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ABSTRACT

KEYWORDS: Kaldor’s model; economic cycles; time-delay; stability

switches; Hopf bifurcation.

Feedback in real systems is rarely instantaneous. In this paper, our focus

is on the dynamical characteristics of a time-delayed nonlinear model of

the trade cycle.

Kaldor’s model of the trade cycle is formulated as a feedback control

system. We establish a necessary and sufficient condition for local stability.

This, along with a study of the system’s rate of convergence, allows us to

understand the relationships between system parameters and local stabil-

ity. Rather surprisingly, we find that the presence of delays in the system

can produce multiple stability switches. Variation in time-delay is shown

to induce a Hopf bifurcation leading to the emergence of limit cycles. In

essence, the system can switch between a stable state and a Hopf induced

limit cycle a finite number of times. Further, using the theory of normal

forms and the center manifold analysis, we show that the Hopf bifurcation

is supercritical. Based on our analysis, some guidelines for the control of

business cycles are outlined.
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CHAPTER 1

INTRODUCTION

At a suitable level of abstraction, models of economic phenomena should

have both nonlinear elements and time-delays. Business cycles form an in-

tegral part of economic dynamics. Early work on business cycle models

recognized the need for nonlinear behavioral functional forms; for exam-

ple, see (2), (5), (7), and (17), and time-delays; for example, see (8). The

purpose of the present paper is to investigate the impact of both nonlin-

ear elements and time-delays on a model of business cycle dynamics. As

feedback is rarely instantaneous, delays make the model more realistic.

In the class of business cycle models, the one inspired by Kaldor (7)

continues to generate interest. This early and elegant model considered

nonlinear investment and savings functions which shift over time in re-

sponse to capital accumulation (7). Numerous aspects of this model have

been examined over the years. For analytical treatment of some dynami-

cal characteristics of Kaldor’s model, see (1), (9), (10), (14), and references

therein. The fact that feedback is often time-delayed has not received ad-

equate consideration. This innocuous looking, but realistic assumption

can lead to unexpected and sophisticated dynamical behavior (3), (4). In

this paper, we extend the simplifying assumption by Kaldor that there are

no gestation lags in capital accumulation. This leads us to study a model

which combines the essential arguments by Kaldor (7) and Kalecki (8).

The importance of feedback delays has been recognized in (11), (12).

We build on the model given in (11), (12) by assuming non instantaneous



dependence of the level of economic activity on the capital stock. Ad-

ditionally, we also propose functional forms for investments and savings

and show that they adhere to the guidelines suggested by Kaldor. By an-

alyzing the stability and bifurcation properties of these functional forms,

we have quantified the impact of various model parameters on the dy-

namics of the trade cycle.

We first frame the model as a time-delayed nonlinear control system.

Using simulations, we justify the functional forms of the savings and in-

vestment functions. Using time domain analysis, we provide an explicit

characterization of the necessary and sufficient condition for local stability.

This condition does depend on the delay which highlights the importance

of this parameter. We show that the system can undergo multiple stabil-

ity switches. In essence, the system can lose and regain local stability as

the delay in the system varies. This is established analytically and verified

numerically. We also investigate the local rate of convergence. Finally, we

show that loss of local stability occurs via a Hopf bifurcation which leads

to the emergence of limit cycles. The theory of normal forms and center

manifold analysis is used to establish the stability of limit cycles. Stabil-

ity charts and bifurcation diagrams accompany our analysis. Although

we restrict ourselves to a discussion on business cycles, the accompanying

mathematical treatment is quite general. Systems governed by second or-

der delay differential equations occur frequently in various areas, and our

analysis could be easily adapted for such systems.
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CHAPTER 2

MODELING THE TRADE CYCLE

In this section, we represent the trade cycle as a time-delayed, nonlinear

feedback control system. Such a representation is shown in Figure 2.1. The

investment (I) and savings (S) are represented by nonlinear functions of

the present level of economic activity (x) and the capital (K). The level of

economic activity (x) is the state variable of interest and is determined by

the I and S functions. Thus, I and S are modeled as feedback loops in the

system. There is also a dependence of capital stock on investment and the

same is shown in Figure 2.1.

The parameter α captures the proportional dependence of rate of change

of the present level of economic activity on the difference between invest-

ment and savings. The parameter β represents the proportional depen-

dence of rate of change of capital stock on investment. To account for the

noninstantaneous dependence of I and S on both x and K, we have in-

corporated a time-delay parameter (T ) into the feedback, as well as the

feedforward, paths of this system. It is important to note that variation of

this parameter (T ) causes the system to exhibit a wide range of sophisti-

cated behavior.



S(x,K)

I(x,K)

+ 

 -

K

K

α   dt∫ 

β   dt∫ KI

Figure 2.1: A control theoretic representation of a trade cycle. The accu-
mulation of capital (K) determines the level of savings (S) and
investment (I) (which leads to cycling (7)).

2.1 The Model

We work with the equations (2.1) and (2.2) for the system represented in

Figure 2.1. which have been suggested in (11)

dx

dt
= α

[

I
(

x(t− T ), K(t− T )
)

− S
(

x(t− T ), K(t− T )
)

]

(2.1)

dK

dt
= βI

(

x(t− T ), K(t− T )
)

− δK
(

t− T
)

, (2.2)

where I is the investment function, S represents the savings function, x

denotes the level of economic activity and K represents the capital stock.

Note that α, β, and δ are the system parameters as described earlier.

We propose functional forms for I and S, which adhere to the sugges-

tions made by Kaldor (7)
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I =
a

1 + e−x(t−T )
− a

2
+ ηK(t− T ) (2.3)

S = γ ln

(

bx(t− T ) + 1

1− bx(t− T )

)

. (2.4)

The parameters in this model are

1. η describes the influence of the past value of capital stock on the
present investment.

2. γ determines the propensity to save.

3. a and b represent the value of the slope of the I and S curves in the
normal region as defined by Kaldor (7).

4. K captures the shift in the curves (7) due to accumulation of capital
stock.

Differentiating (2.3), (2.4) with respect to x and using the condition

dI
dx

> dS
dx

(7), we obtain a condition on a and b as a
4
> 2b. We numeri-

cally validate this model in MATLAB. For the purpose of simulation, the

parameter values are chosen as α = 1, γ = 1, a = 4, b = 1
3
, kd = 0.02

(kd captures the effect of η). The dependence on K in these curves is cap-

tured by shifting the I and S curves. The numerical results obtained using

simulations are shown in Figure 2.2. It can be readily seen that for these

parameter values, this model predicts a cycle, i.e. the economy goes from

a state of high activity to a state of low activity and back.

We now proceed to analyze various dynamical aspects of this model.
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Figure 2.2: Numerical verification of model (2.3), (2.4). The dot indicates
the current level of economic activity and the curves corre-
spond to the savings and investment functions (7). The occur-
rence of cycles can be seen in the plots I to VI.
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CHAPTER 3

STABILITY ANALYSIS

In this section, we establish the necessary and sufficient condition for sta-

bility of the system described by (2.1) and (2.2) using time domain analy-

sis. For this, the linearization of (2.1) and (2.2) is carried out for the func-

tional forms of I and S as given in (2.3) and (2.4).

dx

dt
=

aα

1− e−x(t−T )
− aα

2
+ ηαK(t− T )− γα ln

(

bx(t− T ) + 1

1− bx(t − T )

)

(3.1)

dK

dt
=

aβ

1− e−x(t−T )
− aβ

2
+ ηβK(t− T )− δK(t) . (3.2)

We now prove the existence and uniqueness of an equilibrium point E∗ of

the (2.1) and (2.2). We follow the style of analysis done in (6).

The conditions for existence of a unique equilibrium point are

1. there exists a constant L > 0 such that |I(x)| ≤ L for all x ∈ R;

2. I(0) > 0;

Then there exists a unique equilibrium point E∗ = (x∗, K∗) where x∗ is

the solution of

I(x) = γ ln

(

bx∗ + 1

1− bx∗

)

,

and K∗ is determined by

K∗ =
βγ

δ
ln

(

bx(t− T ) + 1

1− bx(t− T )

)

.



Proof. Let the equilibrium point be (x∗, K∗). At this equilibrium point, the

values of dx
dt

and dK
dt

are zero.

dx

dt
=

dK

dt
= 0 ,

that is

0 = αI(x)− γα ln

(

bx(t− T ) + 1

1− bx(t− T )

)

(3.3)

0 = βI(x)− δK(t) . (3.4)

Let us assume that x > 0 and K > 0 satisfy (3.3) and (3.4). Then

I(x) = γ ln

(

bx(t− T ) + 1

1− bx(t− T )

)

,

and

K =
βγ

δ
ln

(

bx(t − T ) + 1

1− bx(t− T )

)

.

which is a unique equilibrium point of (2.1) and (2.2).

To linearize about the equilibrium point, we write x(t−T ) = y(t−T )+

x∗ and K(t) = k(t) +K∗ where y(t) and k(t) are small perturbations about

the equilibrium point. (3.1) and (3.2) linearize to

dy

dt
= Ay(t− T ) + ηαk(t− T ) (3.5)

dk

dt
= By(t− T ) + ηβk(t− T )− δk(t) , (3.6)
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where A = − aαe−x∗

(1− e−x∗)2
− 2bγα

1− b2x∗
2

B = − aβe−x∗

(1− e−x∗)2
.

Using (3.5) and (3.6), we get a second order delay differential equation

which has the characteristic equation

λ2 + aλ+ bλe−λT + c+ de−λT = 0 . (3.7)

Here the values of a, b, c, d and T are constants, which can be calcu-

lated in terms of system parameters.

3.1 Local Stability Analysis

The critical points of the system are obtained by constraining the roots of

the characteristic equation to be purely imaginary.

It is clear that there is no need to analyze the system for the cases where

both a and b are simultaneously zero, as this can only lead to unstable

solutions.

For the case where b = 0 (which corresponds to a delay in the feed-

back path), a purely imaginary solution of the characteristic equation is

computed. Let this solution be iv, where v is given by

v2 =
2c− a2 ±

√
a4 − 4a2c+ 4d2

2
.

10



At the critical point, the system satisfies

vT = sin−1

(

av

d

)

.

Hence, the necessary and sufficient condition for stability is given by

T <
1

v
sin−1

(

av

d

)

. (3.8)

It can be seen that for a valid solution to exist for v, the term a4−4a2c+4d2

must be positive. This can be rewritten as

c <
a2

4
+

(

d

a

)2

. (3.9)

If the condition given in (3.9) is satisfied, we can always find a critical point

of the system and so a stability switch will exist. This is the case of delay

dependent stability.

The parameter c represents the feedback term in the system without

delay. If (3.9) is not satisfied, the system does not experience stability

switches and is always stable. This is the case of delay independent sta-

bility. This behavior can be intuitively explained by focusing on the fact

that when c is large enough, the instantaneous feedback term dominates

the delayed feedback term and hence the effect of time-delay vanishes.

For the case where a 6= 0, b 6= 0, c 6= 0 and d 6= 0, a similar analysis,

as the done previously for the case b = 0, is carried out which leads to the

following necessary and sufficient condition for stability

vT < tan−1

(

bv

d

)

+ tan−1

(

v2 − c

a

)

, (3.10)

11



where v is given by

v2 =
b2 + 2c− a2 ±

√

(b2 + 2c− a2)2 − 4(c2 − d2)

2
. (3.11)

The local stability analysis is carried out numerically for (3.7) and sta-

bility charts are prepared.
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2
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T

d

Figure 3.1: The variation of stability with parameters a, b, c, d and delay
T for the system (3.7) (white regions represent stable solutions
whereas black regions represent unstable ones). When a is var-
ied, b = 10, c = 10 and d = 1. When b is varied, a = 1, c = 50
and d = 0.1. When c is varied, a = 0.5, b = 10 and d = 1. When
d is varied, a = 1, b = 10 and c = 10.
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3.2 Stability Switches

In this section, we provide an explicit characterization of the conditions

for (3.7) to undergo multiple stability switches. A plot demonstrating the

presence of stability switches in (3.7) is shown in Figure 3.2.

0 2 4 6 8 10 12 14 16
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

T

R
e
(λ
)

a=1.2

a=1.4

a=1.6

a=1.8

Figure 3.2: Stability switches in (3.7) with varying T when (3.9) is satisfied.
Here, b = 0, c = 1, d = 1.

It is worth noting that for the choice of parameter values in Figure 3.2,

the condition on c as specified in (3.9) is satisfied. If c does not satisfy (3.9),

stability switches do not occur. This is demonstrated in Figure 3.3.
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e
(λ
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a=1.2

a=1.4

a=1.6

a=1.8

Figure 3.3: The absence of stability switches in (3.7) with varying T when
(3.9) is not satisfied. Here, b = 0, c = 5, d = 1.

For an analytic characterization of stability switches, consider the value

13



of v as given by (3.11) which can be rewritten as

v2 =
b2 + 2c− a2 ±

√

(b2 − a2)2 + 4c(b2 − a2) + 4d2

2
. (3.12)

We establish conditions on a, b, c, and d for one or more positive roots

v to exist.

Table 3.1: Conditions on parameters of the system (3.7) that give rise to
different behavior in terms of stability.

S. Conditions on Number of positive

No. parameters roots of v

1 c2 < d2 1

2 b2 < a2 − 2c 0

d
2
< c

2

3 a2 − 2c < b2 < a2 2

(a2 − b2)(c− 1

4
(a2 − b2)) < d2 < c2

4 a2 − 2c < b2 < a2 0

d2 < (a2 − b2)(c− 1

4
(a2 − b2))

5 a2 < b2 2

d2 < c2

Case 1) As can be seen from (3.11), if condition given in case 1 is sat-

isfied, then the value of
√

(b2 + 2c− a2)2 − 4(c2 − d2) will be greater than

b2 + 2c − a2. In this case, v2 has one solution. Hence, v has just one posi-

tive root and the system will have only one bifurcation point where it will

switch from a stable to an unstable state.

Case 2) From (3.11), we realize that if the conditions given in case 2 are

satisfied, then v2 does not have a solution. Hence, v has no solution and

the system always remains stable i.e. the system does not undergo Hopf

bifurcation. This is an instance of delay independent stability.

14



Case 3) If the conditions given in case 3 are satisfied, from (3.12) we

can say that v2 has two positive roots and thus there are two positive roots

for v. Hence, the system undergoes two stability switches i.e. the system

transitions from being stable to being unstable twice.

Case 4) From (3.11), we can see that if the conditions given in case 4 are

satisfied, then v2 does not have a solution. Hence v has no solution and

the system always remains stable i.e. the system does not undergo Hopf

bifurcation. This is another instance of delay independent stability.

Case 5) If the conditions given in case 5 are satisfied, then v2 has two

positive roots, as can be seen from (3.12). Hence v has two positive roots

and the system undergoes stability switches twice.

15



CHAPTER 4

RATE OF CONVERGENCE

We vary the parameters c and d to analyze their effect on the rate of con-

vergence of (3.7) and plot the same. The rate of convergence is estimated

by calculating the eigenvalue of the system with the lowest magnitude of

its real part. This eigenvalue represents the most slowly decaying expo-

nential in the time evolution of the system and serves as a measure of its

rate of convergence.

4 2 2 4

60

40

20

20

40

RHS

LHS

d

c

Figure 6: The variation of the rate of convergence of theFigure 4.1: The variation of the rate of convergence of (3.7) with parame-
ters c and d. Here a = 1, b = 0 and T = 1.5. Darker regions
represent faster convergence.

Referring to (3.7), the system will be overdamped if the imaginary part

of the eigenvalue is zero and the real part is negative. To investigate this,



we substitute λ = u in (3.7), which gives

u2 + au+ bue−uT + c+ de−uT = 0

−u2 + au+ c

bu + d
= e−uT

u

b
+

1

b

(

a− d

b

)

+
c− d

b

(

a− d
b

)

bu+ d
= −e−uT . (4.1)

We solve (4.1) graphically to find a solution for a particular choice of

parameters.

-4 -2 2 4

-60

-40

-20

20

40

Figure 4.2: Solving (4.1) graphically for the overdamped system (3.7).
Here a = 1, b = 0.2, c = 1 and d = 1.

By looking at Figure 4.2, we can see that the shape of the two graphs

always leads to a solution. This implies that the system is always over-

damped. This conclusion is highly counter intuitive and hence makes us

question the possibility of having both real and complex roots at the same

time, and rate of convergence being decided by the root whose real part

has the least magnitude. This possibility has not been investigated further

in this paper.
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CHAPTER 5

BIFURCATION ANALYSIS

In nonlinear systems, transition from stability to instability is generally

accompanied by a Hopf Bifurcation (3), (15). In this section, we prove

that our model undergoes a Hopf bifurcation as the value of time-delay is

increased, as long as the conditions for delay dependent stability as given

in Table 1 are satisfied. In an economy, there are a number of economic

agents acting at different time scales. These agents may have a stabilizing

or destabilizing effect on the economy based on the delay in the response

to their actions. Hence we choose T for bifurcation analysis.

5.1 Transversality Condition

To demonstrate that the loss of stability occurs via a Hopf bifurcation,

we prove the transversality condition. To that end, we differentiate (3.7)

with respect to T which leads to

λ′
(

2λ+ a+ be−λT − bλe−λT − dTe−λT
)

− bλ2e−λT − dλe−λT = 0 ,

where λ′ = dλ
dT

. Rewriting,

λ′ =
λ
(

bλ+ d
)

(

2λ+ a
)

eλT +
(

b− bλT − dT
) . (5.1)



From (3.7),

eλT =
bλ+ d

λ2 + aλ+ c
. (5.2)

Substituting (5.2) in (5.1),

λ′ =
λ

− (2λ+a)
λ2+aλ+c

+ b
bλ+d

− T
.

Considering each term in the denominator separately and substituting

λ = iv, the first term can be written as

2iv + a

−v2 + iav + c
=

av2 + ac + i
(

2cv − 2v3 − a2v
)

A
,

where A = (c− v2)2+a2v2, is always positive. Similarly the second term

can be written as
b

ibv + d
=

bd− i
(

b2v
)

B
,

where B = b2v2 + d2, is always positive. To simplify (3.12), we multiply

both numerator and denominator with AB. It is seen that since both A

and B are positive, we need not consider the AB term appearing in the

numerator. The denominator can be written as

Denominator =
(

bdA− aBv2 − acB − TAB
)

−i
(

2Bcv − 2Bv3 − a2Bv + Ab2v
)

.

To simplify, we make the denominator a real number by multiplying

both the numerator and the denominator with the conjugate of the denom-

inator. In the modified equation obtained, it is not necessary to consider

the denominator any longer, as it is a sum of squares of two real numbers
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and so is always positive. As we are interested in the real part of λ′ and

as the numerator of (5.1) is purely imaginary for λ = iv, we consider the

term obtained by multiplying iv with the imaginary part of the conjugate

of the denominator. This gives us the real part of the numerator as

ℜ
(

Numerator
)

= −2Bv2 + 2Bc− a2B + Ab2 .

Substituting the values of A and B

ℜ
(

Numerator
)

= −b2v4 − 2d2v2 + 2cd2 − a2d2 + b2c2 . (5.3)

If we equate (5.3) to zero and solve for v, we get a value of v which does

not satisfy the (3.7). So we can say that the real part of dλ
dT

is always non

zero and so there exists a Tcritical at which the system undergoes a Hopf

bifurcation.

5.2 Stability of Limit Cycles

In this section, we address the question of stability of the emerging limit

cycles. We do a Taylor expansion of (2.1) and (2.2) about the equilibrium

point.

dy

dT
= F1y(t− T ) + F2y

2(t− T ) + ηαk(t− T ) (5.4)

dk

dT
= G1y(t− T ) +G2y

2(t− T ) + ηβk(t− T )− δk(t) , (5.5)
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where

F1 =
d

dy

(

1

1− e−y(t−T )

)

F2 = 0.5
dF1

dy

G1 =
d

dy

(

ln

(

by(t− T ) + 1

1− by(t− T )

))

G2 = 0.5
dG1

dy
.

We introduce an exogenous non-dimensional parameter κ = κc + µ to

establish the stability of the limit cycle (4), where κc = 1 and the Hopf

bifurcation takes place at µ = 0.

dy

dT
= κF1y(t− T ) + κF2y

2(t− T ) + κηαk(t− T ) (5.6)

dk

dT
= G1y(t− T ) +G2y

2(t− T ) + ηβk(t− T )− δk(t) , (5.7)

We perform calculations that enable us to address questions about the

form of the bifurcating solutions of (5.6) and (5.7) as it transits from sta-

bility to instability via a Hopf bifurcation. For our analysis, we follow the

style given in (4). Consider the following autonomous delay differential

equation.
d

dt
u(t) = Lµut + F(ut, µ) , (5.8)

where t > 0, µ ∈ R, where for T > 0

ut(θ) = u(t+ θ) u : [−T, 0] → R2, θ ∈ [−T, 0].
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Lµ is a one-parameter family of continuous (bounded) linear operators.

The operator F(ut, µ) contains the nonlinear terms. We assume that F is

analytic and that F and Lµ depend analytically on the bifurcation param-

eter µ for small |µ|. Note that (5.6) is of the form (5.8), where u = [y, k]T .

The objective now is to cast (5.8) into the form

d

dt
ut = A(µ)ut +Rut , (5.9)

which has ut rather than both u and ut. We transform the linear problem

du(t)/dt = Lµut. By Riesz representation theorem, there exists an n × n

matrix function η(·, µ) : [−T, 0] → Rn2

, such that the components of η have

bounded variation and for all φ ∈ C[−T, 0]

Lµφ =

∫ 0

−T

dη(θ, µ)φ(θ) .

In particular,

Lµφ =

∫ 0

−T

dη(θ, µ)u(t + θ) . (5.10)

We observe that

dη(θ, µ) =





κF1δ(θ + T )dθ κηαδ(θ + T )dθ

G1δ(θ + T )dθ (ηβδ(θ + T )− δ(θ))dθ





satisfies (5.10). For φ ∈ C[−T, 0], we define

A(µ)φ(θ) =











dφ(θ)
dθ

,

∫ 0

−T
dη(s, µ)φ(s) ≡ Lµφ,

θ ∈ [−T, 0)

θ = 0

(5.11)
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and

Rφ(θ) =











0,

F(φ, µ),

θ ∈ [−T, 0)

θ = 0

. (5.12)

As dut/dθ = dut/dt, (5.8) becomes (5.9) as desired.

The bifurcating periodic solutions u
(

t, µ(ǫ)
)

of (5.8) have amplitude

O(ǫ), period P(ǫ) and non-zero Floquet exponent B(ǫ), where the expres-

sions for µ, P and B are given by

µ = µ2ǫ
2 + µ4ǫ

4 + · · ·

P =
2π

ω0
(T2ǫ

2 + T4ǫ
4 + · · · )

B = B2ǫ
2 + B4ǫ

4 + · · · .

The sign of µ2 determines the direction of bifurcation: µ2 > 0 implies a

supercritical bifurcation and µ2 < 0 implies a subcritical bifurcation. The

sign of B2 determines the stability of bifurcation: asymptotic orbital stabil-

ity if B2 < 0 and instability if B2 > 0.

We only need to compute the expressions at µ = 0, hence we set µ = 0.

Let q(θ) be the eigenfunction for A(0) corresponding to λ(0), namely

A(0)q(θ) = iω0q(θ) . (5.13)

To find ω0 and q(θ), let q(θ) = q0e
iω0θ, where q0 = [1, q02]

T . Substituting

this in (5.13) and using the expression for A as in (5.11) we get
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∫ 0

−T





κF1δ(θ + T )dθ κηαδ(θ + T )dθ

G1δ(θ + T )dθ (ηβδ(θ + T )− δ(θ))dθ









eiw0θ

q02e
iw0θ



 =





iw0θ

q02iw0θ



 .

Solving, we get

F1e
−iω0T + ηαq02e

−iω0T = iw0

G1e
−iω0T + ηβq02e

−iω0T − q02 = iw0q02 .

Solving for q02 we get,

ηα(iω0 + 1)q202 + F1(1 + iω0 − iω0ηβ)q02 − iω0G1 = 0 .

From this quadratic equation, we find the value of q02 which is used to find

the value of ω0.

We define the adjoint operator A∗(0) as

A∗(0)α(s) =











dα(s)
ds

,

∫ 0

−T
dηT (t, 0)α(−t),

s ∈ [0, T )

s = 0.

Note that the domains of A and A∗ are C1[−T, 0] and C1[0, T ] respectively.

As

A(0)q(θ) = λ(0)q(θ) ,

λ(0) is an eigenvalue for A∗, and

A∗(0)q∗ = −iω0q
∗
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for some non-zero vector q∗. For φ ∈ C[−T, 0] and ψ ∈ C[0, T ], we define

an inner product

〈ψ,φ〉 = ψ
T
(0)φ(0)−

∫ 0

θ=−T

∫ θ

τ=0

ψ
T
(τ − θ)dη(θ)φ(τ)dτ . (5.14)

Then, 〈ψ,Aφ〉 = A∗〈ψ,φ〉 for φ ∈ Dom(A) and ψ ∈ Dom(A).

Let q∗(s) = Deiω0s be an eigenvector of A∗ corresponding to eigenvalue

−iω0. We now find D such that the eigenvectors q and q∗ satisfy conditions

〈q∗, q〉 = 1 and 〈q∗, q〉 = 0. These two equations are solved for variables

D1 and D2, whereD = [D1, D2]
T . Using the expression (5.14) for the inner

product, we get

1 = D1 +D2q02 +D1κcTF1e
−iω0T +D1κcTηαq02e

−iω0T +D2κcTG2e
−iω0T

+D2κcTηβq02e
−iω0T

0 = i2ω0D1 + i2ω0D2q02 +
(

eiω0T − e−iω0T
) (

D1F1 +D1ηαq02 +D2G1 +D2ηβq02
)

.

(5.15)

From (5.15), we solve for D1 and D2. For ut, a solution of (5.9) at µ = 0, we

define

z(t) = 〈q∗,ut〉

w(t, 0) = ut(θ)− 2RE(z(t)q(θ)).

Then, on the manifold, C0,w(t, θ) = w(z(t), z(t), θ), where

w(z, z, θ) = w20(θ)
z2

2
+w11(θ)zz +w02(θ)

z2

2
+ · · · . (5.16)

In effect, z and z are local coordinates for C0 in C in the directions of q∗

and q∗, respectively. Note that w is real if ut is real and we deal only with
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real solutions. The existence of the center manifold enables the reduction

of (5.9) to an ordinary differential equation for a single complex variable

on C0. At µ = 0, this is

z
′

(t) = 〈q∗,Aut +Rut〉

= iω0z(t) + q∗(0) · F
(

w(z, z, θ) + 2RE
(

zq(θ)
)

)

= iω0z(t) + q∗(0) · F′(z, z),

(5.17)

which is abbreviated to

z
′

(t) = iω0z(t) + g(z, z). (5.18)

The next objective is to expand g in powers of z and z. However, we

also have to determine the coefficients wij(θ) in (5.16). Once the wij have

been determined, (5.17) would be explicit (as abbreviated in (5.17)). Ex-

panding g(z, z) in powers of z and z, we have

g(z, z) = q∗(0) · F0(z, z)

= g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
· · · .

Following (4), we write

w
′

= u
′

t − z
′

q − z
′

q

and using (5.9) and (5.18), we obtain

w
′

=











Aw − 2RE (q∗(0) · F0q(θ)) ,

Aw − 2RE (q∗(0) · F0q(0)) + F0,

θ ∈ [−T, 0]

θ = 0
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which is rewritten as

w
′

= Aw + h(z, z, θ) (5.19)

using (5.16), where

h(z, z, θ) = h20(θ)
z2

2
+ h11(θ)zz + h02(θ)

z2

2
+ · · · . (5.20)

Now on C0, near the origin

w
′

= wzz
′

+wzz
′

.

Use (5.16) and (5.18) to replacewz, z
′

(and their conjugates by their power

series expansion) and equating this with (5.19), we get

(2iω0 −A)w20(θ) = h20(θ)

−Aw11(θ) = h11(θ)

−(2iω0 +A)w02(θ) = h02(θ).

(5.21)

We start by observing

ut(θ) = w(z, z, θ) + q(θ)z + q(θ)z

= w20(θ)
z2

2
+w11(θ)zz +w02(θ)

z2

2
+ q0e

iω0θz + q0e
−iω0θz + · · ·

from which we obtain ut(0) and ut(−T ). We have actually looked ahead

and we require only the coefficients of z2, zz, z2 and z2z. Hence we keep

only the relevant terms in the expansions that follow. We see that we have
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only one nonlinear term, y2(t− T ), in (5.6).

y2(t− T ) =
[

ut(−T )ut
T (−T )

]

11

= e−2iω0T z2 + e2iω0T z2 + 2zz

+
(

w201(−T )eiω0T + 2w111(−T )e−iω0T
)

z2z + · · ·

where [wij1, wij2]
T = wij . Recall that,

g(z, z) = q∗(0) · F0(z, z) ≡ D1F01(z, z) +D2F02(z, z) (5.22)

where [F01,F02]
T = F0 , and

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
· · · . (5.23)

Comparing (5.22) and (5.23), we get

g20 = 2D1κF2e
−2iω0T + 2D2G2e

−2iω0T (5.24)

g11 = 2D1κF2 + 2D2G2 (5.25)

g02 = 2D1κF2e
2iω0T + 2D2G2e

2iω0T (5.26)

g21 =
(

2D1κF2 + 2D2G2

) (

w201(−T )eiω−TT + 2w111(−T )e−iω0T
)

. (5.27)

For the expression of g21, we still need to evaluatew11(0),w11(−T ),w20(0)

and w20(−T ). Now for θ ∈ [−T, 0)

h(z, z, θ) = −2RE (q∗(0) · F0q(θ))

= −2RE (g(z, z)q(θ))

= −g (z, z)q(θ)− g(z, z)q(θ)

=

(

g20
z2

2
+ g11zz + g02

z2

2

)

q(θ)−
(

g20
z2

2
+ g11zz + g02

z2

2

)

q(θ)
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which when compared to (5.20), yields

h20(θ) = −g20q(θ)− g02q(θ)

h11(θ) = −g11q(θ)− g11q(θ).

From (5.11) and (5.21), we get

w
′

20(θ) = 2iω0w20(θ) + g20q(θ) + g02q(θ) (5.28)

w
′

11(θ) = g11q(θ) + g11q(θ) . (5.29)

Solving (5.28) and (5.29), we obtain

w20(θ) = − g20
iω0
q0e

iω0θ − g02
3iω0

q0e
−iω0θ + ee2iω0θ (5.30)

w11(θ) =
g11
iω0
q0e

iω0θ − g11
iω0
q0e

−iω0θ + f (5.31)

for some e = [e1, e2]
T and f = [f1, f2]

T , which we determine. Forh(z, z, 0) =

−2RE (q∗(0) · F0q(0)) + F0

h20(0) = − g20q(0)− g02q(0) +





2κF2e
−2iω0T

2G2e
−2iω0T





h11(0) = − g11q(0)− g11q(0) +





2κF2

2G2



 .
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Again, from (5.11) and (5.21), we obtain

g20q(0) + g02q(0) =





2κF2e
−2iω0T

2G2e
−2iω0T



+ (5.32)





κF1w201(−T ) + κηαw202(−T )− 2iω0w201(0)

ηβw202(−T ) +G1w201(−T )− 2iω0w202(0)− w202(0)





g11q(0) + g11q(0) =





2κF2

2G2



+





κF1w111(−T ) + κηαw112(−T )

G1w111(−T ) + ηβw112(−T )− w112(0)



 .

(5.33)

Substituting the expression for wijk(x), x ∈ [−T, 0] from (5.30) and (5.31)

into (5.32) and (5.33), and finally solving for e1, e2, f1 and f2, we obtain

e ≡





e1

e2



 =





n2A1−m2A2

m1n2−m2n1

m1A2−n1A1

m1n2−m2n1



 (5.34)

and

f ≡





f1

f2



 =





(ηβ−1)B1−κηαB2

κF1(ηβ−1)−κηαG1

κF1B2−G1B1

κF1(ηβ−1)−κηαG1



 , (5.35)
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where

M1 = −2iω0 + κF1e
−2iω0T

M2 = κηαe−2iω0T

N1 = G1e
2iω0T

N2 = ηβe−2iω0T − 2iω0 − 1

A1 = g20 + g02 − 2κF2e
−2iω0T + κF1

(

g20
iω0

e−iω0T +
g02
3iω0

eiω0T

)

− 2

(

g20 +
g02
3

)

+ κηα

(

g02
3iω0

q02e
iω0T − g20

iω0

q02e
−iω0T

)

A2 = g20q02 + g02q02 − 2G2e
−2iω0T +G1

(

g20
iω0

e−iω0T +
g02
3iω0

eiω0T

)

+ ηβ

(

g02
3iω0

q02e
iω0T − g20

iω0
q02e

−iω0T

)

− (2iω0 + 1)

(

g20q02
iω0

+
g02q02
3iω0

)

B1 = 2g11 − 2κF2 − κF1

(

g11
iω0

e−iω0T − g11
iω0

eiω0T

)

− κηα

(

−g11
iω0

q02e
iω0T +

g11
iω0

q02e
−iω0T

)

B2 = g11(q02 + q02)− 2G2 −G1

(

g11
iω0

e−iω0T − g11
iω0

eiω0T

)

− ηβ

(

−g11
iω0

q02e
iω0T +

g11
iω0

q02e
−iω0T

)

.

Using the values of e and f in (5.30) and (5.31), followed by substi-

tuting θ = 0,−T , we obtain the values for w11(0), w11(−T ), w20(0) and

w20(−T ). Using these we evaluate g21. Hence, we have the expressions for

g20, g11, g02 and g21.

All the quantities required for the stability analysis of the Hopf bifur-

cation have been calculated. We can now comment on the nature of the
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Hopf bifurcation by finding out the values of µ2 and B2 (4)

µ2 =
−RE

(

c1(0)
)

α′(0)

B2 = 2RE
(

c1(0)
)

(5.36)

where, as in (4),

c1(0) =
i

2ω0

(

g20g11 − 2|g11|2 −
1

3
|g02|2

)

+
g21
2

. (5.37)

Now, µ2 is calculated for various values of µ in the neighborhood of the

bifurcation point i.e. µ = 0. The values of µ2 are plotted in Figure 5.1.
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−2

0
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2
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Figure 5.1: Values of µ2 in the neighborhood of the bifurcation point i.e.
µ = 0.

As, can be clearly seen in Figure 5.1, µ2 < 0 at the bifurcation point, µ =

0. Hence, the system (3.1) and (3.2) transitions from stability to instability

through a supercritical Hopf bifurcation and the emerging limit cycles are

stable.

Also, the expressions for period P (ǫ) and Floquet exponent B (ǫ) are
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given by

P (ǫ) =
2π

ω0

(

1 + ǫ2T2 +O
(

ǫ4
))

T2 = −IM
(

c1(0)
)

+ µ2ω
′

(0)

ω0

B (ǫ) = B2ǫ
2 +O

(

ǫ4
)

ǫ =

√

µ

µ2
.

(5.38)

5.3 Bifurcation Diagrams

The bifurcation diagrams for (3.1) and (3.2) are plotted using MATLAB.

They are shown in Figure 5.2.
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Figure 5.2: Hopf bifurcation in (3.1), (3.2) for varying parameters T, α, η
and γ. In the bifurcation diagram, all parameters, except the
one being varied, are set to 1.
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CHAPTER 6

OUTLOOK

The presence of periodic cycles in the economy provides motivation to

study some nonlinear models of economic dynamics. In this paper, we

analyzed a certain nonlinear Kaldor-Kalecki business cycle model.

We proposed functional forms of the savings and investment functions

in a Kaldor-Kalecki framework, which is modeled as a nonlinear control

system. We then outlined necessary and sufficient condition for local sta-

bility and analyzed rate of convergence of the linearized system. An ex-

tremely interesting feature of the model was its ability to undergo multiple

stability switches: from a stable equilibrium to a Hopf induced limit cycle.

We showed that loss of stability occurs via a Hopf bifurcation which leads

to the emergence of limit cycles. We proved that the bifurcation is super-

critical and hence the limit cycles are stable.

As can be seen from the bifurcation diagrams in Figure 5.2, the sys-

tem undergoes a transition from stability to a stable limit cycle. It can be

seen that the radius of the limit cycle is largest for bifurcation due to vari-

ation of η. As η represents the effect of past capital stock on the present

investment, a larger magnitude of η implies a greater dependence of the

present investment on the past value of capital stock. This can be seen as a

stronger influence of the delayed capital stock, which tends to destabilize

the economy.



Intuitively it may seem desirable to maximize the influence of the cur-

rent investment on the level of economic activity (captured by α). Con-

trary to this expectation, the bifurcation with increasing α demonstrates

that unrestrained maximization of this parameter has a destabilizing ef-

fect on the economy, which may manifest itself as rapid fluctuations in

economic indicators such as GDP, level of employment etc.

Avenues for further research

Mathematically, it would be natural to characterize the limit cycles. Of

particular interest would be the relationship between system parameters

and the amplitude of the resulting cycles. From a modeling perspective,

it would be natural to extend the model and analysis to cater for inputs

to the system, and to consider external disturbances. This would be a

step towards developing a framework which might be able to offer policy

guidelines.
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