 0s. For example, n-input AND, n-input OR are much

simpler than n-input parity function. However, this conventional approach fails in many

cases. For example, n-input XOR is much more complex than the function where output

is equal to one of the inputs (the rest being don’t cares) even though both have exactly

equal number of 1s and 0s. Clearly, not only the number, but also the placement of 1s
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and 0s in the truth table is what decides the complexity of Boolean functions. Another

technique which is used is called Literal Count which is the sum of the number of times

each literal appears in an expression. This metric works for small number of inputs,

but as the number of inputs increases, the predicted complexity is much higher than the

actual.

From information theory point of view, a Boolean function is more complex if more

inputs need to be fixed to fix the output. For example, an n-input XOR function needs

all n of its inputs to be fixed to fix the output as opposed to AND or OR gates where

a single input may be sufficient to determine the output. The output of an AND gate

is said to depend weakly on each of its inputs, that is knowledge of state of each input

is not necessarily essential in determining the state of the output. As against this, each

input of an XOR gate necessarily needs to be known to determine its output. The output

of XOR gate is therefore said to depend strongly on each of its inputs. Thus, a function

which depends on all of its inputs is more complex than one which depends only on few

of them. Moreover, stronger the dependence, more complex the circuit. Dependence

of output on each of the inputs comes out naturally using the technique of Fourier

Transform with each input being an independent dimension. Studying Fourier Theory

for Boolean Cube in the context of circuit complexity is, therefore, of great interest.

Studying Fourier spectrum of circuits reveals several interesting properties. We show

that studying the Fourier spectrum of circuits is an effective way of getting an estimate

on the area requirement of circuits without going through the complete electronic design

flow.

Note: An n-dimensional Boolean cube represents the set of all possible binary

strings of length n. 1-D and 2-D Boolean cubes should be called Boolean line and

Boolean square respectively. Similarly a Boolean cube in more than 3 dimensions

should be called a Boolean hypercube. However, throughout this dissertation, we will

use the term Boolean cube even when the number of dimensions is other than 3.

1.2 Related Work

This section presents the related work for the problems considered in this thesis. A brief

description of the different area-complexity metrics designed till date has been provided

4



in this section.

The area-complexity of a circuit can be measured in terms of the number of inputs or

literals or gates, etc. Characterizing logic functions and estimation of area-complexity

dates back to 1949 when Shannon (1949) measured the area-complexity as the amount

of switching activity in the circuit. The switching activity was captured by the number

of relay elements in the circuit. In that paper, Shannon proved that the asymptotic

complexity of a Boolean function is exponential in terms of number of primary inputs.

He also showed that for large number of primary inputs, almost every Boolean function

is exponentially complex.

Muller (1956) established that the number of logic gates (gate-count) can be used

to estimate the area of a circuit. An important result of Muller’s work is that the area-

complexity measure based on the gate-count is independent of the underlying gate-

library. Cook (1973) used the concept of entropy of a truth table (the probability of

finding a “1” in the truth table) to get an estimate of area complexity of the Boolean

function. In Pippenger (1976), the author presents an extensive study of relationship

between circuit complexity and information theory, from a theoretical stand-point.

Cheng and Agarwal (1990) used the number of literals in the Boolean equation

(literal-count) to measure area-complexity. They also established the relation between

area-complexity and entropy of the circuit. Entropy of a circuit is defined as the amount

of information stored in the circuit. Only small circuits (inputs less than ten) were used

to demonstrate the relation. For larger circuits, the area predicted was exponentially

high while the circuit required much less gates. e.g., as Nemani and Najm (1996)

points out, for a 32-input Boolean function, the area predicted by this model is around

400 million gates, whereas the circuit can actually be implemented using 84 gates.

The methods proposed by Wu et al. (1991) and Kurdahi (1993) use sum-of-products

(SoP) representation to estimate the area-complexity. They measure area-complexity in

terms of total number of AND and OR gates. This can lead to over-prediction of the

number of gates as frequent application of logic synthesis algorithms often reduces the

gate-count.

In Nemani et al. (1999), the authors proposed an area and power estimation metric

based on the functional description (Boolean equation) of the circuit. The metric uses
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the size of prime implicants in the ON-set and the OFF-set of the circuit to estimate

the gate-count. The drawback of this approach is that the presence of simple implicants

(containing single literals) in the circuit affects the accuracy of the metric.

With rising popularity of BDDs (binary decision diagrams) in the 1990’s, many

area-complexity metrics based on the structural parameters of the BDDs have been

proposed. Drechsler and Sieling (2001); Raseen et al. (2006); Beg and C. (2010) used

the number of nodes in the BDD representation of a function as an area complexity

measure.

More recently, in Kagliwal and Balachandran (2013) area-complexity measure

using the theory of Boolean difference and Taylor expansion for Boolean functions

was proposed. This concept of using order 2 Galois Field (denoted as, GF (2)) algebra

to mathematically estimate area and gate-count has been taken further in this thesis

using the more natural approach of Fourier Transforms to capture the dependence of

the function output on its inputs.

There have been research papers which study Fourier Theory over GF (2), from

mathematics theory point of view. In de Wolf (2008), the author has presented an

extensive study of Fourier Transform on Boolean Cube and its properties and

implication from a theoretical perspective. However, so far, there has been no effort in

combining this theoretical field of Fourier Theory on Boolean Cube with digital circuit

design and logic optimisation. In this thesis, an effort has been made to combine these

two areas of knowledge to arrive at a practically useful algorithm to estimate area

complexity of circuits without going through the traditional circuit design flow.

Final chapter of this thesis talks about the concept of approximate computing or

best-effort computing and the potential that the proposed area estimation approach has

for its use in systematically designing approximate circuits while maintaining a low

run time. Approximate computing refers to circuits which approximate the

functionality of a target circuit within a specified tolerance limit, thus achieving a

significant reduction in area and power consumption. With space on Silicon becoming

increasingly important, there has been a lot of effort in the recent years to study the

concept of approximate computing and to design approximate circuits in an automated

manner. In Kravets and Kudva (2003), the authors have examined a logic restructuring

approach to achieve improved routing.
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In Venkataramani et al. (2012), a systematic method to design approximate circuits

has been presented. The authors make use of traditional don’t care based optimisation

in logic synthesis tools to design circuits with reduced area and power consumption

while still ensuring that the circuit meets the quality constraints at all stages of

approximation. Combining the methodology presented in this paper with the idea

presented in this thesis is an interesting research problem for future work. If

successful, it would give a very useful algorithm for systematically designing

approximate circuits with a significantly smaller computing effort.

1.3 Application

Area-complexity refers to predicting the logic area requirement of a circuit without

performing technology mapping. Estimation of area-complexity has wide applications

in logic synthesis framework. Many CAD tools implement different area-complexity

metrics to distinguish between simple and complicated circuit. If a function can be

categorized according to its level of complication early in the logic synthesis flow, the

CAD tools can configure themselves effectively to optimize the circuit. The primary

aim of area-complexity is to measure area requirement of the circuit. However, many

researchers have proposed to use area-complexity of a circuit to design power

estimation models for the circuit Nemani et al. (1999).

The idea of estimating area complexity using Fourier coefficients can be combined

with the developing area of approximate computing to systematically design

approximate circuits that have significantly smaller area and power consumption while

simultaneously meeting the quality constraints imposed by the user. Designing of

approximate circuits involves systematic, step-by-step approximation of the original

circuit to achieve area reduction at each stage of approximation. To do this, the area

occupied by the circuit should be known or estimated at each stage of approximation.

Using the proposed approach of estimating the area requirement of circuits in this

context will help in systematically designing approximate circuits with a substantially

smaller computing effort.
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1.4 Contribution of the Thesis

The contributions of the thesis are:

1. A novel area complexity metric based on Fourier coefficients of Boolean Cube is
proposed. Using statistical analysis on a sizeable collection of randomly
generated circuits, it is demonstrated that the proposed metric is effective in
estimating the area-complexity of Boolean circuits.

2. The new area-complexity metric is accurate within 10% (within 5% for 95% of
the data points) of the actual area and number of gates obtained using Berkeley
SIS package with MCNC library as opposed to at least 100%, 15% and 10%
respectively for the metrics based on literal-count, BDD properties and the
complexity metric based on Boolean difference and Taylor series proposed in
Kagliwal and Balachandran (2013). Finally, the results obtained using the metric
are also compared with those obtained using Synopsys Design Compiler with
NanGate 45nm Library.

3. The proposed approach poses a much smaller computational complexity as
compared to traditional logic synthesis approach. The dependence of run time
on number of inputs and outputs is a much slower rising exponential than that
for actual logic synthesis. The new approach achieves a speed up of more than
15 times over logic synthesis for circuits with 10 inputs of more and 5 outputs of
more.

1.5 Organisation of the Thesis

This dissertation is organised into six chapters. The first chapter provides an

introduction to the process of logic synthesis and explains the motivation behind

exploring the proposed area-complexity metric. A later section in this chapter

discusses related work for the problem presented in this thesis. Chapter 2 gives a

background on the mathematical theory required for understanding the proposed

area-complexity metric and also gives information necessary to understand various

terms and definitions in logic synthesis. It also gives an insight into the logic synthesis

tools and libraries used for this project. In Chapter 3, the proposed area-complexity

metric using Fourier coefficients of Boolean Cube is presented. The metric is

evaluated using a statistically significant collection of randomly generated circuits and

the results in terms of area, gate-count and run time are compared with the outputs

obtained from logic synthesis using Berkeley SIS package using MCNC Library. The

metric results are then also compared with those obtained from Synopsys Design
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Compiler using standard NanGate 45nm Library to ensure robustness of the proposed

metric. All of the results are detailed out in Chapter 4. Chapter 5 touches upon the area

of approximate computing and outlines the possibility of using the proposed metric to

systematically design approximate circuits. This chapter also states the specific

problems where designing approximate circuits using area-complexity metric is easily

possible and explains the challenges that need to be overcome before applying this

technique on a broader scale. Finally, Chapter 6 concludes this thesis with scope for

future work with reference to the problem presented in this thesis.
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CHAPTER 2

BACKGROUND

This chapter provides all the necessary definitions, theory and concepts required to

understand remainder of this dissertation. The chapter starts with basic definitions

pertaining to circuits and digital logic. The next section gives the theory of GF (2)

algebra and Fourier Theory on Boolean Cube, starting from first principles and slowly

building on. Finally, the chapter concludes with insight into the different logic

synthesis and optimisation tools used for simulations.

2.1 Terms and Definitions Pertaining to Boolean Logic

Definition 2.1.1 (Boolean Variable) A variable that takes binary values from the set

B = {0, 1} is said to be a Boolean variable.

Definition 2.1.2 (Boolean Vector) A set S = {xi|i ∈ N, i ≤ n} is said to be a Boolean

vector if and only if ∀xi ∈ S, xi is a Boolean variable.

Definition 2.1.3 (Literals) Under a truth assignment, a Boolean variable x may

appear two forms - the original form x and its logical complement x̄. Both x and x̄ are

said to be literals of the original Boolean variable x.

Definition 2.1.4 (Minterm) Let Bn denote n-dimensional Boolean space. Each x∈Bn

is called a minterm. Each minterm corresponds to a truth assignment of a Boolean

vector in n-dimensions. The cardinality of the set of minterms of Bn is 2n.

Definition 2.1.5 (Completely Specified Boolean Function) A mapping f on Bn is

said to be a completely specified Boolean function if and only if

∀x ∈ Bn, ∃ y ∈ Bm 3 y is the image of x through f . The function is denoted by

f : Bn → B. If m > 1, f is said to be a multi-output function.



Figure 2.1: ON, OFF and DC sets for a 3-input Boolean function

Definition 2.1.6 (Incompletely Specified Boolean Function) A mapping f on Bn is

said to be a completely specified Boolean function if and only if ∀x ∈ Bn, ∃y ∈ Bm
x 3 y

is the image of x through f , where Bx denotes the set containing logic values ‘True’,

‘False’ and ‘Don’t Care’ denoted by C = {0, 1,−} or C = {0, 1,×} and Bm
x denotes

the order-m Cartesian product of Bx. The function is denoted by f : Bn → B. If

m > 1, f is said to be a multi-output function.

Definition 2.1.7 (ON, OFF and DC Sets) Let f be a Boolean function. ON-set, OFF-

set and DC-set of a function refer to the set of minterms for which the function value

is 0, 1 and − respectively and are denoted respectively by fON , fOFF and fDC . Note

that fON ∩ fOFF ∩ fDC = φ and fON ∪ fOFF ∪ fDC = Ω, where φ and Ω denote null

and universal sets respectively. Fig. 2.1 gives the ON, OFF and DC sets for a 3-input

Boolean function.

A more detailed explanation of the terms and definitions is given by Wang et al.

(2009) and Kagliwal (2013).

2.2 Mathematical Background

The following section explains key ideas of GF (2) algebra that will be required to

understand the construction of the area-complexity metric. The section begins with the

definition of Fields from a mathematical stand-point and explains several important

mathematical concepts that are useful from logic optimisation point of view, including
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co-factor, Shannon’s expansion, Boolean difference, Taylor series and Fourier

Transform for Boolean Cube.

2.2.1 The Concept of a Field

This subsection gives the necessary definitions required to understand and appreciate

the abstract mathematical concept of field. The Galois Field of order 2, in particular,

is of great importance for mathematics pertaining to digital logic. The proposed area-

complexity metric is derived as a result of defining Fourier Transform in GF (2) and

then computed over Boolean Cube. This subsection is for those readers who enjoy

mathematical rigour. Other readers, more interested in the final application of the area-

complexity metric, can skip this subsection.

Definition 2.2.1 (Binary Operation) Let S be a set 3 S 6= φ. A function f : S × S →

S is said to be a binary operation on S

Definition 2.2.2 (Binary Structure) A set S 6= φ, together with a binary operation •

on S is called a binary structure (or just structure) and is denoted by (S, •).

Definition 2.2.3 (Associativity) A binary operation • on set S 6= φ is said to be

associative if and only if ∀a, b, c ∈ S, a • (b • c) = (a • b) • c.

Definition 2.2.4 (Commutativity) Let (S, •) be a structure. The operation • is said to

be commutative if and only if ∀a, b ∈ S, a • b = b • a.

Definition 2.2.5 (Semigroup) A binary structure (S, •) is said to be a semigroup if and

only if • is associative.

Definition 2.2.6 (Identity) Let (S, •) be a structure. An element e ∈ S is said to be an

identity if and only if ∀a ∈ S, a • e = e • a = a.

Definition 2.2.7 (Monoid) A semigroup with an identity is called a monoid.

Definition 2.2.8 (Inverse) Let (S, •) be a monoid. Let a ∈ S. An element ā ∈ S is said

to be an inverse of a if and only if a • ā = ā • a = e.

12



Definition 2.2.9 (Group) A monoid (S, •) is said to be a group if and only if ∀a ∈

S, ∃ ā ∈ S 3 ā is the inverse of a.

Definition 2.2.10 (Abelian Semigroup) A semigroup (or monoid or group) (S, •) is

said to be Abelian if and only if the operation • is commutative.

Definition 2.2.11 (Rings) A setR together with two binary operations, usually denoted

by • and +, is called a ring if and only if

1. (R,+) is an Abelian group

2. (R, •) is a semigroup and

3. Distributive laws hold. That is, a•(b+c) = a•b+a•c and (a+b)•c = a•c+b•c.

The ring is denoted by (R,+, •).

Definition 2.2.12 (Commutative Ring) A ring (R,+, •) is said to be commutative if

and only if the operation • is commutative.

Definition 2.2.13 (Ring with Unity) A ring (R,+, •) is said to have unity if and only

if (R, •) is a monoid.

Note: Let (R,+, •) be a ring. Usually, + is called addition and • is referred to as

multiplication. (R,+) and (R, •) are said to be additive group and multiplicative

semigroup of (R,+, •). Also, The identity of (R,+) is called additive identity or zero

and is denoted by 0. Similarly, if (R, •) is a monoid, then its identity is called

multiplicative identity or unity and is denoted by 1.

Definition 2.2.14 (Division Ring) Let (R,+, •) be a unity ring. Let R∗ = R \ 0. If

(R∗, •) is a group, then (R,+, •) is called a division ring.

Definition 2.2.15 (Field) A commutative division ring is called a field.

Note: To summarise, a setR together with operations of multiplication and addition

is called a field if and only if

1. Addition and multiplication are closed, associative and commutative

2. There exist additive identity 0 and multiplication identity 1

3. Every element in R has an additive inverse and every non-zero element in R has
a multiplicative inverse.

13



2.2.2 Galois Field and Digital Logic

Definition 2.2.16 (Galois Field) A field (F,+, •) is called Galois Field (also Finite

Field) if and only if |F | ∈ R and |F | is said to be the order of the Galois Field, where

|F | denotes the cardinality of the set F .

Note: The smallest Galois Field is the one with order 2, also denoted by GF (2).

This is also the most popular Galois Field for its application to digital logic. Henceforth,

the generic term Galois Field has been used to refer to the specific field GF (2) that is

of interest from circuits point-of-view.

Definition 2.2.17 (GF(2)) Galois Field of Order 2 (B,+, •) is defined as follows.

+ 0 1
0 0 1
1 1 0

• 0 1
0 0 0
1 0 1

Table 2.1: Definition of order 2 Galois Field

Properties

1. Addition is equivalent to logical XOR and multiplication is equivalent to logical
AND.

2. Addition and multiplication are closed, commutative and associative. 0 and 1 are
additive and multiplicative identities, respectively.

3. ∀a ∈ B, the element itself is its own additive inverse and also its own
multiplicative inverse (provided a 6= 0).

Subtraction a − b is defined as addition of a with the additive inverse of b. The

third property above implies that subtraction is the same operation as addition. That

is a − b ≡ a + b ≡ a ⊕ b. Similarly, division a/b can be shown to be equivalent of

multiplication a • b (also denoted simply as ab) provided b 6= 0.

Once the definition and properties ofGF (2) are understood, it is easy to port popular

mathematical tools such as discrete difference, Taylor series and Fourier transform from

the R field to GF (2).
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2.2.3 Shannon’s Expansion

Definition 2.2.18 (Cofactor) Let f(x1, x2, ..., xk) be a Boolean function. The cofactor

of f with respect to a literal a ∈ {xi, x̄i | i = 1 to k} is the Boolean function obtained

when after all instances of a in f are substitutes by logic 1 and all instances of ā in f

are substituted by logic 0. Cofactor of f with respect to a is denoted as fa. That is,

fxi
= f(x1, x2, ..., xi−1, 1, xi+1, ..., xk) and fx̄i

= f(x1, x2, ..., xi−1, 0, xi+1, ..., xk)

Let f(x1, x2, ..., xk) be a Boolean function. Then f can be written as

f = xi • fxi
+ x̄i • fx̄i

3 1 ≤ i ≤ k

This is known as Shannon’s expansion.

2.2.4 Boolean Difference

Boolean difference is the GF (2) equivalent of differentiation of a real-valued function

defined over a continuous domain or difference of a real-valued function defined over a

discrete domain. It is defined simply as real difference computed in GF (2).

Definition 2.2.19 (Boolean Difference) Let f(x1, x2, ..., xk) be a Boolean function.

The Boolean Difference of f with respect to xi, 1 ≤ i ≤ k is defined as

∂f

∂xi
=
f(xi = 1)− f(xi = 0)

1− 0
as computed in GF (2), that is

∂f

∂xi
= fxi

⊕ fx̄i

since both addition and subtraction in GF (2) are equivalent to the logical XOR

operation.

Properties

1. Applying the definition of Boolean difference recursively, we get compute the
nth-order partial derivative of f with respect to a variable x as

∂nf

∂xn
= f (n−1)

x ⊕ f (n−1)
x̄
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where f (n) denotes the nth-order partial derivative of f with respect to x. Observe
that ∂f

∂x
= fx⊕ fxi

is not a function of x, since both fx and fxi
are independent of

x. Therefore, ∂2f
∂x2 = 0. By Principle of Mathematical Induction, it can be shown

that ∂nf
∂xn = 0∀n ∈ N, n ≥ 2.

2. Also notice that ∂f
∂x1∂x2

= ∂f
∂x1∂x2

= fxixj
⊕ fx̄ixj

⊕ fxix̄j
⊕ fx̄ix̄j

. In general, the
partial derivative of f with respect to m number of variables is simply the logical
XOR of the 2m cofactors obtained by using these literals.

2.2.5 Taylor Series Expansion

Let f(x) be a real-valued function. Taylor series expansion of the function gives

f(x) = f(c) +
∞∑
k=1

1

k!

∂kf

∂xk

∣∣∣∣
x=c

(x− c)k

valid within its radius of convergence. Since the higher order derivatives of a Boolean

function evaluate to zero, Taylor series expansion of Boolean functions is simply

f(x) = f(c)⊕ (fx ⊕ fx̄)(x⊕ c)

since addition and subtraction operations both correspond to logical XOR in GF (2).

For a multi-variable function, the Taylor series expansion can be obtained by

successively expanding with respect to each of the variables. The final expansion

obtained is symmetric with respect to the input variables and independent of the order

in which expansion is performed. For example, for a two input function, Taylor series

expansion can be obtained as follows. The function is first expanded using Taylor

series with respect x1 and thereafter with respect to x2.

f(x1, x2) = f(c1, x2)⊕ (fx1(c2)⊕ fx̄1(c2))(x1 ⊕ c1)

= f(c1, c2)⊕ (fx1(c2)⊕ fx̄1(c2))(x1 ⊕ c1)

⊕ [fx2(c1)⊕ (fx1x2 ⊕ fx1x̄2)(x1 ⊕ c1)](x2 ⊕ c2)

⊕ [fx̄2(c1)⊕ (fx1x̄2 ⊕ fx̄1x̄2)(x1 ⊕ c1)](x2 ⊕ c2)

= f(c1, c2)⊕ {(x1 ⊕ c1)(fx1(c2)⊕ fx̄1(c2))} ⊕ {(x2 ⊕ c2)(fx2(c1)⊕ fx̄2(c1))}

⊕ {(x1 ⊕ c1)(x2 ⊕ c2)(fx1x2 ⊕ fx̄1x2 ⊕ fx1x̄2 ⊕ fx̄1x̄2)}

16



In general the Taylor series expansion for n-input function can be expressed as

follows. Let x, c, i ∈ Bn. Let x̂ = (x�b c) ∧b i, where ⊕b represents bitwise XOR

and ∧b represents bitwise AND. Also define

F i(c) =
∂F (c)

∂xi11 ∂x
i2
2 ...∂x

in
n

where

∂x
ij
j =

 1 if ij = 0

x
ij
j if ij = 1

Using the above notation, the Taylor series expansion for a Boolean function about

an arbitrary point c ∈ Bn is given as

F (x) =
⊕
i ∈ Bn

{F i(c) · xi11 · xi22 · ... · xinn }

2.2.6 Fourier Transform

Fourier transform on Boolean Cube can be defined as a special case of Discrete Time

Fourier Series (DTFS). Let x be a discrete time signal with periodicity K. DTFS is

defined as follows.

X[s] =
1√
K

K−1∑
k=0

x[k] exp(−2πjks/K)

where j represents square root of −1.

Now consider a single input Boolean function as a signal with input along the

independent axis and the output of the function on the dependent axis. Now compute

DTFS for this signal. Note that in this case K = 2.

X[s] =
1√
2

1∑
k=0

x[k] exp(−πjks) =
1√
2

1∑
k=0

(−1)ks

This is Fourier transform on a 1-D Boolean cube.

Now consider a Boolean function with N inputs and 1 output. Represent the output

as an N -dimensional signal with each of the N inputs along an axis so that the Boolean

function is now represented as a Boolean cube of N dimensions. Computing Fourier
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transform on this N -dimensional Boolean cube is analogous of N -dimensional DTFS

with K = 2. Therefore, Fourier transform on N -dimensional Boolean cube can be

represented as

X[s] = 2−N/2
∑
k ∈ Bn

x[k](−1)k·s

where k, s ∈ Bn and k · s represents dot product of the two vectors. This is the general

expression for Fourier transform on Boolean cube.

It is easy to observe that the above equation can be represented in matrix form as

X2n×1 = H2n×2n · x2n×1

where H represents Hadamard matrix of the appropriate size with scaling factor

absorbed, X and x are vectors giving the Fourier coefficients and truth table

respectively, both in lexicographic ordering. Having the Fourier transform in the form

of a simple matrix multiplication is very useful from computation viewpoint.

Note: The way it is defined, Fourier transform and inverse Fourier transform are exactly

identical to each other.

2.2.7 XOR Property of Fourier Transform

Consider a 8× 8 Hadamard matrix.

1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1



= −2×



0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1



+ 1
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Thus,

H8×8 = −2×



0

c

b

b⊕ c

a

a⊕ c

a⊕ b

a⊕ b⊕ c



+ 1

Each row of the above array represents truth table of an XOR function. Let the array

of XOR truth tables be denoted by h8×8. Thus,

H8×8 = −2× h8×8 + 1

Fourier transform for an n-input function can therefore be expressed as

X2n×1 = 2−n/2 ×H2n×2n × x2n×1 = 2−n/2 {−2h2n×2n × x2n×1 + 12n×2n × x2n×1}

Note that 1 is a square matrix with all ones and size same as that of h. The above

expression can be simplified as

X2n×1 = 2−n/2 ×


−2×



h0
1×2n × x2n×1

h1
1×2n × x2n×1

.

.

.

h2n−1
1×2n × x2n×1


+ 2n × E[x]


where hi

1×2n are rows of h2n×2n . To make the notation less cumbersome, the subscripts

under matrices indicating their sizes are dropped. On simplifying further
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X = 2n/2 ×


−2×



E[h0 × x]− E[h0]E[x] + E[h0]E[x]

E[h1 × x]− E[h1]E[x] + E[h1]E[x]

.

.

.

E[h2n−1 × x]− E[h2n−1]E[x] + E[h2n−1]E[x]


+ E[x]


Note that

E[hi] =

 0 if i = 0

1/2 else

Also h0 = 0. The above expression, therefore, becomes

X = 2n/2 ×



−2×



0

Cov(h1,x) + E[x]/2

Cov(h2,x) + E[x]/2

.

.

.

Cov(h2n−1,x) + E[x]/2


+ E[x]


This implies that

X = 2n/2 ×



E[x]

−2× Cov(h1,x)

−2× Cov(h2,x)

.

.

.

−2× Cov(h2n−1,x)


The above relation is a very insightful one. The non-DC coefficients of Fourier

transform essentially measure the covariance of the input truth table with an

appropriate XOR function. Fourier coefficient corresponding to frequency level (term

explained later) i is essentially the covariance of the function’s truth table with an
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appropriate XOR of i of the n variables. This implies that functions with high energy

in high frequency Fourier coefficients are more "similar" to n-input XOR function and

those with high energy in low frequency Fourier coefficients are more "similar" to an

identically 0 function. Thus, it is only intuitive to expect that functions with higher

energy in high frequency Fourier coefficients are more complex and will require more

area than those functions in which the Fourier energy is concentrated in the lower

frequency regions.

Now consider inverse Fourier transform.

x = H×X =
2n−1∑
i=0

XiHi

where Hi represents the ith column vector of H. Also,

Hi = 1− 2hi

where hi represents the ith column of h. Implies

x = 2−n/2 ×

{
2n−1∑
i=0

Xi − 2
2n−1∑
i=0

Xih
i

}

Also 2−n/2 × (X0 +X1 + ...+X2n) = x0. Therefore,

x− x0 = 2−n/2 ×

{
−2

2n−1∑
i=0

Xih
i

}

Each hi represents an XOR function of 0 to n of the n variables. Thus, Fourier

transform on Boolean cube is nothing but representing the given truth table as a linear

combination of all possible 2n XOR functions. Thus, higher the magnitude of a

coefficient, higher is the contribution of that specific XOR. It is only natural, therefore,

that functions with Fourier energy concentrated in the higher frequency levels tend to

be more similar to more complex XOR functions and hence occupy more area upon

synthesis and mapping.

As an example, consider the function F (a, b, c) = a + (b ⊕ c). Truth table of

the function is a column vector [0, 1, 1, 0, 1, 1, 1, 1]T . The Fourier coefficients can be
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computed as the product of this vector with 8× 8 Hadamard matrix.

2−3/2 ×



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1





0

1

1

0

1

1

1

1



= 2−3/2 ×



6

0

0

−2

−2

0

0

−2



The column vector on the right represents the Fourier transform of the function.

E[x] = E[0, 1, 1, 0, 1, 1, 1, 1] = 6/8

Cov(x, b⊕ c) = 1/8× [0, 1, 1, 0, 1, 1, 1, 1][0, 1, 1, 0, 0, 1, 1, 0]T

− E[0, 1, 1, 0, 1, 1, 1, 1]E[0, 1, 1, 0, 0, 1, 1, 0]

= 4/8− 6/8× 4/8 = 1/8

Similarly, it can be shown that Cov(x, a) = 1/8 and Cov(x, a ⊕ b ⊕ c) = 1/8 and all

other covariances are zero.

−23/2 ×



E[x]

−2Cov(x, b)

−2Cov(x, c)

−2Cov(x, b⊕ c)

−2Cov(x, a)

−2Cov(x, a⊕ c)

−2Cov(x, a⊕ b)

−2Cov(x, a⊕ b⊕ c)



=
23/2

8
×



6

0

0

−2

−2

0

0

−2



= 2−3/2 ×



6

0

0

−2

−2

0

0

−2



= X

which is the same answer computed earlier. Thus, apart from DC component, a +

(b⊕ c) has contribution from (b⊕ c), a and (a⊕ b⊕ c). We can write the given function
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as a linear combination of these XORs.

0

1

1

0

1

1

1

1



=
1

2



0

1

1

0

0

1

1

0



+
1

2



0

0

0

0

1

1

1

1



+
1

2



0

1

1

0

1

0

0

1



Thus,

{a ∨ (b⊕ c)} =
1

2
{b⊕ c}+

1

2
{a}+

1

2
{a⊕ b⊕ c}

Similarly

{a∨ bc} =
3

4
{a}+

1

4
{b}+

1

4
{c}+

1

4
{a⊕ b}+

1

4
{a⊕ c} − 1

4
{b⊕ c} − 1

4
{a⊕ b⊕ c}

It can be observed that {a ∨ bc} has contribution mostly from single input XORs,

that is, a, b and c than from more complex XORs. Thus, it is expected that {a∨ (b⊕ c)}

should be more complex than {a∨bc}. The prediction is, in fact, true. After synthesising

in SIS, the former requires 3 gates and 8 units of normalised area whereas the latter takes

up 2 gates and 4 units of area.

Thus, circuits with more Fourier area in the higher frequency levels tend to be more

complex than those with energy concentrated in near-DC coefficients.

2.3 Logic Synthesis Packages and Libraries

The following section gives a very brief description of the logic synthesis and

optimization tools and libraries used while working on this project. SIS is the primary

synthesis package used for the project along with MCNC circuit library. The results

were then also verified with Synopsys DC using Nangate 45nm Library to verify the

robustness of the method proposed in this dissertation.
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2.3.1 SIS

SIS (full form: Sequential Interactive System) is a logic synthesis package developed

in University of California at Berkeley. SIS is an algorithmic sequential circuit

optimization program. SIS starts from a description of a sequential logic macro-cell

and produces an optimized set of logic equations plus latches which preserves the

input-output behaviour of the macro-cell. The sequential circuit can be stored as a

finite state machine or as an implementation consisting of logic gates and memory

elements. The program includes algorithms for minimizing the area required to

implement the logic equations, algorithms for minimizing delay, and a technology

mapping step to map a network into a user-specified cell library. The task of

optimising combinational circuits is a subset of the task of achieving that for

sequential circuits. SIS can, therefore, also be used to optimise combinational circuits,

which is how SIS is used for the purpose of this project. SIS was particularly

well-suited for this project due to its compatibility with BLIF (explained later). More

details about SIS can be found at

http://www.cs.columbia.edu/~cs6861/sis/sis.1.html

2.3.2 Synopsys Design Compiler

Synopsys Design Compiler, popularly known as Synopsys DC, is an RTL synthesis

tool developed by Synopsys, Inc., which optimises designs to provide the smallest and

fastest logical representation of a given function. It comprises tools that synthesise

HDL designs into optimised technology-dependent, gate-level designs. It supports a

wide range of flat and hierarchical design styles and can optimize both combinational

and sequential designs for speed, area and power. More information on Synopsys DC

can be found at http://acms.ucsd.edu/_files/dcug.pdf

2.3.3 MCNC Genlib

MCNC Genlib is a standard cell library of basic logic gates developed at

Microelectronics Center of North Carolina (MCNC). It consists of a total of 22 gates.

MCNC homepage can be accessed at https://www.mcnc.org/ and MCNC
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Genlib can be found at http:

//www.cs.ucla.edu/classes/layout/misII/lib/mcnc.genlib

2.3.4 NanGate 45nm Library

The NanGate 45nm Open Cell Library (also known as NanGate 45nm Library) is an

open-source, standard-cell library provided for the purposes of testing and exploring

EDA flows. NanGate developed and donated this library to Si2.org for open use. The

library is intended to aid university research programs and organizations such as Si2 in

developing flows, developing circuits and exercising new algorithms. More information

can be found at http://www.nangate.com/

2.3.5 BLIF Circuit Specification Format

BLIF stands for Berkeley Logic Interchange Format. The goal of BLIF is to describe a

logic-level hierarchical circuit in textual form. A circuit is an arbitrary combinational

or sequential network of logic functions. A circuit can be viewed as a directed graph of

combinational logic nodes and sequential logic elements. Each node has a two-level,

single-output logic function associated with it. Each feedback loop must contain at

least one latch. Each net (or signal) has only a single driver, and either the signal or the

gate which drives the signal can be named without ambiguity. BLIF was particularly

well-suited for this project since it is easy to switch back and forth between BLIF and

truth table format, which is convenient for computing Fourier transform. A detailed

description of BLIF can be found at http:

//www.cs.uic.edu/~jlillis/courses/cs594/spring05/blif.pdf
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CHAPTER 3

AREA COMPLEXITY USING FOURIER

TRANSFORM

Estimation of logic area required by a combinational design is useful across several

stages of high level and logic synthesis. The final silicon footprint of a chip comprises

logic, routing and other global resources. Estimation of the logic area required at earlier

stages in the design process has been done widely in practice. Area-complexity of

a circuit refers to the area required by the logic portion of the combinational design

without performing technology mapping.

3.1 Basic Idea

Several attempts have been made in the past to capture the area requirements of circuits

without performing technology mapping. One of the simplest heuristics that have been

used in the past is the fraction (F ) of minterms covered by a function. In general, if F

is close to 0.5, the function is expected to be more complex than those which are near

tautology or antithesis. For example, an XOR gate, which has an equal number of 1’s

and 0’s is much more complex than an AND gate which is a bit away from antithesis.

However, it’s not hard to observe that the minterm fraction heuristic fails miserably

in several very obvious cases. For example, an XOR gate, a simple inverter and a

buffer, all have equal number of 1’s and 0’s, but they are as drastically different in

terms of complexity as they possibly could be. This example demonstrates that it’s

not the number of 1’s and 0’s, but rather their placement in the truth table is what is

deterministic of the area requirement of a Boolean function.

Moreover, a function that depends on more number of its inputs takes up more area

upon synthesis than a function that depends on all of its inputs. For example, in a

NOR gate, knowing that any one input is 1 is sufficient to determine the output without

knowing the logical state of the remaining inputs. As against this, to determine the



output or an XOR gate, it is required to know all of its inputs. Thus, the dependence of

output of a NOR gate on its inputs is "weaker" than that for XOR or XNOR gate. Thus,

the nature of dependence of the output on each of its inputs is important in capturing

the area requirement of circuits mathematically.

Both, the location of 1’s and 0’s in a truth table as well as the strength of

dependence of the function output on each of its inputs is captured very effectively by

Fourier transform computed on the truth table Boolean cube of the function.

Function Minterms Fourier Energy in Different Freq. Levels Area Gate
F (a, b, c) Covered Freq. Level 3 Freq. Level 2 Freq. Level 1 Count

a 4 0 0 2 0 0
a+ b 6 0 0.5 1 3 1
abc 1 0.125 0.375 0.375 4 2

a(b+ c) 3 0.125 0.375 1.375 4 2
a(b⊕ c) 2 0.5 0.5 0.5 8 3
a⊕ b⊕ c 4 2 0 0 10 2

Table 3.1: Effectiveness of minterm cover heuristic and Fourier energy distribution in
estimating area complexity ordering of combinational circuits

In the table above, six different 3-input functions are listed. For each function

Fourier transform is computed. The Fourier energy is then classified into 3 frequency

levels. This part is explained later in this section. Level 3 corresponds to highest

frequency level and is analogous to high frequency terms in the conventional Fourier

transform. It is demonstrated through this table that Fourier energy distribution is very

effective is comparing area requirement between circuits. To estimate area requirement

comparison between two circuits, compare the Fourier energy in different levels in a

switch-case manner giving higher priority to higher frequency levels. It can be seen

that the proposed metric is much more effective as compared to using the fraction of

minterms covered.

3.1.1 Frequency Levels

Given a Boolean function with N inputs, Fourier transform is computed on the

corresponding N -dimensional Boolean cube. The output of the Fourier transform is

another Boolean cube, again with N dimensions. Each vertex of this cube represents a

Fourier coefficient. Classify the Fourier coefficients using Hamming distance of the
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Figure 3.1: Frequency Levels for a 3-dimensional Boolean Cube

vertices from the origin, 0, of the Fourier cube. The Hamming distance can range

between 0 and N . The coefficients are thus grouped into N + 1 classes. 0 corresponds

to DC component and 1 corresponds to highest frequency. In general, higher

Hamming distance is analogous to higher frequency. Each of the classes are termed, in

this dissertation, as Frequency Levels, labelled as per Hamming distance from origin.

Level 0, thus, represents DC and higher level number is analogous to higher frequency.

Functions with high energy distribution in the higher frequency levels tend to be more

"similar" to complex XOR function and hence are intuitively expected to take up more

area. Similarly, those with large energy in lower frequency levels tend to be "similar"

to XORs of fewer number of variables and hence are less complex.

The above image shows the frequency levels on a Fourier cube obtained as a result

of Fourier transform on a function with 3 inputs. Frequency levels 0, 1, 2 and 3 are

indicated based on Hamming distance of a vertex from the origin, in the Fourier cube.

Level 3 is analogous to high frequency term and level 0 represents DC component. Next

to each vertex, an XOR equation is listed in black. The Fourier transform coefficient at a

vertex represents how similar the input truth table is to that corresponding XOR. Higher

the magnitude of a Fourier coefficient, higher is the contribution of the corresponding

XOR in obtaining the truth table of the given function. As a result, Fourier transform

of an XOR function will give non-zero Fourier coefficients only for DC component and

the vertex corresponding to that XOR in the Fourier cube.
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Area-complexity analysis is required in mainly two classes of problems: (i) Finding

the most area-efficient circuit from a set of circuits and (ii) Given a circuit, getting an

estimate of its area requirement and gate count. These two types of problems will be

discussed in detail in this chapter. The supporting experiments and results are presented

in the next chapter.

3.2 Problem Type 1: Identifying Optimum Circuit

Given a set of circuits, it is required to find that circuit or set of circuits, which occupy

the least possible area, while retaining the required functionality. This problem is

commonly encountered due to inherent flexibility in the task at hand which leads to

flexible functionality specification. A common example is existence of don’t care

terms. Another application is in the field of approximate computing. Due to inherent

forgiving nature of the problem, self-healing algorithms, noisy inputs or error tolerant

codes, it is possible to design circuits which give outputs within a permissible

tolerance and using this flexibility to optimise for area and power. This include

applications where the final output is evaluated collectively by a human sensory organ.

Common examples are speech, audio, video, image processing, decision-making

algorithms which compare the output to a set of thresholds and thus the exact value of

the output is not relevant etc. In both, don’t care considerations and designing

approximate circuits, the problem essentially boiled down to a set of circuits which

satisfy the given don’t care constraint or given error tolerance limit and finding that

subset which is optimum in terms of area and / or power.

The following algorithm can be used to design approximate circuits using the

proposed area-complexity metric. In the algorithm, even though the set S of all circuits

that satisfy the specified constraints can be potentially very large, in each iteration only

the required coefficients are computed and that too only for the required subset of

circuits. Therefore, despite the large size of initial set S, the algorithm can be run in

reasonable amount of time. The same algorithm is also depicted as a flow chart in

Fig. 3.2

29



Algorithm 3.1 Design Approximate Circuits

Inputs: Tolerance constraints, don’t cares

Outputs: Set of circuits which satisfy the given constraints and have least possible area

Steps:

1. Initialise:
(a) S = {Circuit x | x satisfies the tolerance / don’t care specifications}
(b) L = Highest frequency level

(c) Function F (x, L) = Fourier energy in level L for circuit x

(d) C = {F (x, L) | x ∈ S}

2. while (min(C) == max(C)) & (L! = 0):
. S = {x | F (x, L) = min(C)}
. L = L− 1
. C = {F (x, L) | x ∈ S}

3. return S

In essence, to compare between two circuits, one needs to compare the highest

level Fourier coefficients. That circuits with smaller energy in the highest frequency

level is simpler. If both the circuits have equal energy in the highest frequency level,

then the Fourier energy in the next highest frequency level needs to be compared. The

energy content in DC level is not compared as it is not a determining factor for area

requirement. DC-energy simply captures the fraction of 1’s in the truth table of the

function. Area requirement of circuits is symmetric with respect to number of 0’s and

1’s in that a circuit and its logical compliment have almost equal complexity. For

example, tautology has maximum DC-energy and antithesis and zero. But both,

identically 0 and identically 1 circuits have equal area-complexity. For this reason,

energy in DC (level 0) is dropped from comparison. If the two circuits have equal

Fourier energy in all non-DC frequency levels, then the two circuits are said to be

equally complex.

The advantage is that the comparison is done stage by stage and at each stage only

the required coefficients are computed and then sub-optimal circuits are filtered out.

Thus, at each stage only a small computation happens and at each successive stage the

size of the set of circuits to be tested keeps on shrinking.
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Figure 3.2: Flow chart depicting the algorithm to design approximate circuits
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3.3 Problem Type 2: Estimating the Area and Gate

Count

In several circuit design applications, it is required to obtain an estimate, at least a

rough one, of how much area the circuit will occupy when it is actually implemented

on a Silicon chip. One method is to perform synthesis and mapping on the design

specification and get an estimate of the area requirement from the mapping report.

This method, however, is computationally taxing and time consuming. Using the

proposed area-complexity metric, it is possible to get a reasonable estimate of the

post-mapping area using only mathematical and statistical analysis. Obtaining area

estimate using Fourier energy distribution poses a significantly smaller computing

effort when compared to the traditional approach.

Area estimate can be obtained by using linear combination of Fourier energy

content in the non-DC frequency levels. The weights for frequency levels can be

determined using regression analysis. Regression analysis captures the characteristics

of the technology in which the circuit is to be finally implemented.

M =
n∑

i=1

wiei

where ei is the net Fourier energy, of the circuit under consideration, in the ith

frequency level. For n-input circuit, there are n frequency levels apart from DC (level

0). The energy content in DC level is not important to determine the area requirement

of circuits. DC energy simply gives a measure of the fraction of 1’s in the truth table of

the function. However, a function and its logical negation, have almost equal area

requirement and thus it is clear that DC-energy of a function does not play role in

deciding area-complexity. Notice that index zero is dropped from the summation. wi is

the weight for frequency level i in the linear combination. The wi’s are determined

using regression on a large number of circuits with known area in the required

technology.

Even though regression can be time consuming, it is a one time effort. For a given

technology, regression coefficients can be stored in a lookup table to be used for area

estimation later. Results are discussed in the next chapter.
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3.4 Multi-Output Circuits

All of the analysis discussed so far can be performed on a truth table and hence, by

default, is applicable only to single-output circuits. Extending this metric to multiple

outputs can’t be done by simply adding together the area prediction for each of the

individual outputs due to the phenomenon of resource-sharing. Certain logic blocks

can be shared between two or more of the outputs and thus, simply adding together the

area requirement for each individual output will lead to gross over-prediction of the net

area requirement of the circuit as a whole. Therefore, it is necessary to capture possible

sharing of resources between outputs of the circuit and then predict the area that the

circuit will occupy after correcting for this sharing.

Since throughout this project, effort has been made to capture hardness of the

circuits mathematically rather than using synthesis tools, a couple of methods have

been tried out to estimate possible resource-sharing. The methods are (i) computing

XORs of outputs and (ii) computing correlation between outputs.

For a circuit with 2 outputs

A = A1 + A2 − ρmin(A1, A2)

where A represents the net area of the whole circuit. A1 and A2 are individual area

requirements of outputs 1 and 2, respectively. ρ represents Sharing Coefficient, 0 ≤

ρ ≤ 1. Thus, minimum sharing is 0 when ρ = 0 and maximum sharing is min(A1, A2)

when ρ = 1. Taking minimum of the individual output areas makes sense because this

is the maximum sharing that can occur (when one of the outputs is used to later derive

the other output).

Two different approaches were tried to compute ρ. First is

ρ = Area(Y1 ⊕ Y2)/min(A1, A2), where Yi represent output truth tables. The logic

behind defining sharing like this is that XOR between two outputs captures how

"similar" the two output truth tables are. More similar the truth tables, higher the

possibility for sharing. The other way of capturing similarity between output truth

tables is using correlation. ρ = |Cov(Y1, Y2)| /σY1σY2 , where Cov() represents

covariance and σYi
represents standard deviation of the output truth table. In short, ρ is

nothing but the modulus of the coefficient of correlation between the output truth
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tables.

For more than two outputs, the sharing can be defined in a fashion analogous to

Inclusion Exclusion Principle.

A =
∑

i∈Bm,i6=0

(−1)

m∑
j=1

ij
ρi min

j3ij=1
(Aj)

where m is the number of outputs, i = (i1, i2, ..., im) 3 ij ∈ B and ρi is defined over all

outputs Yj for which ij = 1 as

ρ = Area

 ⊕
j3ij=1

Yj

 / min
j3ij=1

(Aj)

or

ρ = Cov({Yj | ij = 1})/
∏

j3ij=1

σYj

Note: It was found that sharing coefficients defined using correlation are more effective

than those defined using XORs of output truth tables. Hence, throughout this project,

sharing coefficients are defined as correlation coefficients between output truth tables.
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CHAPTER 4

RESULTS: METRIC ACCURACY AND TIMING

PERFORMANCE

4.1 Methodology

To evaluate the effectiveness of the proposed metric, it was tested with a large collection

of randomly generated circuits with varying inputs and outputs. The following steps

were used to test the metric.

First off, number of inputs and number of outputs were fixed. With these

specifications, a large collection of truth tables was generated randomly. The randomly

generated circuits were then divided into training and test data. Fourier coefficients

were computed on all circuits and the obtained coefficients were then classified into

different frequency levels and the Fourier energy distribution across frequency levels

was computed for each output of each circuit. Secondly, correlation coefficients were

computed analogous to Inclusion-Exclusion principle and these were used to

determine sharing between the outputs of the same circuit.

In parallel, all the generated truth tables were converted into BLIF format and then

run through SIS and area and gate-count were obtained. These values of area and

gate-count, along with Fourier energy distribution and sharing coefficients were used

to train regression coefficients. These coefficients were then used as weights to linearly

combine Fourier energy content in different frequency levels for test data. The area

and gate-count, thus predicted for test data, are then compared against the values

obtained using SIS and error analysis was performed and results were documented.

4.2 Accuracy of Predicted Area

To determine accuracy of the proposed metric, the area and gate count predicted by the

metric was compared with the values obtained using Berkeley SIS synthesis package



with MCNC Library. The metric was also tested against results obtained using

Synopsys DC with 45nm NanGate Library.

Figure 4.1: Ordering of 128 3-input circuits based on predicted hardness using all
Fourier coefficients (left) and using only highest two frequency levels
(right). X-axis represents an abstract complexity measure computed from
Fourier coefficients without using regression and Y-axis contains the actual
area post synthesis and mapping.

In Fig. 4.1, area-complexity count (X-axis) has been obtained Fourier coefficients

without using regression. Regression is not required here since we are only interested

in ordering the circuits based on hardness and not in the actual values of area or

gate-count. It can be seen from the graphs that the proposed method is reasonably

successful in ordering circuits correctly based on area which they would occupy after

implementation. Also, notice that there is almost no degradation in correctness of the

sorting even when only the highest 2 frequency levels are used. Computing Fourier

coefficients only in the top 2 frequency levels is less taxing than computing full

Fourier transform.

Fig. 4.2represents classification of circuits based only on the highest frequency

coefficient. It can be seen that the classification is successful in dividing the circuits

into course clusters which still give a rough idea about the hardness and area

requirement. Note that this classification is obtained with as less computation as

calculating a single coefficient of Fourier transform. In the figure, class 0 is predicted

to have least area requirement while class 4 is expected to occupy largest area. It can

be seen that the estimation is generally correct except class 4, which is a singleton

class containing XOR of all inputs.

For the problem of area and gate-count estimation, one thousand truth tables for
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Figure 4.2: Classification of 128 3-input circuits, based only on the highest frequency
coefficient of Fourier transform. X-axis represents abstract area-complexity
metric computed using all Fourier coefficients and Y-axis gives the actual
area post synthesis. The clusters marked on the graph are obtained using
only the highest frequency coefficient. Notice that using only this one
coefficient, it is possible to classify circuits into rough groups based on their
hardness and area-requirement.

10 input 1 output functions were generated and were used as training data to obtaining

weights for different frequency levels. The Fourier energy content in these different

frequency levels was then linearly combined using these weights to obtain a prediction

on area and gate-count. The predictions were obtained and tested for test data which

consisted of 1000 randomly generated circuits, separate from training data. Visually, it

can be seen from Fig. 4.3 that the data points lie close to the green “X=Y” line.

Figure 4.3: Predicted versus actual area (left) and gate-count (right) for 1000 randomly
generated 10 input, 1 output circuits. Blue points represent data and the
green line represents is “X=Y”.

Fig. 4.4 demonstrates working of the proposed metric using the concept of resource

sharing determined using correlation between output truth tables in inclusion-exclusion
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Figure 4.4: Predicted versus actual area (left) and gate-count (right) for 400 randomly
generated 10 input, 4 output circuits. Blue points represent data and the
green line represents “X=Y”.

fashion.

For each data point, absolute error is computed as arithmetic difference between the

predicted and actual value.

Absolute Error = Predicted Value− Actual Value

Relative Error =
Predicted Value− Actual Value

Actual Value

Standard deviation is computed for each data point and then standard deviation of

relative error is computed and this value plotted as a function of varying number of

inputs and outputs is represented in Fig. 4.5.

Figure 4.5: Standard deviation of relative error for varying number of inputs (left) and
outputs (right). The blue line displays relative error for gate-count and the
green line gives that for predicted area.
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Notice that as size of the circuit increases, the relative error keeps on decreasing.

Most practical circuits are much larger in size than the circuits used in this project to test

the error performance of the proposed metric. This means that the predictions given by

this metric will be more accurate for practical applications than what is demonstrated in

this dissertation. It can be seen that for moderately large circuits, with 10 or more inputs

and more than 4 outputs, the predicted area is within 5% of the actual area considering

3-sigma deviation. For large circuits used in practice, the prediction is expected to be

accurate within a few percent. Thus, the proposed metric gives area predictions with

a very good accuracy and pose a substantially smaller computing effort as compared to

conventional logic synthesis.

4.3 Timing Performance of the Proposed Metric

Figure 4.6: The graph shows the computational time required for processing 1500
randomly generated circuits for varying number of outputs (left). The
graph (right) shows the average computation time required for processing
1 circuit, averaged over 2000 randomly generated circuits. The green
line represents the time taken by the traditional method and the blue line
represents the time taken by the proposed approach.

A major advantage of area-complexity estimation using the proposed metric is that

results accurate within a few percent error are obtained with relatively tiny

computational effort. To demonstrate the computational complexity posed by the

proposed approach as compared to the that posed by the traditional method,

computational time required to process 1000+ randomly generated circuits was

measured. 1000+ circuits each were generated for varying number of inputs and

outputs.
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It can be seen from Fig. 4.6 that the computational effort posed by the proposed

method is a much slower rising exponential with respect to number of inputs as well as

number of outputs as compared with that posed by logic synthesis and mapping. Area

estimation using Fourier transform achieves a speed-up of nearly 4x for circuits with

more than 10 inputs and single output. The speed-up factor increases drastically as the

number of inputs and / or outputs increases. For circuits with 10 inputs and 4 outputs,

the speed-up is as much as 12x. This means that, for large circuits, while synthesis and

mapping tool might take an hour to give results, the estimate using Fourier transform

can be obtained within a few minutes. This is a very significant speed-up while limiting

the error in estimate to a few percent.

Figure 4.7: The graph shows the average computation time required per circuit per
output, averaged over 2000 randomly generated circuits. The green line
represents the time taken by the traditional method and the blue line
represents the time taken by the proposed approach.

Another advantage of the proposed metric is that multi-outputs circuits are handled

very efficiently. Most logic synthesis tools take extremely large amounts of time to

process circuits with large number of inputs due to circuit-level analysis and

optimisation dealing with resource-sharing problem. In the proposed approach, to

obtain area estimate for multi-output circuits, the only computational overhead is

computing order of 2m correlation coefficients. This means that even though the

overhead is fundamentally exponential with respect to the number of outputs, the

actual overhead is quite small since computing correlation coefficient is a

computationally easy task. Thus, the computational time required to process

multi-circuits increases almost linearly with number of outputs. This is demonstrated

in Fig. 4.7. The graph shows the computation time required per circuit per output for
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multi-output circuits. It can be seen that while the time taken by synthesis tool

increases exponentially, that taken by the proposed method is almost constant. This

shows that the computational overhead due to resource-sharing in multi-output circuits

is very small for the proposed metric.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Summary of Results

A novel method for estimating area requirement of combinational circuits is presented

in this dissertation. The advantage of the proposed approach is that it captures the

inherent hardness of the Boolean function purely mathematically. Thus, using Fourier

transform, we can compare Boolean functions with respect to their inherent hardness

while being agnostic to variations introduced in synthesis tools by technology and

optimisation techniques.

Predictions of area and gate-count using the proposed metric is accurate within 5%

for circuits with 10 or more inputs and more than 4 outputs. As the number of inputs and

/ or outputs increases, the percentage error on the prediction goes on reducing. This is

because, as the circuit size increases the absolute error on area and gate-count increases

much slower than the said quantities. This means that for practical application, in which

circuits tend to be large in size, the performance of the metric will be even better than

what is demonstrated here. For most practical circuits, the area prediction is expected

to be accurate within a few percent based on 3-sigma deviation of relative error.

Finally, since the Fourier transform computation is nothing but a simple matrix

operation, the computational complexity posed by this method is very small. Also, the

entire algorithm has been implemented in Python, which is readily and freely available

on almost any machine and operating system. This is another advantage over elaborate

synthesis tools which are often proprietary, work only on certain operating system

platforms and require separate installation. The proposed method achieves a speed-up

of about 4x for predicting area and gate-count single output circuits with 10 or more

inputs as compared to synthesis tools. Also, the computational complexity of this

metric is a much slower rising exponential with respect to number of inputs and

outputs as compared to that for the traditional electronic design flow. For circuits with

10 or more inputs and more than 4 outputs, the speed-up is as much as 12x. As circuit



size increases, the speed-up factor also increases. For most practical circuits, the

proposed algorithm will take only 1/15th the amount of time or smaller as compared to

logic synthesis. This means that, while a design tool might need to run for an hour to

give area requirement, this algorithm can give a very accurate estimate on area

requirement within a few minutes.

This method is very effective in ordering a given set of circuits in the order of

their area requirement. However, to predict the exact area that a circuit will occupy,

one needs to capture the characteristics of the technology in which the circuit is to

be manufactured. Similarly, the gate-count of the circuit will depend on the mapping

library to be used. Hence, to predict area and gate-count of a circuit, in addition to the

Fourier coefficients, regression needs to be used to assign weights to different frequency

levels. These weights capture the features of mapping library and of the technology to

be used. Although regression can be time consuming, it is a one time effort for the said

technology and gate library. Regression coefficients may be computed in advance and

stored in a lookup table for future reference.

Using only the coefficients in the highest few frequency levels, it is possible to

classify circuits into broad families based on their area-complexity. For example, all

input AND-family, all input XOR-family, family of circuits which are independent of

at least one of the inputs, all input AND-XOR combination family etc. get differentiated

using only the highest frequency Fourier coefficient alone. Thus, for a course ranking

of circuits, it is not even required to compute the entire Fourier transform.

Thus, the proposed metric is effective in comparing hardness between circuits as

well as predicting area requirement of circuits in a very small amount of time. Since,

the computational complexity for comparing between circuits is so small, this approach

can also be used to design approximate circuits by comparing and finding the optimum

circuit from a large set of acceptable circuits.
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5.2 Future Work

The proposed metric and analysis is area-centric. Similar efforts can be made to see

if there is a relation between Fourier energy distribution and power consumption of

combinational circuits and to see whether it will be possible to compare circuits based

on power consumption and even predict power consumption purely mathematically.

The analysis done in this project can also be extended to sequential circuits, by

analysing separately, the combinational blobs between every two flip flops.

To estimate area-complexity of multi-output circuits, correlation coefficients are

computed in Inclusion-Exclusion fashion. This computation is fundamentally

exponential in nature. It should be possible to use only the first few levels of

correlation to effectively estimate sharing since joint correlation between variables is

expected to go closer to zero as the number of variables increases. If this is achieved,

the computational complexity of the algorithm will no longer depend exponentially on

number of outputs.

An effort can also be made to combine Fourier theory discussion in this dissertation

with approximate design technique SALSA, described in Venkataramani et al. (2012)

to develop an approximation technique that will retain the sophistication of SALSA and

achieve the speed-up demonstrated by the proposed approach for area estimation.

Finally, it will be helpful to study Fourier transform on circuits from a more

computer science theory and information theory viewpoint to get a more fundamental

understanding of hardness of Boolean functions.
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