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ABSTRACT 

 

 

KEYWORDS: Interference, Pareto Optimal Boundary, Multi-antenna Base Station and 

Mobile Station 

 

The problem of resource allocation arises in every scenario where the resources are 

limited. It becomes important to allocate the resources optimally in order to maximize the 

aggregate output. This is a major problem currently faced by communication networks 

where frequency band is limited. Conventional mobile networks are designed with a 

cellular architecture where the entire frequency band is distributed among the cells such 

that only the non-adjacent cells use the same frequency band. The resulting interference 

is treated as noise and is minimized by applying the predesigned frequency reuse pattern. 

 

The growing demand for high data rates has put these conventional methods to 

throughput limits. Hence, there is a dire need to make available the entire frequency band 

in all the cells. However, this factor one frequency reuse pattern deteriorates the overall 

network performance by the inter-cell interference; As a result, more sophisticated 

interference management techniques with multi-cell cooperation become crucial. Over 

the years many techniques were introduced which have fully cooperative downlink 

channels where large amounts of data is exchanged between the base stations. But this 

method turned ineffective due to the large amounts of power required for the exchange of 

information between the base stations. 

 

The problem dealt with in this work is to come up with an effective method to remove the 

effect of the inter-cell interference via joint signal processing across various base stations. 

Unlike the fully cooperative downlink transmission the problem setup we have 

considered is a decentralized implementation of the multi-cell cooperative downlink 

beamforming.



  

 iv 

TABLE OF CONTENTS 

 

 

ACKNOWLEDGEMENTSi 

ABSTRACT        iii 

LIST OF TABLES        vi 

LIST OF FIGURES      vii 

ABBREVIATIONS   viii 

NOTATIONS     ix 

1. INTRODUCTION                                                                 1 

1.1. Conventional Cellular Network…...……………….…………………………… 1 

1.2. Cooperative Beamforming Techniques…………………………………………     2 

1.3. A Summary………………………………………………………………………    2 

2. MULTICELL BEAMFORMING   3 

2.1. System Model…...……………….……………………………………………... 3 

2.2. Interference Temperature Based Optimization………………………………….  4 

2.3. Closed form solution for global Pareto optimality………………………………6 

3. PARETO OPTIMAL BOUNDARY                                                      11 

3.1. Pareto Optimal Boundary for the 2-cell network by implementing the closed form 

solution…...……………….……………………………………………………..    11 

3.1.1. Rate Region……………………………………………………………….     11 

3.1.2. Pareto Optimal Boundary…………………………………………………     12 

3.1.3. Zero Forcing Rate………………………………………………………….    14 

3.1.4. Converging values of Interference Temperature…………………………..    16 

3.2. Simulation of the Pareto Optimal Boundary using the Decentralized Algorithm for 

Multi Cell Cooperative Beamforming………………………………………….      18 

3.2.1. Solving the dual of the Optimization problem……………………………     18 

3.2.2. A simulation………………………………………………………………     20 

3.2.3. Rate Region………………………………………………………………      21 



  

 v 

3.2.4. Pareto Optimal Boundary…………………………………………………     22 

4. CHARACTERISATION OF THE PARETO OPTIMAL BOUNDARY FOR 

THE 2 MSs PER CELL CASE                                                                       24 

4.1. System Model…...……………….……………………………………………...    24 

4.2. Interference Temperature Based Optimization………………………………….27 

4.3. Closed form solution for global Pareto optimality………………………………     29 

5. CONCLUSION AND DIRECTIONS TO FUTURE WORK                30 

5.1. Conclusion………………………………………………………………………     30 

5.2. Directions to Future Work…………………………………………………….....    30 

  



  

 vi 

LIST OF TABLES 

 

 
 2.1. Range of 𝑟1 obtained for various values cos 𝜃1 − 𝜃2 …………………………        8          

 3.1 Parameters used to characterize the Rate region…………………………………     12 

3.2 Parameters used to plot the Figure 3.5……………………………………………     17 

3.3 Parameters used to plot the Figure 3.8……………………………………………     22 

 



  

 vii 

LIST OF FIGURES 

 

1.1. Graphical representation of Cellular network with 7-cell clusters……………...        1 

2.1. Wireless Cellular Network with 2 cells and 1MS each…………………………        3 

2.2. 𝑟1 − 𝑟2 region under interference and power constraints (1)……………………        8 

2.3.𝑟1 − 𝑟2 region under interference and power constraints (2)…………………….     10 

3.1. Rate region obtained by simulating a 2-cell network using the closed form 

 solution……………………………………………………………………………….    12 

3.2. Pareto Optimal Boundary obtained using the closed form solution……………...    14 

3.3. Pareto Optimal Boundary in comparison with the Zero Forcing Rate……………   15 

3.4. Illustrating the convergence of the rate to the Pareto boundary…………………..   16 

3.5.Illustrating the IT initialization values that do not converge……………………...   16 

3.6. Illustrates the non-convergence of certain IT initializations………………………   17 

3.7. Rate region obtained by using the decentralized algorithm……………………….   21 

3.8. Pareto optimal boundary obtained by using the decentralized algorithm………….  22 

3.9. Comparison between the Pareto boundaries obtain by both the methods…………  23 

 

 

 

 

 

  



  

 viii 

ABBREVIATIONS 

 

 

BS                        Base Station 

MS                       Mobile Station 

IT                         Interference Temperature 

MISO                   Multiple Input Single Output 

IC                         Interference Channel 

LTE                      Long Term Evolution 

ZF                         Zero Forcing 

KKT                      Karash Kuhn Tucker conditions 

DPC                      Dirty Paper Coding 



  

 ix 

NOTATIONS 

 

ℎ𝑖𝑗                                       Channel coefficients from 𝐵𝑆𝑖  to 𝑀𝑆𝑗  

ℎ𝑖 ,𝑗𝑘                                     Channel coefficients from 𝐵𝑆𝑖  to 𝑀𝑆𝑗𝑘  

𝑆𝑘Transmit Covariance Matrix of the 𝐵𝑆𝑘  

Γ𝑗𝑘                                        Interference power at 𝑀𝑆𝑘  due to 𝐵𝑆𝑗  

𝑇𝑟(𝑆𝑘)                                Trace of the matrix 𝑆𝑘  

𝜎𝑖
2Noise variance 

(𝐵)−1Inverse of the matrix 𝐵 

| 𝐵 |Norm of the matrix B 

𝑃𝑘Power constraint at 𝐵𝑆𝑘  

 

 

 



 

CHAPTER 1 

 

INTRODUCTION 

 

Conventional wireless mobile networks are designed with a cellular architecture, 

where base stations (BSs) from different cells control communications for their 

associated mobile stations (MSs) independently. The resulting inter-cell interference is 

treated as additive noise and is minimized by predesigned frequency reuse pattern such 

that the same frequency is reused only by the non-adjacent cells.  

1.1 Conventional Cellular Network 

In conventional cellular networks the entire region is divided into cells. A group of cells 

form a cluster. The entire frequency band is divided equally among all the cells in this 

cluster. The frequency band allocation is done such that the distance between the cells 

using the same frequency band is as large as possible. 

 

Figure 1.1: Graphical Representation of cellular network with 7-cell clusters 
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1.2 Cooperative Beamforming Techniques 

Due to the rapidly growing demand for high-rate wireless multimedia applications, these 

conventional cellular networks have been pushed to their throughput limits. 

Consequently, the constraint on the frequency reuse has been relaxed such that the entire 

frequency is available in all the cells.  

      In this work, we study a particular type of multi-BS cooperation for the downlink 

transmission, given by Zhang and Cui (1), and find a solution to the 2-cell scenario. This 

thesis mainly focuses on the decentralized implementation of the multi-cell cooperative 

downlink beamforming assuming only the neighboring channel information at each BS. 

1.3 A Summary 

We start with the algorithm proposed by Zhang and Cui (1) to characterize the Pareto 

optimal boundary for a general k-user case with 1MS in each. Based on the problem 

setup given, we derive a closed form solution to finding the covariance matrix and hence, 

the global Pareto optimal rates for a 2-cell network. This is followed by the rate region 

and the Pareto optimal boundary results of the network simulation obtained by applying 

the closed form solution as well as the decentralized algorithm provided by Zhang and 

Cui (1).  

A comparison of the results obtained by both the methods is also given in order to 

check the correctness of the implementation. The results obtained by using the 

Decentralized algorithm slightly differ from that of the closed form solution. Work on 

improving these results in still in progress. It is important to be able to characterize the 

Pareto optimal boundary using the algorithm since it helps us extend it easily from a 2-

user network to a general k-user network. 

 The final part of this thesis is characterizing the Pareto optimal boundary for a 2-

MS per cell network. It concludes with an algorithm in line with that provided in Zhang 

and Cui (1) for a 1MS per cell network. 



 

CHAPTER 2 

 

Multicell Beamforming 

 

In this chapter, we deal with the system model given by Zhang and Cui (1) and derive a 

closed form solution for the 2-cell network, where each cell has a multi antenna base 

station and a single mobile station with a single antenna. 

2.1 System Model 

We consider a system consisting of K cells each served by its own base station (BS), one 

mobile station (MS), each equipped with one receiver antenna. The multi antenna base 

stations of the corresponding cell serve these mobile stations. All the K mobile stations 

use the same frequency band. The 𝑖𝑡ℎ  base station is equipped with 𝑀𝑖  antennas. Every 

mobile station, besides the data sent from its own base station also receives the data from 

the other neighboring base stations. Therefore, the discrete time signal received by each 

user is given by:  

 

Figure 2.1: Wireless Cellular Network with 2 cells and 1MS each 



  

 4 

𝑦𝑘 = ℎ𝑘𝑘
𝐻 𝑥𝑘 +  ℎ𝑗𝑘

𝐻 𝑥𝑗
𝐾
𝑗 =1,𝑗≠𝑘 + 𝑧𝑘                                        (1.1) 

where 𝑥𝑘 ,ℎ𝑘𝑘 ∈  𝐶𝑀𝑘×1 and ℎ𝑗𝑘 , 𝑥𝑗 ∈ 𝐶𝑀𝑗 ×1. We assume that 𝑧𝑘~𝐶𝑁 (0, 𝜎𝑘
2) and that the 

signals transmitted and the noise at the receivers are independent of each other. 

The achievable rate by user 𝑘 is given by 

𝑅𝑘 𝑆1 , 𝑆2 , … . 𝑆𝑘 =  log⁡(1 +
ℎ𝑘𝑘

𝐻 𝑆𝑘ℎ𝑘𝑘

 ℎ𝑗𝑘
𝐻 𝑆𝑗ℎ𝑗𝑘 +𝜎𝑘

2
𝑗≠𝑘

)(1.2) 

It has been shown in Zhang and Cui (1) that the covariance matrices are rank one and 

therefore beam forming is optimal. The achievable rate region is given by: 

ℛ =∪| 𝑤𝑘  |2≤𝑃𝑘
{ 𝑟1, 𝑟2, …𝑟𝑘 : 0 ≤  𝑟𝑘 ≤ 𝑅𝑘(𝑤1, 𝑤2 …𝑤3)}          (1.3) 

where 𝑤𝑖  is the 𝑖𝑡ℎ  beam forming vector used by the base station 𝑖 and 𝑃𝑖  is the power 

constraint on the base station 𝑖.  

The optimal rates achievable on this rate region constitute the Pareto optimal 

boundary. The rate tuples lying on the Pareto optimal boundary are as defined below: 

Definition: 

The rate tuple {𝑟1, 𝑟2, …𝑟𝑘}is Pareto-optimal if there is no other is no other tuple 

𝑟′1, 𝑟′2, …𝑟′𝑘  such that 𝑟′𝑘 ≥ 𝑟𝑘  𝑎𝑛𝑑 ∃𝑖: 𝑟′𝑖 ≥ 𝑟𝑖  

2.2 Interference temperature based optimization 

In Zhang and Cui (1), it is proposed that we have a convex optimization problem at each 

BS and these problems are to be solved at each BS, each time paired with another BS. 

Solving these problems in all the given 𝐾 cells results in an achievable rate tuple. The 

boundary of these achievable rate tuples has been shown to be the Pareto optimal 

boundary of the rate region. The convex optimization problem for the 𝑘𝑡ℎ  base station is 

given by 

𝑚𝑎𝑥𝑆𝑘
log  1 +

ℎ𝑘𝑘
𝐻 𝑆𝑘ℎ𝑘𝑘

 Γ𝑗𝑘𝑗≠𝑘 +𝜎𝑘
2                                       (1.4) 
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𝑠. 𝑡.  ℎ𝑘𝑗
𝐻 𝑆𝑘ℎ𝑘𝑗 ≤ Γ𝑘𝑗  

𝑇𝑟 𝑆𝑘 ≤ 𝑃𝑘 , 𝑆𝑘 ≽ 0 

where Γ𝑘𝑗  is the constraint on interference power due to the k-th base station at the j-th 

user, ℎ𝑘𝑗  and ℎ𝑘𝑘  define the channel parameters, 𝑆𝑘  is the transmit covariance matrix. 

The optimal rate is obtained by maximizing the above function for the given constraints. 

Given the parameters Γ𝑘 , the problem in the k-th base station can be solved as follows. 

Let the optimal rate be denoted by 𝐶𝑘(Γ𝑘). The following results have been shown in 

Zhang and Cui(1): 

 For every point the Pareto optimal boundary of rate region of the given network, 

we will have a set of interference temperature parameters such that the optimal 

covariance matrix solutions (of all the cells), for this particularΓ satisfy the 

interference temperature constraints exactly. The rate𝐶𝑘(Γ𝑘)thus obtained is 

called the Pareto optimal rate of the 𝑘𝑡ℎ  cell for the IT Γ𝑘 . 

 We define 𝐷𝑖𝑗  as follows 

𝐷𝑖𝑗 =  

 
 
 
 
 
𝜕𝐶𝑖(Γ𝑖)

𝜕Γ𝑖𝑗

𝜕𝐶𝑖(Γ𝑖)

𝜕Γ𝑗𝑖
𝜕𝐶𝑗 (Γ𝑗 )

𝜕Γ𝑖𝑗

𝜕𝐶𝑗 (Γ𝑗 )

𝜕Γ𝑗𝑖  
 
 
 
 

 

where 
𝜕𝐶𝑖(Γ𝑖)

𝜕Γ𝑖𝑗
= 𝜆𝑖𝑗  ≥ 0 and 

The Lagrangian function for this problem can be written as  

𝐿 𝑆𝑘 ,𝜆𝑘 = log  1 +
ℎ𝑘𝑘

𝐻 𝑆𝑘ℎ𝑘𝑘

 Γ𝑗𝑘 +𝜎𝑘
2

𝑗≠𝑘
 −  𝜆𝑘𝑗  ℎ𝑘𝑗

𝐻 𝑆𝑘ℎ𝑘𝑗 − Γ𝑘𝑗  − 𝜆𝑘𝑘 (𝑇𝑟 𝑆𝑘 − 𝑃𝑘)𝑗≠𝑘  (1.5) 

where 𝜆𝑘 =  𝜆𝑘1,𝜆𝑘2 …𝜆𝑘𝐾  ≥ 0 (component wise inequality). The dual problem is given 

by: 

𝑔 𝜆𝑘 = 𝑚𝑎𝑥𝑆𝑘
𝐿(𝑆𝑘 , 𝜆𝑘)                                                      (1.6) 
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𝜕𝐶𝑖(Γ𝑖)

𝜕Γ𝑖𝑗
=

−ℎ𝑖𝑖
𝐻𝑆𝑖

∗ℎ𝑖𝑖

𝑙𝑛2( Γ𝑙𝑖 + 𝜎𝑖
2 +𝑙≠𝑖 ℎ𝑖𝑖

𝐻𝑆𝑖
∗ℎ𝑖𝑖)

≤ 0 

 

 The necessary condition for the Pareto-optimality on the parameters Γ is 

|𝐷𝑖𝑗 |=0 

 If the determinant is non-zero, we update the IT constraints such that we 

drive the value closer to Pareto optimality. The updating rule for Γ is given 

by 

 
Γ′𝑖𝑗
Γ′𝑗𝑖

 =  
Γ𝑖𝑗

Γ𝑗𝑖
 + 𝛿𝑖𝑗 . 𝑑𝑖𝑗  

𝑑𝑖𝑗  is a 2 by 1 vector such that 𝐷𝑖𝑗 𝑑𝑖𝑗 > 0. 

2.3 Closed form solution for the global Pareto optimality in a 2-cell case 

The 2-cell network problem can be solved analytically and we can write the closed form 

solution to the rate tuple in terms of the interference temperatures{Γ12 , Γ21}. It is given in 

Zhang and Cui (1) that the covariance matrix S is rank one. Hence, the 2-cell network 

problem can be written as: 

𝑚𝑎𝑥𝑤1
log⁡(1 +

ℎ𝑖𝑖
𝐻𝑤 𝑖𝑤𝑖

𝐻ℎ𝑖𝑖

Γ𝑗𝑖 +𝜎𝑖
2 )                                     (1.7) 

𝑠. 𝑡. ℎ𝑖𝑗
𝐻𝑤𝑖𝑤𝑖

𝐻ℎ𝑖𝑗 ≤ Γ𝑖𝑗  

||𝑤𝑖||
2 ≤ 𝑃𝑖 , 𝑖 = 1,2, 𝑗 ≠ 𝑖 

where 𝑤𝑖  is the beamforming vector which needs to be derived to arrive at the optimal 

rate. 

It has been shown in E.Jorsweick and D.Danev (2) that the beamforming vector that 

achieves the Pareto optimal rate lies in the span of the channel vectors from its 

corresponding base station i.e., 

𝑤𝑖 =  𝑎𝑖𝑗 ℎ𝑖𝑗
𝐾
𝑗 =1                                             (1.8) 
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Here 𝑎𝑖𝑗  is complex. Let us consider the optimal beamforming solution for 𝑤1 for the 

BS1 subject to the interferences Γ12  and Γ21 . Upon Gram-Schmidt orthogonalization, the 

channel vectors ℎ11 and ℎ12  can be represented as  

ℎ11 = 𝑎11𝑢1 

ℎ12 = 𝑎12
1 𝑢1 + 𝑎12

2 𝑢2 

𝑤1 =  𝑏1𝑢1 + 𝑏2𝑢2 

The closed form solution for the optimal beamforming vector can be obtained as shown 

by Karthikeyan (3).  The problem can be written as: 

𝑚𝑎𝑥𝑏1 ,𝑏2
|𝑏1|2𝑎11

2                                                 (1.9) 

𝑠. 𝑡.  𝑏1
𝐻𝑎12

1 + 𝑏2
𝐻𝑎12

2  2 ≤ Γ12  

|𝑏1|2 + |𝑏2|2 ≤ 𝑃1 

Let  𝑏1 = 𝑟1, |𝑏2| = 𝑟2, 𝑎𝑟𝑔 (𝑏1
𝐻𝑎12

1 ) = 𝜃1 and arg⁡(𝑏2
𝐻𝑎12

2 ) = 𝜃2. Hence, the objective 

here is to maximize the value of 𝑟1. The above two constraints of the problem can be 

written as  

𝑟1
2 𝑎12

1 |2 + 𝑟2
2 𝑎12

2 |2 + 2𝑟1𝑟2|𝑎12
1 | 𝑎12

2  cos 𝜃1 − 𝜃1 ≤ Γ12              (1.10) 

𝑟1
2 + 𝑟2

2 ≤ 𝑃1                                                      (1.11) 

Solving the above equations we have, 

0 ≤  𝜃1 − 𝜃2 ≤ 𝜋 

−1 ≤ cos 𝜃1 − 𝜃2 ≤ 1 

Solving the equations at the boundary points of the values of cos 𝜃1 − 𝜃2 , we get 

cos 𝜃1 − 𝜃2 = 1 cos 𝜃1 − 𝜃2 = −1 

𝑟1
2 𝑎12

1 |2 + 𝑟2
2 𝑎12

2 |2 + 2𝑟1𝑟2|𝑎12
1 | 𝑎12

2  

≤ Γ12 

𝑟1
2 𝑎12

1 |2 + 𝑟2
2 𝑎12

2 |2 − 2𝑟1𝑟2|𝑎12
1 | 𝑎12

2  

≤ Γ12 
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 𝑟1 𝑎12
1  +𝑟2 𝑎12

2 ||2 ≤ Γ12 

− Γ12 ≤ 𝑟1|𝑎12
1  +𝑟2 𝑎12

2 | ≤  Γ12 

− Γ12 − 𝑟2|𝑎12
2 |

|𝑎12
1 |

≤ 𝑟1 ≤
 Γ12 − 𝑟2|𝑎12

2 |

|𝑎12
1 |

 

 𝑟1 𝑎12
1  +𝑟2 𝑎12

2 ||2 ≤ Γ12 

− Γ12 ≤ 𝑟1|𝑎12
1  −𝑟2 𝑎12

2 | ≤  Γ12 

− Γ12 + 𝑟2|𝑎12
2 |

|𝑎12
1 |

≤ 𝑟1 ≤
 Γ12 + 𝑟2|𝑎12

2 |

|𝑎12
1 |

 

Table2.1 Range of 𝑟1 obtained for various values cos 𝜃1 − 𝜃2  

We obtain the following equations in terms of 𝑟1 and 𝑟2 

(i) 𝑟1 =
 Γ12−𝑟2|𝑎12

2 |

|𝑎12
1 |

 

(ii) 𝑟1 =
− Γ12−𝑟2|𝑎12

2 |

|𝑎12
1 |

 

(iii) 𝑟1 =
 Γ12 +𝑟2|𝑎12

2 |

|𝑎12
1 |

 

       (iv)𝑟1 =
− Γ12 +𝑟2|𝑎12

2 |

|𝑎12
1 |

 

Plotting the above equations (for the condition where  Γ12 ≤  𝑃1|𝑎12
1 |) and the eqn.1.11 

we get, 

 



  

 9 

 

Figure2.2: 𝑟1 − 𝑟2 region under interference and power constraints 

From the above figure, we see that the maximum value of 𝑟1 is achieved at two points on 

the outer circle. But only the point marked above achieves the maximum value besides 

keeping the value of 𝑟2 positive (since it is the magnitude of 𝑏2). 

Hence, solving the equations 

(i) 𝑟1 =
 Γ12 +𝑟2|𝑎12

2 |

|𝑎12
1 |

 

(ii) 𝑟1
2 + 𝑟2

2 ≤ 𝑃1 

gives us the solution to the Pareto optimal beamforming vector for the given Γ12  and Γ21 . 

The solution to the above equations has been given in Karthikeyan(2009)(3) as follows: 

𝑟1 =  
 𝑎12

1  

|𝑎12
1 |2 + |𝑎12

2 |2
 Γ12 +

 𝑎12
2  

|𝑎12
1 |2 + |𝑎12

2 |2
 𝑃1 𝑎12

1 |2 + 𝑃2 𝑎12
2 |2 − Γ12 Γ12 ≤  𝑃1 𝑎12

1   

           (1.13) 

When  Γ12 ≥  𝑃1 𝑎12
1  , the maximum value of 𝑟1 that could be achieved lies on the 

boundary of the circle since the lines intersect outside the circle, which represents the 
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power constraints set for the transmission of data. Hence, we assign 𝑃1 as the maximum 

rate achievable. 

We plot the equation in table 2.1 along with the constraint  Γ12 ≥  𝑃1 𝑎12
1   to illustrate 

the above statement. 

 

Figure2.3:𝑟1 − 𝑟2 region under interference and power constraints 

𝑟1 =  𝑃1 Γ12 ≥  𝑃1 𝑎12
1        (1.14) 

Thus, we have the closed for solution to obtain the beamforming vectors for which the 

rate lies on the Pareto optimal boundary of the rate region. Next, we look at the 

simulation of a network for these results  



 

CHAPTER 3 

 

Pareto Optimal Boundary  

 

In this chapter, we characterize the Pareto optimal boundary for the 2-cell network by 

implementing the closed form solution derived in chapter-2 and also the general solution 

as given in Zhang and Cui (1) via MISO IC interference temperature control. 

3.1 Pareto Optimal Boundary for the 2-cell network by implementing the closed 

form solution 

3.1.1 Rate Region 

Rate region is the union of all the rates achievable by all the users present in a network 

given the interference and the power constraints for the given network. 

The channel vectors of the MISO Gaussian IC, after Gram-Schmidt orthogonalization, 

can be represented as shown in the section 2.3. For any given IT constraint the rate is 

given by the expression 

𝐶1 Γ = log⁡(1 +
𝑟1

2𝑎11
2

Γ21 +𝑛1
)    (2.1) 

where 𝑟1 is derived in section 2.3. 

The expression for 𝐶2(Γ) can be obtained similarly. To check the correctness of the 

above expressions we plot the rate region for the 2-user case using these expressions and 

the parameterization program as given by Lindblom et al (4).  
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Figure3.1: Rate region obtained by simulating a 2-cell network using the closed form α 

𝑃1 = 5 

ℎ11 = 0.5[1 + 𝑖, 1 − 𝑖]𝑇  

ℎ12 = [0.35 +  2𝑖, 0.35 −  2𝑖]𝑇  

Γ12 ∈ (0.1,1) in steps of 1 

𝛼12 = 1 

𝛿12 = 0.1 

𝑃1 = 5 

ℎ21 = [0.35 −  2𝑖, 0.35 +  2𝑖]𝑇  

ℎ22 = 0.5[1 − 𝑖, 1 + 𝑖]𝑇  

Γ21 ∈ (0.1,1) in steps of 1 

Table 3.1: Parameters used in the simulation of rate region 

The channel vectors are considered such that the rate regionmatches the rate region 

shown by Lindblom et al (4). 

3.1.2 Pareto Optimal Boundary 

From the above figure we see that the rates lie either in the rate region or on the boundary 

depending on the value of the interference temperature. We use the boundary conditions 
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as shown by Zhang and Cui (1) to arrive at the Pareto optimal boundary.  In order to 

check the optimal conditions we need to obtain the derivative of the rate expressions with 

respect to the interference temperatures. 

𝜕𝐶1

𝜕Γ12
=

2𝑟1|𝑎11|2

(|𝑎11|2𝑟1
2 + Γ21 + 𝜎1

2)
×

𝜕𝑟1

𝜕Γ12
 

𝜕𝑟1

𝜕Γ12
=

1

(|𝑎12
1 |2 + |𝑎12

2 |2)
(

1

2 Γ12

−
|𝑎12

2 |

2|𝑎12
1 | 𝑃1 𝑎12

1 |2 + 𝑃2 𝑎12
2 |2 − Γ12

) 

𝜕𝐶1

𝜕Γ21
=

−𝑎11
2 𝑟1

2(Γ21 + 𝜎1
2)3

|𝑎11|2𝑟1
2 + Γ21 + 𝜎1

2 

The expressions for 
𝜕𝐶2

𝜕Γ12
 and 

𝜕𝐶2

𝜕Γ21
 can be obtained by deriving the corresponding rate 

expressions.  

For each IT value (as considered in section 2.4.1) we derive the rates of both the users 

and also the value of the matrix D. If  𝐷 = 0, then we say the corresponding rates are on 

the Pareto optimal boundary. In any other case we update the IT values. 

Updating rule: 

     
Γ′12

Γ′21
 =  

Γ12

Γ21
 + 𝛿12 . 𝑑12                                               (2.2) 

where 𝑑12 = 𝑠𝑖𝑔𝑛 𝑎𝑑 − 𝑏𝑐 . (𝛼12𝑑 − 𝑏, 𝑎 − 𝛼12𝑐)𝑇and 𝐷 =  
𝑎 𝑏
𝑐 𝑑

  

Using the channel vectors and the initial IT values as assumed in the above section we 

obtain the Pareto optimal boundary of the rate region. 
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Figure3.2: Pareto Optimal Boundary obtained using the closed form solution 

The parameters used here are the same as ones given in the table3.1. 

Since, in real situations, it is not possible for the stopping condition i.e., the determinant 

to exactly approach zero we provide a threshold 0.01. 

3.1.3 Zero Forcing Rate 

In this section we obtain the rates of the two users by zero forcing the interference 

through the appropriate selection of the beamforming vectors. 

𝑦1 = ℎ11
𝐻 𝑥1 + ℎ21

𝐻 𝑥2 + 𝑛1    (2.3) 

𝑦2 = ℎ12
𝐻 𝑥1 + ℎ22

𝐻 𝑥2 + 𝑛2 

𝑥1 = 𝑤1𝑑1, 𝑥2 = 𝑤2𝑑2 

In order to achieve zero forcing we need,ℎ21
𝐻 𝑤1 = 0, ℎ12

𝐻 𝑤2 = 0, ||𝑤1||2 = 1, | 𝑤2 |
2 = 1 

 
𝑦1

𝑦2
 =  𝑃′1  

ℎ11
𝐻

ℎ12
𝐻  𝑤1𝑑1 +  𝑃′2  

ℎ21
𝐻

ℎ22
𝐻  𝑤2𝑑2                     (2.4) 

We require, 
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ℎ11

𝐻

ℎ12
𝐻  𝑤1 =  

1
0
  

ℎ21
𝐻

ℎ22
𝐻  𝑤2 =  

0
1
  

Hence, 

𝑤1 = [
ℎ11

𝐻

ℎ12
𝐻 ]−1 1,0 𝑤2 = [

ℎ21
𝐻

ℎ22
𝐻 ]−1 1,0  

By using the above beamforming vectors, the rates can be derived using the rate 

expression where we equate the values of 𝑃′1 and 𝑃′2 to 𝑟1 and 𝑟2 derived above. 

 

Figure3.3: Pareto Optimal Boundary in comparison with the Zero Forcing Rate 

The parameters used here are the same as ones given in the table3.1. 

From the above figure, we see that the zero forcing rate is lower than the Pareto optimal 

rate that could be achieved.  

The following figure shows us that the zero forcing rate converges to the Pareto optimal 

boundary by iteratively updating the IT values. 
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Figure 3.4: Illustrating the convergence of the zero forcing rate to the Pareto boundary 

The parameters used here are the same as ones given in the table3.1. 

3.1.4 Converging values of Interference Temperature 

The convergence to the optimal boundary depends on the initialization values of IT in the 

network. The IT values cease to converge when initialized to very large values. 

 

Figure 3.5 

Illustrates the IT 

initialization 

values that do not 

converge 
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The parameters used here are the same as ones given in the table 3.1. except the range of 

the IT. Here we used 

Γ12 ∈ (0.1,10) in steps of 1 Γ12 ∈ (0.1,10) in steps of 1 

 

Table 3.2 Parameters used in obtaining the Figure 3.5 

In the above figure, the IT values that are initialized to the red region do not converge to 

the Pareto Boundary. This fact may be illustrated in the following figure. 

 

Figure 3.6 Illustrates the non-convergence of certain IT initializations 

The parameters used here are the same as ones given in the Table 3.1. except the range of 

the IT. We use the IT values mention in Table 3.2. 
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3.2 Simulation of the Pareto Optimal Boundary using the Decentralised Algorithm 

for Multi-Cell Cooperative Beamforming 

3.2.1 Solving the dual of the optimization problem 

The convex optimisation problem (1.4) can be solved by the standard Langrange duality 

method given by S.Boyd (6). Let 𝜆𝑘𝑗 , 𝜆𝑘𝑘  be the non-negative dual variables for problem 

(1.4) associated with 𝑘𝑡ℎ  BS’s IT constraint for the 𝑗𝑡ℎ  MS and its own transmit power 

constraint respectively. The Lagrangian function for this problem can be written as:  

𝐿 𝑆𝑘 , 𝜆𝑘 = log  1 +
ℎ𝑘𝑘

𝐻 𝑆𝑘ℎ𝑘𝑘

 Γ𝑗𝑘𝑗≠𝑘 + 𝜎𝑘
2 −  𝜆𝑘𝑗  ℎ𝑘𝑗

𝐻 𝑆𝑘ℎ𝑘𝑗 − Γ𝑘𝑗  − 𝜆𝑘𝑘 (𝑇𝑟 𝑆𝑘 − 𝑃𝑘)

𝑗≠𝑘

 

                      (2.5) 

The dual function of the problem is given by 

𝑔 𝜆𝑘 = 𝑚𝑎𝑥𝑆𝑘≥0𝐿(𝑆𝑘 , 𝜆𝑘)                                       (2.6) 

The dual problem is defined as  

𝑚𝑖𝑛𝜆𝑘≥0𝑔(𝜆𝑘) 

The duality gap between the optimal and the dual problem is zero and hence the 

problem(1.4) can be solved by the solving the dual. 

This can be obtained by solving the maximisation problem which can be written as (by 

eliminiating the constant terms) 

𝑚𝑎𝑥𝑆𝑘
log  1 +

ℎ𝑘𝑘
𝐻 𝑆𝑘ℎ𝑘𝑘

 Γ𝑗𝑘𝑗≠𝑘 +𝜎𝑘
2 − 𝑇𝑟(𝐵𝑘(𝜆𝑘)𝑆𝑘)                        (2.7) 

𝑆𝑘 ≥ 0 

where 𝐵𝑘 𝜆𝑘 =  𝜆𝑘𝑗 ℎ𝑘𝑗
𝐻 ℎ𝑘𝑗𝑗≠𝑘 + 𝜆𝑘𝑘 𝐼 

In order to have a bounded objective value for problem (2.7) 𝐵𝑘 𝜆𝑘  has to be full rank.  
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Proof: If 𝐵𝑘 𝜆𝑘  is rank deficient, such that we could define 𝑆𝑘 = 𝑞𝑘𝑣𝑘𝑣𝑘
𝐻 , satisfying 

  𝑣𝑘   = 1 and 𝐵𝑘 𝜆𝑘 𝑣𝑘 = 0. Thereby the objective function of the problem 2.7 reduces 

to 

log  1 +
𝑞𝑘 ||ℎ𝑘𝑘

𝐻 𝑣𝑘 ||2

 Γ𝑗𝑘 +𝜎𝑘
2

𝑗≠𝑘
                                                          (2.8) 

Due to independence of ℎ𝑘𝑘  and 𝑣𝑘 , it follows that   ℎ𝑘𝑘
𝐻 𝑣𝑘   > 0 with probablity one 

such that problem 2.8 goes to infinity by letting 𝑞𝑘 → ∞. Hence, we have that 𝐵𝑘(𝜆𝑘) 

should be of rank one. 

By the definition of  𝐵𝑘(𝜆𝑘) and Karash-Kuhn-Tucker(KKT) optimality conditions (8), it 

follows that 𝐵𝑘(𝜆𝑘) is rank one only when one of the following two conditions is 

satisfied: 

 𝜆𝑘𝑘 > 0 

 𝜆𝑘𝑘 = 0 

Since, 𝐵𝑘 𝜆𝑘  is rank one, we have that (𝐵𝑘(𝜆𝑘))−1 exists. 

Thus, we can introduce a new variable 𝑆𝑘
′  such that 

𝑆𝑘
′ = (𝐵𝑘(𝜆𝑘))

1

2𝑆𝑘(𝐵𝑘 𝜆𝑘 )1/2 

Substituting it in 2.7 yields 

𝑀𝑎𝑥𝑆𝑘
log  1 +

ℎ𝑘𝑘
𝐻 (𝐵𝑘 (𝜆𝑘 ))

−
1
2𝑆𝑘(𝐵𝑘 𝜆𝑘 )

−
1
2ℎ𝑘𝑘

 Γ𝑗𝑘 +𝜎𝑘
2

𝑗≠𝑘
 − 𝑇𝑟(𝑆𝑘)                    (2.9) 

𝑆𝑘
′  can be eigen value decomposed as 𝑆𝑘

′ = 𝑈𝑘𝜑𝑘𝑈𝑘
𝐻. Substituting in eqn. 2.8 we get, 

𝑀𝑎𝑥𝑆𝑘
log  1 +

 .𝑖 𝜃𝑘𝑖 ||ℎ𝑘𝑘
𝐻 (𝐵𝑘 𝜆𝑘  )

−
1
2𝑢𝑘𝑖 ||2

 Γ𝑗𝑘 +𝜎𝑘
2

𝑗≠𝑘
 −  𝜃𝑘𝑖                     (2.10) 

such that, ||𝑢𝑘𝑖 || = 1, 𝑢𝑘𝑖𝑢𝑘𝑗 = 0 

For any given 𝑈𝑘 , the eqn. 2.9 can be maximised by solving 



  

 20 

𝜕 log  1+
 .𝑖 𝜃𝑘𝑖 ||ℎ𝑘𝑘

𝐻 (𝐵𝑘 𝜆𝑘  )
−

1
2𝑢𝑘𝑖 ||2

 Γ𝑗𝑘 +𝜎𝑘
2

𝑗≠𝑘
 − 𝜃𝑘𝑖

𝜕𝜃𝑘𝑖
= 0                 (2.11) 

1

𝑙𝑛2

1

1 +
 .𝑖 𝜃𝑘𝑖 ||ℎ𝑘𝑘

𝐻 (𝐵𝑘  𝜆𝑘  )
−

1
2𝑢𝑘𝑖 ||2

 Γ𝑗𝑘 +𝜎𝑘
2

𝑗≠𝑘

||ℎ𝑘𝑘
𝐻 (𝐵𝑘(𝜆𝑘))−

1

2𝑢𝑘𝑖 ||2

 Γ𝑗𝑘 + 𝜎𝑘
2

𝑗≠𝑘

− 1 = 0 

Only one of the 𝜃𝑘 ′𝑠 will be non-zero positive. Hence we have, 

1

𝑙𝑛2

||ℎ𝑘𝑘
𝐻 (𝐵𝑘(𝜆𝑘))−

1

2𝑢𝑘𝑖 ||2

 .𝑖 𝜃𝑘𝑖 ||ℎ𝑘𝑘
𝐻 (𝐵𝑘 𝜆𝑘 )−

1

2𝑢𝑘𝑖 ||2 +  Γ𝑗𝑘 + 𝜎𝑘
2

𝑗≠𝑘

− 1 = 0 

𝜃𝑘𝑖 = (
1

𝑙𝑛2
−

 Γ𝑗𝑘 +𝜎𝑘
2

𝑗≠𝑘

||ℎ𝑘𝑘
𝐻 (𝐵𝑘(𝜆𝑘 ))

−
1
2𝑢𝑘𝑖 ||2

)+                           (2.12) 

For any given 𝜃𝑘 > 0, the eqn. 2.9 is maximised by 

𝑢𝑘 =
(𝐵𝑘 𝜆𝑘 )

−
1
2ℎ𝑘𝑘

||(𝐵𝑘 𝜆𝑘 )
−

1
2ℎ𝑘𝑘 ||

                           (2.13) 

 

From the equations 2.12 and 2.13, we get 

𝑆𝑘
′ =

(
1

𝑙𝑛2
−

 Γ𝑗𝑘 +𝜎𝑘
2

𝑗≠𝑘

||ℎ𝑘𝑘
𝐻 (𝐵𝑘 (𝜆𝑘 ))

−
1
2||2

)+

||(𝐵𝑘 𝜆𝑘 )−
1

2ℎ𝑘𝑘 ||2
(𝐵𝑘 𝜆𝑘 )−

1

2ℎ𝑘𝑘ℎ𝑘𝑘
𝐻 (𝐵𝑘(𝜆𝑘))−

1

2 

3.2.2 A simulation 

We employ this method to simulate the Pareto optimal boundary for a 2-user network. 

This method can be extended to a general k-user network.  

Procedure: 

 Step1: Initialize the range for the values of 𝜆11 , 𝜆12 , 𝜆22 𝑎𝑛𝑑 𝜆21  

 Step2: Evaluate 𝑆𝑘
′  using these values of 𝜆 and thereby evaluate the values of 𝑆𝑘  
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 Step3: For these values of 𝑆𝑘 , find the value of 𝑔(𝜆𝑘) 

 Step4: Find the values of 𝜆11 , 𝜆12 that minimise 𝑔 𝜆1  and the values of 𝜆21 , 𝜆22  

that minimise 𝑔 𝜆2  

 Step5: Evaluate the determinant 𝐷 using the values of 𝜆 that minimise 𝑔 𝜆𝑘  

 Step6: Update the values of Γ as shown in equation 2.2 

 Step7: Repeat the procedure from Step1 until the determinant approaches zero. 

 

3.2.3 Rate Region 

Using the channel coefficients as used in the section 3.1.1 we obtain the following rate 

region using the decentralised algorithm. 

 

Figure 3.7: Rate region obtained by using the decentralized algorithm 

The parameters used here are the same as ones given in the Table 3.1. 

𝜆11 ∈ (0.001,0.1) 

𝜆12 ∈ (0.001,0.1) 

𝜆21 ∈ (0.001,0.1) 

𝜆22 ∈ (0.001,0.1) 
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in steps of 0.001 in steps of 0.001 

 

Table 3.3 Parameters used to obtain the Figure 3.7. 

3.2.4 Pareto Optimal Boundary 

We implement the decentralised algorithm to obtain the Pareto optimal boundary for the 

2-cell network. 

 

Figure 3.8: Pareto optimal boundary obtained by using the decentralised algorithm 

The parameters used here are the same as ones given in the Table 3.1. and Table 3.3. 

In the above figure, we notice that the value of the rates does not cross a certain threshold 

for the given parameters. This was a huge setback in the characterization of the Pareto 

optimal boundary using the decentralised method. 
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Figure3.9: Comparison between the Pareto boundaries obtain by both the methods 

The parameters used here are the same as ones given in the Table 3.1. and Table 3.2. 

In the above figure, we see that the 2 Pareto optimal boundaries differ. The 

implementation of the decentralized algorithm could not characterize the Pareto optimal 

boundary exactly due to the crudeness of the searching algorithm while finding the 

solution to the dual problem of the optimization problem (1.7). 

  



 

CHAPTER 4 

 

Characterization of Pareto optimal boundary for 2 MSs per cell 

case  

 

In this chapter, we study the problem of characterizing the Pareto optimal boundary for 

the 2-cell network in which 2 MSs are present in each cell. The problem has been solved 

only partially. Hence, this chapter leaves some directions for future work. 

4.1 System Model 

We consider a 2-cell network in which 2 MSs are present in each cell. Thus, we form a 

Multiple Input Multiple Output (MIMO) Broadcast channel. In this set up each 

transmitter has to send independent messages to both the receivers. The Broadcast 

Channel is an additive noise channel and hence we write the discrete time signals 

received by each MS as: 

𝑦11 = ℎ1,11
𝐻 𝑥1 + ℎ2,11

𝐻 𝑥2 + 𝜂11                                    (4.1) 

𝑦12 = ℎ1,12
𝐻 𝑥1 + ℎ2,12

𝐻 𝑥2 + 𝜂12  

𝑦21 = ℎ1,21
𝐻 𝑥1 + ℎ2,21

𝐻 𝑥2 + 𝜂21  

𝑦22 = ℎ1,22
𝐻 𝑥1 + ℎ2,22

𝐻 𝑥2 + 𝜂22  

where 𝑥𝑘  is the signal transmitted by 𝐵𝑆𝑘  intended for MSs in cell k and ℎ𝑖 ,𝑗𝑘  denotes the 

channel gain between 𝐵𝑆𝑖  and 𝑀𝑆𝑗𝑘  and 𝑆𝑗𝑘  denotes covariance matrix for 𝑀𝑆𝑗𝑘 . 
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Figure4.1: Cellular Network with 2 cell with 2MSs each 

 Using the Dirty Paper Coding (DPC) in each cell, to characterize the achievable 

rates in a MIMO Broadcast channel as shown in Wiengarten et al (6). Let 𝜋 and 𝜎 denote 

the encoding orders in cell 1 and cell 2 respectively (as mentioned in Vinay H (7)). For 

convenience we follow the notation:  

𝑥1 = 𝑥1𝜋1
+ 𝑥1𝜋2

 

𝑥2 = 𝑥2𝜎1
+ 𝑥2𝜎2

 

𝑆1 = 𝑆1𝜋1
+ 𝑆1𝜋2

 

𝑆2 = 𝑆2𝜎1
+ 𝑆2𝜎2

 

By treating interference from other cell as noise, the achievable rates using DPC in each 

cell can be written as follows 
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𝑅1𝜋1
= 𝑙𝑜𝑔

ℎ1,1𝜋1
𝐻  𝑆1𝜋1 +𝑆1𝜋2 ℎ1,1𝜋1 +ℎ2,1𝜋1

𝐻  𝑆2𝜎1 +𝑆2𝜎2 ℎ2,1𝜋1 +𝑁1𝜋1

ℎ1,1𝜋1
𝐻  𝑆1𝜋2 ℎ1,1𝜋1 +ℎ2,1𝜋1

𝐻  𝑆2𝜎1+𝑆2𝜎2 ℎ2,1𝜋1 +𝑁1𝜋1

            (4.2) 

= 𝑙𝑜𝑔
ℎ1,1𝜋1

𝐻  𝑆1 ℎ1,1𝜋1
+ ℎ2,1𝜋1

𝐻  𝑆2 ℎ2,1𝜋1
+ 𝑁1𝜋1

ℎ1,1𝜋1

𝐻  𝑆1𝜋2
 ℎ1,1𝜋1

+ ℎ2,1𝜋1

𝐻  𝑆2𝜎1
+ 𝑆2𝜎2

 ℎ2,1𝜋1
+ 𝑁1𝜋1

 

𝑅1𝜋2
= log

ℎ1,1𝜋2

𝐻 𝑆1𝜋2
ℎ1,1𝜋2

+ ℎ2,1𝜋2

𝐻 𝑆2ℎ2,1𝜋2
+ 𝑁1𝜋2

ℎ2,1𝜋2

𝐻 𝑆2ℎ2,1𝜋2
+ 𝑁1𝜋2

 

𝑅2𝜎1
= 𝑙𝑜𝑔

ℎ2,2𝜎1

𝐻  𝑆2 ℎ2,2𝜎1
+ ℎ1,2𝜎1

𝐻  𝑆1 ℎ1,2𝜎1
+ 𝑁2𝜎1

ℎ2,2𝜎1

𝐻  𝑆2𝜎2
 ℎ2,2𝜎1

+ ℎ1,2𝜎1

𝐻  𝑆1 ℎ1,2𝜎1
+ 𝑁2𝜎1

 

𝑅2𝜎2
= 𝑙𝑜𝑔

ℎ2,2𝜎2

𝐻  𝑆2𝜎2
 ℎ2,2𝜎1

+ ℎ1,2𝜎2

𝐻  𝑆1 ℎ1,2𝜎2
+ 𝑁2𝜎2

ℎ1,2𝜎2

𝐻  𝑆1 ℎ1,2𝜎2
+ 𝑁2𝜎2

 

As defined in section 3.1.1, the rate region for the MIMO broadcast channel can also be 

defined as: 

ℛ =  .
𝜋 ,𝜎

 .
𝕊∈𝑆𝜋𝜎

𝑅 𝜋, 𝜎, 𝕊 , 

where 

𝑅 𝜋, 𝜎, 𝕊 =

 
 
 

 
 

 𝑟1𝜋1
, 𝑟1𝜋2

, 𝑟2𝜎1
, 𝑟2𝜎2

  
 

0 ≤ 𝑟1𝜋1
≤ 𝑅1𝜋1

 𝕊 ,

0 ≤ 𝑟1𝜋2
≤ 𝑅1𝜋2

 𝕊 ,

0 ≤ 𝑟2𝜎1
≤ 𝑅2𝜎1

 𝕊 ,

0 ≤ 𝑟2𝜎2
≤ 𝑅2𝜎2

(𝕊) 
 
 

 
 

 

𝑆𝜋𝜎 =  𝑆1𝜋1
, 𝑆1𝜋2

, 𝑆2𝜎1
, 𝑆2𝜎2

≥ 0, 𝑇𝑟 𝑆1 ≤ 𝑃1, 𝑇𝑟 𝑆2 ≤ 𝑃2  

where r is the rate tuples in the rate region of the  

With the given interference temperatures constraints, we can write the problem at BS1 as  

max 𝐶1𝜋1
, 𝐶1,𝜋2

                                                 (4.3) 

𝑠. 𝑡. ℎ1,2𝜎1

𝐻 𝑆1ℎ1,2𝜎1
≤ Γ1,2𝜎1
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ℎ1,2𝜎2

𝐻 𝑆1ℎ1,2𝜎2
≤ Γ1,2𝜎2

, 

𝑇𝑟 𝑆1 ≤ 𝑃1 

where 

𝐶1𝜋1
= 𝑙𝑜𝑔

ℎ1,1𝜋1

𝐻  𝑆1 ℎ1,1𝜋1
+ Γ2,1𝜋1

+ 𝑁1𝜋1

ℎ1,1𝜋1

𝐻  𝑆1𝜋2
 ℎ1,1𝜋1

+ Γ2,1𝜋1
+ 𝑁1𝜋1

 

𝐶1𝜋2
= log

ℎ1,1𝜋2

𝐻 𝑆1𝜋2
ℎ1,1𝜋2

+ Γ2,1𝜋1
+ 𝑁1𝜋2

Γ2,1𝜋1
+ 𝑁1𝜋2

 

The optimization problem for the MIMO broadcast channel is a multi-objective 

optimization problem. Solving this gives the global Pareto optimal solutions. Similarly, 

the problems to the BS2 could be obtained. Now, we try to obtain a solution to these 

problems in line with that provided in Zhang and Cui (1). 

4.2 Characterization of the Pareto Boundary 

Lemma 4.1: For an arbitrarily chosen Γ ≥ 0, if the optimal rate values of the IT-

problems, 𝐶, are on the Pareto boundary of 2MS rate region, then there exists no vector 

𝑐 > 0 in the column space of 𝑫, where 

𝐷 =

 

 
 
 
 
 

𝜕𝐶1𝜋1

𝜕Γ1,2𝜎1

𝜕𝐶1𝜋1

𝜕Γ1,2𝜎2

𝜕𝐶1𝜋2

𝜕Γ1,2𝜎1

𝜕𝐶1𝜋2

𝜕Γ1,2𝜎2

𝜕𝐶1𝜋1

𝜕Γ2,1𝜋1

𝜕𝐶1𝜋1

𝜕Γ2,1𝜋2

𝜕𝐶1𝜋2

𝜕Γ2,1𝜋1

𝜕𝐶1𝜋2

𝜕Γ2,1𝜋2

𝜕𝐶2𝜎1

𝜕Γ1,2𝜎1

𝜕𝐶2𝜎1

𝜕Γ1,2𝜎2

𝜕𝐶2𝜎2

𝜕Γ1,2𝜎1

𝜕𝐶2𝜎2

𝜕Γ1,2𝜎2

𝜕𝐶2𝜎1

𝜕Γ2,1𝜋1

𝜕𝐶2𝜎1

𝜕Γ2,1𝜋2

𝜕𝐶2𝜎2

𝜕Γ2,1𝜋1

𝜕𝐶2𝜎2

𝜕Γ2,1𝜋2 

 
 
 
 
 

                       (4.4) 

Proof: Proof is given by Vinay H (2013).  

Let Γ ≥ 0 be such that 𝐶 Γ  is Pareto optimal. Then there should not be any 

improvement on Γ such that 𝐶 Γ  can be improved 
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The stopping criterion for Pareto optimality is |𝐷|  =  0. When it is non zero we have the 

following updating rule which leads the rate towards the global Pareto optimality. 

For some 𝛿 > 0, consider Γ′  as follows 

 
 
 
 
 
Γ1,2𝜎1

′

Γ1,2𝜎2

′

Γ2,1𝜋1

′

Γ2,1𝜋2

′
 
 
 
 
 

=

 
 
 
 
 
Γ1,2𝜎1

Γ1,2𝜎2

Γ2,1𝜋1

Γ2,1𝜋2 
 
 
 
 

+ 𝛿𝑑                            (4.5) 

Let (𝑆1
∗, 𝑆2

∗) be the new optimal solutions found using the IT-problems. Consider 

𝑟1𝜋1
=  𝑙𝑜𝑔

ℎ1,1𝜋1

𝐻  𝑆1
∗ ℎ1,1𝜋1

+ ℎ2,1𝜋1

𝐻  𝑆2
∗ ℎ2,1𝜋1

+ 𝑁1𝜋1

ℎ1,1𝜋1

𝐻  𝑆1𝜋2

∗  ℎ1,1𝜋1
+ ℎ2,1𝜋1

𝐻  𝑆2
∗ ℎ2,1𝜋1

+ 𝑁1𝜋1

 

≥ 𝑙𝑜𝑔
ℎ1,1𝜋1

𝐻  𝑆1
∗ ℎ1,1𝜋1

+ Γ2,1𝜋1

′ + 𝑁1𝜋1

ℎ1,1𝜋1

𝐻  𝑆1𝜋2

∗  ℎ1,1𝜋1
+ Γ2,1𝜋1

′ + 𝑁1𝜋1

= 𝐶1𝜋1
(Γ′) 

𝑟1𝜋2
= 𝑙𝑜𝑔

ℎ1,1𝜋1

𝐻  𝑆1𝜋2

∗  ℎ1,1𝜋1
+ ℎ2,1𝜋1

𝐻  𝑆2
∗ ℎ2,1𝜋1

+ 𝑁1𝜋1

ℎ2,1𝜋1

𝐻  𝑆2
∗ ℎ2,1𝜋1

+ 𝑁1𝜋1

 

≥ 𝑙𝑜𝑔
ℎ1,1𝜋1

𝐻  𝑆1𝜋2

∗  ℎ1,1𝜋1
+ Γ2,1𝜋1

′ + 𝑁1𝜋1

Γ2,1𝜋1

′ + 𝑁1𝜋1

= 𝐶1𝜋2
(Γ′) 

Similarly, we can write 𝑟1𝜎1
≥ 𝐶2𝜎1

(Γ′),𝑟1𝜎2
≥ 𝐶2𝜎2

(Γ′). 

Therefore for the new IT constraints we have that, 

 

𝑟1,2𝜎1

𝑟1,2𝜎2

𝑟2,1𝜋1

𝑟2,1𝜋2

 ≥

 
 
 
 
 
𝐶2𝜎1

(Γ′)

𝐶2𝜎2
(Γ′)

𝐶1𝜋1
(Γ′)

𝐶1𝜋2
(Γ′) 

 
 
 
 

≈

 
 
 
 
 
𝐶2𝜎1

(Γ)

𝐶2𝜎2
(Γ)

𝐶1𝜋1
(Γ)

𝐶1𝜋2
(Γ′) 

 
 
 
 

+ 𝛿𝐷𝑑 
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4.3 Updating Rule and the Stopping Criterion 

From the arguments given in Zhang and Cui, we have that, for an arbitrarily chosen 

Γ > 0, if the optimal rate values of all k’s, 𝐶𝑘(Γ𝑘)′𝑠 are all Pareto optimal on the 

boundary of the MISO-IC rate region, then for any pair  𝑖, 𝑗 , 𝑖 ∈  1,2, . . 𝑘 , 𝑗 ∈ (1,2. . 𝑘) 

and 𝑖 ≠ 𝑗, it must hold that  𝐷𝑖𝑗  = 0, where 𝐷𝑖𝑗  is as defined in equation 4.4. 

We also have that if |𝐷𝑖𝑗 | ≠ 0, then there exists a 𝑑𝑖𝑗 , such that, for Γ′ = Γ + 𝛿𝑖𝑗 𝐷𝑖𝑗 𝑑𝑖𝑗 , 

the rate corresponding to Γ′  is higher than that of Γ, where 𝛿𝑖𝑗  is a small step size and 𝑑𝑖𝑗  

is such that 𝐷𝑖𝑗 𝑑𝑖𝑗 > 0.  

In order to formulate the updating rule we fix 𝐷𝑖𝑗 𝑑𝑖𝑗 = 𝑙, where 𝑙 is some vector such that 

𝑙 > 0 such as𝑙 =  

𝛼1

𝛼2
𝛼3

1

 . 

Summarizing, we have stopping criterion to updating the values of Γ′𝑠 as  𝐷𝑖𝑗  = 0 and 

the updating rule as 

 
 
 
 
 
Γ1,2𝜎1

′

Γ1,2𝜎2

′

Γ2,1𝜋1

′

Γ2,1𝜋2

′
 
 
 
 
 

=

 
 
 
 
 
Γ1,2𝜎1

Γ1,2𝜎2

Γ2,1𝜋1

Γ2,1𝜋2 
 
 
 
 

+ 𝛿𝑑𝑖𝑗 , where 𝑑𝑖𝑗 = 𝑙𝐷𝑖𝑗
−1. 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 5 

 

Conclusions and Directions to Future Work 

 

5.1 Conclusions 

This thesis focuses on the characterization of the Pareto optimal boundary and 

implementation of the various techniques through network simulation. For better 

understanding of the problem, we have considered a 2-cell network to demonstrate the 

Pareto optimal boundary characterization. We have provided a detailed derivation of the 

closed form solution to the optimization problem.  

 We initialize the interference temperature values and iteratively arrive at the IT-

values that give the rate that is global Pareto optimal. We have observed that not all 

initializations converge to the Pareto boundary. When we initialize very large 

interference values, in comparison to the power constraint that we assume, the rate 

doesn’t converge to the boundary. We have also shown that the Pareto optimal rate is 

better than the zero forcing rate. 

 In the implementation of the decentralized algorithm, the Pareto optimal boundary 

for the 2-cell network does not match exactly with that obtained on implementation of the 

analytical solution provided in the chapter 2. The last topic we dealt with, is the 2MS per 

cell network where we gave the algorithmic solution to characterizing the Pareto optimal 

boundary in line with that given for a 1MS network.  

5.2 Directions to Future Work 

This thesis dealt with only 2-cell network for both simulation and for the closed form 

analytical solution. Research could be done in the direction of finding solution to a 

general k-user network. Also, most of the work considers only a single receiving antenna 

in each cell. It is very important to extend it to a multiple receiving antenna network in 

order to further address the real life scenario.  

 



  

 31 

 

REFERENCES 
 

1. R.Zhang and S. Cui (2010). Cooperative interference management with MISO 

beamforming. Signal Processing, IEEE Transactions on, 58(10), 5450-5458 

 

2. E.Jorsweick and D. Danev (2008).Complete Characterisation of the Pareto 

Boundary for the MISO Interference Channel. IEEE Transactions on Signal 

Processing, 56(10), 5292-5296. ISSN1053-587X 

 

3. Shanmugam K. (2009). Analysis of Transmission Schemes in Point-to-Point 

MIMO and MISO interference channels. Master’s thesis, Department of 

Electrical Engineering, IIT Madras 

 

4. Lindblom, E. Karipidis and E.G.Larsson. Efficient Computation of Pareto optimal 

beamforming vectors for the MISO interference channel with multiuser decoding. 

CORR, abs/1210.4459 

 

5. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: 

Cambridge Univ. Press, 2004. 

 

6. Wiengarten, H., Y. Steinberg, S. Shamai (2006). The capacity region of the 

Gaussian multiple-input multiple-output broadcast channel. Information Theory, 

IEEE Transactions on, 52(9), 3936-3964. ISSN 0018-9448 

 

7. Vinay, H (2013). Distributed Resource Allocation with Strategic Agents. Master’s 

thesis, Department of Electrical Engineering, IIT Madras 

 

 

 

 

 

 


