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ABSTRACT

This project deals with the study of algorithms that detect change in sensor net-

works. More particularly, we study change detection in a sensor network with an

unknown number of affected sensors. Existing schemes like the Parallel Cusum

algorithm and the Adaptive Cusum algorithm are considered. A stochastic ap-

proximation variation to the Adaptive Cusum algorithm is introduced. It’s conver-

gence is proven theoretically and its performance with respect to existing schemes

is further studied via simulation.
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CHAPTER 1

INTRODUCTION

1.1 Context and motivation

Many practical problems arising in quality control, recognition oriented signal

processing, fault detection and monitoring in industrial plants can be modeled

with the help of parametric models in which the parameters are subject to abrupt

changes at unknown time instants.

The detection of abrupt changes thus refers to tools that help us decide whether

such a change occurred in the characteristics of the considered object.

In this project, the model we study is that of sensor networks. We assume that

an unknown number of sensors in this sensor network are affected suddenly at an

unknown time instant. We look at algorithms that will help us identify this time

instant of change and predict the number of affected sensors as well.



1.2 System Model

Consider a network of K sensors where each sensor makes discrete observations

Xk,n with discrete time index n = 1, 2, 3....∞ and sensor index k = 1, 2, 3...K.

Observations are assumed to be statistically independent across time and across

sensors.

Initially the observations Xk,n follow the distribution fk at the kth sensor. A

change event happens at an unknown time v ∈ N . Only a subset of sensors

S ⊂ 1, 2, ...K are affected by the change. After the change event, the observa-

tions at the affected sensors follow the distribution gk.The set of affected sensors

S and its size |S| are unknown apriori.

This can be summarized as

Xk,n =


fk : n < v

fk : n ≥ v and k 6∈ S

gk : n ≥ v and k ∈ S

Based on their observations, sensors send signals Uk,n to the fusion center. Let Yn

denote the signal received at the fusion center at time n.

We consider the noisy physical layer fusion model (T.Bannerjee and Jayaprakasam

(2011)) where the scalar observation (Yn) is then given by

Yn =
∑K

k=1 Uk,n + Vn

The model can be diagramatically represented as shown in the figure below.
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Figure 1.1: System Model
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CHAPTER 2

Problem Formulation

Based on its observations say at a time T, the fusion center declares that change

has happened. The general idea is to minimize the delay in declaring change for a

given false alarm rate (can be visualized as an acceptable error probability.)

There are several ways in which the delay to be minimized can be formulated.

We study Lorden’s formulation [Lorden (1971)]. In Lorden’s formulation, the

objective is to minimize the supremum of the average delay conditioned on the

worst possible realizations, subject to a constraint on the false alarm rate.

Let Fn denote the set of all observations upto time n. The worst case detection

delay for a given change point τω(T ) is then defined as

τω(T ) = sup
v≥1

esssupEv[(T − v + 1)+/Fv−1] (2.1)

where the supremum is taken over all possible change points and all possible pre

change observations and expectation is taken over the post change observations.

The mean time to false alarm, is given by

φl = E[T/v =∞] (2.2)

φl gives the average time taken to falsely declare the change when there was no

change event.



Lorden’s problem formulation is to find the T that minimizes τω(T ) as given in

(2.1) while satisfying the constraint on φl, defined in (2.2) .
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CHAPTER 3

Existing Algorithms

3.1 Single Sensor Case

Let us first consider the single sensor case, where the problem of minimizing

worst case detection delay under the average run length constraint is well studied

(Basseville and Nikiforov).

Figure 3.1: System Model Single Sensor

In this case the fusion center gets a random variable X that follows distribution f

till the change point v and follows distribution g after that.



Theorem 3.1.1. (Lorden, 1971; V.Nikiforov, 2000) Let γ represent the mean time

to false alarm. There exists an asymptotic lower bound for worst case detection

delay.

inf τω(T ) ∼ log(γ)

D(f ||g)
as γ →∞

where D(f ||g) represents the KL distance between the two distributions f and g.

The Cusum algorithm (Basseville and Nikiforov) gives the same lower bounds on

the worst case detection delay as average run length approaches∞. The Cusum

algorithm is defined below. Wn is called the Cusum metric, Ln the log likelihood

ratio and b is a pre-specified constant.

Algorithm 1 CUSUM Algorithm
Initialize n = 0 and Wn = 0

while Wn ≤ b do
Ln = log g(Xn)

f(Xn)

Wn = max(Wn−1 + Ln, 0)
end while

Declare Change
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3.2 Multiple Sensor Case

Figure 3.2: System Model

The summary messages Uk,n sent by individual sensors at each time instant to the

fusion center need to be computed. For this purpose, the Cusum metric at each

sensor, at each time instant Wk,n are computed based on the log likelihood ratios

Lk,n.

Based on pre specified constant b, s the summary messages are computed by fol-

lowing the rule

Uk,n =

 0 : Wk,n < b

s : Wk,n ≥ b

The algorithm can be summarized as shown below.
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Algorithm 2 Algorithm for computing summary messages sent by each sensor to
the fusion center

Initialize n = 0 and Wk,n = 0∀k

while n do
for k < K do
Lk,n = log

gk(Xk,n)

fk(Xk,n)

Wk,n = max(Wk,n−1 + Lk,n, 0)
if Wk,n ≤ b then
Uk,n = 0

else
Uk,n = s

end if
k + +

end for
n+ +

end while

We further study a very specific case of the system model initially described in

section 1.2. We assume that τk = τ (actual change instant for each sensor)for all

k ∈ S i.e., all the affected sensors identify the change at the same time. We also

assume that all sensors receive signals with Gaussian distribution fk = N(0, 1)

prior to the change point. Post change, the affected sensors alone receive signals

with Gaussian distribution gk = N(0.5, 1). The noise the fusion center receives is

Gaussian N(0, 1).

The signal received by the fusion center is given by the expression

Yn =
∑K

k=1 Uk,n + Vn

9



Therefore, for the specific problem settings that we are studying,

Yn =

 N0 : n < τ

Nm : else

where the mean m is unknown since the number of affected sensors is unknown.

The mean m belongs to a finite discrete set M = 0, s, ....,Ms for some M which

depends on the number of sensors K.

The following algorithms have been studied in literature for the given problem.

• Parallel Cusum Algorithm

• Adaptive Cusum Algorithm

10



3.2.1 Parallel Cusum Algorithm

Yn =

 N0 : n < τ

Nm : else

where the mean m is unknown since the number of affected sensors is unknown.

The mean m belongs to a finite discrete set M = 0, s, ....,Ms for some M which

depends on the number of sensors K.

Basing it on the system model described in section 1.2, fk = N(0, 1) and gk =

N(m, 1) where m can be from one of 0, s, ....,Ms .

Lorden proved that the Cusum algorithm can be used to solve this problem op-

timally in an asymptotic sense (Lorden, 1971). His basic idea was to calculate

a Cusum metric Wm
n for each possible value of m ∈ M . If any of the Cususm

metrics crossed the pre-specified threshold, the change would be declared.

The fusion center detection rule is given by

δp =

 change : maxmW
m
n ≥ a

Continue : else

where a is a suitably chosen threshold to satisfy the average run length constraint.

The algorithm can be represented as shown below.
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Algorithm 3 Parallel Cusum algorithm
Initialize n = 0 and Wm

n = 0∀m

while n do
for m ∈M do
Lmn = logNm(Yn)

N0(Yn)

Wm
n = max(Wm

n−1 + Lmn , 0)
end for
if max(Wm

n ) ≥ a then
Declare Change

else
continue

end if
n+ +

end while
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3.2.2 Adaptive Cusum Algorithm

This algorithm has been studied in detail in (Chengzhi Li, 2009).

It is a sub-optimal algorithm that is computationally less intensive that the optimal

Parallel Cusum algorithm. Parallel Cusum computes the Cusum metric Wm
n for

allm ∈M . To reduce the computational load, the adaptive Cusum algorithm tries

to estimate an m and computes only Wm
n at each time instant.

The algorithm can be interpreted as having two interleaved steps

• Parameter Tracking

• Cusum Test

Parameter Tracking

Define F (m) = E(Lmn ) (3.1)

Theorem 3.2.1. (Chengzhi Li, 2009) When the pre-change and post-change dis-

tributions belong to the exponential family, F (m) is a strictly concave function

and achieves its global maxima at m = m.

Proof. Exponential family of distributions is pθ(x) = h(x) exp(θT (x)− A(θ))

The hypothesis being tested is  H0 : θ = 0

H1 : θ = m

13



F (m) = E(Lmn ) = log pm(Yn)
p0(Yn)

⇒ F (m) = log pm(Yn)
p0(Yn)

− log pm(Yn)
pm(Yn)

⇒ F (m) = E(Lmn )−D(pm||pm)

where D(pm||pm) is the KL distance between pm and pm.

KL distance is a non negative function.⇒ F (m) achieves maximum at m = m.

dF (m)

dm
= −dD(pm||pm)

dm

⇒ dF (m)

dm
= −E[

d

dm
((m−m)T (x)− (A(m)− A(m)))]

⇒ dF (m)

dm
= E[T (x)]− dA(m)

dm

d2F (m)

d2m
= −d

2A(m)

d2m

According to the differential identities ofA(m)(Mei, 2003) ,
d2A(m)

d2m
= V ar(T (x)) >

0

Therefore F (m) is strictly concave.
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Thus Adapative Cusum tries to find the value of m that maximizes F (m) and sets

that as m.

Given a small value of ε, we can always find a p,q such that q = p + ε and

F (p) = F (q). m lies in the interval (p, q).

To find p, q we use the following recursive process.

Algorithm 4 Algorithm to find such a p and q
Choose an arbitrary po and set qo = po + ε

Set n = 0

while F (p) 6∈ δneigbourhood of F (q) do
pn+1 = max(0, pn + ξDn)

qn+1 = min(Ms, pn+1 + ε)

n+ +
end while

where ξ is the step size and Dn = F (qn)− F (pn) = E[log(
Nqn(Yn)

Npn(Yn)
)].

Convergence Analysis. If Dn > 0, pn+1 and qn+1 will grow, so that Dn+1 will

decrease due to the concavity of the function. Similarly, if Dn < 0, pn+1 and qn+1

will move back so that Dn+1 will increase. In both cases, Dn converges to zero

surely.

In practice, we replace the ensemble average with the time average. Therefore,

Dn = log(
Nqn(Yn)

Npn(Yn)
)

15



The mean value mn at each iteration step is estimated as pn+qn
2

. mn converges to

m with time.

Cusum Test

The Cusum metric is computed based on the current estimate of the mean (mn)

Wn = max(0,Wn−1 + log(
Nmn(Yn)

N0(Yn)
))

The fusion center detection rule is given by

δa =

 change : Wn ≥ a

Continue : else

where a is a suitably chosen threshold to satisfy the average run length constraint.
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CHAPTER 4

Stochastic Approximation to Adaptive Cusum

4.1 Variation of Adaptive Cusum

Just like the Adaptive Cusum algorithm, this algorithm too has two interleaved

steps

• Parameter Tracking

• Cusum Test

The difference lies in how the parameter tracking is performed.

4.1.1 Parameter Tracking

As shown in the previous section, F (m) = E[Lmn ] is a strictly concave function.

We try to estimate the value of m for which this function attains its maximum.

From (Kiefer and Wolfowitz, 1952) we know that, given two infinite sequences of

positive numbers an and cn that satisfy the following properties,

• cn → 0

• Σan =∞

• Σancn <∞

• Σa2
nc
−
n 2 <∞



For example, an = n−1 and cn = n−1/3.

We can estimate the m that maximizes F (m) using the following algorithm

Algorithm 5 Stochastic estimation of maximum of concave function
Choose an arbitrary m0

Set n = 0

while n do

mn+1 = mn + an

log(
Nmn+cn(Yn)

N0(Yn)
)−log(

Nmn−cn(Yn)

N0(Yn)
)

cn
n+ +

end while
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4.2 Proof of Convergence

Theorem 4.2.1 (Stochastic Estimation of the maximum of a regression function).

(Kiefer and Wolfowitz, 1952) Let M(x) be a concave function achieving its max-

imum at x = θ. Let us say that M(x) itself is unknown, but its value at various

observation levels x is known. Then, starting from an arbitrary point x1, one can

successively obtain x2, x3.... such that xn → θ in probability as n→∞.

In our case F (m) is a concave function. Thus, starting from some arbitrary m1,

it is possible to successively find m2,m3.... such that mn → θ in probability as

n→∞.

Given two infinite sequences of positive numbers an and cn that satisfy the fol-

lowing properties,

• cn → 0

• Σan =∞

• Σancn <∞

• Σa2
nc
−
n 2 <∞

We can estimate the m that maximizes F (m) using the following recursion

mn+1 = mn + an

log(
Nmn+cn(Yn)

N0(Yn)
)−log(

Nmn−cn(Yn)

N0(Yn)
)

cn

The above stochastic approximation recursion will converge to the maximum only

when F (m) is a regular function. Thus it needs to be shown that F (m) is a regular

function. This is shown in the following lemma.
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Theorem 4.2.2. When the pre change and post change distributions of the obser-

vations are Gaussian distributions varying only in their mean, then the functionF (m)

is a regular function and satisfies the following criteria,

1. There exist positive β and B such that

|m′ −m|+ |m′′ −m| < β ⇒ |F (m′)− F (m”)| < B|m′ −m”| (4.1)

2. There exist positive ρ and R such that

|m′ −m”| < ρ⇒ |F (m′)− F (m”)| < R (4.2)

3. For every δ > 0 there exists a positive Π(δ) such that

|m−m| > δ ⇒ inf
1

2
δ>ε>0

|F (m+ ε)− F (m− ε)|
ε

> Π(δ) (4.3)

Proof. Let the pre change distribution beN(λ, σ2) and the actual post change dis-

tribution be N(Ψ, σ2).

F (m) = E(lm(Yn)) where

lm(t) = log(
Nm(Yn)

Nλ(Yn)
)

We know that Nm(Yn) =
√

1
2Πσ2 exp(−(Yn −m)2

2σ2
)

Substituting in the lm(t) expression, we get

lm(t) =
m− λ

2σ2
(2Yn − λ−m)

F (m) = E(lm(Yn)) =
∫∞
−∞ lm(Yn)

√
1

2Πσ2 exp(−(Yn −Ψ)2

2σ2
)dYn

20



On simplification, this gives F (m) = (
m− λ

2σ2
)[

2σ2

√
2πσ2

− λ−m+ 2Ψ]

Thus F (m) is a quadratic function of the form F (m) = (m− a)(m− b). Further-

more, F (m) is defined over a restricted domain on m.

The proof of statement 4.1 comes directly from the fact that a quadratic func-

tion is Lipschitz continuous.

Since F (m) is defined only over a restricted range of values of m, F (m) will

also take values from a restricted real set. Hence, |F (m′) − F (m”)| will always

have an upper bound. Therefore, statement 4.2 is proved.

For a quadratic function in a restricted domain, the rate of fall outside a δ neigh-

borhood of the maximum, will have a lower bound. In specific, when |m−m| > δ,

then infimum of inf 1

2
δ>ε>0

|F (m+ ε)− F (m− ε)|
ε

is given by

inf(
F (m− δ/2)− F (m− 3δ/2)

δ/2
,
F (m+ δ/2)− F (m+ 3δ/2)

δ/2
)

This lower bound is a function of δ.

Hence,|m − m| > δ implies inf 1

2
δ>ε>0

|F (m+ ε)− F (m− ε)|
ε

> Π(δ) , thus

proving statement 4.3.

Therefore the maximum of F (m) can be found by the recursive process detailed

above.
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4.3 Simulation of Performance

Number of sensors considered is K = 100. Pre change distribution is N(0, 1).

Post change distribution is N(0.5, 1). Detection delay at the fusion center is used

as the performance metric keeping the same average length constraint for different

schemes. Simulations are performed with signal to noise ratio of 0 db and binary

quantization threshold of b = 460.52. The change point is set at v=100.

The following graphs are plotted for each set of parameters:

1. Detection delay at fusion center for each algorithm

2. Convergence of estimated mean (m) to actual mean (number of affected
sensors)
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4.4 Performance comparison between algorithms

The sub optimal behavior of the Adaptive Cusum and Stochastic Approximation

Cusum algorithms is due to the time the parameter tracking part of the algorithms

take. The faster the algorithms find the maximum of F (m), the closer their detec-

tion delays will be to the detection delay of the Parallel Cusum algorithm.

The parameter tracking of the Adaptive Cusum algorithm as explained in subsec-

tion 3.2.2 depends on two parameters:

1. ξ

2. ε

The parameter tracking of the Stochastic Approximation Cusum algorithm as ex-

plained in subsection 4.1.1 depends on two parameters:

1. Series an

2. Series cn

It is not possible to choose the parameters of the respective algorithms appro-

priately to improve performance without any prior knowledge of the number of

sensors that will get affected.

In the case of our problem formulation, where there is no prior information about

the change point or the number of affected sensors, depending on the parameters

chosen, either algorithm can be shown to outperform each other. This is illustrated

below.
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ε = 10, ξ = 0.03, an = n−1, cn = n−1/3
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ε = 2, ξ = 0.03, an = n−1, cn = n−1/3
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4.5 Further Work

In this study, we consider only the exponential family of distributions where there

is change in only one parameter at the change point.

This choice of exponential family of distributions ensures that the F (m) function

(define in equation 3.1) is symmetric about its maxima.

A possible area of expansion would be to explore changes in distribution that

ensure that the resulting F (m), is a strictly concave function but asymmetric about

its maxima.

In such a situation, the parameter tracking part of the Adaptive Cusum algorithm

will not converge to the maximising argument. The Stochastic Approximation al-

gorithm will still converge to the maxima and will hence outperform the Adaptive

Cusum algorithm.
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CHAPTER 5

Conclusion

Quickest change detection algorithms for sensor networks with an unknown num-

ber of affected sensors at an unknown time instant are studied. Lorden’s formula-

tion for the quickest change detection problem is the one used as the base for the

analysis. Existing optimal schemes like the Parallel Cusum Algorithm and sub-

optimal schemes like the Adaptive Cusum algorithm are discussed. An alternate

suboptimal scheme based on Stochastic Approximation is suggested. The perfor-

mance in terms of the detection delay at the fusion center is studied and simulated

for each of the schemes. The convergence of the newly suggested suboptimal

scheme is also theoretically proven. A comparison is made between the two sub-

optimal schemes and a further possible area of work on the topic is suggested.
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