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ABSTRACT

KEYWORDS: Data Converters; Delta-Sigma ADCs; Digital Filters; Current

Steering DACs

This project is divided into two parts. The first part deals with various techniques for

optimizing the digital filter used in a dual-channel delta-sigma ADC. The performances

of different alternatives to the raised cosine filter, are computed using MATLAB simu-

lations. From these, a possible substitute for the raised cosine filter, which leads to an

improvement in performance, is identified. Finally, it is attempted to eliminate the sam-

ple and hold circuit and the equalizer, by appropriately modifying the digital filter so

as to handle continuous sampling of the analog input signal. To this end, time-domain

optimization of the filter is carried out using linear programming.

The second part consists of the design of a current steering DAC in a 130 nm UMC

CMOS process. The DAC is a 10-bit DAC with a 6+4 segmentation (6-bit thermometric

and 4-bit binary sections). The static power consumption of the analog portion is 12

mW and the area of the analog portion is 0.065 mm2. The DAC is tested and is found

to work for sampling frequencies upto 3.3 GSPS. The SFDR is 58 dB for an input

frequency of 20 MHz and 40 dB for an input frequency of 200 MHz.
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CHAPTER 1

INTRODUCTION

Over the past several years, digital processing of signals has become exceedingly im-

portant. With the advent of CMOS technology, which is predominantly oriented to-

wards the implementation of digital systems, digital circuits are finding their place in

areas which have traditionally utilized only analog circuits. ADCs are one such area,

and delta-sigma ADCs are a class of ADC which often utilize more of digital circuitry

than analog [2]. Delta-sigma ADCs are now being used with signals of wide frequency

ranges – from DC to several hundred megahertz.

1.1 Delta-Sigma Analog to Digital Converters

A delta-sigma ADC consists of an oversampling modulator and a digital and decimation

filter. Figure 1.1 shows the basic structure of a typical delta-sigma ADC.

∆Σ

Modulator

Analog
Input

Digital
Filter Decimator

Digital
Output

Digital/Decimation Filter

Sample Rate ( )f
S

Data Rate ( )f
D

f f
S D
/ Decimation Ratio=

Figure 1.1: The basic architecture of a typical delta-sigma ADC. Usually, the digital
and decimator filter blocks are combined into a single digital unit) [2].

A DSM is simply a 1-bit sampler. The sampling frequency of the DSM needs to

be sufficiently larger than the frequency of the input analog signal – a technique known



as oversampling. The digital/decimator filter operates at a frequency lower than that

of the sampler. The digital filter averages the low-resolution, high-frequency output of

the modulator into a signal of much higher resolution at a lower rate. Thus unlike most

other data converters which operate at a single rate, a delta-sigma ADC is characterized

by two rates, one is the sampling rate at the input and the other is the rate of the digital

signal at the output. The ratio between the two is the decimation ratio, which strongly

determines the effective resolution of the converter [2].

Figure 1.2 shows the structure of a first order DSM. An important characteristic of

delta-sigma modulators is their noise shaping property. Delta-sigma modulators redis-

tribute the noise at lower frequencies to higher frequencies. The NTF of a delta-sigma

ADC is not flat. As a consequence of the averaging process, the noise at low frequen-

cies (lower than fS , the sampling frequency of the modulator), is largely removed from

the output. On the other hand, the sampling process introduces quantization noise at

high frequencies. Thus the NTF increases from a low value at DC and flattens out near

fS .

Texas Instruments Incorporated
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depending on its original state. The output value of the 
comparator, x4, is clocked back into the 1-bit DAC, as well 
as clocked out to the digital filter stage, yi. At the time that 
the output of the comparator switches from high to low or 
vice versa, the 1-bit DAC responds by changing the analog 
output voltage of the difference amplifier. This creates a 
different output voltage at x2, causing the integrator to pro-
gress in the opposite direction. This time-domain output 
signal is a pulse-wave representation of the input signal at 
the sampling rate (fS). If the output pulse train is averaged, 
it equals the value of the input signal.

The discrete-time block diagram in Figure 3 also shows 
the time-domain transfer function. In the time domain, the 
1-bit ADC digitizes the signal to a coarse, 1-bit output code 
that produces the quantization noise of the converter. The 
output of the modulator is equal to the input plus the 
quan tization noise, ei – ei – 1. As this formula shows, the 
quantization noise is the difference between the current 
quantization error (ei) and the pre vious quantization error 
(ei – 1). Figure 4 illustrates the frequency location of this 
quantization noise.

Sigma
(Integrator)Delta

xi yi

ei

fS

+

–

Magnitude

Frequency

Quantization
Noise

Signal

Analog
Input

Output to
Digital Filter

1-Sample
Delay

1-Bit
DAC

1-Bit
ADC

Figure 4. First-order DS modulator in the frequency domain

Figure 4 also shows that the combination of the integra-
tor and sampling strategy implements a noise-shaping filter 
on the digital output code. In the frequency domain, the 
time-domain output pulses appear as the input signal  
(or spur) and shaped noise. The noise characteristics in 
Figure 4 are the key to understanding the modulator’s  
frequency operation and the ability of the DS ADC to 
achieve such high resolution.

The noise in the modulator is moved out to higher fre-
quencies. Figure 4 shows that the quantization noise for a 
first-order modulator starts low at zero hertz, rises rapidly, 
and then levels off at a maximum value at the modulator’s 
sampling frequency (fS).

Using a circuit that integrates twice instead of just once 
is a great way to lower the modulator’s in-band quantization 
noise. Figure 5 shows a 1-bit, second-order modulator that 
has two integrators instead of one. With this second-order 
modulator example, the noise term depends on not just 
the previous error but the previous two errors.

Some of the disadvantages of the second- or multi-order 
modulators include increased complexity, multiple loops, 

Integrator Integrator

IN + +

ei

xi yi

OUT

– –

Σ Σ

1-Bit
DAC

1-Bit
ADC

Figure 5. Block diagram of a second-order DS modulator

yi = xi – 1 + (ei – 2ei – 1 + ei – 2)

Figure 1.2: The structure of a first order DSM [2].

Besides the DSM, the other important component of a delta-sigma ADC is the dig-

ital/decimation filter, which is described in the following section. The digital filter is

responsible for removing the out-of-band quantization noise introduced by the DSM,

and thus the performance of the digital filter is strongly related to the SNR of the ADC

[3].
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1.2 The Digital/Decimation Filter

1.2.1 The Digital Filter

The digital filter is essentially a low-pass filter, which takes a weighted average of the

output of the DSM. Delta-sigma ADCs generally incorporate a class of averaging filters

called sinc filters (named due to their frequency response). Some delta-sigma ADCs for

specialized applications (such as audio) use another filter in conjunction with the sinc

filter, a technique known as two stage decimation.

The output of the digital filter is at the same rate as the output of the sampler. In the

time domain, the output of the digital filter is simply a digitized version of the original

signal at a high sampling rate (equal to fS). However in the frequency domain, the

digital filter, being a low-pass filter, removes the quantization noise introduced by the

sampler (essentially the digital filter averages the 1-bit sampled signal at fS to clean up

the high frequency components [3]).

The output of the digital filter is still at fS . As mentioned previously, this rate is

much higher than the frequencies of interest. Hence it is necessary to reduce the output

rate of the digital filter. This is the done using the second part of the digital/decimator

block – the decimation filter.

1.2.2 The Decimation Filter

The decimation filter is responsible for reducing the output rate of the delta-sigma ADC

to reasonable levels. Most of the data present in the output of the digital filter is redun-

dant, and in accordance with the Nyquist sampling theorem, it is possible to discard

this redundant data, while preserving all the information in the original signal. This is

exactly the function of the decimator.

The output rate of the decimator, fD, is the output rate of the delta-sigma ADC. The

ratio fS
fD

is the decimation ratio of the ADC, which strongly determines the SNR of the

ADC, as shown in figure 1.3

4
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frequencies because of an oversampling sys-
tem with negative feedback. As previously 
stated in the present article, the digital/ 
decimation filter reduces high-frequency 
noise and passes the input signal to the out-
put of the converter at a reduced data rate. 
The combination of these two components 
provides a high-resolution ADC.

The meaningful variables in this system 
are the modulator’s sampling rate (fS) and 
the digital/decimation filter’s output-data 
rate (fD). The ratio between these two vari-
ables is defined as the decimation ratio 
(DR). The decimation ratio is equal to the 
number of modulator samples per data out-
put. Decimation ratio values range anywhere 
from 4 in the Texas Instruments (TI) 
ADS1605 ADC to a maximum of 32,768 for 
TI’s ADS1256 ADC.

Consider the output spectrum of the DS 
modulator in Figure 5. The modulator samples at a fre-
quency of fS and, in doing so, shapes the quantization 
noise into higher frequencies. Many DS converters permit 
the designer to program the data rate directly by adjusting 
the decimation ratio. Suppose the data rate is chosen to 
be some fraction of fS, as shown in Figure 5a. The fre-
quencies from 0 to fD, which constitute the output, are in 
the signal band. Note the noise level in the signal band.

In Figure 5a, the effective number of bits (ENOB) is 
very high. Since the output-data rate (fD) is determined 
by the decimator-filter function, it depends on the decima-
tion ratio (DR), where DR = fS/fD. Figure 5b shows that 
the value for fD, which has moved to the right, is now 
higher. Unfortunately, there is also more noise. Most of the 
noise is in the higher frequencies, decreasing the signal-to-
noise ratio and the ENOB.

There is a way to increase the sampling speed (fS) while 
keeping the ENOB the same, and that is to increase the 
master-clock rate. This will also increase fD but will not 
decrease the decimation ratio. Unfortunately, increasing 
the master-clock rate will also increase power consump-
tion. Additionally, most converters have a practical limit 
for fS beyond which they will not function properly.

Conclusion
A DS ADC fundamentally includes a modulator and a digi-
tal/decimation filter. The modulator converts the analog 
signal directly into the digital domain by using a 1-bit ADC 
and oversampling. The modulator topology implements a 
noise-shaping function that drives the lower-frequency 
quantization noise into higher frequencies. The low-pass 
digital/decimation filter throws away the high-frequency 

noise that was shaped by the modulator stage and reduces 
the data-output rate of the device to a usable frequency.

There is a strong relationship between the output-data 
rate and the converter’s resolution. If the sample rate is 
kept constant, lower data rates provide high effective 
reso lution, or ENOB, at the output of the converter.
DS ADCs have other functions besides the basics in these 

two articles, acting as current sources, voltage sources, 
input buffers, etc. However, examining any DS ADC will 
always reveal a modulator and a digital/decimation filter. 
In choosing a DS ADC, it is best to start with the funda-
mentals and then see what else the device has to offer.
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Figure 1.3: The relation between noise and decimation ratio [2].

1.3 The Raised Cosine Filter

The raised cosine filter is a low-pass Nyquist filter. A Nyquist filter is a filter with

vestigial symmetry i.e. the filter exhibits odd symmetry about fS
2

, where fS is the

frequency of the digital system. This is called the Nyquist ISI criterion, which can be

stated in the time-domain as follows.

h(nTS) =

1; n = 0

0; n 6= 0

, (1.1)

for all integers n, where h(t) is the impulse response of the filter and TS is the symbol

period of the system. It can be shown that this time domain condition is analogous to

the condition in the frequency domain [8]

The raised cosine filter is one of the simplest filters which satisfy the Nyquist crite-

rion. This filter is widely used in communication systems due to its ability to minimize

ISI. The name of this filter stems from the fact that for a particular choice of the param-

eter β (roll-off factor, defined later), the frequency response of this filter is identical to

one period of a cosine shifted to lie above the f (horizontal) axis.

The raised cosine filter (and other ISI-free filters) are being considered in this work

for use in a delta-sigma ADC, as they can filter the quantization noise without introduc-

5



ing any interference between samples. This enables their usage for multiplexed inputs,

such as the ones being used in the dual-channel ADC under consideration.

The frequency domain description of the raised cosine filter is a piecewise function,

given by.

H(f) =


T, |f | ≤ 1−β

2T

T
2

[
1 + cos

(
πT
β

[
|f | − 1−β

2T

])]
, 1−β

2T
< |f | ≤ 1+β

2T

0, otherwise .

The filter is characterized by the parameter β, which is called the roll-off factor.

1.3.1 Roll-off factor

The roll-off factor is a measure of the excess bandwidth of the filter i.e. the band-

width occupied beyond the Nyquist bandwidth of 1
2T

. β = 0 corresponds to an ideal

(brick-wall) low-pass filter with its cutoff frequency equal to the Nyquist bandwidth.

As the value of β is increased from 0 to 1, the roll-off of the filter becomes increasingly

slower, and for β = 1, it approaches the raised-cosine waveform. Figure 1.4 shows the

frequency response and impulse response of the raised cosine filter for various values

of the parameter β.

Figure 1.4: The frequency and impulse response of the raised cosine filter for various
values of roll-off factor.

Several alternatives have been proposed to the raised cosine filter, such as [5], [7],

[1], [11]. The performances of these alternatives vis-a-vis the raised cosine filter in a

delta-sigma ADC are analyzed in the subsequent chapter.
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CHAPTER 2

Performance of the Raised Cosine Filter and some

Alternatives

In this chapter, the performances of the raised cosine filter and some other alternatives

are analyzed. For the purpose of conciseness, the filters are henceforth denoted as

follows.

Table 2.1: Filter pulse shapes under consideration.

Filter Pulse Shape Name Used in this Document

Raised Cosine Filter Rcosfir pulse

A "better than" Nyquist Pulse, [5] Beaulieu pulse

A family of ISI-free polynomial pulses, [7] Chandan pulse

Improved Nyquist Pulses, [1] Fsech, Farcsech pulse

A Family of Pulse-Shaping Filters with ISI-

Free Matched and Unmatched Filter Prop-

erties, [11]

Xia pulse

For the purpose of performance estimation, a dual-channel delta-sigma ADC is sim-

ulated in MATLAB using the Delta Sigma Toolbox [9]. Each of these filters is imple-

mented for various lengths, and is used as the digital filter in the simulated delta-sigma

ADC. The SNR is calculated for each of the filters for both IIR and FIR responses.

2.1 Performance Measures

2.1.1 SNR for Ideal (IIR) Implementations

The SNR for the IIR implementations of these filters is calculated by multiplying the

NTF of the DSM with the frequency response of each of these filters. It must be noted

that this is a highly ideal value as the effects of quantization and truncation are not

included.



2.1.2 SNR and SNDR for Actual (FIR) Implementations

After the filters are implemented in the time domain for various lengths, they are con-

volved with the time domain sequence resulting from a simulation run of the DSM.

Here a single sinusoid is applied as a test input. The SNR and SNDR values for various

types of filters and for various filter lengths are then calculated.

2.1.3 Intersymbol Interference (ISI)

Theoretically these filters are ISI-free and thus the ISI should be zero. However due to

finite resolution of quantization, there is some ISI in these implementations. For zero

ISI, the Nyquist criteria says that the impulse response of the filter must go to zero at

all multiples of the sampling time except for T = 0. Thus we want

h(nTS) =

1; n = 0

0; n 6= 0

,

for all integers n, where h(t) is the impulse response of the filter and TS is the sampling

time interval.

Since the practical realization of the filter may not satisfy the above relation, we

can estimate the interference by calculating the sum of the impulse response values of

the filter at integer multiples of the sampling time (except for T = 0). This would give

the ratio of the amplitude of the desired symbol and the interference from the adjacent

symbols, when a matched filter is used. This is the worst case value of ISI, when the

interference from all the samples adds up.

∴ ISI =
N∑
1

|h(nTs)| . (2.1)

The ISI values are thus calculated for different filters of various orders using the above

formula.

It must be noted that these values also depend on the machine precision of the system

used for simulation. If the number of quantization bits of the filter are known, then a

better measure would be calculating the ISI for a fixed number of quantization bits.
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2.2 The Raised Cosine Pulse and some Alternatives

2.2.1 Rcosfir Pulse

The frequency domain description of the Rcosfir (raised cosine) pulse is the following.

H(f) =


T, |f | ≤ 1−α

2T

T
2

[
1 + cos

(
πT
α

[
|f | − 1−α

2T

])]
, 1−α

2T
< |f | ≤ 1+α

2T

0, otherwise .

The value of the roll-off factor, α is chosen to be 0.5.

2.2.2 Beaulieu Pulse

The frequency domain description of the Beaulieu pulse is as follows.

H(f) =



1, 0 ≤ f ≤ B(1− α)

exp
(
ln 2
αB

[f −B(1− α)]
)
, B(1− α) < f ≤ B

1− exp
(
ln 2
αB

[B(1− α)− f ]
)
, B < f ≤ B(1 + α)

0, otherwise ,

where B = fS
2

i.e. the Nyquist bandwidth. α is chosen to be 0.5.

The impulse response of the Beaulieu pulse is shown in figure 2.1 along with the

impulse response of the Rcosfir pulse for comparison.
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−0.2

0

0.2
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0.6

0.8

 

 
Beaulieu
Raised Cosine

Figure 2.1: The impulse response of the Beaulieu pulse.
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2.2.3 Chandan Pulse

The time domain description of the Chandan (polynomial) pulse is as follows.

h(t) = 3sinc(2Bt)
sinc2(αBt)− sinc(2αBt)

(παBt)2
,

where B = fS
2

i.e. the Nyquist bandwidth. α is chosen to be 0.5. The impulse response

of the Chandan pulse is shown in figure 2.2 along with the impulse response of the

Rcosfir pulse for comparison.
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Chandan
Raised Cosine

Figure 2.2: The impulse response of the Chandan pulse.

2.2.4 Fsech pulse

The frequency domain description of the Fsech pulse is as follows.

H(f) =



1, |f | ≤ B(1− α)

sech(γ(|f | −B(1− α))), B(1− α) < |f | ≤ B

1− sech(γ(B(1 + α)− |f |)), B < |f | ≤ B(1 + α)

0, otherwise ,

where B = fS
2

i.e. the Nyquist bandwidth. α is chosen to be 0.5. The impulse response

of the Fsech pulse is shown in figure 2.3 along with the impulse response of the Rcosfir

pulse for comparison.
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Figure 2.3: The impulse response of the Fsech pulse.

2.2.5 Farcsech pulse

The frequency domain description of the Farcsech pulse is as follows.

H(f) =



1, |f | ≤ B(1− α)

1− 1
2αBγ

arcsech
(

1
2αB

(B(1 + α)− |f |)
)
, B(1− α) < |f | ≤ B

1
2αBγ

arcsech
(

1
2αB

(|f | −B(1 + α))
)
, B < |f | ≤ B(1 + α)

0, otherwise ,

where B = fS
2

i.e. the Nyquist bandwidth. α is chosen to be 0.5. The impulse response

of the Farcsech pulse is shown in figure 2.4 along with the impulse response of the

Rcosfir pulse for comparison.
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Figure 2.4: The impulse response of the Farcsech pulse.
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2.2.6 Xia pulse

The frequency domain description of the Xia pulse is as follows.

H(f) =



1, |f | ≤ 2
3
B

1
2
(1 + cos(πV (3Bf

2
− 1))), 2

3
B < f < 4

3
B

1− 1
2
(1 + cos(πV (3Bf

2
− 1))), −4

3
B < f < −2

3
B

0, otherwise ,

where V is a polynomial function which controls the smoothness of the response. The

constraints on V are as follows.

V (x) =

0, x ≤ 0

1, x ≥ 1 .

and
V (x) + V (1− x) = 1, x ∈ R .

The particular V (x) chosen here is

V (x) =


0, x ≤ 0

x4(35− 84x+ 70x2 − 20x3), 0 ≤ x ≤ 1

1, x ≥ 1 .

The impulse response of the Xia pulse is shown in figure 2.5 along with the impulse

response of the Rcosfir pulse for comparison.
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Figure 2.5: The impulse response of the Xia pulse.
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2.3 Simulation Results

2.3.1 SNR for Ideal (IIR) Implementations

The SNR for the IIR implementations are calculated for each of the filters and are

tabulated below.

Table 2.2: SNR for IIR Implementations.

Filter SNR

Raised Cosine 108.50 dB

Beaulieu 108.28 dB

Fsech 108.46 dB

Farcsech 108.22 dB

Chandan 108.38 dB

Xia 108.69 dB

From table 2.2, it can be seen that without truncation and quantization, there is

hardly any difference in the SNRs for the various filters.

2.3.2 SNR and SNDR for FIR Implementations

The SNR and SNDR values for the FIR implementations of each of the filters are cal-

culated for various truncation lengths and are tabulated in tables 2.3 and 2.4. The trun-

cation length of the filter is equal to 2L × OSR + 1, where L is the number of input

symbols and OSR is the oversampling ratio (64). It can be seen that the Chandan pulse

shape gives the best performance for moderate truncation lengths. For large truncation

lengths, the performances of the Xia and Beaulieu pulse shapes are comparable.

For the pulse shapes which are characterized by a roll-off factor, figure 2.6 gives the

variation of the SNR with the roll-off factor.

2.3.3 Inter-Symbol Interference (ISI)

The values of ISI are calculated using (2.1) and are tabulated in table 2.5. It can be seen

that the Chandan pulse shape gives the best performance in terms of ISI.
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Table 2.3: SNR for the simulated DSM.

.

Filter
SNR

L = 1 L = 3 L = 5 L = 7

Raised Cosine 105.54 dB 110.27 dB 108.84 dB 110.42 dB

Beaulieu 105.46 dB 108.43 dB 108.14 dB 108.30 dB

Chandan 103.72 dB 110.43 dB 111.28 dB 112.11 dB

Fsech 105.28 dB 109.33 dB 109.93 dB 110.17 dB

Farcsech 106.07 dB 107.57 dB 108.24 dB 107.26 dB

Xia 103.03 dB 110.67 dB 109.76 dB 111.05 dB

Best Performance Farcsech Xia Chandan Chandan

Filter L = 9 L = 11 L = 13 L = 15

Raised Cosine 110.72 dB 110.32 dB 109.85 dB 110.33 dB

Beaulieu 108.21 dB 109.54 dB 109.05 dB 109.37 dB

Chandan 111.82 dB 110.04 dB 110.55 dB 111.98 dB

Fsech 110.44 dB 110.24 dB 110.59 dB 110.70 dB

Farcsech 107.25 dB 106.68 dB 108.73 dB 109.16 dB

Xia 110.72 dB 111.17 dB 111.49 dB 108.13 dB

Best Performance Chandan Xia Xia Chandan

Table 2.4: SNDR for the simulated DSM.

.

Filter
SNR

L = 1 L = 3 L = 5 L = 7

Raised Cosine 24.96 dB 76.38 dB 96.13 dB 103.51 dB

Beaulieu 28.56 dB 55.58 dB 67.28 dB 80.85 dB

Chandan 24.97 dB 61.71 dB 98.54 dB 102.32 dB

Fsech 26.16 dB 62.64 dB 80.27 dB 86.43 dB

Farcsech 29.49 dB 59.06 dB 64.67 dB 80.03 dB

Xia 23.70 dB 47.80 dB 56.40dB 66.04 dB

Best Performance Farcsech Raised Cosine Chandan Raised Cosine

Filter L = 9 L = 11 L = 13 L = 15

Raised Cosine 106.93 dB 106.65 dB 106.32 dB 106.67 dB

Beaulieu 86.54 dB 92.46 dB 108.10 dB 107.98 dB

Chandan 107.44 dB 106.54 dB 106.43 dB 105.66 dB

Fsech 83.85 dB 83.98 dB 86.77 dB 88.53 dB

Farcsech 74.61 dB 76.47 dB 78.23 dB 89.38 dB

Xia 68.97 dB 87.75 dB 93.31 dB 97.56 dB

Best Performance Chandan Raised Cosine Beaulieu Beaulieu
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Figure 2.6: The variation of SNR with the roll-off factor for various pulse shapes.

Table 2.5: Practically Realizable ISI values.

Filter ISI

L=3 L=5 L=7 L=9 L=11

Raised Cosine 5.9085e-010 1.1900e-009 1.9863e-009 2.1867e-009 2.3719e-009

Beaulieu 2.7103e-010 4.2105e-010 1.0927e-009 1.2122e-009 1.4772e-009

Fsech 6.4887e-010 4.7082e-009 6.3760e-009 7.4696e-009 7.8703e-009

Farcsech 1.4156e-009 2.8787e-009 4.2040e-009 5.6472e-009 7.0239e-009

Chandan 5.8554e-017 5.9274e-017 5.9927e-017 6.0069e-017 6.0468e-017

Xia 2.0861e-010 4.6564e-010 4.9046e-010 5.3698e-010 5.5954e-010

Best Performance Chandan Chandan Chandan Chandan Chandan

2.4 Conclusion

From the various plots and tables in the previous section, it can be seen that most of the

proposed replacements for the raised cosine pulse shape perform equally or worse than

it. However the ISI-free polynomial pulse described in [7] (Chandan pulse) performs

better than the raised cosine pulse in most simulation cases. Hence it could be a viable

replacement for the raised cosine digital filter for use in the ADC.
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CHAPTER 3

Digital Filter Optimization using Linear Programming

For the dual-channel ADC under consideration, it was observed that the sample and

hold circuit was consuming excessive amounts of power [6]. The presence of the sample

and hold circuit made it necessary to use an equalizer (in order to compensate for the

distortion due to the sample and hold block). The presence of the sample and hold and

equalizer distorts the response of the digital filter, so that the Nyquist zero-ISI criterion

(1.1) is no longer satisfied.

Theoretically, it is possible to eliminate with the sample and hold block altogether

by suitably modifying the digital filter to handle the sampling of a continuous analog

signal. This requires imposition of additional constraints in the time-domain, which are

outlined below.

3.1 Digital Filter in the Absence of Sample and Hold

If a sample and hold circuit is not used, and the analog input signal is continuously

sampled into the ADC, a modification is required in the Nyquist zero-ISI criterion (1.1).

Instead of having a single zero at intervals of OSR (where OSR is the oversampling

rate of the delta-sigma ADC), we now require that the filter have M consecutive zeros

(where M is the number of input samples to be averaged by the filter – analogous to the

hold period of the sampler) after every OSR −M non-zero samples. The central M

samples of the filter must be all ones, as we want the gain of the currently sampled sym-

bol to be maximum in comparison with the other symbols (assuming the filter impulse

response is normalized).

The new constraints on the digital filter in the time domain are

h[n] =

1; 0 ≤ n < M

0; kOSR ≤ n < kOSR +M, k ∈ Z/{0}
, (3.1)



In the frequency domain, the digital filter should be a low-pass filter with a cutoff fre-

quency of 1
OSR

. The constraints in equation (3.1) are represented graphically in figure

3.1.

 

M ones 

M zeros M zeros 

OSR – M samples 

(can be anything) 

OSR – M samples 

(can be anything) 

n 

h[n] 

Figure 3.1: The time domain constraints (3.1) on the digital filter in the absence of an
equalizer.

One of the ways to solve such a filter design problem, with constraints in both the

time domain and the frequency domain, is to use linear programming as described in

the next section.

3.2 Digital Filter Design using Linear Programming

A linear program is a problem in optimization theory having the following form.

Minimize c′x

such that Ax = b

x ≥ 0 ,

where c and x are vectors of size n, b is a vector of size m and A is a matrix of size

m × n. The function to be minimized c′x is called the cost function of the program. n

is the number of independent variables and m is the number of independent constraints.
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3.2.1 Filter Design as a Linear Program

The problem of minimizing the weighted error in an FIR filter,

E(ω) = W (ω)(A(ω)−D(ω)) ,

where, for a type I FIR filter,

A(ω) =
M∑
n=0

a(n)cos(nω) ,

can be formulated as a linear program in the following manner [10].

Minimize δ

over a(n), δ

such that A(ω)− δ

W (ω)
≤ D(ω) for ω ∈ B

and − A(ω)− δ

W (ω)
≤ −D(ω) for ω ∈ B

where B = {w ⊂ [0, π]|W (ω) > 0}

The variables in this formulation are a(0) . . . a(M), and δ. As the cost function and

constraints are linear functions of the variables, this is a linear program. However in

order to solve this problem on a computer, it is necessary to discretize the frequency

variable (ω), which has been taken to be a continuum in this formulation. This is done

by dividing the ω–axis into a suitably dense grid of points.

The solver for this linear program is implemented in MATLAB, and the impulse

responses for various lengths are obtained. For the purpose of simulation, the ratio M
OSR

is taken to be 1
2
. Figures 3.2, 3.3, 3.4 show the frequency responses of the filters forM =

5, M = 7, and M = 25 respectively. Figures 3.5, 3.6, 3.7 show the corresponding

impulse responses.
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Figure 3.2: Frequency response for the filter designed using linear programming for
M = 5.
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Figure 3.3: Frequency response for the filter designed using linear programming for
M = 7.
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Figure 3.4: Frequency response for the filter designed using linear programming for
M = 25.
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Figure 3.5: Impulse response for the filter designed using linear programming for M =
5.
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Figure 3.6: Impulse response for the filter designed using linear programming for M =
7.
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Figure 3.7: Impulse response for the filter designed using linear programming for M =
25.
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3.3 Performance Analysis of the Designed Filter

From the frequency and impulse response plots in the previous section, it can be seen

that linear programming fails to give satisfactory results for the filter to be designed.

This is not a deficiency of the linear programming technique of filter optimization but

is due to the constraints given in (3.1).

A discrete time sequence can be considered as a sampled version of a continuous

time sequence. Let h[n] be the discrete time sequence and x(t) be the corresponding

continuous time version. For h[n] to be identically zero for M samples (from kOSR to

kOSR + M ), x(t) must be zero for a length of MTS (from (kOSR)TS to (kOSR +

M)TS)1, where TS is the sampling period.

If x(t) is an analytic function, it can be shown that the zeros of x(t) are isolated or

x(t) is zero everywhere. Here x(t) cannot be an analytic function, and the roll-off of

the Fourier coefficients of x(t) is slower than 1
km+1 , where x(t) ∈ Cm, and the Fourier

coefficients are X[k]. The Fourier coefficients of the discrete sequence are the Fourier

coefficients of the continuous time repeated periodically. Hence the Fourier coefficients

of h[n] will not decay any faster than 1
km+1 and the performance of a filter satisfying

(3.1) will be poor.

3.4 Conclusion

As shown in the previous section, the performance of a digital filter satisfying (3.1)

is poor. Hence it is not possible to eliminate the sample and hold circuitry by simply

designing an M-zero filter (3.1). Other techniques for filter optimization need to be in-

vestigated and possible architectural changes in the ADC are needed before the sample

and hold circuitry can be removed.

1It is possible that x(t) is only zero at the sampling instances {(kOSR)TS , (kOSR +
1)TS , . . . (kOSR + M)TS} and is non-zero at intermediate values, however this would mean that
the sampled spectrum of x(t) has suffered aliasing – since a non-zero function (from (kOSR)TS to
(kOSR+M)TS) is mapped to a set of zeros (from kOSR to kOSR+M ) after sampling, which is not
the case
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Part 2

Design of a 10-bit current steering

DAC in 130nm CMOS
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CHAPTER 4

Introduction

The current steering architecture is commonly used for realizing high-speed DACs,

often used in communication systems. At a fundamental level, a current steering DAC

simply consists of a number of unit current cells connected in parallel. Each current

cell consists of a current source in series with a switch, as shown in figure 4.1. By

appropriately switching the individual current cells, the desired variation in the output

current is obtained. This output current is commonly driven through a resistive load to

obtain an output voltage.

I

Switch

Iout

Figure 4.1: A unit current cell used in a current-steering DAC.

4.1 Binary versus Thermometric Architecture

There are two commonly used choices for the values of current supplied by the unit

cells. Let I be the LSB current supplied by the DAC. Then each the current cells may

supply I , 2I and so on upto (2n − 1)I for an n–bit DAC as shown in figure 4.2.



This is called binary encoding. Binary encoding in an n bit DAC requires n current

cells. The number of current cells being linear in the DAC bits, binary encoding is very

efficient in terms of decoding complexity.

SWSW  SWSW

N-2N-1

Figure 4.2: Binary encoded current-steering DAC.

Instead of having binary weighted current cells, each of the current cells can be

equally sized to supply the current I as shown in 4.3. In this case, 2n − 1 current cells

are needed. This is called thermometric encoding.

SW12SW2   -1SW2SW NN

Figure 4.3: Thermometer encoded current-steering DAC.
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Unlike binary encoding, the number of unit cells in a DAC grow exponentially with

the number of DAC bits. The decoding circuitry for the thermometric encoding is thus

more complex than for binary encoding.

The binary coding however does suffer from a major drawback in comparison with

thermometric coding. In binary coding, whenever there is a transition, owing to mis-

match in the cells, the cells may not all switch simultaneously. Thus there may be a

momentary glitch in the output.

For a binary coded sequence, the maximum glitch occurs for a mid code transition

i.e. for a {10 . . . 0} → {01 . . . 1} transition. It may so happen that the MSB cell

switches of only after all other cells have turned on or vice-versa. Thus the maximum

value of this glitch is equal to IFS

2
, where IFS is the full-scale current of the DAC. On

the other hand, the thermometric code is monotonic (for any transition, a number of

cells may switch on or off but not both simultaneously). Hence thermometric encoding

does not suffer from such glitches unlike binary encoding.

In practice most DACs are neither fully thermometric nor fully binary but a combi-

nation as both (known as segmented DACs). This is done to strike a balance between

performance (from a thermometric section) and low complexity (from a binary sec-

tion). Thus the MSB bits of the DAC, which are responsible for driving large currents

are implemented using thermometer coding and the LSB bits are implemented using

binary coding. The maximum glitch in this case is much smaller than a fully binary

DAC. Generally the segmentation is chosen to have roughly the same number of bits in

the thermometric and binary sections. In the design described in this document, a 6+4

segmentation is chosen (6-bit thermometric section and 4-bit binary section). For such

a DAC, the maximum glitch is equal to the value of a single thermometric unit cell i.e.
IFS

26
for a 6+4 segmented DAC.
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CHAPTER 5

Current Cell Design

Figure 5.1 shows a the current cell used in the DAC. Transistors M1 and M2 together

form a cascoded current source. Besides offering a higher output impedance than a

single MOSFET, the use of a cascode also helps reduce the capacitance at the common

node. M1 needs to be sized according to matching constraints described later in this

chapter. M2 is a current controlled current source (usually referred to as a cascode

device), and can be minimum sized, reducing the capacitance seen at the tail node.

Figure 5.1: The basic current cell used in the DAC.

The use of a differential pair is necessitated to avoid turning off transistor M1 (which

is large sized due to matching constraints, and thus turning it on/off would require

the charging/discharging of a large capacitance), when turning off the cell. Hence a



differential output is used and the current from M1 is driven into either OPRL or OPRR

by controlling M3 and M4.

The load resistances OPRL and OPRR are shared by all the current cells. For this

design, approximately 0.5 V PPD swing is accommodated for load resistances of 50 Ω.

This gives a full scale current of approximately 10 mA, Based on this guideline, IFS is

fixed at 10.24 mA, which gives ILSB as 10 µA

5.1 Sizing of Current Source based on Mismatch Con-

straints

The primary source of glitches in the DAC is due to mismatch in the current source

transistors (M1). Let the LSB current in a unit cell be described by a normal distribution,

I0 ∼ N(I, σI) .

Then the subsequent currents can be written as

I1 ∼ N(2I,
√

2σI)

I2 ∼ N(4I, 2σI)

I3 ∼ N(8I, 2
√

2σI)

I4 ∼ N(16I, 4σI)

...

I67 ∼ N(16I, 4σI)

.

The maximum glitch occurs when all the binary cells switch off and a thermometric cell

switches on or vice-versa. The distribution of the current due to this glitch is given by

DNLMAX = I4 − (I3 + I2 + I1 + I0)

∴ DNLMAX ∼ N(I, sqrt(31)σI) (5.1)
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We need to ensure that the size of the current cell transistor is chosen so that this

DNL falls within acceptable limits.

Here we assume the following constraint.

3σDNL <
LSB

2

∴ 3
√

31σI <
I

2

∴
σI
I
<

1

33.40

For a sufficient margin, we chose the following constraint.

σI
I
<

1

50
(5.2)

From [4] we have,

(WL)min =
1

2

[
A2
β +

4A2
V T

(VGS − VT )2

]/(σI
I

)2
. (5.3)

The RHS of equation (5.3) is minimum, when both the terms are equal, which on sub-

stituting the values of Aβ and AV T from the process parameters, gives

(VGS − VT ) = 0.2 V (5.4)

Substituting (5.2) and (5.4) in (5.3) gives

(WL) ≥ 6 µ2 . (5.5)

Using ILSB = 10 µA gives a constraint on the ratio W
L

, which together with (5.5) gives

W = 3.2 µ

L = 2.4 µ (5.6)

Equation (5.6) gives the size of M1 for a unit current cell. All other transistors are

minimum sized. For a current cell of any other size, all the transistors are scaled up

accordingly.
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Table 5.1 gives the sizes of transistors M1, M2, M3, M4 as a function of current cell

size.

Table 5.1: Transistor sizes in a current cell of size n× ILSB.

Transistor W L Fingers

M1 n× 3.2 µ 2.4 µ 2× n

M2 n× 320 n 120 n 2× n

M3 n× 160 n 120 n n

M4 n× 160 n 120 n n

5.2 Latch Design

If both swl and swr signals are turned off momentarily, then the current source transistor

(M1) gets switched off. In normal operation however one of swl or swr should be on,

and there will be a large glitch in the output as the large capacitance of M1 needs to

be charged while turning it on. Hence it is necessary to ensure that swl and swr are

never off simultaneously. This is done by using a latch to control the signals, which is

driven from a single select input. Thus all switching signals will be synchronized to a

common clock, and the number of glitches will be reduced. The latch used is a static

CMOS D-latch as shown in figure 5.2. The sizing of the latch transistors is done so as to

swl

swr
clk

sel

Figure 5.2: The D-latch used to synchronize the switching signals.

ensure that whenever there is a transition in swl and swr, the signal switching on does so

before the other signal switches off. To ensure this, the PMOS transistors (W
L

= 960n
120n

)

are made larger than the NMOS transistors (W
L

= 160n
120n

). This ensures that the rise time

of the signal turning on is much lower than the fall time of the signal turning off.
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5.3 Binary to Thermometric Decoder

The presence of a thermometric coded section in the DAC necessitates the use of a

binary to thermometric decoder. For purposes of testing the DAC, this is implemented

in Verilog-A, the code for which is given below.

// VerilogA for SVBTPDAC, decoder, veriloga

‘include "constants.vams"
‘include "disciplines.vams"

module decoder (din, dout);
input [5:0] din;
voltage [5:0] din;

output [62:0] dout;
voltage [62:0] dout;

parameter real vmax = 1.2;
parameter real vmin = 0;
parameter real vtrans = 0.6;
parameter real trise = 100p from (0:inf);
parameter real tfall = 100p from (0:inf);
parameter real tdel = 50p from (0:inf);

integer out[62:0];
integer i, sum;

analog begin
sum = 0;
generate i (0,5)

sum=sum+((V(din[i])>vtrans)?1:0)*pow(2,i);

for (i=0; i<63; i=i+1) begin
if(i<sum)

out[i]=1;
else

out[i]=0;
end

generate i (0,62)
V(dout[i])<+transition(1.2*out[i],tdel,trise,tfall);

end
endmodule

The decoder generates the appropriate 63 thermometric control lines from the 6

binary input lines.
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CHAPTER 6

Simulation Results

Using a FO4 chain of inverters, the Trise, Tfall, Tdel for the clock signal are estimated

to be 100 ps, 100 ps, and 50 ps respectively. Based on these values, the design is found

to operate for a clock frequency of 3.3 GHz, and the same is used for all simulations.

6.1 Transient Simulation
The transient simulation plots for test sinusoids of frequencies 20 MHz and 200 MHz

are shown in figures 6.1 and 6.2 respectively.

6.2 Noise Performance
Figures 6.3 and 6.4 show the SFDR plots for test sinusoids of frequencies 20 MHz and

200MHz respectively. The SFDR is 57 dB for the 20MHz sinusoid and 40 dB for the

200 MHz sinusoid. Figure 6.5 shows the variation of SFDR with the input frequency.

6.3 Linearity
Figures 6.6 and 6.7 show the INL and DNL of the DAC as a function of the input code.

Figure 6.1: Transient simulation for a 20MHz test sinusoid, with the output of an ideal
DAC for comparison.



Figure 6.2: Transient simulation for a 200 MHz test sinusoid, with the output of an
ideal DAC for comparison.

Figure 6.3: SFDR for a 20 MHz test sinusoid.

Figure 6.4: SFDR for a 200 MHz test sinusoid.
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Figure 6.5: SFDR variation with input frequency.
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Figure 6.6: INL as a function of input code.
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Figure 6.7: DNL as a function of input code.
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CHAPTER 7

Layout

Since matching between the current cells is important, it is necessary to take into ac-

count process gradients while carrying out the layout. Each of the current cells of size

16 (which form the bulk of the DAC), are divided into four cells of size 4 each and laid

out in a common centroid layout, so that the effect of gradients is nullified. Thus the 63

current cells of size 16 are divided into 4 cells each, and laid out in a grid of size 16×16,

such that the centroid of each group of 4 cells lies at the center. A ring of dummy cells

surrounds the grid to ensure an identical environment. The layout of the current cell of

size 4 is shown below (For other current cells, the same layout is retained and only the

sizes of the transistors M1, M2, M3, and M4 are appropriately scaled).

Figure 7.1: Layout of a current cell of size 4.



CHAPTER 8

Conclusion

This document describes the design of a 10-bit current steering DAC in a 130 nm UMC

process. A 6+4 segmentation is used (6-bit thermometric and 4-bit binary sections).

The area occupied by the analog section of the DAC is 0.065 mm2. The static power

consumption of the analog portion is 12 mW. The DAC is tested and is found to work

for sampling frequencies up to 3.3 GSPS. The SFDR is 58 dB for an input frequency of

20 MHz and 40 dB for an input frequency of 200 MHz.
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