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ABSTRACT

KEYWORDS: Process Variation; Dynamic Power; Glitches; Monte Carlo Anal-
ysis; Input Variation; Ambiguity Interval Propagation; Probability

Propagation

Process variation has an implicit impact on switching energy consumption by altering
the propagation delays of gates in the circuit and thereby, resulting in glitches. We
perform Monte Carlo analysis to identify the impact of process variation on switching
energy consumption. We also estimate the contribution of glitches resulting due to in-
put and process variation to overall switching energy consumption and signify the need
to reduce their propagation to subsequent combinational logic in the design. A new
approach to identify the nets in the circuit which result in maximal power reduction if
glitches at that net are blocked is presented. Implementation of two algorithms, ambigu-
ity interval propagation and probability propagation to estimate the average number of
transitions at each net is also shown. A validation of the approach is done by blocking

glitch propagation at nets using latches and estimating power consumption.

il
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The desirability of portable electronic systems has increased significantly over the years.
The primary aspect of size of such a device is contributed by its battery, which has direct
implications by power consumption of the system. The cost of cooling systems has also
increased. Operation of systems at higher frequencies impose limitations on the over-
all power consumption of the system. Increasing density of CMOS circuits has added
additional concerns to the problem of power dissipation. Various factors of system
design like power-supply sizing, current requirements, heat sink/cooling arrangements
and choice of devices within the system are directly determined by the system power
consumption. Reduction of power is known to increase reliability of operation of the
device. Hence, the power consumption of digital CMOS circuits has become one of the

primary design constraints and is being actively researched for several decades now.

Power consumption is no longer a secondary issue in designing CMOS devices. The
designer today has to design systems targeting all the three major design requirements
simultaneously: low power, high performance, small area. The increasing complexity
and high-performance requirements makes the task of designing low power systems
challenging. This results in a need to make design decisions early and in accordance
with power specifications of the system. System designers are now looking at archi-
tectural improvements and automated design methodologies from the stand point of
implementation, circuit and logic topologies, digital architectures and algorithms used
for low power design. This necessitates estimation of power consumption at every stage

of system design cycle to ensure meeting of design specifications.

Apart from meeting average power specifications by the design, estimation of peak
power consumption is also needed for better circuit reliability. Large amounts of current
dissipation in a short span of time may cause problems of excessive heat generation,

resulting in circuit damage in a few cases. It may also cause temporary changes in



voltage lines causing operational failure of the circuit. Hence, estimation of maximum
power consumption by the design is also crucial for exploring appropriate packaging

and cooling options or optimizing power grid networks.

The fact that early and accurate power estimation is continuing to assume greater

importance has been the strongest motivation for the present work.

1.2 Problem Statement

The key objectives of our work are:

e To identify and analyze the impact of process variation on the Dynamic Power
Consumption of combinational CMOS circuits.

e To demonstrate the contribution of glitches to Dynamic Power Consumption and
hence signify the need to minimize the propagation of glitches through large com-
binational blocks.

e To devise a novel time-efficient approach to identify the high glitch nets in a
combinational circuit without Monte Carlo Simulations.

e To propose a heuristic to compute the set of nets in a combinational circuit which
would result in maximal reduction of total power consumption of the circuit on
blocking the glitches at those nets.

1.3 Related work

Several researchers have looked at the problem of reduction of CMOS power dissipation
using varied approaches. Algorithms, both deterministic and probabilistic approaches
have been proposed to efficiently estimate power consumption. Impact of process vari-
ation on switching energy consumption has also been actively researched for the past

few years.

The paper by Najm (1994) presents a survey of various power estimation techniques.
It describes the simulation based techniques for power estimation. It also enumerates
the drawbacks like time-inefficiency and high dependence on input vectors by such
approaches. It then describes the probabilistic approach to power estimation using sig-

nal probabilities and Binary Decision Diagrams (BDDs). The paper by Raghunathan



et al. (1996) looks at early power estimation and design optimization at Register Trans-
fer Level (RTL). It analyzes glitch generation and propagation in data path blocks as
well as control logic and suggests design optimization techniques for glitch reduction.
Another paper by Najm (1995) also looks at power estimation at RTL. It calculates en-
tropy of gates, given only its boolean implementation function and uses this metric to
estimate power consumption at RTL. The paper by Anderson and Najm (2004) suggests
a method to predict switching activities at nets and node capacitances early for FPGA
designs. It presents a mathematical prediction model to estimate switching activities at
nets by considering every glitch at a node to be generated at that node or propagated by
its fan-in nodes. It also presents a mathematical model to estimate node capacitances

early in the design along with noise considerations.

The paper by Benini ef al. (1998) looks at power modeling at system level. The
power manager interacts with the resources in the system and receives requests from the
environment. This abstract model is used to estimate system level power information
of the design. The paper by Dhanwada ef al. (2012) presents a new approach called
Power Contributor Modeling. In this paper, they separate independent components of
power like capacitative switching, short circuit power and leakage power and models
are built to estimate the contributions of these components. All the components are
summed for individual cells to estimate power consumption. The paper by Qu et al.
(2000) elaborates a method to estimate power consumption of microprocessors. They
empirically build a power data bank, which contains the power information of various
instructions and built-in functions. The execution information of the software run on the
microprocessor is used along with the power data bank to estimate power consumption.
There is some active research being done in behavioral level power estimation (Qu ef al.
(2000)). The paper by Buyuksahin and Najm (2005) suggests a high-level estimation
of average switching activity, total capacitance and area by using a Boolean network

representation of the design.

The paper by Hao er al. (2011) considers spatial correlation in process variation
and suggests a methodology to estimate dynamic power consumption. It first estab-
lishes that variations in process parameters like channel length affect dynamic power
consumption significantly. It then presents a method to compute dynamic power statis-
tically at every net in the circuit using orthogonal polynomials and virtual grid based

variables for process parameters with spacial correlation. The paper by Dinh ef al. con-



siders impact of process variation on dynamic power consumption by modeling transi-
tion waveforms at inputs of every gate in the design. This paper also considers partial
glitches by capturing probability and timing of events at the nets by segmenting these
transition waveforms. The paper by Harish er al. (2007) presents a simulation based
approach to estimating power in the presence of process variation. The process varia-
tion is assumed to have a Gaussian distribution. Simultaneous dependence on multiple
process parameters is modeled using the statistical technique of Design of Experiments

by performing a 3-level Face Centered Central Composite design.

The paper by Alexander and Agrawal (2009) suggests a simulation based approach
to estimate bounds on the number of transitions at every net in the circuit. It assumes a
bounded delay model for every gate in the design and propagates ambiguity intervals,
which represent the minimum and maximum times during which the gate can have
probable transitions due to an applied input vector pair. In this thesis, we implement
some of the ideas discussed in this paper and propose some applications for the same.
The paper by Meixner and Noll (2014) looks at power estimation at a higher level of
abstraction. It proposes a methodology to pre-characterize glitch activities in functional
blocks of combinational logic using signal statistics at every net in the design. It in-
troduces new metrics like glitch occurrence, glitch width and glitch time to quantify
statistical glitching properties on circuit nets. The major drawback of such an approach
would be the necessity for time-consuming characterizations. Hence, this methodology

is more suited for generic designs.

Some papers by Tsui er al. (1993) and Ghosh ef al. (1992) suggest probabilistic ap-
proaches to computing power consumption in CMOS circuits. The paper by Tsui ef al.
(1993) explains the methodology to estimate static and transition probabilities at every
net of the circuit and use these parameters to estimate dynamic power consumption of
the circuit. It also accounts for correlation at the inputs of intermediary gates in the
design while computing power. One major advantage of their methodology is that the
algorithm uses real propagation delays for all the gates in the circuit. An improvisa-
tion of this approach has been suggested by the paper by Ghosh e al. (1992) where
the static and transition probabilities are computed by calculating Boolean functions
(disjoint covers) that cause switching at every gate in the design. We combine the ideas

discussed in both the papers and implement them in this thesis.



The paper by Monteiro et al. (1993) looks at retiming algorithms from the perspec-

tive of low power. It suggests an iterative methodology to optimally place flip-flops in

the circuit such that the timing constraints are not violated, the intended functionality is

not altered and total power consumption is minimized.

1.4

Contributions

We have analyzed the impact of process variation on switching energy consump-
tion of combinational CMOS circuits using Monte Carlo analysis. We have also
differentiated the contributions of variation in total switching energy due to pro-
cess variation and due to variation in input stimuli.

We have highlighted the contribution of glitches to switching energy consump-
tion. For this, we have implemented a time-efficient power extraction algorithm
for estimating switching power due to each input vector pair, given the gate-level
netlist, technology library file and the VCD file. With this analysis, we signify
the importance of reduction of glitches and their propagation in the circuit for
achieving low power designs.

We have implemented two algorithms, ambiguity propagation algorithm and prob-
ability propagation algorithm to estimate the average number of transitions at ev-
ery net in the design and compute bounds on switching energy consumption. We
also built an efficient event-driven simulation tool for zero delay simulation of
combinational circuits.

We have proposed a methodology to estimate the total switching energy of the
circuit due to a glitch at one of the intermediary nets in the circuit. This analysis
would highlight those nets in the circuit where the glitches need to be blocked for
maximum switching energy reduction. We validate these results by estimating
power reduction in the circuit when glitches at a net are blocked by a latch.

Scope of the work

The circuits that we have considered for our analysis are combinational and have
a typical gate count ranging between 100 and 1000. We have analyzed the circuits
at 45 nm and 250 nm technologies.

We neglect partial glitches and non-linear input waveforms in all the gate level
simulations.

We have assumed inertial delay model for all the gates in the circuit.

Process variation is modeled by introducing a standard normal variation in prop-
agation delays of all gates and by varying their standard deviations. We have
not analyzed the effect of individual process parameters and we have assumed a
constant source voltage (V4q).



e Most of our analysis uses only switching power to demonstrate dynamic power
and is based on an assumption that internal power is either insignificant or propor-
tional to the switching power. Also, since there is no clock for the combinational
circuits, the energy dissipated per transition was considered as an indicator of
power consumed, since power consumed is just average energy dissipated per
clock period multiplied by the clock frequency.

1.5 Organization of the thesis

The reminder of the thesis is organized as follows:

Chapter 2: Power dissipation in CMOS circuits

This chapter describes the various components of power dissipation in CMOS circuits.
It also describes the typical VLSI Design Flow and the need for power estimation at var-
ious stages of chip design. An introduction to glitches and impact of process variation

on switching energy consumption is also presented in this chapter.

Chapter 3: Transistor Level Analysis

This chapter details the analysis of power dissipation in circuits at the transistor level.
Spice characterization of gates is explained with an example. The results of transistor
level power dissipation for an AND gate and a combinational circuit have been pre-

sented.

Chapter 4: Contribution of glitches to dynamic power consumption

In this chapter, we present the detailed analysis of contribution of glitches to switching
energy consumption of combinational circuits. We also show the individual and com-
bined impact of process variation and variation in input stimuli on switching energy
dissipation. We describe the time-efficient power extraction algorithm used for Monte

Carlo analysis of the circuit.

Chapter 5: Ambiguity Interval Propagation

We discuss the ambiguity interval propagation algorithm used to estimate bounds on
switching energy consumption of a combinational circuit. We suggest some improvisa-
tions on the existing algorithm for better estimation of maximum number of transitions
at every net in the design. We also present the results obtained for power estimation by

evaluation of multiple ambiguity intervals.



Chapter 6: Probability Propagation

We discuss the probabilistic approach to estimation of switching energy consumption
of a combinational circuit in this chapter. We present the results obtained by proba-
bility propagation under both zero delay and real delay scenarios. We also show how

correlation in input signals of gates can impact power estimation using this approach.

Chapter 7: Glitch Power Reduction

In this chapter, we discuss the methodology for estimating power reduction by blocking
glitches at various nodes in a combination circuit. We present the results of sensitivity
analysis of each node to glitch power reduction and validate the same by latch-based
glitch reduction approach. We hence, identify the high glitch activity nodes in the

circuit.

Chapter 8: Conclusion
We present the conclusions and inferences drawn from the work done in the thesis. We

propose the scope of the work ahead.



CHAPTER 2

POWER DISSIPATION IN CMOS CIRCUITS

We begin with a review of various components of power dissipation in digital CMOS
circuits. We, then explain the typical VLSI Design flow and the need for power estima-
tion at each level. The theory behind glitches and how they are generated is explained
with an example. The final section explains process variation and how it impacts power

dissipation in detail.

2.1 Components of Power

The need for low power devices led to the development of CMOS technologies. CMOS
power consumption is primarily determined by two components of power: Static power
consumption and Dynamic power consumption. CMOS devices have very low static
power dissipation, owing to lower leakage power compared to other technologies. This
power dissipation occurs in steady state, when all the signals in the design do not un-
dergo any switching. However, an increase in operating frequencies of the systems
has resulted in increased switching activity of the design. Hence, dynamic power con-
sumption contributes majorly to overall power dissipation of the system. Charging and
discharging of capacitances in the design adds primarily to this component of power

dissipation.

The power dissipated by a digital CMOS circuit can be broadly classified into two

categories.

e Static Power

e Dynamic Power

Figure 2.1 represents the various components of CMOS power consumption.



CMOS Power
Consumption

Static Power Dynamic Power

Internal Switching
Power Power

Short Power at internal
Circult Power node capacitances

Figure 2.1: CMOS Power Consumption

2.1.1 Static Power

Static power is otherwise called leakage power. Leakage power is the power dissipated
by a gate when it is not switching. This happens when the gate is static or inactive in
the design. The primary component of leakage power is source-to-drain sub-threshold
leakage, which is caused by reduced threshold voltages that prevent the gate from com-
pletely turning off. It is caused by currents that flow through the transistors in the gate,
even when they are turned off. This component of power is becoming significant in
newer technologies. Many-a-times, all sources of leakage power are lumped together

into a single value and specified in the technology library for modeling purposes.

Leakage power is caused primarily by reverse biased pn junctions, the sub-threshold
leakage current and the gate tunneling effect. This power is dissipated as long as the
supply voltage is on. Several other factors like temperature also affect leakage power,

due to its direct dependence on thermal voltage and threshold voltage.



2.1.2 Dynamic Power

Dynamic power is the power dissipated by a gate when it is active (or switching). A
gate is active when the voltage at the net changes during a low to high transition or a
high to low transition due to an applied stimulus. Dynamic power is further divided into

two components.

e Switching Power

e Internal Power

Switching Power

Switching power of a gate is the power dissipated by charging and discharging of the
load capacitance at the output of the gate. The load capacitance is composed of in-
terconnect wire capacitance as well as the input capacitances of the fan-out gates the
output is driving. The amount of switching power depends on the switching activity of

the gate. This in turn also depends on the operational frequency of the design.

SwitchingPower = f x C; x V? (2.1)

where f is the transition frequency, C is the output load capacitance and V" is the supply
voltage. Switching power is resulted by two kinds of transitions: steady state transitions
and glitches. Steady state transitions are expected transitions at the nodes in the circuit
due to applied stimulus. Glitches are unwanted transitions at the nodes. We will see

more about glitches and how they are generated in further sections.

Internal Power

Internal power is the power dissipated within the boundary of the gate. There are two

components of internal power.

e Short Circuit Power

e Power dissipated at internal capacitances
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Figure 2.2: The four different components of power in a CMOS inverter.

Short Circuit Power

During the period when the transistors in a gate switch, there is a momentary short
circuit current which flows through them. For a small amount of time, the transistors
are all in the ON state and thus, provide a conducting path from supply line to ground.
This happens for a small duration of time within the rise or fall time of the input signal

to the gate.

Power dissipated at internal capacitances

During switching, the gate dissipates some amount of power by charging and discharg-
ing of capacitances internal to the gate. The intrinsic gate capacitances depend on the

region of operation of the transistors.

Figure 2.2 explains the various components of power dissipation using an inverter

as an example gate.
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2.2 VLSI Design Flow

The VLSI design flow primary comprises of three stages: the behavioral level, describ-
ing the functionality of the design, the gate level, describing the form of implementation
and the physical level, describing the physical implementation of the design. A simpli-

fied view of the design flow is represented in the flow chart (Figure 2.3) below.

Figure 2.3: VLSI Design Flow

In a typical VLSI design flow, we start with system specifications, which signify
the intent of the design. These specifications are then converted to Register Transfer
Level by architectural synthesis tools. Once the RTL is verified to meet the design
specifications, logic synthesis is done by CAD tools to convert it to a gate level netlist.
This netlist is then used for placement and routing procedure, after which the chip will
be sent for fabrication. The verification of the design at every step plays a significant

part of the design process. At every stage, all the design constraints, including power

12



consumption of the design have to be met to the specifications. In today’s SoC designs,
several circuit blocks are integrated together into a single system. While designing such
complex systems, there is always a trade off between accuracy and computational speed
in estimation of power consumption. Accurate estimates are obtained at later stages,
when the gate level information is ready. Power estimation is traditionally performed
at the transistor level by SPICE simulation at the end of the design flow. However,
as the systems get more and more complex, this becomes a computationally intensive
task. Moreover, power estimates from the later stages make redesigning of the system
difficult and thereby, increasing the time-to-market. Gate level power estimation has
become increasingly popular and active research is being done on the same. Power es-
timates at earlier levels like RTL are less accurate than gate level estimates. Algorithms

to estimate power at earlier levels are being developed.

2.3 Glitches

Glitches are unwanted transitions at the output of a gate due to the skew in its input
signals. This arises primarily due to unbalanced path delays in the circuit. When several
paths arriving at one internal gate have different propagation delays, the gate undergoes

several unnecessary transitions before settling to the correct logic level.

Consider the example shown in Figure 2.4. Due to path delays at earlier levels in
the circuit, the two transitions at the inputs do not occur at the same time. They are
shifted in time by a small amount. This results in a 0 — 1 — 0 transition at the final
levels in the circuit. Observe that the glitch at the output do not undergo a complete
0 — 1 — O transition. Such transitions are called partial glitches. Partial glitches are
those glitches whose pulse width is too short in comparison to gate delay. They are
even more difficult to evaluate in the circuit. Since we assume inertial delay model
for the gates in the design, we will not be considering partial glitch transitions in our

analysis.

Switching energy consumption is altered by two kinds of transitions: steady state
transitions and glitches. As we will see in further chapters, glitches contribute signifi-
cantly to switching energy dissipation of the circuit. If glitches are generated at earlier

levels in the circuit, they propagate further through the gates till the output. Hence,

13
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Figure 2.4: An example of generation of glitches in a circuit

glitch transitions can give rise to several other glitch transitions further down the net-

work. In larger designs, this increases switching power of the circuit significantly.

2.4 Process Variation

Process variations are the variations in parameters like oxide thickness, threshold volt-
age, channel length and interconnect wire properties introduced during the semicon-
ductor fabrication process. They can be broadly classified into two categories: inter-die
and intra-die variations. Inter-die variations are the variations on the same wafer lot
across several dies. In this case, the parameters within an individual die remain con-
stant. Intra-die variations are variations introduced within the same die during the fab-
rication process. In this case, some of the parameters within the same die vary across
the surface area of the die. In today’s nano-scale technologies, there is wider amount
of process variation. Process variations, typically alter one or more of threshold volt-
age, channel length or operating temperature. This generates uncertainty in gate delays,
thereby, altering switching energy consumption of the design. This effect varies from
device to device. Glitch transitions are primarily dependent on gate delays of the circuit.

Power supply fluctuations, interconnect noise and temperature fluctuations are some of

14



the factors which affect gate delays in the design. Contribution of glitches to switching

energy consumption is increasingly becoming significant in nano-scale technologies.

The sub-threshold leakage current, which is a primary component of leakage power

can be calculated by Equation (2.2).

W Vs — ’
Isub = ”OCosz?@( nVyp, )(1 _ 6( Vi )) (22)

where 1 is effective mobility, C,, is gate oxide capacitance per unit area, W is gate
width, L is channel length, V,; and V;, are gate to source and drain to source voltages
respectively, V};, is the threshold voltage, V, = % is the thermal voltage and n is a
technology parameter.

As we can see from Equation (2.2), leakage power depends on threshold voltage,
temperature and channel length. Hence, process variation has a direct impact on leakage
power. However, it doesn’t affect dynamic power directly. It alters the gate delays in

the circuit, thereby increasing the number of glitch transitions in many cases. This in

turn increases switching power as the number of transitions increases.
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CHAPTER 3

TRANSISTOR LEVEL ANALYSIS

One of the primary objectives of our work is to identify the impact of process variation
on switching energy consumption, and hence, estimate the contribution of glitches to
switching energy. One of the most accurate ways of doing this is by a simulation at
the transistor level across several inputs. However, an exhaustive simulation like this
would be computationally time intensive. As explained in earlier sections, there is
always a trade off between accuracy and computational speed in estimation of power.
So, typically a gate level simulation is done to estimate the overall power consumption.
The simulations at this level are done usually by CAD tools. These estimates will not
consider partial glitches and non-linearity of waveforms at all the nets in the design.

Hence, there will be some loss of accuracy with these estimates.

In this chapter, we will look at characterization of gates and simulation of larger
combinational circuits at transistor level and how they compare to gate level power

estimates using CAD tools.

3.1 Spice Characterization of gates

Power consumption by a logic gate depends on various environmental and process pa-
rameters. Logic family, topology and sizing of transistors, rail voltages, the output
load capacitance the gate drives and the input stimulus are some of the primary fac-
tors which directly influence the power dissipated by the gate. Typically, CAD tools
use the technology library file for the power characteristics of individual gates. The
library file has information about the power consumed by each gate across several load
capacitance values. In order to ensure that the power estimation at gate level by CAD
tools adequately captures the impact of process variation on power consumption of the
circuit, we first need to validate the same at transistor level using spice simulation. And
to do that, the power characterization values in the library used by the CAD tools also

need to be validated against values by the spice simulator being used for simulations.



This section deals with characterization of a logic gate in order to predict its energy

consumption for various driving load capacitances.

3.1.1 Characterization of AND gate

Characterization of a gate for power consumption is done for several values of input
transition times and total output net capacitances. A rising or falling transition is given
as one of the inputs while keeping the other input constant. 0 V voltage sources are
used at various signals to measure the current flowing through those signals. Figure 3.1

shows the circuit used for the characterization.

VDD

+ -
—
11V +
PULSE —11V

Figure 3.1: Spice characterization of AND gate

The analysis is done on a two input AND gate using Spice Opus software. A pulse of
voltage 1.1 V is used to give a rising or a falling transition at one of the inputs. The other
input of AND gate is fed to a 1.1 V' DC voltage source. The Vpp rail is kept at 1.1V
and GND rail at 0 V. Simulation is done for several values of load capacitance Cpoap.
The 0 V' voltage sources at the Vpp rail and at the output of the AND gate measure the
current flowing in those signals. A rising transition with a rise time of 0.00117378
ns is given to one of the inputs of the AND gate. PTM 45 nm technology model file

is used for spice simulation.
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Table 3.1: Spice Characterization of AND gate

Output Transition | Peak | Total Energy | Econsumed

Capacitance Time Current | Consumed —Eioad Eioad | 0.5 x CV?2

Capacitance (ps) (mA) (4] (§4))] ) ()]
0.365616 13.6 0.154 2.37 2.13 0.242 | 0.221198
1.89304 23.7 0.191 4.14 2.88 1.25 1.14529
3.78609 36.3 0.207 6.41 3.90 2.51 2.29058
7.57217 62.0 0.221 10.8 5.96 4.87 458116
15.1443 114 0.232 20.5 10.4 10.1 9.1623
30.2887 220 0.241 38.8 18.7 20.1 18.3247
60.5774 431 0.244 74.4 35.3 39.0 36.6493

The following inferences are drawn from Table 3.1.

The peak current is relatively constant for all loads.

ical value of energy consumed by the load capacitance, 0.5 C V2,

son to short circuit power.

The transition time almost proportionally increases with load capacitance.

The value E,,.q, which is obtained by spice simulation is nearly equal to theoret-

Power dissipated in the internal capacitances of the gate is negligible in compari-

Switching vs Internal Energy for different load capacitances
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Figure 3.2: A comparison of contributions of internal energy and switching energy to
dynamic power for different load capacitances for a 2-input AND gate
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Figure 3.2 shows the contribution of internal energy and switching energy to dy-
namic power consumption of AND gate for various values of output load capacitance.
We observe that both the components, switching energy and internal energy signifi-
cantly contribute to overall dynamic power consumption of the gate. They also increase
with increase in output load capacitance of the gate.

Proportionality of Output Transition Time and Load Capacitance
450

400¢

350¢F

300}
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50t

0 10 20 30 20 50 60 70
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Figure 3.3: Transition time of the signal at the output node versus output load capaci-
tance for a 2-input AND gate

Figure 3.3 shows the transition times of the signal at the output node of the AND
gate for several values of output load capacitances. We observe that the transition time

is nearly proportional to the output load capacitance.

Figure 3.4 compares the energy estimate for the load obtained by spice simulation

and its theoretical estimate of 0.5 C V2. We observe that the two values are nearly equal.

3.2 Transistor level simulation of a combinational cir-

cuit

In the previous section, we characterized a two input AND gate and analyzed the con-

tribution of various sources of power dissipation. In this section, we look at a combi-
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Figure 3.4: A comparison of the energy estimate obtained by spice simulation and the-
oretical value of energy consumed by output load capacitance for a 2-input
AND gate

national circuit and estimate power consumed by the circuit at transistor level. We also

analyze the pros and cons of power estimation at transistor level.

A combinational circuit is modeled as a network of transistors, voltage and current
sources at the transistor level. Spice simulator solves for the node current and voltage
equations using Kirchoff’s laws. The spice simulation then captures the voltage and
current waveforms at all the signals in the circuit due to the applied input stimulus.
A gate level power estimate doesn’t account for partial glitches and non-linearity in
waveforms at the nodes of the circuit. Hence, the estimates obtained at gate level aren’t

as accurate as transistor level estimates.

The primary advantage of transistor level analysis is the high accuracy of power
estimates as compared to gate level estimates. Transistor level estimation considers
non-linearity of waveforms at inputs of the gates and partial glitches in the circuit.
However, it is highly time intensive. Gate level estimation, on the other hand, is time
efficient comparatively and easier to model. There is loss of accuracy at gate level owing
to negligence of partial glitches and non-linearity of waveforms at inputs of gates in the

circuit.
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The circuit that is simulated is an 8 X 8 Booth Multiplier circuit. NanGate
45nm technology file is used. Synopsys Design Compiler converts the verilog RTL
netlist of the circuit into a gate level netlist. This is then converted into an equivalent
transistor level netlist using the tool Calibre. Since the netlist file rendered by Calibre
will not have input sources, the netlist is then modified using a Python script to form
an Eldo spice simulation file. Appropriate pulse waveforms are applied at the input
voltage sources to match with the input pairs used by Synopsys Design Compiler. The
total power dissipation by the circuit is estimated then by Eldo spice simulator. Eldo
spice simulator converts every logic gate in the circuit into its corresponding transistor
level sub-circuit. These sub-circuits are then simulated at transistor level for an ap-
plied stimulus. Synopsys Design Compiler uses the characterized power estimates from

NanGate 45nm technology file for each gate in its power estimation.

We observed that Eldo spice simulation takes about 10 — 15 minutes for simulat-
ing Booth Multiplier circuit for one input vector pair. Monte Carlo analysis of
switching energy consumption of circuits would be highly time-consuming and hence,

transistor level simulation was not taken forward in our analysis.

21



CHAPTER 4

CONTRIBUTION OF GLITCHES TO DYNAMIC
POWER CONSUMPTION

Power consumption of a CMOS circuit is contributed primarily by static leakage power
and dynamic power due to switching activities at nodes in the circuit. The switching
activities at various nodes in the circuit are caused by two kinds of transitions. The first
kind of transition is the expected steady state transition at each node due to an applied
stimulus to the circuit. The second kind of transitions are caused by unbalanced delays
in various paths in the circuit. These transitions are called glitches and they contribute
significantly to the switching power of the circuit. When several stages of combina-
tional logic are pipelined together, glitches generated at earlier stages propagate further
down the network, resulting in significant increase in overall power consumption of the
design. Glitch estimation at Register Transfer level is highly inaccurate. Typically, it is

estimated at gate level.

As seen in chapter 2, process variation also significantly impacts the number of
glitch transitions generated in the network. Process variations are the variations in pa-
rameters like oxide thickness, threshold voltage, channel length and interconnect wire
properties introduced during the semiconductor fabrication process. We also saw that
process variation does not have a direct impact on switching energy consumption, but
alters delays of gates in the circuit, thereby generating glitches. Some of parameters
majorly altered by process variation includes Threshold Voltage (V), Temperature (T)
and Channel Length (L).

In this chapter, we will see the impact of process variation on combinational circuits
and contribution of glitches to overall switching energy consumption of the circuit in

detail.



4.1 Impact of process variation on switching energy

One of the most accurate ways of modeling process variation is by introducing varia-
tion in individual parameters like temperature or threshold voltage independently and
estimating power. Process variation can cause both intra-die and inter-die variations.
Intra-die variations can have spacial correlation between several parameters within a
die. Hence, modeling process variation at a parametric level, inclusive of several corre-
lations is difficult. We assume that the variation on individual parameters are indepen-
dent. Process variation alters delays of gates in the circuit. Hence, we lump the effect
on individual parameters together and model the variation at gate level. We do so by
introducing a standard normal variation on the propagation delays of all the gates in the
circuit. We do a Monte Carlo analysis by simulating the circuit many times over in

order to obtain the distribution of switching energy consumption.

4.1.1 Monte Carlo Analysis using Design Compiler

Process variation is modeled by introducing a standard normal variation in propagation
delays of all the gates in the circuit. The circuit is simulated many times , each time
modifying the delays of all the gates in the circuit. The simulation is also done for
several values of standard deviation of the normal distribution being introduced. The

detailed procedure of the simulation is explained below.

Procedure

Step 1: The RTL netlist of the circuit is converted into a gate level netlist using Syn-
opsys Design Compiler (DC). DC takes a technology library file as input. The RTL
netlist is read in and compiled by the compiler. It then translates the design into a
technology-independent design. It also optimizes the design at architectural level, logic
level and gate level. Next, the cells in the technology-independent design is mapped
to the corresponding cells in the technology library file. The propagation delays of all
the gates and interconnect delays of all the nodes of the circuit are annotated in the
Standard Delay Format file. DC generates the gate level netlist and the SDF

files as the output.
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Step 2: The standard normal variation in propagation delays of all the gates in the
circuit is introduced by modifying the SDF file, generated as output in the previous
step. For every gate, the SDF file contains annotations of the minimum, typical and
maximum propagation delay for a rising transition as well as for a falling transition for
each input of the gate to its output. A normal variation is induced on each of these

propagation delay values using a Pyt hon script in every iteration of the simulation.

Step 3: The circuit is then simulated by a CAD tool ModelSim from Mentor Grpahics.
The gate level netlist, the SDF file and a test bench of the circuit are given as inputs
to ModelSim. The test bench contains the input stimulus applied to the circuit. The
tool then generates a Value Change Dump (VCD) file after simulation. This file
contains a series of time-ordered value changes of all the signals in the circuit in the

given simulation.

Step 4: The VCD file is converted into a SATIF file. SATF is the format compatible

with Synopsys DC.

Step 5: The SAIF file, gate level netlist and the technology library file are given as
inputs to Synopsys DC. This then estimates the various components of power dissipated

in the circuit using the transitions of the signals annotated in the SATF file.

Step 6: The circuit is simulated many times, by repeating steps 2-5. We then obtain

the profile of power dissipation in the circuit for the introduced process variation.

Figure 4.1 depicts a flowchart of the procedure used for Monte Carlo analysis of

power consumption using Design Compiler.

Results

An 8 x 8 Booth Multiplier circuit is simulated for one input vector pair. The
SDF file is modified and simulated 1000 times. NanGate mathrm45nm technology

library is used as the library file for linking the design.

Figures 4.2 and 4.3 show the histograms for Monte Carlo analysis of power
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Figure 4.1: Flowchart of the procedure used for Monte Carlo Power Estimation Analy-
sis using Design Compiler
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Figure 4.2:

Figure 4.3:

Distribution of switching energy for 10% process variation
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Histogram for Monte Carlo analysis of energy dissipation in Booth Mul-
tiplier circuit for a 10% standard deviation in process variation. SDF file
is modified 1000 times and simulated for one input vector pair. Circuit is
synthesized using NanGate 45 nm library.
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Histogram for Monte Carlo analysis of energy dissipation in Booth Mul-
tiplier circuit for a 20% standard deviation in process variation. SDF file
is modified 1000 times and simulated for one input vector pair. Circuit is
synthesized using NanGate 45 nm library.
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dissipation in Booth Multiplier circuit for a 10% and 20% standard deviation in
process variation respectively. One input vector pair was simulated for 1000 different

SDF files.

Effect of process variation on average switching energy consumption

Figure 4.4: Effect of process variation on average switching energy consumption in
Booth Multiplier circuit for different values of standard deviation in pro-
cess variation. SDF file is modified 1000 times and simulated for one input
vector pair for each value of standard deviation. Circuit is synthesized using
NanGate 45 nm library.

Figure 4.4 shows the effect of process variation on overall average switching energy
consumption of the circuit. The circuit was simulated for 5%, 10%, 15% and 20%
standard deviation in process variation. As we can see from the figure, both mean and
standard deviation of total switching energy consumption of the circuit increases with
increase in standard deviation in process variation. The mean and standard deviation of
total switching energy consumption of the circuit were computed for 1000 simulations

of modification of SDF file for one input vector pair.

Different input vector pairs cause a different number of transitions in the nodes of
the circuit, thereby resulting in different total switching energy consumption values.
The analysis so far was done for one specific input vector pair. In order to eliminate
the effect of variation in switching energy consumption due to different inputs, we need
to simulate the circuit for several input vector pairs. The bottleneck of the procedure
described in this section is that the power estimation of the circuit using Design Com-
piler is computationally a time intensive step. Invoking and running the tool for 10°
runs (1000 different inputs and 1000 modifications of SDF file each) would lower the

computational efficiency of the process. This necessitates an alternative efficient ap-
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proach to estimate power using the VCD output generated by ModelSim. The standard
deviation in process variation was set as 20% for all the analysis in the reminder of the

chapter.

4.1.2 Power Extraction algorithm for Monte Carlo Analysis

We propose a time-efficient algorithm to primarily estimate switching energy consump-
tion of a circuit. This algorithm also allows us to selectively compute power dissipated
in a specified time interval (or for a particular input vector pair) and even segregate the
power consumption due to glitches from the total switching energy. It is based on the
simple principle that the switching power at any node can be independently computed

just by knowing the number of transitions and capacitance of that node.

1
Switching Energy = Z t; X iCiVQ 4.1

i € allnodes

where ¢; is the number of transitions at node i, C; is the capacitance at node i and V'

is the supply voltage.

Total switching energy of the circuit can be evaluated by equation (4.1). It is equal

to the sum of switching energies at every net in the design.

Inputs of the algorithm
e VCD file generated by ModelSim after simulation of the circuit.
e Gate level netlist of the circuit

e Technology library used for logic synthesis of the design

Output of the algorithm

The primary output of the algorithm is the total switching energy dissipated by the
circuit. The algorithm also allows us to estimate switching energy for each input vector

pair. It can also output the switching energy estimates for a particular net in the circuit.
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Procedure

The algorithm assumes that the steps 1-3 of the procedure described in the above sub-
section are carried out and the VCD file has been generated after simulation of the circuit

by ModelSim.

Step 4: The number of rising and falling transitions at every net in the design is eval-
uated by parsing the VCD file by a Python script. This estimates the total number of
rising transitions and the total number of falling transitions at every net in the circuit,

thereby estimating the total number of toggles in the circuit.

Step 5: The rising and falling input capacitances of all the fan-out gates of a net are
summed individually and a look-up table is created for rising and falling capacitances at
every net in the circuit. This is done once for a particular circuit. The rising and falling

capacitances for each net are then extracted from this look-up table in each simulation.

Step 6: The value of number of rising transitions at a net is multiplied with the cor-
responding rising capacitance value and the number of falling transitions is multiplied
with the corresponding falling capacitance. These two values are added and multiplied
with V2. This value is then evaluated for every net in the circuit and summed together

to obtain the total switching energy of the circuit.

Note: In this approach, a Python script is used to estimate switching power dissipa-
tion of the circuit. The circuit is simulated many times for several modifications of the
SDF file. However, unlike in the previous approach where the circuit had to be simu-
lated for each applied input for each SDF, this approach enables us to provide all the
inputs together in the test bench and simulate the circuit just once for a particular SDF

file.

Results

The power extraction algorithm is validated by simulating an 8x8 Booth Multiplier

circuit for 100 different input vector pairs and using the SDF file generated by Synopsys
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Design Compiler during logic synthesis. The NanGate 45 nm library is used as tech-
nology library. The overall switching energy of the circuit for each applied input vector
pair is evaluated by both the Design Compiler approach and by our power extraction
algorithm.

Comparison of power estimation by DC & from power estimation algorithm
70

— Energy values by the algorithm
— DC reported energy values

Estimated switching energy (in f])

10

o 1 2 3 4 5 6 71 8 09
Different Input vector pairs

Figure 4.5: Comparison of overall switching energy consumption of Booth Multiplier
circuit by Design Compiler and power extraction algorithm for different
input vector pairs, considering a standard SDF file and NanGate 45 nm
technology library.

Figure 4.5 shows the comparison between the switching energy of the circuit ob-
tained by both the approaches for some applied input vector pairs. This figure indicates
that the values obtained by both the approaches are almost proportional. This is more
clearly observed from the scatter plot shown in figure 4.6. In this figure, the energy
estimates of the circuit for 100 input vector pairs obtained by both the approaches have
been depicted. The deviation from the power reported by DC is because DC also in-

cludes wireloads for the nodes which are ignored in our computation.
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Comparison of power estimation by DC & from power estimation algorithm
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Figure 4.6: Comparison of overall switching energy consumption of Booth Multiplier
circuit by Design Compiler and power extraction algorithm for 100 input
vector pairs, considering a standard SDF file and NanGate 45 nm technol-
ogy library.

4.2 Analysis of impact of input variation and process

variation on switching energy consumption

4.2.1 Combined impact of input variation and process variation

Total switching energy dissipation in a circuit is affected by variation in input stimulus
as well as process variation. In this subsection, we see the impact of simultaneous varia-
tion in input stimulus and process variation. We also observe this impact across two dif-
ferent technologies, 45 nm and 250 nm for two circuits, an 8 X8 Booth Multiplier
and an TSCAS85 benchmark circuit c880, which is an 8-bit ALU. The circuits are
simulated by power extraction algorithm using the approach mentioned in the above
subsection. 1000 input vector pairs are applied to the circuits and for each input vec-
tor applied, SDF files are modified 1000 times. Two technology libraries, 45 nm and

250 nm were used for simulating the circuits.

Figure 4.7 shows the distributions of power dissipation for two circuits, Booth

Multiplier and c880 at two different technologies, 45 nm and 250 nm. The his-
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Figure 4.7: Histograms of total switching energy distribution for Booth Multiplier and
C880 circuit at 45 nm and 250 nm. Circuits are simulated for 1000 input
vector pairs and SDF files are modified 1000 times.

Table 4.1: Mean and Standard Deviations of Total Switching Energy due to both input
and process variation for ISCAS ’ 85 benchmark circuits

Total Switching Energy Consumption (fJ)
Circuit | Mean | Standard Deviation Overall Range
cl7 3.49 2.08 0-9.66
cl1908 | 237.81 69.09 57.81-580.18
c3540 | 688.80 199.88 94.43 - 1413.14
c432 115.01 40.43 23.53 - 349.36
c499 182.99 35.92 70.14 - 37291
c6288 | 19172.87 2822.48 5019.21 - 27702.34
c880 160.90 49.79 44.61 - 391.08
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tograms represent the total switching energy distribution combining the effects of both
process variation and input variation. This analysis is done for the ISCAS ’ 85 bench-
marks, and the statistical parameters & range of the variation in switching energy dis-

tribution have been tabulated in table 4.1.

As we can infer from these distributions and the table, switching energy consump-
tion does have a signification variation (when inputs and process parameters are varied)

regardless of the circuit or the technology.

4.2.2 Impact of process variation versus input variation

We have seen earlier that the variation in power dissipation of the circuit is caused by
both variation in applied input stimulus as well as process variation. In the previous
section, we observed their combined impact on switching energy consumption of cir-
cuits. In this section, we separate and analyze the impact of both the variations on total

switching energy of the circuit.

Just as in the previous simulation, an 8 X 8 Booth Multiplier circuit is sim-
ulated using 45 nm technology library file, 1000 input vector pairs are applied to the
circuit and for each pair the SDF file is modified 1000 times (an over-all of 10° simula-

tions).

For a particular input vector pair, we plot the distribution of switching energy of
the circuit for 1000 modifications of the SDF file. This would represent the impact of
process variation alone on switching energy. We can do this for many input pairs to
capture the overlap. We also take a standard SDF file, generated during logic synthesis
by Synopsys Design Compiler and simulate the circuit for 1000 different applied input
vector pairs. Hence, we identify the impact of process variation by keeping the input
stimulus constant and the impact of variation in input stimulus by keeping the gate

delays constant.

We observe that the impact of process variation for each input vector pair follows
a normal distribution and the mean of the distribution is equal to the total switching
energy of the circuit for that input vector pair for the standard SDF file. We also observe
that the impact of variation in input stimuli on switching energy is far more significant

than the impact of process variation on the same.
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Figure 4.8: Histograms of impact of process variation for specific input vector pairs

on total switching energy for Booth Multiplier circuit at 45 nm technology.
SDF file is modified 1000 times for each input vector pair.
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Figure 4.8 shows the histograms of switching energy distribution for different input
vector pairs due to process variation. The different colored histograms correspond to
switching energy variation with just process variation for different input vector pairs.
The overall distribution of switching energy due to the combined effects of process
variation and input stimuli variation is also shown in the background in black color. This
figure not only indicates that the variation in switching energy due to process variation
is a normal distribution for every input vector pair but also that the overall distribution
of switching energy is a superposition of many small normal distributions for several
input vector-pairs (where the mean of power distribution of all the input-vector pairs

spans over a wide range).

Components of Process Variation and Input Variation
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Figure 4.9: Histograms of impact of process variation versus input variation on total
switching energy for Booth Multiplier circuit at 45nm technology. SDF
file is modified 1000 times for each input vector pair to identify impact of
process variation. 1000 input vector pairs are applied to the circuit and sim-
ulated using standard SDF file to identify impact of input variation. Outline
of impact input variation (for a particular SDF file) is shown in white.

Figure 4.9 shows the impact of process variation versus impact of variation in input

stimuli on total switching energy consumption of the circuit. The impact of variation
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in input stimuli (for a particular SDF file) on switching energy of the circuit is plotted
in white and superimposed on the histograms of the impact of process variation. We
can see that the standard deviation for power distribution with input variations (for one
SDF file) is much greater than that of power distribution with process variation (for one

input vector pair).

The standard deviation of total switching energies of the circuit for one input vector
pair and 1000 modifications of the SDF file is computed. This value of standard devia-
tion signifies the impact of process variation on total switching energy of the circuit (for
one applied input vector pair). This process is repeated for 1000 input vector pairs. The
maximum and average of all the obtained values of standard deviation are computed for

both the circuits across the two technologies (45 nm and 250 nm).

Table 4.2 shows the maximum and average of all the standard deviation values ob-
tained by the process explained above. The table also shows the range of total switching
energy of the circuits. From the values of maximum standard deviation mentioned in
the table, we infer that for some input vector pairs, there is a significant impact of pro-
cess variation on switching energy. Since the difference between average and maximum
values indicated in the table is small, we infer that there is definitely a significant impact

of process variation on switching energy for every applied input vector pair.

Table 4.2: Standard deviation of distribution of switching energy due to process varia-
tion on Booth Multiplier and C880 circuits using 45 nm and 250 nm

technology library
Circuit Technology Maximum Average
standard deviation | standard deviation
Booth 45 nm 124.211) 115.96 £J
Multiplier
Booth 250 nm 5.63 pJ 5.37pd
Multiplier
C880 45nm 67.191J 63.331J
C880 250 nm 5.32pJ 5.16 pJ

Table 4.3 shows the average switching energy of the circuit along with its gate count.
We observe that although Booth Multiplier has higher gate count as compared to
C880 circuit, the average switching energy of the circuit decreased for 250 nm technol-
ogy. We infer that the switching energy of a circuit not just depends on the total number

of gates that are toggling in the circuit, but also depends on the type of gates that are
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toggling. We also observe that the gate count not just depends on the technology used
for logic synthesis of the circuit but also on the type of circuit and the logic functionality

of the circuit.

Table 4.3: Analysis of gate count and average switching energy for Booth
Multiplier and C880 circuits using 45nm and 250 nm technology li-

brary
Booth Multiplier C880
45nm | 250nm | 45nm | 250nm
Total Gate Count 320 293 180 213
Average Switching Energy (fJ) | 343.65 | 21498.12 | 282.40 | 24794.96

4.3 Analysis of glitch power variation

The switching energy consumption of the circuit is contributed by two kinds of tran-
sitions: expected steady state transitions and glitch transitions. In this section, we
estimate the contribution of glitches to overall switching energy consumption of the

circuit.

4.3.1 Procedure

It is assumed that the SDF file is modified and the circuit is simulated by ModelSim.

VCD file is generated by the simulation.

Step 1: The total number of steady state transitions at every net in the circuit is com-
puted by parsing the VCD file. The steady state values of all the nets before and after
the application of the second input vector in the input vector pair are identified. All the
rising and falling transitions among those values are summed together for each net in

the circuit. This step estimates the total number of steady state toggles in the circuit.

Step 2: The number of rising and falling transitions at every net in the design is eval-

uated by parsing the VCD file by a Python script. This estimates the total number of
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rising transitions and the total number of falling transitions at every net in the circuit,

thereby estimating the total number of toggles in the circuit.

Step 3: The rising and falling input capacitances of all the fan-out gates of a net are
summed individually and a look-up table is created for rising and falling capacitances at
every net in the circuit. This is done once for a particular circuit. The rising and falling

capacitances for each net are then extracted from this look-up table in each simulation.

Step 4: The value of number of rising transitions (obtained in step 2) at a net is mul-
tiplied with the corresponding rising capacitance value and the number of falling tran-
sitions (obtained in step 2) is multiplied with the corresponding falling capacitance.
These two values are added and multiplied with V2. This value is then evaluated for
every net in the circuit and summed together to obtain the total switching energy of the
circuit. This step is repeated for corresponding steady state transitions obtained in step
1. Hence, we estimate the total switching energy of the circuit as well as the switch-
ing energy of the circuit considering steady state transitions only. These two values
are subtracted to obtain the contribution of glitches to overall switching energy of the

circuit.

4.3.2 Results

An 8 x 8 Booth Multiplier circuit and c880 circuit are simulated by the power
extraction algorithm following the steps described in the procedure above. The SDF
files are modified 1000 times and the circuits are simulated for 1000 input vectors. This

is done for both the 45 nm and 250 nm technologies.

Figures 4.10 to 4.13 shows the contributions of glitches to overall switching energy
of the circuits. The figures (a) show the distribution of total switching energy of the
circuits and the switching energy contribution by glitches. We observe that the his-
togram of the contribution of glitches is close to a normal distribution. The areas under
these histograms indicate the sum total of switching energies consumed by the circuit
across all inputs and the corresponding contributions of glitches. From the area under
the glitch energy histograms, we observe that they contribute significantly to overall

switching energy of the circuits.
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The figures (b) show the percentage contribution of glitch power to the total power
with percentages on X-axis and number of inputs on Y-axis. From these figures, we
observe that glitches contribute on an average, 30 — 40% to the overall switching energy
for Booth Multiplier circuit and 10 — 20% for C880 circuit. This has also been
plotted for some ISCAS ' 85 benchmark circuits as shown in figure 4.14. We can also
see that for certain inputs, glitches account for even 70 — 80% to the total switching
energy. This reiterates over hypothesis that reducing the number of glitches in a circuit

can significantly reduce the overall switching energy consumption of the circuit.

Energy Analysis for Booth Multiplier 45nm, 1000x1000 simulations
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Figure 4.10: Booth Multiplier circuit, 45 nm, 1000 input vectors, 1000 modifications
of SDF file. Contribution of glitches to switching energy of the circuit:
(a) Histograms of overall switching energy and contribution of glitches (b)
Histogram of contribution of glitches as a percentage of total switching
energy

The simulation across a large number of input variations was carried out for the
ISCAS ' 85 benchmark circuits, and the mean percentage contribution of the glitch
power consumption to the total switching energy consumption (along with the range of
percent contribution) has been tabulated in table 4.4. From the table, we can infer that
though the mean percent contribution of glitches to switching energy might vary across
circuits, it is significant for all of them. We can also observe that for certain inputs,
the percentage contribution can go as high as 70% of the total switching energy. Hence,

reduction of glitches can be one of the essential factors for low power design of circuits.

39



Energy Analysis for Booth Multiplier 250nm, 1000x1000 simulations
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Figure 4.11:

Glitch Energy as a percentage of Total Energy

20 30 40 50 60 ' 70
Glitch Percentage of Total Energy (100*Glitch Energy/Total Energy)
(b)

Booth Multiplier circuit, 250 nm, 1000 input vectors, 1000 modifications
of SDF file. Contribution of glitches to switching energy of the circuit:
(a) Histograms of overall switching energy and contribution of glitches (b)
Histogram of contribution of glitches as a percentage of total switching
energy

Energy Analysis for C880 45nm, 1000x1000 simulations
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C880 circuit, 45 nm, 1000 input vectors, 1000 modifications of SDF file.
Contribution of glitches to switching energy of the circuit: (a) Histograms
of overall switching energy and contribution of glitches (b) Histogram of
contribution of glitches as a percentage of total switching energy
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Energy Analysis for C880 250nm, 1000x1000 simulations
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Figure 4.13: C880 circuit, 250 nm, 1000 input vectors, 1000 modifications of SDF file.
Contribution of glitches to switching energy of the circuit: (a) Histograms
of overall switching energy and contribution of glitches (b) Histogram of
contribution of glitches as a percentage of total switching energy

Table 4.4: The percentage of glitch power to Total Dynamic Power for ISCAS ' 85
benchmark circuits

Percentage of Glitch Power Contribution
to Total Dyanmic Power (in % )
Mean Standard Deviation
Circuit | Percentage of Percentage
c432 15.55 12.33
c880 16.88 9.65
c7552 37.45 8.92
c499 19.40 9.16
c2670 23.03 7.86
c1908 31.88 12.47
c5315 28.42 5.58
c3540 32.87 11.02
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Figure 4.14: Histogram of contribution of glitches as a percentage of total switching
energy for some ISCAS ’ 85 benchmark circuits.
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CHAPTER 5

AMBIGUITY INTERVAL PROPAGATION

Switching energy consumption of a CMOS circuit primarily depends on the number
of transitions that signals make at the gate outputs. These transitions are accounted by
steady state logic transitions as well as glitches. While steady state logic transitions
can be easily evaluated through logic simulation, it is difficult to estimate the average
number of glitches at every node without Monte Carlo simulations. This makes the
process time-consuming and the accuracy depends on the number of input vectors that

are being simulated.

Ambiguity Interval Propagation is an algorithm to estimate bounds on the number of
transitions that signals can make in a combinational circuit for a given input vector pair.
This algorithm has been originally proposed in the paper by Alexander and Agrawal
(2009). The algorithm identifies the time intervals in which transitions can possibly
occur at each net, given the gate delays and time instances at which transitions at its
inputs occur. It then evaluates the minimum and maximum number of transitions that
can occur within these intervals. This approach thereby allows us to estimate bounds

on the switching energy consumed by individual nets in the circuit.

A primary advantage of this algorithm lies in its inclusion of process variation in
gate delays. In today’s nano-scale technologies, there is a significant impact of process
variation on gate delays and thereby on switching energy consumption, as established in
the earlier sections. The bounded delay model for every gate permits us to incorporate

this impact in its specification.

In the reminder of the chapter, the implementation details of the algorithm, its un-

derlying assumptions and results have been elaborated.



5.1 Assumptions

5.1.1 Delays of gates

The algorithm assumes an inertial delay model for every gate. Accordingly, those glitch
transitions at the input of a gate whose width is less than the minimum delay specified
for the gate are not propagated to the output. Hence, partial glitches in the circuit are not
considered by the algorithm. The delay of every gate is specified as a bounded interval
of minimum and maximum delay (min, maz) permitted by all the inputs of the gate.
Logic synthesis of the circuit by the tool Design Compiler (DC) generates a Standard
Delay Format (SDF) file, which has annotations of gate delays for the netlist. For every
gate, a minimum and a maximum delay are extracted from this file, by considering the
minimum and maximum delays from every input of the gate to the output. Rise and fall

delays are not considered separately.

5.1.2 Process Variation

As discussed in earlier sections, process variation affects gate delays. This effect is
implicitly incorporated by the algorithm through gate delay specification. A standard
normal variation in the delays is assumed and the standard deviation is set to 20%. So
the minimum delay (min) is reduced by 20% (min x 0.8) and the maximum delay is
increased by 20% (max x 1.2). Since the worst case estimate for the bounds on delays
are considered, the algorithm gives the theoretical minimum and maximum switching
energy for every net. This doesn’t necessarily signify the actual minimum and maxi-

mum power consumption for the net.

5.1.3 Primary inputs

The primary inputs are assumed to have no ambiguity. Hence, transitions at those nets
are assumed to occur at the start of our reference time (¢ = 0). The previous and current

state of inputs are also assumed to be known.

44



5.2 Definitions

5.2.1 Controlling and Non-controlling value

The controlling value of an input of a gate is the boolean value of the input which
determines the output to a known value, irrespective of the state of other inputs of the
gate. This depends on the logic function of the gate and such a value need not exist for

every input of a gate. The compliment of controlling value is the non-controlling value.

Table 5.1: Controlling and non-controlling values for various gates

Gate | Controlling value | Non-Controlling value
AND 0 1
OR 1 0
NAND 0 1
NOR 1 0
Other X X

5.2.2 Ambiguity Interval

Ambiguity interval for a net is defined as a tuple of two time values, called the Ear-
liest Arrival Time (E;) and the Latest Stabilization Time (L;). For every signal, we
define the Earliest Arrival Time as the time before which the signal would remain
steady and the Latest Stabilization Time as the time after which the signal would be
steady. (Ey, L;) specify the time bounds during which a signal can have transitions.
(Ey, L) = (o0, —00) signifies that the signal has no ambiguity or is in steady state
condition. There can be multiple ambiguity intervals within this interval, depending on
the steady state values of inputs of the gate. The evaluation of this has been detailed in

further sections.

Apart from £} and L; values for every signal, we also define few other parameters.
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E., The earliest arrival time of a signal that causes the input of a gate to change

from controlling value to non-controlling value.

E,. The earliest arrival time of a signal that causes the input of a gate to change

from a non-controlling value to a controlling value.

L,,. The latest stabilization time of a signal that causes the input of a gate to

change from non-controlling value to controlling value.

L., The latest stabilization time of a signal that causes the input of a gate to

change from controlling value to non-controlling value.

5.3 Methodology

The first step to the propagation of ambiguity intervals is the evaluation of steady state
values for every net in the design. For every applied input vector pair, the steady state
values of every signal is evaluated using a zero-delay logic simulation. The ambiguity
intervals of primary inputs are initialized. Then, the ambiguity intervals of every net
is propagated from the primary inputs to the outputs, covering every net in the design.
Using these ambiguity intervals and steady state values of every signal, the minimum

and maximum number of transitions are evaluated for the design.

5.3.1 DAG representation of the netlist

The netlist of the design is read and stored as a Directed Acyclic Graph (DAG). For
every gate in the design, its functionality, controlling and non-controlling value, fan-out
gates, inputs and delays are stored in the graph. The library file is parsed for obtaining
the functionality of every gate in the design. The delays are obtained from the SDF file
as mentioned above. A breadth first search is done to parse through the graph for every

step ahead.

5.3.2 [Evaluation of steady state values

The input vectors are randomly generated and stored in a file. These are then read in as

vector pairs. The evaluation is started from the gates adjoining the primary inputs. The
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output value of every gate is evaluated using the corresponding functionality. A gate is
evaluated only when the steady state values of all its inputs are evaluated. A breadth
first search on the netlist DAG is done to propagate and evaluate steady state values till

outputs are reached. This process is done for each input vector in the vector pair.

5.3.3 Evaluation of Ambiguity Intervals

The ambiguity interval of the output of a gate is determined from the ambiguity intervals

of its inputs, their steady state values and the bounded gate delay of the gate.

The following equations are used to compute the ambiguity interval for a signal.

Vi € inputs(gate),

Eop(out) = mazimum(Eem (3)) (5.1)
Epe(out) = minimum(Ep(i)) (5.2)
Lue(out) = minimum(Ly.(i)) (5.3)
Len(out) = mazimum(Le (i) (5.4)
E! = mazimum(Ea(out), Ene(out)) (5.5)
L, = minimum(Le, (out), Lye(out)) (5.6)

Then, for the output

.

(E; + mindel, L, + maxdel) if (L, — E}) > maxdel
(Et, Lt) = q (00, —00) if (L, — E}) < mindel

(E} + mindel, L}, + mazxdel) if steady state transition at the output
(5.7)

\

The above equations are slightly different from what has been proposed in the paper
by Alexander and Agrawal (2009), in the cases when the ambiguity intervals are zero
for some inputs when their steady states are different ( like primary inputs ). In that

case, the outputs should still have non-zero ambiguity intervals.

Equation (5.1) indicates that the maximum of F,, values among all inputs is consid-
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ered when the inputs go from controlling value to a non-controlling value. This ensures

that the output will not have a transition even if one of the input has a controlling value.

Equation (5.2) indicates that the minimum of F),. values among all inputs is con-
sidered when the inputs go from non-controlling value to a controlling value. This
ensures that the output will have a transition as soon as one of the inputs toggles from a

non-controlling value to controlling value.

Equation (5.3) indicates that the minimum of L,,. values among all inputs is consid-
ered when the inputs go from non-controlling value to controlling value. The minimum
is taken to ensure the final transition at the output will occur when one of the inputs

transition from non-controlling value to controlling value.

Equation (5.4) indicates that the maximum of L., values among all inputs is con-
sidered when the inputs go from controlling value to a non-controlling value. The
maximum is taken to ensure that the final transition at the output will not occur as long

as atleast one input has a controlling value.

F; and L; are the temporary F; and L, values before adding the mindel and mazdel
values to them. Equation (5.5) indicates that the maximum of E., and F,,. is taken as

E; value.

Note: Here, the expression for evaluating £} and L} (equations (5.5) and (5.6)) can
seem counter-intuitive, since we have used maximum for £} and minimum for L} when
earliest values and the last values should likely be the minimum and maximum of all
the transition times respectively. The catch here, however, is in the way we have defined
E,. in the case of controlling to non-controlling transition and £, in the case of non-
controlling to controlling transition, and correspondingly for L., and L,..This will be
clearer once we discuss further (in the same section) the assignment of these values for

every case at a node.

Equation (5.7) is used to propagate the £; and L) values to the output from the
input ambiguity intervals using gate delays. If the difference between L) and Fj is
less than the minimum delay of the gate, the inertial delay model doesn’t permit that
glitch to propagate to the output. Hence, E; and L, values are set to co and —oo,
signifying no ambiguity at the output. If the difference is more than the minimum

delay, the transitions are recognized by the gate and propagated to the output. The
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Figure 5.1: Evaulation of Earliest Arrival time and Latest Stabilization time for different
cases for an AND gate

earliest transition at the inputs will propagate to the output earliest by E; + mindel
and the last transition at the inputs will propagate to the output latest by L} + mazdel.
If the steady state values at the output of the gate due to the applied input vector pair
signify a transition, then the ambiguity interval is propagated from the input to output

irrespective of the difference L, — E; being greater or lesser than mindel.

The E.,, Fyne, Le, and L, values for the inputs of a gate are computed from the
E; and L; values computed for those signals in the previous level and the steady state

values of those nets.

Figure 5.1 shows the computation of £ and L; values for an AND gate for different
cases of input waveforms. Here, (d;,ds) is the range of propagation delays of the gate.
Since this is just a two input gate, the computation of Earliest Arrival time and Latest

Stabilization time for this is straight-forward.

The following is done for every input signal before computation of the ambiguity

interval for the gate for different cases.
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Case (1)

Case (2)

Case (3)

Case (4)

Case (5)

Steady state value of the input signal remains at the controlling value of the
gate on applying the input vector pair

The value of E., is assigned to E; value computed for that signal in the previous
iteration. F,,. is equated to —oo. The L, value is assigned to L; value computed
for the signal. L., value is equated to oc.

Steady state value of the input signal goes from controlling value of the gate
to non-controlling value on applying the input vector pair

The value of E., is assigned to £, value computed for that signal in the previ-
ous iteration. F,. is equated to —oo. The value of L., is assigned to L; value
computed for the signal. The value of L,,. is equated to co.

Steady state value of the input signal goes from non-controlling value to con-
trolling value on applying the input vector pair

The value of F,,. is assigned to £; value computed for that signal in the previ-
ous iteration. F,, is equated to —oo. The value of L, is assigned to L, value
computed for that signal in the previous iteration. L., is equated to oo.

Steady state value of the input signal remains at the non-controlling value of
the gate on applying the input vector pair

The value of F,,. is assigned to £ value computed for that signal in the previ-
ous iteration. F., is equated to —oco. The value of L., is assigned to L; value
computed for that signal in the previous iteration. L, is equated to oo.

Controlling and non-controlling value of the gate is ’x’

The value of F,,. is assigned to £ value computed for that signal in the previ-
ous iteration. F., is equated to —oo. The value of L., is assigned to L; value
computed for that signal in the previous iteration. L, is equated to oo.

In each of these cases, since we know the steady state values of a node, the nature

of first and last transition is also known (whether it is controlling to non-controlling or

vice-versa).

Earliest Arrival Time Evaluation

If the first transition at a node is controlling to non-controlling, we assign —oo to F,,.

and if the first transition is non-controlling to controlling, we assign —oo to E,. Such

an assignment is paramount for the equations (5.1) to (5.6) to hold true. Because of

this, only if there is no controlling to non-controlling transition, maz(E,,) will be —oo,

min(E,.,) will be the binding term in Equation (5.5) and hence E; will be equal to the

minimum of all non-controlling to controlling transition times as expected. Also, if

there is at least one controlling to non-controlling transition, then min(E,.) will be
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—o00, max(E,.,) will be the binding term in Equation (5.5) and hence F; will be equal

to the maximum of all controlling to non-controlling transition times.

Because of the way we have assigned £, and F,,. in each case, exactly one term in

the evaluation expression in Equation(5.5) will be —oo.

Latest Stabilization Time Evaluation

Analogous to evaluation of earliest arrival time, in this case, if the final transition at a
node is controlling to non-controlling, we assign oo to L, and if the final transition
is non-controlling to controlling, we assign oo to L.,. Therefore only if there is no
controlling to non-controlling transition, min(L.,) will be co, max(L.,) will be the
binding term in Equation (5.6) and hence L} will be equal to the maximum of all non-
controlling to controlling transition times as expected. Also, if there is at least one
controlling to non-controlling transition, then max(L,,.) will be co, max(L.,) will be
the binding term in Equation (5.6) and hence L} will be equal to the minimum of all

controlling to non-controlling transition times.

On a similar observation, exactly one term in the evaluation expression in Equa-

tion(5.6) will always be oc.

In the figure 5.2, we observe that the transitions of all the nets (for one particular
input) are all contained in the ambiguity intervals evaluated by the algorithm. It only
remains to estimate the maximum and minimum possible number of transitions in these

intervals.

5.4 Power Bounds Evaluation

5.4.1 Maximum number of transitions

The maximum number of transitions at every net in the design is computed using the
ambiguity interval for that net and the delay specification of the gate. The maximum
number of transitions for the primary inputs is set to 1 if there is a transition at the
input node due to the applied input vector pair. It is set to 0 otherwise. This is due

to the fact that primary inputs are assumed to be glitch free. Since the inertial delay
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VCD Transitions amongst Single Ambiguity Windows
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Figure 5.2: The simulated waveforms of outputs of Booth Multiplier Circuit
P[15:0] at 45nm technology, along with the single ambiguity intervals
shown in dashed lines predicted by ambiguity propagation method

model restricts the minimum width of a glitch to the mindel of the gate, the maximum
number of transitions in an ambiguity interval is when all the transitions are spaced

exactly mindel apart. Here, for evaluating the maximum, we estimate two parameters

2
Time (in ns)

Ndelayyrqan and Ninputy.qp,.

Ndelaygqn

The maximum number of transitions will occur at the output when the glitch transitions

are evenly spaced within the output ambiguity interval.

Gl (- E) 20

Ndelayran =
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N inPUttran

The maximum number of transitions is also limited by maximum number of transitions
at all the inputs of the gate. This is because of a simple observation that the number
of transitions at the output cannot be more than the sum total of all the input transi-
tions. Ninputs,q, 1s the sum of maximum number of transitions at all the inputs of the
gate. For every input, the maximum number of transitions there is added to the variable

Ninputyq, if the conditions

Ei(input) < (L(output) — mindel)

L(input) > (E(output) — maxdel)

are satisfied for the input. These two conditions ensure that the input transitions are
added only when the ambiguity interval of the corresponding input contribute to the
ambiguity interval of the output i.e. there is at least some overlap between the ambiguity

window of the input(after propagation) and that of the output.

Once the two upper bounds are computed, the maximum number of transitions at

the output is computed as follows.

maxtran(output) = minimum(Ndelayan, Ninputyqn,) (5.9

The minimum of the two upper bounds is taken in equation (5.9) because maxtran
is limited either by the total number of transitions happening at the inputs of the gate
or by number of transitions permitted within the output ambiguity interval due to gate

delay.

Further, the value of maxztran is incremented by 1 if the computed value of maxtran
is odd but the steady state values at the output node indicate no transitions due to ap-
plied input vector pair. In this case, the value of maxtran is made even since only
even number of transitions can happen. The value of maxtran is also incremented by
1 if the computed value of maxtran is even but the steady state values at the output
indicate a transition due to applied input vector pair. In this case, we expect the number

of transitions to be odd and hence, is incremented.
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5.4.2 Minimum number of transitions

The minimum number of transitions at any node in the design is evaluated using the
steady state values at the node due to the applied input vector pair. If the steady state
values at the node indicate a transition at that node, the value of mintran is set to 1. It

is set to 0 otherwise.

Maximum and minimum of transitions estimated by Ambiguity Windows

- - Maximum No. of transitions (by algorithm)
—  Minimum No. of transitions (by algorithm)
- = Actual No. of transitions (by VCD)

(%)
1
1
1

w £
1
1
1
1
1
1
1
1
1
1
1

Number of Transitions at the node
N

I 1 I 1 I
0 100 200 300 400 500
Some Output Nodes

Figure 5.3: The actual number of transitions by ModelSim simulation at outputs of
Booth Multiplier Circuit P[15:0] at 45 nm technology, along with the
predicted maximum and minimum number of transitions shown in dashed
lines predicted by ambiguity propagation method

5.4.3 Estimation of node capacitances

The rising and falling input capacitances of all the fan-out gates of a net are summed
individually and a look-up table is created for rising and falling capacitances at every

net in the circuit. This is done once for a particular circuit.
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5.4.4 Estimation of switching energy

The switching energy of a node depends on the number of transitions at that node, the
node capacitances and supply voltage of the design. It is estimated using the formula

given below.

1
Eswitching = 3 x (No. of transitions) x C x V? (5.10)

Equation (5.10) is used to estimate the bounds on switching energy for every node
in the design. The capacitance C' is taken as an average of rise and fall capacitances
of that gate. The voltage V' depends on the technology used for the logic synthesis of
the design. The lower bound for switching energy is obtained using mintran as the
value for number of transitions. Similarly, the upper bound for the switching energy is

obtained by using maxtran as the value for number of transitions.

5.5 Results

We now use the methodology described in the previous sections to compute the power
consumption bounds for some of the ISCAS ’ 85 benchmark circuits. Also, we simu-
late these circuits for 500 inputs and 500 process variations for each file (250000 sim-
ulation runs each) in order to extract the maximum power consumed at each node. We
plot the actual maximum by simulations and the maximum bound by ambiguity propa-

gation method in the Figures 5.4 and 5.5.

In these figures, we can observe that the maximum bound by ambiguity window is
mostly either equal to or larger than the actual maximum by simulations, and for the

small circuits like c17, they are the same.

We can also observe that there is a large correlation between both the maximums i.e.
most of the nodes with highest maximum power consumption by ambiguity windows

are also the ones with actual maximum power consumption.

Table 5.2 consists of the time taken for complete simulation across all inputs and
process variation and the time taken by ambiguity interval algorithm for the same num-

ber of inputs for some ISCAS ’ 85 benchmark circuits. We can see that the Ambiguity
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Maximum energy consumption at each node by simulation and algorithm accross 500 inputs (c17)
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Figure 5.4: The maximum energy dissipation at each net of the circuit as estimated by
ambiguity propagation approach and ModelSim simulation at 45 nm Nan-
gate technology for different TSCAS benchmark circuits: C17, C432, and
C1908 (Nets on x-axis sorted as per their energy values by ModelSim sim-
ulation)
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Maximum energy consumption at each node by simulation and algorithm accross 500 inputs (c880)
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Figure 5.5: The maximum energy dissipation at each net of the circuit as estimated by
ambiguity propagation approach and ModelSim simulation at 45 nm Nan-
gate technology for different TSCAS benchmark circuits: C880, C3540,
and C499 (Nets on x-axis sorted as per their energy values by ModelSim
simulation)
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Table 5.2: Comparison of computational time taken by complete Simulation and Am-
biguity Window propagation for 500 input vector pairs and for 20% process
variation

Computational Time (in seconds)

Circuit | Gate Count | Ambiguity Interval | Monte Carlo
Propagation Simulation
cl7 11 0.2340 11650.11
c1908 215 13.91 11721.67
c3540 505 49.69 16545.55
c432 150 11.56 11708.85
c499 216 9.34 11746.97
c880 240 12.48 11644.55

Interval Propagation algorithm implementation significantly reduces the computational

time for identifying the high-glitch nodes of a circuit.

5.6 Multiple Ambiguity Windows

In the above sections, we saw how to estimate a single ambiguity interval for every node
in the design. The single ambiguity interval was then used to estimate the minimum and
maximum number of transitions at each node. In many cases, this gives a pessimistic
bound for the switching energy. This is because the above algorithm takes care of
all ambiguity intervals and combines them into one single interval. For example, the
ambiguity intervals at the inputs might cause non-overlapping intervals at the output of
the gate. In this scenario, combining both intervals will give a pessimistic upper bound
on the number of transitions. Hence, multiple ambiguity intervals are needed to better

estimate the upper bound on the number of transitions.

5.6.1 Evaluation of Multiple Ambiguity Intervals

Assigning just one Earliest Arrival time and one Latest Stabilization time might be
inefficient and very pessimistic in some cases. When there is very less overlap between
the ambiguity windows of the inputs, then the bounds might be much closer to the actual

bounds when multiple ambiguity intervals are considered, i.e. a list of (F;,L;) tuples.
The multiple ambiguity intervals at the output can be obtained once the multiple
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ambiguity intervals at the inputs of the gate are known. All the multiple ambiguity
windows at each of the inputs of the gate are stored in one single array. The £, and L,
values at each input for all the multiple ambiguity intervals at that node are modified as
E; + mindel and L; + maxdel respectively and stored. The several intervals are then
sorted. This will give rise to several overlapping intervals as well. So, a union of all
these intervals is taken to segregate them into discrete intervals, without any overlap. An
intersection of these intervals with the single ambiguity interval from the above section
is taken to give rise to multiple ambiguity intervals at that node. If the single ambiguity
interval indicate no ambiguity at the output node, ((E;, L;) = (00, —00)) and if it is at
controlling value, then the multiple ambiguity intervals are discarded and the output is

set to have no ambiguity.

AT

| 1 (dy,d2)
e e

= Ll (AJUA,)

E | | iI Ii (E,t ,L’t)

| — (AUAy) N(E LY

Figure 5.6: Evaluation of multiple ambiguity windows for an AND gate

(Ev, Le) = (B} 4 0min, Ly + 6maz) ()4 | [(Be L)) (5.11)

ie{Inputs}

In the Equation 5.11, (E}, L}) are evaluated as described in the previous section,
and [(E}, L;)]; is the list of multiple ambiguity intervals for input i of the gate. This is

clearly depicted in the figure 5.6 for an AND gate.
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VCD Transitions amongst Multiple Ambiguity Windows
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Figure 5.7: The simulated waveforms of outputs of Booth Multiplier Circuit
P[15:0] at 45nm technology, along with the multiple ambiguity intervals
shown in dashed lines predicted by ambiguity propagation method

The figure 5.7 shows how the transitions as simulated by ModelSim lie within the
reduced multiple windows estimated by the algorithm. It is also important here to note
that the algorithm uses a bounded delay model while the process variation induced on
date delays during simulation is normal and hence has no bounds. So, the windows will

contain all the transitions for most of the cases but not necessarily all the cases.
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CHAPTER 6

PROBABILITY PROPAGATION

6.1 Introduction

The extent of switching energy consumption depends heavily on the inputs applied.
This has been demonstrated in the Section 4.2 in the Chapter 4, and can be observed in
the figure 4.9. In the previous chapter, we implement an algorithm that estimates the
maximum and minimum switching energy consumed at every net of the circuit for a
particular input vector pair. However, these bounds might themselves vary significantly
for different input vector pairs. Since the time complexity of the algorithm is better
than full simulation (for large number of process variations) in orders of magnitude,
one can estimate the over-all average power consumed by a Monte Carlo analysis using
the algorithm for large number of input-vector pairs. But this approach might not be
feasible if the circuit is to be incrementally modified based on the outputs of algorithm

i.e. if modifications are done at the node with highest power consumption.

In this Chapter, we implement an algorithm to estimate the average switching en-
ergy consumption at a net across all input vector pairs without Monte-Carlo analysis,
using a probabilistic approach. We assign static and transition probabilities to all the
primary inputs of a combinational circuit and then propagate them through the subse-
quent gates to the outputs to evaluate the static and transition probabilities at every net
of the circuit. This method is inspired by similar approaches implemented in the paper
by Tsui et al. (1993) and in the paper by Ghosh er al. (1992). Probabilistic approaches
are not just impressive in largely reducing simulation times in estimate average switch-
ing activities, but also provide for additional analysis to be performed on the nets, for
example, evaluating the conditional probabilities as required in the paper by Monteiro

et al. (1993).

For circuits with large number of primary inputs, the Monte Carlo Simulations can
be largely time-intensive or inaccurate, where this approach can be particularly time

saving. While this method, as described in this thesis, is restricted to combinational



circuits, it can also be extended to sequential circuits treating the outputs of each register
as primary inputs for the corresponding combinational block. Also, one can assign
unequal input static and transition probabilities for different primary inputs and evaluate

the corresponding expected switching power.

One of the biggest challenges in probabilistic approach is to model the correlation
of the inputs. For the beginning part of the algorithm description we have assumed
that the inputs are uncorrelated, and then we later explain how to consolidate even the

correlation between the inputs.

6.2 Assumptions

6.2.1 Gate Delays

The general gate delay model is used for this algorithm. The bounded gate delay model
is ignored, and a specific gate delay is assigned to each gate in the circuit. While the
propagation delay can vary for each input of the gate, it does not vary for different kinds
of transition i.e. the rising and the falling transitions are averaged for each input. Also,
for the evaluation of transition probabilities, the Inertial Delay Model is ignored, i.e.
any transition at the input of a gate can potentially propagate to the output regardless of

whether there is another transition within a time interval of the propagation delay.

6.2.2 Primary Inputs

The inputs are assumed to have a transition at time ¢ = (. The static and transition
probabilities at that time instance the inputs are known and are provided as inputs to the

algorithm.

6.2.3 Gate Outputs

All the gates are assumed to have just one output. If a gate has more than one output, for
example a Full Adder, it is split into two separate gates with the same primary inputs but

different and unique outputs. The logic functions for these split gates are also assigned
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accordingly.

6.2.4 Correlation of inputs

The inputs are assumed to be uncorrelated for initial description of the algorithm, and

modification of the algorithm in order to account for correlation is explained later.

6.3 Zero Gate Delays

In this approach, all the transitions at all the nets in the circuit are treated as probabilistic
events. But since we are assuming that the propagation delays of gates are deterministic,
the set of time instances where there can be a possible transitions is countably finite and

deterministic.

We first implement the algorithm with the assumption of zero gate delays for all
the gate delays and then improvise it to account for non-zero gate delays. With this
assumption, all all the transitions in the circuits will occur at ¢ = 0, and there will be at

most one transition at every node.

6.3.1 Terminology

The following symbols will be used to describe the method:

P?#(0) Static probability of the node 7 being zero at t = 0"
P?(1) Static probability of the node ¢ being one at ¢t = 0™

P!(#) Transition probability of the node i having a transition 6 at ¢ = 0,
where 6 € {00,01,10,11}

M; Set of all input state (state of inputs) for the gate with output node ¢

S; Set of all possible input state transitions for the gate with output node ¢,
ie. S; = {(mim;) wherei,j € M;}

P;(c) Probability that the inputs for the gate with output node ¢ have transition o, where
o € Sl

T;(o) The set of transitions at the inputs for the gate with output node i corresponding
to the input state transition o
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X;(0) The set of input state transitions transitions for the gate with output node ¢ corre-
sponding to the output transition 6, where # € {00,01,10, 11}

Here, the static probabilities are defined as the probability of being at a particular

state right after the time instance (or right after the transition at the time instant).

An input state for a gate is a combined state of the inputs. For example, for a 2-input
gate, the set of all the input states would be {00, 01, 10, 11}. Hence, the set of all input

state for a gate with n inputs will be of the size 2".

An input state transition for a gate would be a pair of any two input states, one
belonging to 0~ and the other belonging to 0. It follows that the set of all input state

transitions for a gate with n inputs will be of the size 22",

Every input state transition for a particular gate with output ¢ corresponds to a unique
transition at each of its inputs, i.e. ¢ = {o; where o; is transition at neti}, o € S;, and

we call this set T; (o).

It can also be observed that every state transition for a gate causes a unique transition
at the output, one from {00, 01, 10, 11}. So, the entire set S; can be further divided into
four sets X;(0) where 6 € {00, 01, 10, 11}, such that

X;(0) ={owhereo € S;andT;(c) = fati}

Note: Since we have assumed that all gates have a unique output, there is a one-to-
one mapping between all the gates and the nets in the circuits (except for the primary

inputs). So, we can refer to a gate by the index of its output node.

6.3.2 Methodology

From the definitions of static and transition probabilities, it can be inferred that

P?(0) = P/(00) + P;(10) (6.1)
P;(1) = P;(01) + P{(11) (6.2)

Now, we shall consider a particular gate with output 7 and with n inputs, and assume
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that the static probabilities and transition probabilities of its inputs are known. We can
generate all possible input states and form the set M; with 2" elements and from M, we
can generate the set S; with 22" elements i.e. all possible pairs of elements in M;. Using
the logic function of the gate, we can find out the output transition corresponding to each

element in .S;, and we can thus generate the four sets X;(¢) where # € {00,01, 10, 11}.

If we assume that the inputs are uncorrelated (a transition at one input is independent
of transitions at all other inputs), then the probability of input state transition o can be

evaluated from equation (6.3).

Pi(o) = H P;(8), where j is the input corresponding to ¢ (6.3)
0€Ti(a)

Now we have the probability of every input state transition, and a mapping of every
input state transition to an output transition (the X;s). Since we assume that inputs
are uncorrelated, all the input states are also independent of each other. Hence, we
can evaluate the transition probabilities of the outputs by just summing up the input
state transition probabilities corresponding to that transition at the output, as implied by

equation (6.4).

Pi(0) = Y Pio), for6 € {00,01,10,11} (6.4)

O'EXZ' (9)
This equation gives us all the transition probabilities at the output node 7 with just
the transition probabilities of the input nodes and the logic function of the gate corre-
sponding to the node 7. Using the transition probabilities and the equations (6.1) and

(6.2), we can compute the static probabilities at each node.

Thus, we can start at the primary inputs (whose static and transition probabilities are
provided) and propagate the static and transition probabilities through the gates at each
subsequent level till the output when we will have the static and transition probabilities

of all the nets in the circuit in just one simulation run.
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6.3.3 Power Estimation

After having computed the transition probabilities, the expected number of transitions

at a node ¢ for zero-delay case is given by,

E; =0 x P,(00) + 1 x P,(01) + 1 x P;(10) + 0 x P;(11)

= F;(01) + F(10)

Now that we have expected number of transitions at each node, and we have the
node capacitances at each node as computed in section 5.4.3 in Chapter ??, we can
compute the average switching power consumption at each node and hence the total

average switching power consumption of the circuit using the Equation .

1
Buvitching = ), 5 X Bix Cix V? (6.5)

1€{All Nets}

6.3.4 Results

The zero-delay probability propagation was performed on two circuits : Booth Mul-
tiplier and c880 and the expected number of transitions at each net in the circuit was
evaluated using the algorithm. Also, the expected number of transitions was also eval-
uated by Simulation for large number of inputs for each of the circuits to verify the

performance of the algorithm.

We can observe from figures 6.1 and 6.2 that the estimated expected number of
transitions at all the nodes of the circuits are almost as much as the values evaluated by
ModelSim Simulation. Since there can be at most one transition at each node, we can

see that all expected values lie between 0 and 1.

6.4 Non-zero Gate Delays

Until now, we looked at how to compute the transition probabilities at all the nets in the
circuit and expected power consumption of the circuit in the case of zero gate delays,

where all the transitions in the circuit happened exactly at £ = 0. We shall now allow
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Figure 6.1: The expected number of transitions for all the nodes by the probability prop-
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a Booth Multiplier circuit
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the gates to have non-zero (but fixed) gate delays. In this case, there can be more than
one time instance where an event occur and hence there can be more than one transition
at a node. We improvise on the algorithm explained in the previous section to compute

the expected number of transitions at each net of the circuit.

6.4.1 Terminology

Since there are multiple time instances where a transition can occur, we have slightly a

modified terminology for this analysis.

Ti

+.an The set of all time instances when a transition can occur at a node ¢

I;(t) The set of all inputs that can cause a transition at node ¢ at time instance ¢, where
teT;

tran

For every node, we have multiple time instances when there can be a possible tran-
sition at the node. So, we carry out a similar procedure as the last section, but this time,

at every time instance .

(t)(0) Static probability of the node 7 being zero at time instance ¢
(t)(1) Static probability of the node i being one at time instance ¢

(t)(f) Transition probability of the node 7 having a transition 6 at time instance ¢,
where 6 € {00,01,10,11}

M;(t) Set of all input state (state of inputs) for the gate with output node 7 at time
instance ¢

S;(t) Set of all possible input state transitions for the gate with output node 7 at time
instance ¢,
ie. S;(t) = {(mim;) wherei,j € M;}

P;(t)(o) Probability that the inputs for the gate with output node 7 have transition o at time

instance t, where o € S;(t)

T;(t)(c) The set of transitions at individual inputs for the gate with output node i corre-

sponding to the input state transition o at time instance ¢

(t)(0) The set of input state transitions transitions for the gate with output node ¢ corre-

sponding to the output transition 6, at time instance ¢, such that the inputs not in
I;(t) do not change in the input state transition, where 6 € {00, 01, 10, 11}

We have just created a copy of all the parameters for each time instance at a node.
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6.4.2 Methodology

The static probabilities of a node a time instance ¢ can be obtained from the transition

probabilities from the following equations.

Py (t)(0) = P (t)(00) + Pf(t)(10) (6.6)

7

P(t)(1) = P;(t)(01) + P(t)(11) (6.7)

7

It is also important to note here that if £1 and ¢2 are two consecutive time instances

in the set T

an» then the static probabilities of the node ¢ at any time instance in the

interval (¢1,¢2) are same as the static probabilities of the net at time instance ¢1.

We must also observe the modification in definition of X;(¢)(#), which is now the
set of only those input state transitions where the inputs that do not cause a transition
at time instance ¢ do not change (the ones that do cause a transition might or might not

change).

Now, let us consider a gate with n inputs whose transition times, all static and tran-

sition probabilities are known. The first step is to compute 7}, which can be obtained

tran

by summing up each transition time in input j by the propagation delay, i.e.,

Ttiran = U {,Ig“an + 6j}7 (68)

j€Inputs

where 9, is the propagation delay for the input j.

Once we have the T%

tran’

we can now compute all the parameters defined at each

time instance in T

+an Using the parameters in the previous time instances. For the

computation of transition probabilities, just like in Equation 6.3, we multiply all the
transition probabilities for the inputs in 7;(¢) but we multiply the static probabilities for

the other inputs (since there is no transition at those nodes).

The static probabilities of a node at a particular time instance can be computed by
the static probabilities at the most recent time instance. In the special case of the first
time instance, we use the probabilities given by the zero-delay simulation as the steady

state probabilities since t = —oc.
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The four transition probabilities at each time instant can then be evaluate using the

equation 6.9.

P(t)(0)= > Pi(t)(0), ford € {00,01,10,11} (6.9)
o€X;(t)(0)

This equation now gives all the transition probabilities at the output node ¢ at time ¢
using the transition probabilities of the input nodes, and the output node at the previous
time instances as wells as the logic function of the gate corresponding to the node .
Using the transition probabilities and the equations (6.6) and (6.7), we can compute the

static probabilities at each node at each time instance t.

Again, like explained in the previous section, we can initialize all the static and tran-
sition probabilities at the inputs, assign gate delays to all the gates and then propagate
the static and transition probabilities through the gates for each time instance ¢ at each
subsequent level till the outputs. This would provide us the the static and transition
probabilities for all the nets in the circuit at all the possible time instances in just one

simulation run.

6.4.3 Power Estimation

Computing the expected number of transitions at a node ¢ for non-zero delay is summing
up the expected value of transitions at each time instances (since expectation of sum is

equivalent to sum of expectations), as given be the equation

Ei= Y 0xP(£)(00) + 1 x B(t)(01) + 1 x P(£)(10) + 0 x Bi(t)(11)

teT?

tran

= 3" R(on)+ R(10)

teT}

tran

As pointed out earlier, this expected value can be greater than 1 for a net in the
circuit. The methodologies differ only until computing the static and transition proba-
bilities of the nets. Once we find the expected values of the transition, the remainder

of the procedure is the same. So, we can now use the node capacitances extracted at
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each node and compute the average switching power consumption at each net in the

circuit as well as the total average switching power consumption of the circuit using the

Equation ,.

Eswitching -

1
Z§X

i€{All Nets}

EiXCiXV2

(6.10)

With this methodology, we have computed these transition probabilities for c880

circuit. We have also done a simulation for 10000 inputs using ModelSim in order to

compare the results. The expected number of transitions at each node of the circuit as

given the algorithm and as seen from the simulation are presented in figure 6.3

Figure 6.3:

Expected number of transitions at different nodes (with gate delays)
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The expected number of transitions for all the nodes by the probability prop-
agation algorithm as well as by Modelsim Simulation (for 10000 inputs) for
a Booth Multiplier circuit for the case of non-zero delays

As we can see from figure 6.3, the estimated values for average number of transi-

tions from the algorithm and the simulation are almost the same for the nets in the first

few levels of the circuits, but differ as the number of glitches increase i.e. at the later

levels of the circuit. This is because of the errors due to many assumptions that we have

made in this approach that become increasingly significant with the increase in possible

number of time instances at which transitions can occur at the net.
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6.4.4 Limitations

Correlation of Inputs

Assuming that the inputs are uncorrelated can lead to significant errors in some partic-
ular cases, depending on the logic functions of the nodes in terms of primary inputs.
While modeling correlation accurately might be too complex, it can be approximately
modeled by tagging waveforms and equating correlation of two waveforms as correla-

tion of their steady state values, similar to the approach by Tsui ef al. (1993).

Inertial Delay Model

Our approach ignores Inertial Delay Model, while the simulations by ModelSim that
we are using to validate the results assume Inertial Delay Model. Hence, the number
of expected transitions shown by our algorithm can be much higher than the simulation

value because of not ignoring the transitions that are spaced too closely.

Gate Delays

The gate delays for rise and fall transitions are averaged in our approach, while they are
not in simulations. This might also lead to variations in number of transitions, but is

less significant than the previous two limitations.
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CHAPTER 7

GLITCH POWER REDUCTION

We have seen in earlier chapters that glitches contribute significantly to overall switch-
ing energy consumption of the circuit. The two approaches, ambiguity propagation and
probability propagation, as discussed earlier, help us identify the set of nets in the cir-
cuit which have high value of average number of glitch transitions. However, glitches
which occur at nets at an earlier level in the circuit propagate through the fan-out gates
causing more number of transitions at further levels in the circuit. Hence, blockage of
these glitches will not just reduce the switching power at that net, but also reduce the
switching power caused by transitions propagated further in the circuit. The challenge
now lies in identifying those nets in the circuit which cause the maximum power reduc-
tion if glitches at that node are blocked. In this chapter, we propose a methodology to
identify these nodes and estimate the amount of power saved. We also validate the re-
sults of our approach by placing a latch at those nets to prevent glitches and estimating

actual power reduction.

7.1 Sensitivity analysis

The blocking of glitches at certain nets in the design can dramatically reduce the switch-
ing activity of the circuit. If several stages of combinational logic are pipelined together,
blockage of glitches at earlier levels of the design can significantly reduce the overall
power consumption of the design. If there exists a mechanism to block glitches at a
node without altering the functionality of the design, then this approach will help us
identify the set of nodes which are the best choices to block glitches and thereby reduce

power.

The power saved by blocking the glitch transitions at a node is given by equation

(7.1).



Psave(i) = tz X (Cl + Z Q5 X CJ) (71)

Jj € fan-out(t)
where ¢, is average number of transitions at node i, C; is the capacitance of node i, C;
is the capacitance of a fan-out node j and «;; is the sensitivity of node j with respect to

node i.

Equation (7.1) estimates the amount of power reduction at node i due to transitions
at that node. A transition at a node can cause further transitions at its fan-out nodes. This
effect is captured by the parameter «;; (sensitivity factor). It accounts for the number of
transitions at the fan-out nodes due to a transition at a node. It is theoretically difficult
to estimate this factor. In this section, we propose a methodology to estimate this power

reduction by simulation approach.

7.1.1 Procedure

Consider a node i in the circuit, where the power reduction due to blocking of glitches
has to be estimated. We use the power extraction algorithm approach described in
chapter 4 to estimate switching energy of the circuit in the presence of process variation
and input variation. In order to estimate sensitivity of a node, we break the circuit
at node i. We introduce a multiplexer at that node. One input of the multiplexer is
connected to node i. At the other input, we induce a glitch transition by giving a pulse
signal at the input. When the control signal of the multiplexer is set to 0, the normal
mode of the circuit operation is simulated through the power extraction algorithm. The
control signal is set to 1 once the steady state values at every node in the circuit after
the normal mode of operation. We then give a pulse signal at the other input of the
multiplexer. This induces a glitch transition at the other input of the multiplexer. This
glitch propagates through the fan-out gates of the node i further in the circuit causing
more number of transitions. The power extraction algorithm simulates the circuit in this
mode to estimate the power dissipated in the circuit due to the induced glitch transition

at the node i. This is better explained through an example below.

Consider the combinational circuit shown in figure 7.1. The node of interest repre-
sents the node where we need to estimate the reduction in switching energy if glitches

at that node are blocked. This circuit is modified as shown in figure 7.2. We break
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interest

Figure 7.1: An example of a combinational circuit highlighting the node where power
reduction due to blocking of glitches has to be estimated.

Induced
pulse

Ctrl

Figure 7.2: An example of a combinational circuit where a multiplexer has been in-
serted at the node where power reduction due to blocking of glitches has to
be estimated.

the circuit at the node of interest and insert a multiplexer at that node as shown. The
ctrl signal is set to O initially. It is set to 1 once the steady state values are set in the
circuit due to applied input vector pair. The power extraction algorithm estimates the
overall switching energy of the circuit. The ctrl signal is then made to 1 and a pulse
signal is introduced at the other input of the multiplexer. The pulse propagates further
in the circuit through the fan-out gates of the node of interest inducing more transitions.
The power estimation algorithm now computes the switching energy in the circuit due
to these transitions. This gives the estimate of power reduced in the circuit by a single
glitch at that node. This estimate is multiplied with expected number of transitions at
the node of interest to estimate the total power reduction in the circuit by blocking of
glitches at that node. The expected number of transitions can be obtained by both the

approaches, ambiguity propagation approach and probability propagation approach.
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7.1.2 Results

An ISCAS85 benchmark circuit ¢880 is simulated for 100 input vectors by consid-
ering one standard SDF file generated by Synopsys Design Compiler. The circuit is
simulated using the procedure described above considering each of the intermediary

nets in the circuit as the node of interest.

Energy consumption by inserting a glitch at each node independently

120 (for c880 circuit averaged over 100 input vectors)

Max switching energy comsumption
by Simulation

Circuit energy consumption due

to a glitch at the node

100f b

80

60

401

Switching energy Consumption (in f])

Al AT

0 20 40 i 160 120 11‘10 160 180
Nodes of the circuit (sorted by their maximum energy consumption)

Figure 7.3: Average switching energy consumed by C880 circuit due to a glitch at the
intermediary nodes. Maximum switching energy consumption at all the
intermediary nets in the circuit by simulation using ModelSim and by am-
biguity propagation approach are also shown. The circuit is simulated for
100 input vectors using one standard SDF file.

Figure 7.3 shows the average switching energy consumed by C880 circuit due to an
induced glitch at all the intermediary nodes. The maximum power consumption at all
those nets in the circuit by simulation of the circuit using ModelSim and the maximum
power consumption at the nets estimated by ambiguity propagation approach are also
indicated. From this figure, we observe that the nets with moderate power consumption
values have more significant values for power consumption in the circuit due to an
induced glitch at those nodes. This indicates that blocking of glitches at nets with a high
value of expected number of transitions need not necessarily cause the highest reduction
in power consumption of the circuit if glitches there are blocked. This is because those
glitches might have been originated at an intermediary node and propagated through the

circuit. Hence, blocking of glitches at the source node will cause more power reduction
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in many cases. We also observe that the value of power consumption of the circuit due
to an induced glitch at a node is higher than the other two values (power consumption at
the net obtained by simulation and ambiguity interval propagation) in many cases. This
is primarily because the value of power consumption due to induced glitch shows the
power consumption in the entire circuit due to a glitch at the node. The other two values

are the power consumption estimates for the specific net and not the whole circuit.

7.2 Glitch reduction using a latch

In the above section, we presented an approach to estimate the power consumption of
a circuit due to a glitch at one of its intermediary nets. We validate this approach by
introducing a latch at the net and estimating power consumption of the circuit. The
latch is enabled when the steady state values are set at all the nets in the circuit due
to applied input vector pair. Thus, the glitches that occur at the input of the latch are
blocked from further propagation. Only the steady state transition at that net will be
propagated further in the circuit once the latch is enabled. This is explained better with

the help of an example given below.

e

/\

Ctrl

)

Figure 7.4: An example of a combinational circuit where a latch has been inserted at the
node where power reduction due to blocking of glitches has to be estimated.

Consider the combinational circuit shown in figure 7.1. A latch is inserted at the
node of interest as shown in figure 7.4. The latch is enabled through the ctr1 signal,
once the steady state values at all the nets in the circuit have been set. Thus, the glitches
at the node connected to the input of the latch are blocked from further propagation in

the circuit. This circuit is simulated using the power extraction algorithm to estimate
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power consumption of the circuit when the glitches at an intermediary net are blocked.

7.2.1 Results

An ISCAS85 benchmark circuit ¢880 is simulated for 100 input vectors by consid-
ering one standard SDF file generated by Synopsys Design Compiler. The circuit is
simulated using the procedure described above considering each of the intermediary

nets in the circuit as the node where glitches have to be blocked.

Reduction in energy consumption by blocking glitches at each node
(for ¢880 circuit averaged over 100 input vectors)

Max Energy Comsumption

by Simulation

Circuit energy reduction due to
blocking glitches at the net

Energy Consumption/Reduction

0 20 40 60 80 100 120 140 160 180
Nodes of the circuit (sorted by their maximum energy consumption)

Figure 7.5: Average switching energy consumed by C880 circuit when glitches at an
intermediary net is blocked by a latch. Maximum switching energy con-
sumption at each net (by ModelSim Simulation) is also shown. The circuit
is simulated for 100 input vectors using one standard SDF file.

In the Figure 7.8, we can observe that the nets where the glitches must be blocked
are not necessarily the high-glitch nodes. Most of them have moderate glitching activity
which is then propagating through the subsequent levels of gates leading to high glitches

at the nets of later levels.

The power reduced in the circuit by blocking the glitches at a particular node should
be highly correlated with the extra power consumed by circuit when a glitch is intro-
duced at that node (as explained in the previous section). Thus, we now compare the

values obtained by the two approaches for c880 circuit.
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Reduction in energy consumption by blocking glitches vs Additional energy consumption
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Figure 7.6:
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Nodes of the circuit (sorted by their maximum energy consumption)

Average switching energy reduced by C880 circuit when glitches at an in-
termediary net is blocked by a latch. Average switching energy consumed
by C880 circuit due to a glitch at the intermediary net as estimated by our
approach is also shown. The circuit is simulated for 100 input vectors using
one standard SDF file.
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Figure 7.7: Scatter plot for average switching energy reduced by C880 circuit when
glitches at an intermediary net is blocked by a latch versus average power
consumed by C880 circuit due to a glitch at the intermediary net as esti-
mated by our approach. The box shows the nodes that have high values as
estimated by both the approaches.
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Figures 7.6 and 7.7 compare the average power consumed by C880 circuit when
glitches at an intermediary net is blocked by a latch and the average power estimates
as given by our approach in the previous section. These values are plotted for all the
nets with high values of power reduction on blocking the glitches. We observe a high

correlation between the two values as seen in the figures.

7.3 Applications

In the previous two sections, we presented a methodology to identify the set of nets
in the circuit which result in maximum power reduction if glitches at those nets are
blocked. The results of this methodology can be used in several applications which aim

at power reduction. Some of these applications are explained in subsections below.

7.3.1 Retiming for low power

As established in previous sections, reducing glitches in a circuit is essential to reduc-
tion of power dissipated in the circuit. Glitches arise due to unbalanced path delays in a
circuit. So, one of the ways of reducing glitches is by trying to balance all the paths in
the circuit using delay elements and buffers. This will minimize the effect of mismatch
in signal arrival times in the circuit. However, this is difficult to achieve early in the
design phase as layout process introduces some delay mismatch in the circuit. Another
way of reducing glitches in a circuit is by retiming. Traditionally, retiming algorithms
are aimed at optimizing timing constraints in a circuit. In this subsection, we elaborate

on retiming and its application for low power.

Retiming

Retiming is the process of optimally distributing registers throughout a circuit to min-
imize clock period. It alters the clock period by insertion and deletion of registers in a

circuit, without altering its intended functionality.

Consider the example circuit shown in figure 7.8 (a). In this circuit, there are two

registers, shown in blue and green in the figure. Figures 7.8 (b) & (c) show the circuit
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(c)

Figure 7.8: Example of retiming on a sample circuit. (a): Sample circuit (b)and (c):
Retimed circuit

after performing retiming algorithm on the circuit. We see that the blue colored register
has been moved to a different location in the circuit without altering the functionality
of the circuit. This process is called retiming. Traditionally, retiming is looked from the
perspective of timing of the circuit. Registers are optimally placed in the circuit such
that the clock period is minimized. In the next subsection, we show how retiming can

also be used for low power.

Retiming for low power

Registers placed at node do not allow glitches at their inputs propagate further in the
circuit. So, if registers can be placed at alternate locations without affecting the intended
functionality and timing constraints of the circuit, they can be placed at those nodes
which cause maximum power reduction due to blocking of glitches. This is explained

better by an example.

Consider the circuit shown in figure 7.9. In figures 7.9 (a) & (b), the register has
been placed at two different locations in both the cases by applying the retiming algo-
rithm. Let us assume that in both the cases, the timing constraints and functionality of
the circuit are satisfied. If it is known that the node connecting combinational logic 1

and 2 causes maximum power reduction due to blocking of glitches in the circuit, plac-
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Figure 7.9: Placement of registers at two different locations by retiming algorithm on a
sample circuit

ing a register at that node (as shown in figure 7.9 (a)) would significantly reduce the
overall power consumption of the circuit. This is because the glitches at that node will
not be permitted to propagate further causing additional transitions in the combinational
logic block 2. The work done in this thesis helps us identify those nets in the circuit
which cause a significant power reduction if glitches at those nets are blocked. These

nets can be retimed for low power if the other constraints of the circuit are met.

7.3.2 Insertion of latches with delayed clocks

In the previous subsection, we saw how retiming can be used for low power applica-
tions. We moved the locations of existing registers in the circuit such that timing and
functionality constraints are met and switching power consumption is minimized. In
this subsection, we see another application of power reduction by blocking of glitches
using latches with delayed clocks. Latches block glitches at a node if they are disabled

by a clock signal for certain time interval till steady state values are set at the node.

Consider the circuit shown in figure 7.4. If the latch is disabled by the clock sig-
nal (shown in this figure as ctrl) for an initial time interval, it will block all the glitch

transitions at its input till the latch is enabled. In order to meet the timing constraints
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of the circuit, the latch needs to be enabled in such a way that the outputs of the combi-
national block reach their steady state values before the next clock edge occurs. Hence,
the insertion of a latch at a net might reduce propagation of some glitches but need not
necessarily block all the glitches from propagating further in the circuit. However, it
can reduce the overall power consumption of the circuit by blocking glitches at the node
for a certain time interval. This comes at the expense of increased area due to additional
latches introduced in the design. There is a small additional amount of power consump-
tion due to latches. However, the decrease in total switching energy of the circuit might
more than compensate these overheads in certain cases when latches are introduced at

those nets which cause maximum total power reduction in the circuit.

In order to implement this method, the first step might be to identify the potential
nodes which result in maximal power reduction if latches are placed at those nets. For
the same, the heuristic proposed in the first section of this chapter can be used to provide

the potential nets in the circuit.

83



8.1

CHAPTER 8

CONCLUSIONS

Conclusions

An AND gate was simulated at transistor level. The power dissipated by load
capacitance as obtained by spice simulation was nearly equal to the theoretical
value of 0.5 x C V2. We also observed that power dissipated in the internal node
capacitances of the gate was negligible in comparison to short circuit power.

Monte Carlo analysis of circuits was done to identify the impact of process vari-
ation on switching energy consumption. We observed that mean and standard
deviation of total switching energy of the circuits increased proportionately with
an increase in standard deviation of process variation.

We analyzed the individual and combined impact of process variation and varia-
tion in input stimuli on switching energy consumption. We then concluded that
the impact of variation in input stimuli is more significant than the impact of
process variation.

We estimated the contribution of glitches to total switching energy consumption.
We observed that glitches contribute 30 — 40 % to the total switching energy con-
sumption.

We implemented Ambiguity Interval propagation approach to estimate bounds
on switching energy consumed at individual nets in the circuit. The maximum
value of power dissipation as estimated by this approach was either equal to or
larger than the maximum power consumption value obtained by simulation of the
circuit. However, we also observed that most of the nets in the circuit which were
identified to have maximum power consumption by ambiguity interval method
also had maximum power consumption by simulation.

Probability propagation algorithm was implement to estimate the number of tran-
sitions at every net in the circuit and thereby estimate switching energy. Expected
number of transitions at all the nets in the circuit were nearly equal to the average
number of transitions as estimated by simulation under zero propagation delay
conditions for all the gates. On applying real propagation delay values for all the
gates, we observed that the expected number of transitions from the algorithm
and the simulation were the same for nets in the initial levels of the circuit. How-
ever, they differed considerably as the number of glitches increased at later levels
of the circuit.

We induced a glitch at an intermediary net in the circuit once the steady state val-
ues were set in all the nets and estimated total switching energy of the circuit. We
observed that the nets with moderate power consumption values had more signif-
icant values for power consumption in the circuit due to an induced glitch at those
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nets. Hence, blocking of glitches at source nets will prevent their propagation to
later levels of the circuit and hence result in significant power reduction in many
cases.

On validation of the above approach, we identified a high correlation between
the nets identified to have maximum total power consumption due to induced
glitch and those nets which result in maximum total power saving by blocking of
glitches at the nets through a latch.

The work presented in this thesis helps identify those nets in the design which will
result in maximum power saving if glitches at those nets are blocked. This can
be used by several algorithms like retiming for low power which aims at reducing
glitches in the circuit.

Future work

The algorithms implemented for small combinational circuits can be scaled to
large combinational blocks to characterize impact of glitches at higher levels of
abstraction.

We have assumed the inputs to be independent in most of our analysis. The glitch
activity at inputs and correlation between inputs can be modeled to characterize
combinational blocks for glitch activity.

A retiming algorithm aimed at low power can be implemented using the results
of the current work.

The impact of process variation in the presence of correlation between inter-die
as well as intra-die parameters can be identified by modeling at parametric level
and implementing a quad-tree structure.

Impact of partial glitches on switching energy consumption can be modeled with
glitch width as parameter.
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