
AUTONOMIC RESOURCE ALLOCATION AND

DELAY OPTIMIZATION OF DISTRIBUTED

APPLICATIONS ON CLOUD

A Project Report

submitted by

PRANAV NAIR [EE09B108]

in partial fulfilment of the requirements

for the award of the degrees of

BACHELOR OF TECHNOLOGY

&

MASTER OF TECHNOLOGY

in

ELECTRICAL ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2014

THESIS CERTIFICATE

This is to certify that the thesis titled Autonomic Resource Allocation and Delay Opti-

mization of Distributed Applications on Cloud, submitted by Pranav Nair [EE09B108],

to the Indian Institute of Technology, Madras, for the award of the degrees of Bachelor

of Technology & Master of Technology, is a bona fide record of the research work

done by him under my supervision. The contents of this thesis, in full or in parts, have

not been submitted to any other Institute or University for the award of any degree or

diploma.

Dr. Ramkrishna Pasumarthy
Project Guide
Dept. of Electrical Engineering
IIT Madras, Chennai 600 036

Dr. Harishankar Ramachandran
Head
Dept. of Electrical Engineering
IIT Madras, Chennai 600 036

Place: Chennai

Date: 5th May, 2014

ACKNOWLEDGEMENTS

I would like to express my appreciation and gratitude to my advisor Dr. Ramkrishna

Pasumarthy for giving me the opportunity to work on this highly exciting and challeng-

ing project. Your invaluable guidance and motivation, throughout the project helped me

grow as a researcher. I also thank the members of the Cloud Computing lab, Mr.

Saikrishna and Mr. Sarath Malipeddi for their valuable help during the study. Lastly

I would like to thank my family and friends for their constant motivation and encour-

agement.

i

ABSTRACT

Cloud computing is the emerging paradigm of computing service. In this work, we

present a resource allocation algorithm for parallelizable scientific computing and data

analytics jobs being serviced by a cloud environment. Eucalyptus, an open source cloud

framework was studied and implemented as the test bed for conducting the experiments

in a distributed manner. Distributed algorithm of k-means clustering of data has been

implemented on the Eucalyptus test bed. The parallelization is achieved by distributing

the data and the computing on several different virtual machines. Message Passing

Interface (MPI), a leading standard for message passing is used for communication

between the nodes running on the cloud. The response times of these jobs have been

observed to vary with the size of the jobs and the number of resources allocated to

these. Hence a model of the response times as a function of size and resources have

been developed. This model can be used to predict the response times of incoming

jobs. Based on these response times, we propose a resource provisioning algorithm that

seeks to minimize the delay expected by the user. The proposed algorithm has been

simulated and shown to be superior to a simple sharing algorithm in terms of delay

minimization.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES vii

ABBREVIATIONS viii

1 INTRODUCTION 1

2 Cloud Computing - Overview and Eucalyptus Setup 3

2.1 Definition and Characteristics . 3

2.2 Service Model Classification . 4

2.3 Deployment Model Classification 4

2.4 Eucalyptus - Open Source Cloud Computing 5

2.5 Architecture of Eucalyptus . 5

2.6 Description of the components . 6

2.6.1 Cloud Controller (CLC) 6

2.6.2 Walrus . 6

2.6.3 Cluster Controller . 7

2.6.4 Storage Controller . 7

2.6.5 Node Controller . 7

2.7 Benefits of Eucalyptus . 7

2.8 Eucalyptus Framework Setup . 8

2.8.1 System Requirements . 8

2.8.2 Networking Mode . 9

2.8.3 Configuring Dependencies 10

2.8.4 Installing Eucalyptus . 11

iii

2.8.5 Configuring Eucalyptus 12

2.8.6 Registering Eucalyptus . 12

2.8.7 Starting Eucalyptus . 13

2.8.8 Configuring the Runtime Environment 13

2.8.9 Eucalyptus Testbed Setup 14

2.9 Customized Image Creation . 14

2.9.1 Add an Image . 15

2.9.2 Verify the Image . 17

2.9.3 Modify an Image . 17

2.10 Using Instances . 17

2.10.1 Find an Image . 17

2.10.2 Create Keypairs . 18

2.10.3 Authorize Security Groups 18

2.10.4 Launch an Instance . 19

2.10.5 Log in to an Instance . 19

2.10.6 Reboot an Instance . 19

2.10.7 Terminate an Instance . 19

3 Scientific Computing on the Cloud - A Distributed Computing Approach 20

3.1 Definition . 20

3.2 Advantages . 20

3.3 Distributed Computing - Definition and Frameworks 21

3.4 MATLAB Distributed Computing Server 21

3.4.1 MATLAB enabled Image creation for Eucalyptus 21

3.4.2 Advantages . 22

3.4.3 Disadvantages . 22

3.5 MapReduce . 23

3.6 Message Passing Interface . 24

3.6.1 Advantages . 24

3.6.2 Functionality of MPI . 25

3.6.3 Programming Model of MPI 25

3.6.4 Communicators and Groups 25

3.7 Python . 26

iv

3.7.1 MPI for Python . 27

4 Application Parallelization and Modeling 30

4.1 K-means Clustering Problem . 30

4.1.1 Problem Description . 30

4.1.2 Sequential Approach . 30

4.1.3 Distributed Approach . 31

4.1.4 Experiment . 31

4.1.5 Modeling . 31

5 Virtual Machine Allocation - Delay Optimization and Algorithm 37

5.1 Optimization Problem Formulation 37

5.2 Proposed Algorithm . 38

5.3 Simulation and Results . 38

6 Conclusion 42

LIST OF TABLES

2.1 Machine Roles and Configurations 14

2.2 VM sizes . 15

vi

LIST OF FIGURES

2.1 Service Models . 4

2.2 Eucalyptus Architecture . 8

4.1 Response Times vs Size of Dataset for different no of VMs 33

4.2 Response Times vs VMs for different sizes of Dataset 33

4.3 Percentage fit vs no. of coefficients 35

4.4 RMSE vs no. of coefficients . 35

4.5 Real Values vs Estimated Model 36

5.1 Job Queueing and Allocation . 40

5.2 Comparison of Delay . 41

5.3 Comparison of VM utilization . 41

vii

ABBREVIATIONS

SLA Service Level Agreement

CLC Cloud Controller

CC Cluster Controller

SC Storage Controller

NC Node Controller

DHCP Dynamic Host Configuration Protocol

MAC Media Access Control

EMI Eucalyptus Machine Image

MPI Message Passing Interface

viii

CHAPTER 1

INTRODUCTION

Computing in the cloud lets the user purchase computing resources as a metered ser-

vice over a network (typically the Internet) and not as a product. This has been made

possible due to the advances in Operating System Virtualization and the Internet. Cloud

computing allows almost any server environment to be replicated and scaled instantly.

Several companies find Cloud Computing much more economical than setting up the

hardware infrastructure on their own.

Buyya et al. (2009) provides insight into the definition of cloud computing and

the various architectures and also talks about the vision and reality about delivering

computing as a service. Cloud computing has been identified as the most promising

paradigm to provide computing as a service. It is the next generation of enterprise data

centers, providing extreme scalability and fast access to users. Cloud computing is still

at an early stage, with a motley crew of providers delivering a slew of cloud-based

services, from full-blown applications to storage services. Characteristics of Cloud like

autonomous and dynamic provisioning, scalability, optimization benefits, networked

access and metered servicing have propelled this technology to the forefront Gong et al.

(2010).

Among the three standard models of deployment of Cloud Gibson et al. (2012),

SaaS is the the most popular and widely used model of Cloud computing. SaaS uses

the Internet to deploy applications on the Cloud that are managed by third party ven-

dors He (2010). Users access the application via the web browser on their side. This

eliminates the need to download and install software to run these. SaaS enables users

to use applications without being responsible for maintaining the data, O/S, virtualiza-

tion, servers, storage, and networking. In the SaaS model of deployment, the user is

expected to only give the inputs required for the particular applications to get back the

outputs without being responsible for computer administration, software installation or

system details. System details include properties like the number of nodes to be used,

the amount of storage needed and the operating system deployed etc.

Scientific computing is one such SaaS application that can be delivered over the

Cloud Yang et al. (2011); He et al. (2010). Scientific computing involves the con-

struction of mathematical models and numerical solution techniques to solve scientific,

social scientific and engineering problems on distributed systems Jakovits and Srirama

(2013). Grid Computing gained high popularity in the field of scientific computing

through the distributed resource sharing models deployed in academic institutions. Sci-

entific computing is a high-utilization workload requiring huge number of computing

resources traditionally employed on Grids.

Ostermann et al. (2009) tells us how Cloud Computing can be an attractive alter-

native to Grid Computing for scientific computing scientists. Since a cloud promotes

leasing resources than setting up one’s own infrastructure, this is an economic alterna-

tive for academic institutions. This also eliminates the burden of constantly updating

the hardware due to advances in technology. The cloud eliminates the overhead costs

arising due to over-provisioning of occasionally needed resources. The cloud can scale

up resources in a fast and cost effective fashion. Despite these scientific computing on

the Cloud also presents some challenges like slower interconnects, the pricing model,

data management, the resource allocation model, security, etc Kaur and Chana (2010).

The contribution of this work is to be able to provide parallelizable scientific com-

puting applications on a Cloud environment. The setting up of the Cloud environment

Eucalyptus has been studied in detail and implemented. K-Means Clustering, a fre-

quently encountered problem in scientific computing has been chosen and a parallelized

algorithm has been implemented on the cloud environment. Message Passing Interface,

a leading standard for message passing libraries has been studied and has been imple-

mented for parallelizing the jobs. The response times of these jobs are modeled as

functions of the size of the jobs and the resources allocated. Furthermore a resource

allocation algorithm has been proposed that seeks to reduce the overall delay over the

deadline for the jobs.

2

CHAPTER 2

Cloud Computing - Overview and Eucalyptus Setup

2.1 Definition and Characteristics

Cloud Computing is defined as the model for delivering computing resources as a ser-

vice over the Internet. The characteristics and benefits of cloud computing are

1. Self-service Provisioning: The cloud allows users to deploy their own sets of
computing resources (machines, network, storage, etc.) as needed without the
delays and complications typically involved in resource acquisition.

2. Dynamic Provisioning: The provisioning of resources can be done based on the
current demand for the services.

3. Elasticity and Scalability: Unlike individual users for whom the usage is typi-
cally fluctuating, a cloud can easily accommodate rapid increases or decreases in
resource demand. Thus the user can utilize as per usage and avoid the cost of idle
infrastructure.

4. Optimization Benefits: The cloud can maximize the usage and increase the effi-
ciency of existing infrastructure resources. This can help reduce capital expendi-
ture and extends infrastructure lifecycle.

5. Network Access and Storage Virtualization: Cloud services can be accessed from
anywhere via the Internet and from any type of device. They should also provide
storage capability independent of device and location.

6. Metered Services: The usage of resources is metered and the consumers are billed
accordingly.

Cloud computing has several advantages. It eliminates the need for the clients to

set up and maintain their own physical servers, thus reducing expenses. The clients

are billed only as per their usage. Dynamic reallocation of resources ensures that the

servers are utilized more efficiently. Also network access ensures that the client can

access these services from anywhere. Because of these factors, cloud computing is a

fast growing field. Currently Amazon, Google and Microsoft are some of the big names

in this field.

2.2 Service Model Classification

Depending on the service models, clouds are classified as

1. Software as a Service (SaaS): In this model the user purchases the ability to use a
software application or service on the cloud. Eg: Google Docs

2. Platform as a Service (PaaS): In this model the user purchases access to platforms,
enabling them to deploy their own applications on the cloud. Eg: Google App
Engine

3. Infrastructure as a Service (IaaS): In this model, the user is delivered infrastruc-
ture, namely servers, networks and storage. The user can deploy several Virtual
Machines and run specific Operating Systems on them. eg: Amazon EC2, Win-
dows Azure etc.

Figure 2.1: Service Models

2.3 Deployment Model Classification

Depending on the deployment models, clouds are classified as

1. Public Cloud: A public cloud can be accessed by any user with an internet con-
nection and is intended for public use.

4

2. Private Cloud: A private cloud is established and operated solely by a specific
group or organization and access is limited to that group.

3. Community Cloud: A community cloud is shared among several organizations
with common concerns and similar cloud requirements.

4. Hybrid Cloud: A hybrid cloud is a combination of several clouds, where the
clouds are a mixture of public, private or community.

2.4 Eucalyptus - Open Source Cloud Computing

Eucalyptus stands for Elastic Utility Computing Architecture for Linking Your Pro-

grams To Useful Systems. It is a Linux based open source architecture that can be used

to implement scalable private and hybrid clouds. The cloud will be deployed across the

enterprise’s on-premise IT infrastructure and can be accessed over its intranet.

Eucalyptus also supports Amazon Web Service-compatibility allowing our on-premise

clouds to interact with these public clouds using a common programming interface.

This API-compatibility with Amazon’s EC2, S3, ELB, Auto Scaling, and CloudWatch

services offers the capability of deploying hybrid clouds. It has support for multiple vir-

tualization platforms like Xen, KVM and VMWare. It is also packaged and supported

for multiple distributions like Debian, Ubuntu, Cent-OS, SuSE etc. Eucalyptus Systems

(a) gives details about Eucalyptus 3.1.2 architecture and setup.

2.5 Architecture of Eucalyptus

Eucalyptus is comprised of six components: Cloud Controller (CLC), Walrus, Clus-

ter Controller (CC), Storage Controller (SC), Node Controller (NC) and an optional

VMWare Broker (Broker or VB).

Other than the VMWare Broker, each component is a stand-alone web service.

This architecture allows Eucalyptus both to expose each web service as a well-defined,

language-agnostic API, and to support existing web service standards for secure com-

munication between its components.

The cloud components, Cloud Controller (CLC) and Walrus, communicate with

cluster components, the Cluster Controllers (CCs) and Storage Controllers (SC). The

5

CCs and SCs, in turn, communicate with the Node Controllers (NCs). The networks

between machines hosting these components must be able to allow TCP connections

between them. However, if the CCs are on separate network interfaces (one for the net-

work on which the cloud components are hosted and another for the network that NCs

use) the CCs will act as software routers between these networks in some networking

configurations. So each cluster can use an internal private network for its NCs and the

CCs will route traffic from that network to a network shared by the cloud components.

Virtual machines (VMs) run on the machines that host NCs. You can use the CCs as

software routers for traffic between clients outside Eucalyptus and VMs. Or the VMs

can use the routing framework already in place without CC software routers.

2.6 Description of the components

2.6.1 Cloud Controller (CLC)

The CLC is a Java program that acts as the web interface to the outer world. It is the

entry point into the cloud for administrators, developers and end users. The CLC acts as

the administrative interface for the cloud, querying the other components about resource

availability and performing high-level resource scheduling by making requests to the

Cluster Controllers (CC). The CLC can be accessed through command line interfaces

like euca2ools to manage the compute, storage and network resources. Only one CLC

can exist per cloud and it handles all authentication, accounting, reporting etc.

2.6.2 Walrus

Walrus is a Java program which is the Eucalyptus equivalent of the AWS Simple Storage

Service (S3). Walrus offers users the ability to store persistent data, organized as buck-

ets and objects, to all the virtual machines and can be used as a simple HTTP put/get

storage as a service solution. There are no particular data type restrictions. Users can

store application data as well as the images which are the building blocks used to launch

the VMs. Volume snapshots, which are point in time copies of data, can also be stored

on Walrus. Just like the CLC, only one Walrus per cloud is allowed.

6

2.6.3 Cluster Controller

Cluster Controller is written in C and acts as the front end of a particular cluster within

the Eucalyptus Cloud. It executes on a machine that has connectivity to both the CLC

and the Node Controllers (NC) and reports the NCs registered to the CLC. CC also

gather the information about a set of NCs and schedules the VM execution on specific

NCs. The CC also manages the virtual machine networks and all NCs within a single

CC will belong to a single subnet.

2.6.4 Storage Controller

Storage Controller, written in Java, is the Eucalyptus equivalent of the Amazon’s Elastic

Block Storage. It can interface with various types of storage systems. It communicates

with the Cluster Controller and Node Controller and manages the Eucalyptus block

volumes and snapshots to the instances within its specific cluster. EBS volumes persist

even after VM termination but cannot be shared between VMs and can only be accessed

within the same availability zone in which the VM is running.

2.6.5 Node Controller

The Node Controller (NC) is written in C and it runs on the machine that hosts the

VM instances. It runs on each node and interacts with the CC on one hand and the

OS and the hypervisor on the other side. It controls VM activities like the execution,

inspection and termination of VM instances. It downloads and creates caches of images

and snapshots from the Walrus. It is also responsible for the management of the virtual

network endpoint. There is no theoretical limit to the number of NCs per cluster but

performance limits do exist.

2.7 Benefits of Eucalyptus

1. Eucalyptus has a modular and easy design which enables a variety of user inter-
faces and thus brings the benefits of virtualization to a broad spectrum of users
like administrators, developers, managers and hosting customers.

7

Figure 2.2: Eucalyptus Architecture

2. The snapshot feature provides opportunities to improve the reliability and au-
tomation of the cloud making it very easy to use and reduce average learning
time for users, thus improving turnaround time for projects.

3. Supports existing virtualization technologies, Linux-based operating systems, and
supports multiple hypervisors.

4. Since the core of the Eucalyptus project will continue to remain open-source,
users can access the source code and leverage the contributions from a worldwide
community of developers.

2.8 Eucalyptus Framework Setup

2.8.1 System Requirements

Compute Requirements

1. Physical Machines: All Eucalyptus components must be installed on physical
machines, not virtual machines.

2. Central Processing Units (CPUs): It is recommended that each machine in your
Eucalyptus cloud contain either an Intel or AMD processor with a minimum of
two, 2GHz cores.

3. Operating Systems: Eucalyptus supports Ubuntu 12.04 LTS and some other Linux
distributions.

8

4. Machine Clocks: Each Eucalyptus component machine and any client machine
clocks must be synchronized (for example, using NTP) at all the time, not just at
installation.

5. Hypervisor: Ubuntu 12.04 LTS installations must have KVM installed and con-
figured on NC host machines. VMWare-based installations do not include NCs,
but must have a VMWare hypervisor pool installed and configured.

6. Machine Access: Verify that all machines in your network allow root or sudo
access and SSH login.

Storage and Memory Requirements

The following are recommended:

1. Each machine in your network needs a minimum of 30 GB of storage.

2. At least 100 GB for Walrus and SC hosts running Linux VMs.

3. 50-100 GB per NC host running Linux VMs.

4. Each machine in your network should have at least 4 GB RAM or above for
improved caching.

Network Requirements

1. All NCs must have access to a minimum of 1 GB Ethernet network connectivity.

2. All Eucalyptus components must have at least one Network Interface Card (NIC)
for a base-line deployment. For better network isolation and scale, the CC should
have two NICs each with a minimum of 1 GB Ethernet (one facing the CLC/user
network and one facing the NC/VM network).

3. Depending on some configurations, Eucalyptus requires that you make available
two sets of IP addresses. The first range is private, to be used only within the
Eucalyptus system itself. The second range is public, to be routable to and from
end-users and VM instances. Both sets must be unique to Eucalyptus, not in use
by other components or applications within your network.

2.8.2 Networking Mode

There different networking modes available for configuring Eucalyptus cloud are Sys-

tem, Static, Managed, Managed No VLAN. We use static mode of networking since

Eucalyptus runs its own DHCP server and offers better control of VM instance IP as-

signment.

9

Static Mode

Static mode offers you control over instance IP address assignment. In Static mode,

you configure Eucalyptus with a map of MAC address/IP Address pairs. When a VM

is instantiated, Eucalyptus sets up a static entry within a Eucalyptus controlled DHCP

server, takes the next free MAC/IP pair, assigns it to an instance, and attaches the in-

stance’s ethernet device to the physical ethernet through the bridge on the NCs.

2.8.3 Configuring Dependencies

Install Hypervisors on NC

1. Pre-installation checklist: To run KVM, you need to check if your processor sup-
ports hardware virtualization. The following command can be used to check.

$ engrep -c ’(vmx|svm)’ /proc/cpuinfo

If the Output is 0, it means that your CPU doesn’t support hardware virtualization.
If not it will show how many processors support virtualization.

2. We need to install necessary packages like qemu-kvm , libvirt-bin,
ubuntu-vm-builder

3. Verify Installation: You can test if your install has been successful with the fol-
lowing command.

$ virsh -c qemu:///system list

Output must look like this:

Id Name State

$

4. Optional: Install virt-manager (graphical user interface) if you are using a desk-
top computer to manage virtual machines using the following command.

$ sudo apt-get install virt-manager

Configure Bridges

For Static mode, we must configure a Linux ethernet bridge on all NC machines. This

bridge connects your local ethernet adapter to the cluster network. NCs will attach

10

virtual machine instances to this bridge when the instances are booted. To configure a

bridge on Ubuntu:

1. Install the bridge-utils package.

2. Modify the following file according to manual:

/etc/network/interfaces

3. Restart Networking

Configure NTP

Eucalyptus requires that each machine have the Network Time Protocol (NTP) daemon

started and configured to run automatically on reboot. The following has to be done on

CLC and NCs

1. Install NTP on machines

$ sudo apt-get install ntp

2. Edit the following NTP configuration files on machines according to manual:

/etc/ntp.conf

3. Restart the NTP service on machines

2.8.4 Installing Eucalyptus

1. Download the Eucalyptus release key from

www.eucalyptus.com/eucalyptus-cloud/security/keys

2. Add the public key to the list of trusted keys.

apt-key add c1240596-eucalyptus-release-key.pub

3. Edit the file /etc/apt/sources.list and add the following content:

deb http://downloads.eucalyptus.com/software/
eucalyptus/3.1/ubuntu precise main

deb http://downloads.eucalyptus.com/software/
euca2ools/2.1/ubuntu precise main

4. Update source list on all machines.

11

5. Install Eucalyptus packages and dependencies.

eucalyptus-cloud
eucalyptus-cc
eucalyptus-sc
eucalyptus-walrus

6. On each planned NC server, install the NC package

eucalyptus-nc

2.8.5 Configuring Eucalyptus

Configure Network Modes - Static Mode

Static mode requires you to specify the network configuration each VM should receive

from the Eucalyptus DHCP server running on the same physical server as the CC com-

ponent. Configure each CC to use an Ethernet device that lies within the same broadcast

domain as all of its NCs. To configure for Static mode:

1. CLC Configuration - No network configuration required.

2. CC Configuration - For each CC, log in and edit the following file according to
the manual for static mode.

/etc/eucalyptus/eucalyptus.conf

3. NC Configuration - For each NC, log in and NC machine and edit the following
file according to the manual.

/etc/eucalyptus/eucalyptus.conf

2.8.6 Registering Eucalyptus

Eucalyptus implements a secure protocol for registering separate components. You only

need to register components the first time Eucalyptus is started after it was installed.

Most registration commands run on the CLC server. NCs, however, are registered on

each CC. Note that each registration command will attempt an SSH as root to the re-

mote physical host where the registering component is assumed to be running. The

registration command also contacts the component so it must be running at the time of

the command is issued.

12

NCs need only two pieces of information: component name and IP address. Other

component require four pieces of information:

1. The component (–register-XYZ) you are registering, because this affects where
the commands must be executed.

2. The partition (–partition) the component will belong to. The partition is the same
thing as availability zone in AWS.

3. The name (–component) ascribed to the component. This name is also used when
reporting system state changes which require administrator attention. This name
must be globally-unique with respect to other component registrations.

4. The IP address (–host) of the service being registered.

2.8.7 Starting Eucalyptus

1. Start the CLC Walrus : In our case since Walrus, CLC, and SC are on the same
physical machine. Hence all 3 can be initialized and started by logging into CLC
and using the following commands:

/usr/sbin/euca_conf --initialize
service eucalyptus-cloud start

2. Start the CC : Log in to the CC server and enter the following commands:

service eucalyptus-cc start

3. Start the CC : Log in to the CC server and enter the following commands:

service eucalyptus-nc start

Verify the Startup according to the manual.

2.8.8 Configuring the Runtime Environment

After Eucalyptus is installed and registered, perform the tasks in this section to config-

ure the runtime environment and generate Administrator Credentials.

1. Generate administrator credentials.

/usr/sbin/euca_conf --get-credentials admin.zip
unzip admin.zip

2. Source the eucarc file.

source eucarc

13

2.8.9 Eucalyptus Testbed Setup

We have implemented a Eucalyptus cloud platform on Linux with 2 physical machines.

The components directly accessible to the external world are CLC and Walrus and the

controlling components (CC/SC) are installed on the first physical machine. The CLC

and WALRUS components are not designed for networking over wide area and hence

we prefer to install and run these components on the same physical machine i.e. called

the front end machine. The node controller (NC) is installed on the second machine

of 24 cores. This machine is virtualization enabled and has the capability of virtual

machine instantiation on demand.

The cloud installation described here is done using the Eucalyptus 3.1.2 version

and euca2tools 2.1.1 with Ubuntu 12.04 LTS 64-bit Desktop operating system on both

front-end machine as well as the Node controller machine.

Table 2.1 shows the configuration details of the two machines and the client.

Table 2.1: Machine Roles and Configurations

Machine Name Machine Role
CPU

(Cores)
RAM
(GB)

Disk
(GB)

eth0 eth1

Cloud Controller
CLC/WALRUS

/CC/SC
8 16 500 Private Public

Node Controller Host Virtual Machines 24 48 1000 Private Private
Client Requests Jobs 4 6 1000 Public . . .

2.9 Customized Image Creation

An image is a snapshot of a system’s root file system and it provides the basis for

instances. When you run a new virtual machine, you choose a machine image to use

as a template. The new virtual machine is then an instance of that machine image that

contains its own copy of everything in the image. The instance keeps running until you

stop or terminate it, or until it fails. If an instance fails, you can launch a new one from

the same image. You can create multiple instances of a single machine image. Each

instance will be independent of the others. Once the Eucalyptus framework has been

installed Eucalyptus Systems (b) details the user level functionalities.

In Eucalyptus there are different types of Virtual Machines which can be instan-

14

tiated, ranging from small size to extra large size VMs depending up on the amount

of resources allocated on the node controller machine. 2.2 shows the number of VMs

available for each type.

Table 2.2: VM sizes

VM type Max No. CPU RAM (MB) Disk (GB)
m1.small 24 1 128 2

c1.medium 24 1 256 5
m1.large 12 2 512 10

m1.xlarge 12 2 1024 20
c1.xlarge 6 4 2048 20

You can use a single image or multiple images, depending on your needs. From

a single image, you can launch different types of instances. An instance type defines

what hardware the instance has, including the amount of memory, disk space, and CPU

power.

A machine image contains all the information needed to boot instances of your

software. For example, a machine image might contain software to act as an application

server or Hadoop node.

An image is a file having the entire state of a guest instance which would run on

the Node controller machine. An image may contain any of the Linux distributions

like, Ubuntu, Cent-OS, Debian or Fedora. An image which is bundled, uploaded and

registered with Eucalyptus is called Eucalyptus machine image (EMI). Other types of

images supporting EMI are the kernel (EKI) and ramdisk (ERI). They contain kernel

modules for proper functioning of the image.

The following are the tasks that you can perform on images in Eucalyptus:

2.9.1 Add an Image

To enable an image as an executable entity, you do the following:

1. Bundle a root disk image and kernel/ramdisk pair.

2. Upload the bundled image to Walrus bucket storage.

3. Register the data with Eucalyptus.

15

Add a Kernel/Ramdisk

When you add a kernel/ramdisk to Walrus, you bundle the kernel/ramdisk file, up-

load the file to a bucket in Walrus that you name, and then register the kernel with

Eucalyptus. Use these commands to add a kernel/ramdisk to Walrus (X stands for ker-

nel/ramdisk):

$ euca-bundle-image -i <X_file> --X true

$ euca-upload-bundle -b <X_bucket> -m

/tmp/<X_file>.manifest.xml

$ euca-register <X_bucket>/<X_file>.manifest.xml

Where the returned value eki-XXXXXXXX is the unique ID of the registered kernel

image and eri-XXXXXXXX is the unique ID of the registered ramdisk image.

Add a Root Filesystem

When you add a root filesystem to Walrus, you bundle the root filesystem file, upload

the file to a bucket in Walrus that you name, and then register the root filesystem with

Eucalyptus. The bundle operation can include a registered ramdisk (ERI ID) and a reg-

istered kernel (EKI ID). The resulting image will associate the three images. Use the

following commands to add a root filesystem to Walrus:

$ euca-bundle-image -i <root_filesystem_file>

--kernel <eki-XXXXXXXX> --ramdisk <eri-XXXXXXXX>

$ euca-upload-bundle -b <root_filesystem_file_bucket>

-m /tmp/<root_filesystem_file>.manifest.xml

$ euca-register <root_filesystem_file_bucket>

/<root_filesystem_file>.manifest.xml

Where the returned value emi-XXXXXXXX is the unique ID of the registered machine

image.

16

2.9.2 Verify the Image

Use the following command to see the list of available images and verify your image.

$euca-describe-images

2.9.3 Modify an Image

To modify an existing image to meet your needs:

1. Create a mount point for your image.

2. Associate a loop block device to the image.

3. Mount the image.

4. Make procfs, dev and sysfs available in your chroot environment.

5. If you want to install packages into the image, you can chroot into the mounted
directory and use apt-get to install the packages.

6. Unmount the drive.

You now have an image with your modifications. You are ready to add the image to

Eucalyptus. Refer to the example of MATLAB enabled Image creation.

2.10 Using Instances

After an virtual image is launched, the resulting running system is called an instance.

An instance is a virtual machine. A virtual machine is essentially an operational private

computer that contains an operating system, applications, network accessibility, and

disk drives. The following are the instance related tasks.

2.10.1 Find an Image

Enter the following command to display available images:

$ euca-describe-images

17

2.10.2 Create Keypairs

Eucalyptus uses cryptographic keypairs to verify access to instances. Before you can

run an instance, you must create a keypair using the euca-add-keypair command. Cre-

ating a keypair generates two keys: a public key (saved within Eucalyptus) and a cor-

responding private key (output to the user as a character string). To enable this private

key you must save it to a file and set appropriate access permissions (using the chmod

command), as shown in the example below.

When you create a VM instance, the public key is then injected into the VM. Later,

when attempting to login to the VM instance using SSH, the public key is checked

against your private key to verify access.

1. To create a keypair enter the following command which will save the private key
to a file in your local directory:

$ euca-add-keypair <keypair_name>
<keypair_name>.private

2. Change file permissions to enable access to the private key file in the local direc-
tory.

3. Query the system to view the public key.

$ euca-describe-keypairs

2.10.3 Authorize Security Groups

Before you can log in to an instance, you must authorize access to that instance. This

done by configuring a security group for that instance.

A security group is a set of networking rules applied to instances associated with

a group. When you first create an instance, it is assigned to a default security group

that denies incoming network traffic from all sources. To allow login and usage of a

new instance, you must authorize network access to the default security group with the

following command.

$ euca-authorize <security_group>

18

2.10.4 Launch an Instance

1. Use the following command to launch an instance.

$ euca-run-instances <image_id> -k <mykey>

2. Enter the following command to get the launch status of the instance:

$ euca-describe-instances <instance_id>

2.10.5 Log in to an Instance

When you create an instance, Eucalyptus assigns the instance two IP addresses: a pub-

lic IP address and a private IP address. The public IP address provides access to the

instance from external network sources; the private IP address provides access to the

instance from within the Eucalyptus cloud environment. To use an instance you must

log into it via ssh using one of the IP addresses assigned to it.

Use SSH to log into the instance, using your private key and the external IP address.

$ ssh -i <keypair.private> root@<IP Address>

2.10.6 Reboot an Instance

Rebooting preserves the root filesystem of an instance across restarts. To reboot an

instance:

$ euca-reboot-instances <instance_id>

2.10.7 Terminate an Instance

Terminating an instance can cause the instance and all items associated with the instance

(data, packages installed, etc.) to be lost. To terminate VM instances:

euca-terminate-instances <ID string>$

19

CHAPTER 3

Scientific Computing on the Cloud - A Distributed

Computing Approach

3.1 Definition

Scientific Computing is one of the leading disciplines in information technology with

varied application in fields such as economics, science and engineering. It is the prac-

tice of aggregating the computing resources in such a way that it delivers much higher

performance than computations on a personal desktop or workstation. Due to specific

performance requirements, it is common to operate high performance computing re-

source in private and thus the access to these are often restricted. Also jobs have to wait

in a queue for resource allocation and execution. Also it may happen that these physi-

cal machines are underutilized because of the fluctuating demands within the particular

organization.

3.2 Advantages

Thus HPC or scientific computing on the cloud can be alternate solution to the comput-

ing needs of the organization. A cloud computing approach can be both cost effective

and efficient alternative to traditional HPC approaches. There are several advantages to

using a cloud computing approach:

1. Large providers can set up the required infrastructure bring down the overall run-
ning cost and thus computing resources can be made available at lower costs.

2. The use of VMs can allow users to secure administrative privileges and thus cus-
tomize usage according to their requirements, from choosing operating systems
down to the various libraries.

3. The continuous availability and scalability of cloud ensure virtually infinite pool
of resources to choose from at any point of time. Thus jobs need not wait in queue
for resources.

4. Clouds can provide isolation of multiple workloads on the same physical re-
sources and networking infrastructure.

5. Dynamic provisioning ensures that the computing resources can be scaled up and
down according to the users’ workload demand fluctuation.

6. Service Level Agreements can guarantee network performances and other Quality
of Service (QoS) constraints.

7. Live Migration of VMs is a concept that allows seamless transfer of VMs over
physical resources during operations. The advantage is that maintenance work
can be run on the physical resources without interrupting the jobs or processes.

3.3 Distributed Computing - Definition and Frameworks

Distributed computing refers to the parallelization of a large computational job into

several smaller computational tasks and executing these tasks on different nodes. Nodes

are autonomous computational resources with its own local memory that communicate

with each other by passing messages on the network. First a MATLAB Distributing

Computing Server was considered but was found to be inadequate for the work due to

system constraints. Then a Python based approach was considered. For communication

purposes the two most prevalent approaches have been MPI and MapReduce. Finally

MPI was chosen for the simplicity and flexibility provided.

3.4 MATLAB Distributed Computing Server

This framework can run computationally intensive MATLAB programs and Simulink

models on computer clusters, clouds and grids. The program or model is first developed

on a multicore desktop environment using the Parallel Computing Toolbox and then

scaled up to many computers by running it on this framework. This framework can

support batch jobs, parallel communication and distributed large data.

3.4.1 MATLAB enabled Image creation for Eucalyptus

The following section explains how to setup MATLAB enabled EMI.

1. Make a temp directory

21

$ mkdir /newubun

2. Mount the image.

$ mount -o loop /img_name.img /newubun

3. Find out the loop block device attached to the mounted Image and increase the
associated space by using the following commands (X is the number of MiB you
want to add):

$ sudo losetup /dev/loop0
$ sudo dd if=/dev/zero bs=1 MiB of=/path/to/file
conv=notrunc oflag=append count=X
$ sudo losetup -c /dev/loop0
$ sudo resize2fs /dev/loop0

4. First change root to /newubun and copy MATLAB ISO file to it. Mount the
ISO File. Give GUI permissions as follows.

$ xhost
$ echo $DISPLAY
$ export DISPLAY=:0
$ xhost local:root
$ export XAUTHORITY=/home/sysid/.Xauthority

5. Install MATLAB by following the MATLAB Installation Guide.

6. Unmount MATLAB and exit.

3.4.2 Advantages

1. It has a very large and growing database of functions and built-in algorithms.

2. It is very user friendly, especially for beginners.

3. It already has a large scientific community base; used extensively in several uni-
versities.

4. Simulink is a unique product.

3.4.3 Disadvantages

1. The smallest VMs cannot be used to run MATLAB due to disk and ram con-
straints.

22

2. All the algorithms are proprietary. Hence we cannot see, verify or modify the
code of the algorithm. It also makes it difficult for third parties to extend the tools
of MATLAB.

3. It is expensive to get a MATLAB license.

3.5 MapReduce

MapReduce is a programming framework that lets the user process large data sets with

a parallel, distributed algorithm on a distributed system. A MapReduce implementation

consists of 2 main phases: Map() phase and Reduce() phase.

In the Map() phase, the master node takes the input, divides it into smaller sub-

problems, and distributes them to worker nodes. Each mapping operation is indepen-

dent and thus can be performed in parallel. A worker node may do this again in turn,

leading to a multi-level tree structure. The worker node processes the smaller problem,

and passes the answer back to its master node.

In the Reduce() phase, the master node then collects the answers to all the sub-

problems and combines them in some way to form the output which is the answer to the

problem it was originally trying to solve. We can have a set of reducers that perform the

reduction phase provided that all outputs of the map phase which share the same key

are given to the reducers at the same time.

Apache Hadoop is an open source software framework built on the MapReduce

framework for storage and large scale distributed data processing. A Hadoop frame-

work has a single master and multiple worker nodes. The master node is responsible

for the tracking jobs submitted, sub-tasks created and the data being dealt with. The

worker node is also responsible for sub-task tracking and data. It is also possible to

have data-only worker nodes and compute-only worker nodes. The Hadoop framework

is comprised of the following modules:

Hadoop Common: This module contains all the libraries and utilities needed by

other Hadoop modules.

Hadoop Distributed File System (HDFS): This module is a distributed and scal-

able file-system written in JAVA for the Hadoop framework. Each data node serves

23

up blocks of data over the network using a protocol specific to HDFS. The file system

uses the TCP/IP layer for communication and use remote procedure calls (RPC) to pass

messages and communicate between each other.

Hadoop YARN: This module is a resource-management platform responsible for

managing compute resources in clusters and using them for scheduling of users’ appli-

cations.

Hadoop MapReduce: a programming model for large scale data processing.

3.6 Message Passing Interface

The Message Passing Interface is a standardized and portable message passing system

designed to function on a wide variety of parallel systems. The standard itself is not

a library, but defines the syntax and semantics of the library routines for a language

independent communications protocol. MPI primary addresses the message passing

parallel programming model in which data is moved across the address spaces of pro-

cesses through cooperative operations. Since the release of MPI, it has become the

leading standard for message passing libraries for parallel systems and has achieved

widespread implementation.

3.6.1 Advantages

1. Standardization: MPI is the only message passing library that can be considered
a standard. It is supported on all types of HPC platforms.

2. Portability: The user can seamlessly port the applications across platforms (that
are MPI compliant) by making minimal changes to source code.

3. Functionality and Performance Opportunities: There are over 440 routines de-
fined in the latest MPI release. Also vendor specific implementations can exploit
hardware features for maximal performance.

4. Availability of rich documentation and support.

24

3.6.2 Functionality of MPI

MPI interface is meant to provide essential virtual topology, synchronization and com-

munication functionality between a set of processes that have been mapped to nodes/instances.

Typically each core in a multicore machine will be assigned a single process. This as-

signment happens at runtime through the agent that starts the MPI routine.

Functionalities include point-to-point rendezvous type send/receive operations, choos-

ing between Cartesian or graph-like logical process topology, exchanging data between

process pairs, combining the partial results of computations (gather and reduce), syn-

chronization of nodes. Point-to-point communication can be of synchronous, asyn-

chronous or buffered type as well as blocking/non-blocking type. Collective commu-

nications like broadcast and scatter are also supported. Latest implementations of MPI

also support dynamic process management allowing addition of new processes during

program execution.

3.6.3 Programming Model of MPI

The MPI was first developed as a communications protocol for distributed systems.

As developments were made in architectural trends, shared memory systems were also

combined into MPI creating hybrid distributed and shared memory systems. The li-

braries were adapted to handle both types of memory architectures seamlessly.

In most MPI implementations, a fixed set of processes are created and each process

is assigned to a processor. However each process may execute a different program on

a different set of data. Hence MPI model conforms to the ’multiple program multiple

data’ (MPMD) model.

3.6.4 Communicators and Groups

A group is an ordered set of processes. Each process in a group is associated with

a unique integer rank. Rank values range from 0 to N-1, where N is the number of

processes in the group. A process can belong to multiple groups. Group is a dynamic

object in MPI and can be created or destroyed during the execution of the program. For

any message being passed, the source and destination are identified by the process rank

25

of the process within that group.

The communicator is an object that defines the ’communication universe’ within

the MPI framework. It is a logical unit that defines which processes are allowed to send

and receive messages. Intracommunicator is the communicator that is used for commu-

nication within a single group of processes. Intercommunicator is the communicator

that is used for communication across different non overlapping groups. Communica-

tors are also dynamic, i.e., they can be created or destroyed during the execution of the

program. Each communicator gives each contained process an independent identifier

and arranges its contained processes in an ordered topology.

MPI was chosen over MapReduce because

1. MapReduce setup and running costs are significant. MPI is much lighter and
simpler.

2. MPI supports asynchronous communication.

3. Code refactoring is easier in MPI as compared to MapReduce.

4. Much more efficient algorithms can be written in MPI for certain applications
like learning algorithms.

3.7 Python

Python is a widely used general-purpose, high-level programming language. It has

an efficient high-level data structures and a simple but effective approach to object-

oriented programming with dynamic typing and dynamic binding. It has a holistic

language design with emphasis on readability and concise coding. It has the perfect

balance of high level and low level programming. It is an open source programming

languages with an impressive standard library and external libraries being developed by

the enthusiastic Python community. Python has good language interoperability.

Python has an impressive support for scientific computing. SciPy is a computing

environment and open source ecosystem of software for Python programming language

that is used by scientists, analysts and engineers doing scientific computing and techni-

cal computing. SciPy also refers to the open source Python library of algorithms and

mathematical tools that are at the crux of the SciPy environment.

26

NumPy is an extension to the Python programming language that adds support

for large, multi-dimensional arrays and matrices, along with a large library of high-

level mathematical functions to operate on these. This pair of libraries (SciPy/NumPy)

provide array and matrix structures, linear algebra routines, numerical optimization,

random number generation, statistics routines, differential equation modeling, Fourier

transforms and signal processing, image processing, sparse and masked arrays, spatial

computation, and numerous other mathematical routines. Most of the MATLAB’s basic

functionality and support for reading and writing MATLAB files are included in these.

matplotlib is a plotting library for the Python programming language and its NumPy

numerical mathematics extension. SymPy is a Python library for symbolic computation.

There is great documentation and a very active community for these libraries.

3.7.1 MPI for Python

There are several Python packages available that wrap MPI as a library and allow

MPI functions to be called from Python. These include pyMPI, maroonmpi, mpi4py,

myMPI, Pypar etc.

The mpi4py library Dalcin (2012) provides an interface very similar to the MPI-

2 standard C++ Interface. It supports point-to-point (sends, receives) and collective

(broadcasts, scatters, gathers) communications of Python objects, as well as optimized

communications of certain Python object like NumPy arrays. We have chosen mpi4py

for our implementation.

Since we will be using Python’s scientific programming environment for developing

applications, let us briefly go through the important routines in this MPI implementation

for Python.

Environmental Management Routines

1. MPI_Init() : This function initializes the MPI execution environment and
must be called only once in every MPI program before any other MPI functions.

2. MPI_Finalize() : The function terminates the MPI execution environment
and there should be no other MPI routine after this.

These two functions are called when you import the MPI module from mpi4py

27

package, but only if mpi4py is not initialized.

Communicators

In mpi4py Comm is the basic class of communicators. The Intracomm and Intercomm

classes are subclasses of the Comm class. COMM_SELF and COMM_WORLD are the two

predefined intracommunicator instances available. From them, new communicators can

be created as needed.

The number of processes in a communicator and the calling process rank can be

respectively obtained with methods Get_size() and Get_rank(). The associated

process group can be retrieved from a communicator by calling the Get_group()

method, which returns an instance of the Group class.

Point-to-Point Communication

This is the fundamental type of communication with one side sending and the other

side receiving. MPI provides a set of send and receive functions that can be used to

communicate specific typed data with a tag associated for identification.

The basic methods for point-to-point communication are Send() and Recv() for

communicator objects. These are of blocking type, i.e., the function will block the caller

until the data buffers used in communication can be safely reused by the program. MPI

also provides support for non-blocking communication so as to overlap communication

with computation.

Collective Communications

Collective Communication allows communication between multiple processes of a group

simultaneously. These communicate typed data, but without a specific tag. The follow-

ing are the common routines:

1. Barrier(): It is the function for synchronization operation. Each task, when
reaching the Barrier() call, blocks until all tasks in the group reach the same
Barrier() call after which all tasks are free to proceed.

2. Bcast(): It is a data movement operation. It broadcasts (sends) a message from
the process with rank "root" to all other processes in the group simultaneously.

28

3. Scatter(): It is a data movement operation. It distributes distinct messages
from a single source process to other destination processes in the group simulta-
neously.

4. Gather(): It is a data movement operation. It gathers distinct messages from
each process in the group to a single destination process. This routine is the
reverse operation of Scatter().

5. Reduce(): It is a collective computation operation. It applies a reduction op-
eration on all processes in the group and places the result in a single defined
process.

Topologies

Virtual Topologies We know that in the basic assignment, each process is assigned a

rank in a linear way. This kind of linear ranking method may not reflect the actual

logical communication pattern of the processes (which is dependent on the geometry of

the problem and the algorithm used).

A virtual topology is the mapping of MPI processes, built upon MPI communicators

and groups, into a geometric shape based on a certain connectivity. The two main types

of topologies supported by MPI are Cartesian(grid) and Graph. Since they are virtual,

there won’t be any relationship between the physical structure of the parallel system

and the process topology. The topology needs to be programmed into the code by the

application developer. MPI provides routines for letting you arrange these processes in

a specific grid like structure.

Virtual topologies are useful when the application demands a specific communi-

cation pattern. Also the efficiency of the code can be improved in cases where the

hardware architecture of the system imposes penalties on communication between spe-

cific nodes. Besides possible performance benefits, virtual topology can function as a

convenient naming structure greatly benefiting the program readability.

29

CHAPTER 4

Application Parallelization and Modeling

For the experiments we chose the K-Means Clustering problem, a commonly resource

intensive problem. The main motivation was to be able to setup parallelized application

for K-Means clustering, so that the user can run this algorithm on their datasets within

the time constraints. Let us briefly look at the algorithm.

4.1 K-means Clustering Problem

Clustering is the process of partitioning or grouping a given set of data points into dis-

joint clusters. This is done such that the certain attributes of data points in the same

cluster are alike and the same attributes of data points within different clusters are dif-

ferent. Clustering has been a widely studied problem in variety of domains like neural

networks, data mining and statistics, data compression and vector quantization etc. The

k-means method of clustering has been proven to be an effective clustering technique

for many applications.

4.1.1 Problem Description

Given a set of observations (x1, x2, , xn), where each observation is a d-dimensional

real vector, k-means clustering aims to partition the n observations into k sets (k ≤ n)

S = (S1, S2, , Sk) so as to minimize the within-cluster sum of squares given as

argmin
S

∑k
i=1

∑
xj∈Si

‖xj − µi‖
2

where µi is the mean of points in Si.

4.1.2 Sequential Approach

The most common sequential approach uses an iterative refinement technique. The

algorithmis given in given in Algorithm 4.1.

Algorithm 4.1 K Means Sequential Algorithm

Require: Data Points X = (x1, x2, . . . , xn) to be clustered
k (no of clusters)
MaxIter (no of iterations)

Ensure: Set of Clusters C = (C1, C2, . . . , Ck)
Cluster Centroids c = (c1, c2, . . . , ck)
c = RandomCentroid(k) {Initialize the centroid list}
while iter ≤MaxIter do

for all xi ∈ X and cj ∈ c do
cp = argmin

ci
Dist(xi, cj)

UpdateCluster(cp, xi)
for all Ci ∈ C do
ci = RecomputeClusterCentre(Ci)
UpdateCentroidList(c, ci)

4.1.3 Distributed Approach

In the distributed approach we divide the initial dataset into m parts where m is the

number of the processes over which the code is parallelized. After this we follow a

similar iterative refinement technique. Only the centroid list in every iteration is being

passed on by the processes. The pseudocode for the Distributed Approach is given in

Algorithm 4.2

4.1.4 Experiment

The experiment was done using randomly generated set of data points of sizes varying

from 1000 to 13000. Each run of the k- means clustering was distributed over a set of

VMs. The number of VMs were varied from 1 to 10 VMs for each data set clustering.

It is assumed that no other job is running on the VMs and that there is no waiting time

for any job. The response times of each job were measured and plotted. The graphs 4.1

and 4.2 were obtained.

4.1.5 Modeling

Based on the exponentially changing trend observed in 4.2 and the almost linear trend

in 4.1, the equation (4.1) has been considered. Here z stands for response time, x ∈

(1000, 13000) stands for size of the dataset, y ∈ {1, 10} ⊂ Z stands for number of

31

Algorithm 4.2 K Means Distributed Algorithm

Require: Data Points X = (x1, x2, . . . , xn) to be clustered
k (no of clusters) , MaxIter (no of iterations), p (no of processes)

Ensure: Set of Clusters C = (C1, C2, . . . , Ck)
Cluster Centroids c = (c1, c2, . . . , ck)
if rank = 0 then // Initialization
c = RandomCentroid(k) // Initialize the centroid list
SplitData(X, p) // Split data X into p parts (X1, X2, . . . , Xp)
for i = 0 to p do
Send(Xi, rank = i, tag = i)

else
Receive(Xi, rank = 0, tag = i)

while iter ≤MaxIter do // Iterations
if rank = 0 then
Broadcast(c) // Broadcast Centroid List
for i = 0 to p do
Receive(li, rank = i) // Receive Cluster Assignments from each process
L = Aggregate(li)

C = GetClusters(X,L)
for all Ci ∈ C do
ci = RecomputeClusterCentre(Ci)
UpdateCentroidList(c, ci)

else
i = rank
Receive(c, rank = 0) // Receive Centroid List
li = GetClusterAssignment(Xi, c) // Cluster assignments computed
Send(li, rank = 0)

32

0 2000 4000 6000 8000 10000 12000 14000
Size of Data

0

2

4

6

8

10

12

Co
m
pu

ta
tio

n
Ti
m
e
(in

 s
ec
)

No of VMs
2.0
3.0
4.0
5.0

Figure 4.1: Response Times vs Size of Dataset for different no of VMs

1 2 3 4 5 6 7 8 9
No of VMs

0

5

10

15

20

Co
m
pu

ta
tio

n
Ti
m
e
(in

 s
ec
)

Size of Data
10500.0
6500.0
3500.0
8000.0
12500.0

Figure 4.2: Response Times vs VMs for different sizes of Dataset

33

virtual machines/processors.

z = ke(a1y+a2y2+...)xb (4.1)

Taking logarithm on both sides

z = 0.029e(−0.77y+0.10y2−0.004y3)x0.74 (4.2)

If we write this equation for each data point (total m data points) the equations can

be combined together and written in the following matrix form:


ln(z1)

ln(z2)
...

ln(zm)

 =


1 y1 y21 . . . lnx1

1 y2 y22 . . . lnx2
...

...
...

...

1 ym y2m . . . lnxm





ln(k)

a1

a2
...

b


(4.3)

It can be simplified as Y = AX . Now we find X = X̂ such that it minimizes ‖r‖

where r = AX̂ − Y . Then X̂ is called the least squares fit of Y = AX . We assuming

that A is full rank. The norm of r is given as

‖r‖2 = XTATAX − 2Y TAX + Y TY (4.4)

Setting the gradient to zero to obtain the minimum value.

∇X‖r‖2 = 2ATAX − 2ATY = 0 (4.5)

This yields the normal equations : ATAX = ATY Assuming ATA is invertible gives

us the solution to the least squares fit problem as:

X̂ = (ATA)−1ATY (4.6)

These curve fits were done for various number of coefficients (a1, a2, . . .) and b.

The Percentage Fit and the Root Mean Square Error were computed in each case and

34

the following graphs were obtained.

3 4 5 6 7 8 9
No of coefficients

50

60

70

80

90

100

Go
od

ne
ss
 o
f F

it
(in

 %
)

Figure 4.3: Percentage fit vs no. of coefficients

Form the graphs it is evident that a 5 coefficient model is a good fit for the model.

Hence the model and the parameters are given as:

z = 0.029e(−0.77y+0.10y2−0.004y3)x0.74 (4.7)

• RMSE = 0.645

• Percentage fit = 95.71 %

The 4.5 compares the real values and the estimated values by the model.

35

3 4 5 6 7 8 9
No of coefficients

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

RM
SE

Figure 4.4: RMSE vs no. of coefficients

Size of Data

2000 4000 6000 80001000012000
No
 of
 VM

s

1
2
3
4
5
6
7
8
9

Co
m
pu
ta
tio

n
Ti
m
e
(in

 s
ec
)

5

10

15

Real Values
Least Squares Estimate

Figure 4.5: Real Values vs Estimated Model

36

CHAPTER 5

Virtual Machine Allocation - Delay Optimization and

Algorithm

5.1 Optimization Problem Formulation

In our analysis we consider the cloud model wherein parallelizable applications like

the one described in the previous chapter arrive at the loadbalancer. The loadbalancer

creates batches of several jobs and allocates the resources at regular intervals. At every

resource allocation trigger, the loadbalancer computes the number of resources to be

provided based upon the algorithm proposed.

Consider the batches as a function of time as Batch(t). These are considered at

every resource allocation trigger to be composed of several jobs

(A1(t), A2(t), . . . , Am(t)). Each of these jobs specify the following parameters:

1. Job Size (size): This is the parameter that decides the size of the job. Input data
in the case of K-Means Clustering.

2. Due Time (d) : This is a parameter that specifies the due time expected by the
user. It is decide based on the priority of the job assigned by the user.

Let (x1, x2, . . . , xm) refer to the number of VMs to be assigned for each of the

jobs. Then the expected worst case running time of each of the jobs can be computed

according to the models described in the previous section. Let us denote the expected

worst case run time for job Ai with size si and due time di run on j VMs be given

as ti(j) = F (si, j). Our aim is to minimize the total delay over the expected due

time experienced by the user. Hence the the cost function to be minimized is given as
m∑
i=1

δij where δij represents the excess delay over the expected due time when run on j

resources and is given as

δij =

 ti(j)− di : ti(j) > di

0 : ti(j) < di

At every resource allocation trigger the loadbalancer runs a check on the current

utilization of the system and returns the number of free resources (VMs) that can be

allocated. Let us assume that at time t, a maximum of n resources are available. Hence

our optimization problem can be written as

min
m∑
i=1

δij

subject to the constraint
m∑
i=1

xi ≤ n

xi ∈ Z

5.2 Proposed Algorithm

The jobs arriving are grouped into batches at regular trigger intervals as showin in 5.1.

At each trigger instant, we have a batch of m jobs and n resources need to allocated

to minimize the overall
m∑
i=1

δij . We create a matrix C where the rows corresponds to

each job and the columns correspond to the number of VMs allocated. The proposed

algorithm first computes the total number of resources required for the jobs ninit for

minimizing the delay without imposing the constraint on total number of available re-

sources. Then it iterates from ninit to the actual value n. In each iteration it looks for the

job that will add the least amount of penalty into the cost function
m∑
i=1

δij and reduces 1

VM from it. The detailed algorithm is given in 5.1

5.3 Simulation and Results

As proof of concept, we have simulated the proposed algorithm and compared it with

a simple shared allocation algorithm. In the simple shared allocation alogrithm, we

divide the total resources available equally among the jobs in the batch. We simulate

the two algorithms using the multiprocessing package from python. This package lets us

spawn multiple processes that can work on a queue structure. We create 3 processes for

simulating each of the algorithm. The first process generates batches of jobs at regular

38

Algorithm 5.1 Resource Allocation Algorithm
Require: Model equations, n number of VMs, Job numbers and details
Ensure: xi number of virtual machines to be allocated for each job i

for i = 1 to m do
Compute ji such that tij = di
Ji = djie
δij = tiJi − di

if
∑

(Ji) ≤ n then
Allocate Ji VMs to job i

else
k = 0
for i = 1 to m do

if Ji = 1 then
Allocate Ji = 1 VM to job i
extra_delayi = 0
k = k + 1

else
extra_delayi = δiJi−1 − δiJi

m = m− k
n = n− k
iter =

∑
(Ji)− n

while iter > 0 do
for JI > 1 do
I = argmini extra_delayi

JI = JI − 1
if JI > 1 then
extra_delayI = δiJI−1 − δiJI

else
extra_delayI = 0

iter = iter − 1
Allocate Ji VMs to job I

Total Excess Delay is
m∑
i=1

xi where xi = δiJi

39

Figure 5.1: Job Queueing and Allocation

interval and pushes it into the queue. The second process pops these batches from the

queue, executes the algorithms, starts the jobs on the simulated VMs and computes the

delay. The third process monitors and updates the execution of the jobs on the simulated

VMs with time.

The jobs were sent in the form of 20 batches at regular intervals of 5 seconds. The

no of virtual machines initially alloted were 5. They were scaled up to 10 whenever the

no of jobs were more than available free VMs.

We can compare the the total delays experienced by batches of jobs from the graph

5.2. It is evident that the proposed minimum delay algorithm is superior to a simple

shared algorithm. Also a comparison of the the VMs utilization 5.3 reveals that the

proposed algorithm completes the jobs faster than the shared algorithm.

40

0 5 10 15 20
Time (in sec)

0

20

40

60

80

100

120

De
la
y
(in

 s
ec

)
Shared Algorithm
Proposed Algorithm

Figure 5.2: Comparison of Delay

0 20 40 60 80 100 120 140 160 180
Time (in sec)

0

2

4

6

8

10

VM
s
Ut
ili
ze
d

Shared Algorithm
Proposed Algorithm

Figure 5.3: Comparison of VM utilization

41

CHAPTER 6

Conclusion

In this work we have successfully set up the Eucalyptus Cloud framework on the local

physical systems to function as a Private Cloud. Using the Message Passing Interface

library, we were able to set up parallel applications of KMeans Clustering in the dis-

tributed environment to reduce time. This application can thus be deployed over the

cloud for use by the users in the scientific community who would like to take advan-

tage of the benefits offered by clouds. Thus the user can get results without bothering

about the underlying resource management or implementation. The profile of the re-

sponse times for the application has been modeled as a function of the job sizes and

the resources allocated. Based on these benchmarking tests, a new resource allocation

algorithm has been proposed to reduce overall delay over expected due time for jobs

in a batch-wise fashion. The proposed algorithm has been simulated and shown to be

superior to a simple sharing algorithm in terms of delay minimization.

REFERENCES

1. Buyya, R., C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic (2009). Cloud com-
puting and emerging {IT} platforms: Vision, hype, and reality for delivering computing
as the 5th utility. Future Generation Computer Systems, 25(6), 599 – 616. ISSN 0167-
739X. URL http://www.sciencedirect.com/science/article/pii/
S0167739X08001957.

2. Dalcin, L. (2012). MPI for Python, Release 1.3. URL http://mpi4py.scipy.
org//.

3. Eucalyptus Systems, I. (a). Eucalyptus 3.1.2 Installation Guide. URL https://
www.eucalyptus.com/.

4. Eucalyptus Systems, I. (b). Eucalyptus 3.1.2 User Guide. URL https://www.
eucalyptus.com/.

5. Gibson, J., R. Rondeau, D. Eveleigh, and Q. Tan, Benefits and challenges of three
cloud computing service models. In Computational Aspects of Social Networks (CA-
SoN), 2012 Fourth International Conference on. 2012.

6. Gong, C., J. Liu, Q. Zhang, H. Chen, and Z. Gong, The characteristics of cloud
computing. In Parallel Processing Workshops (ICPPW), 2010 39th International Con-
ference on. 2010. ISSN 1530-2016.

7. He, H., Applications deployment on the saas platform. In Pervasive Computing and
Applications (ICPCA), 2010 5th International Conference on. 2010.

8. He, Q., S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, Case study for running hpc
applications in public clouds. In Proceedings of the 19th ACM International Sympo-
sium on High Performance Distributed Computing, HPDC ’10. ACM, New York, NY,
USA, 2010. ISBN 978-1-60558-942-8. URL http://doi.acm.org/10.1145/
1851476.1851535.

9. Jakovits, P. and S. Srirama, Adapting scientific applications to cloud by using dis-
tributed computing frameworks. In Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on. 2013.

10. Kaur, P. and I. Chana, Unfolding the distributed computing paradigms. In Advances
in Computer Engineering (ACE), 2010 International Conference on. 2010.

11. Ostermann, S., R. Prodan, and T. Fahringer, Extending grids with cloud resource
management for scientific computing. In Grid Computing, 2009 10th IEEE/ACM Inter-
national Conference on. 2009.

12. Yang, G., Z. Zhu, and F. Zhuo, The application of saas-based cloud computing in
the university research and teaching platform. In Intelligence Science and Information
Engineering (ISIE), 2011 International Conference on. 2011.

43

http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://mpi4py.scipy.org//
http://mpi4py.scipy.org//
https://www.eucalyptus.com/
https://www.eucalyptus.com/
https://www.eucalyptus.com/
https://www.eucalyptus.com/
http://doi.acm.org/10.1145/1851476.1851535
http://doi.acm.org/10.1145/1851476.1851535

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Cloud Computing - Overview and Eucalyptus Setup
	Definition and Characteristics
	Service Model Classification
	Deployment Model Classification
	Eucalyptus - Open Source Cloud Computing
	Architecture of Eucalyptus
	Description of the components
	Cloud Controller (CLC)
	Walrus
	Cluster Controller
	Storage Controller
	Node Controller

	Benefits of Eucalyptus
	Eucalyptus Framework Setup
	System Requirements
	Networking Mode
	Configuring Dependencies
	Installing Eucalyptus
	Configuring Eucalyptus
	Registering Eucalyptus
	Starting Eucalyptus
	Configuring the Runtime Environment
	Eucalyptus Testbed Setup

	Customized Image Creation
	Add an Image
	Verify the Image
	Modify an Image

	Using Instances
	Find an Image
	Create Keypairs
	Authorize Security Groups
	Launch an Instance
	Log in to an Instance
	Reboot an Instance
	Terminate an Instance

	Scientific Computing on the Cloud - A Distributed Computing Approach
	Definition
	Advantages
	Distributed Computing - Definition and Frameworks
	MATLAB Distributed Computing Server
	MATLAB enabled Image creation for Eucalyptus
	Advantages
	Disadvantages

	MapReduce
	Message Passing Interface
	Advantages
	Functionality of MPI
	Programming Model of MPI
	Communicators and Groups

	Python
	MPI for Python

	Application Parallelization and Modeling
	K-means Clustering Problem
	Problem Description
	Sequential Approach
	Distributed Approach
	Experiment
	Modeling

	Virtual Machine Allocation - Delay Optimization and Algorithm
	Optimization Problem Formulation
	Proposed Algorithm
	Simulation and Results

	Conclusion

