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ABSTRACT

KEYWORDS: Poisson Point Process ; Cellular network; Coverage proba-

bility; User rate ; Cell association scheme.

Cellular networks are undergoing a paradigm shift with the number of

base stations (BSs) increasing rapidly every year. This calls for a change

in the techniques used for modeling, analyzing, simulating and designing

cellular networks.

The hexagonal grid model in which the BSs are placed in a lattice is

not very tractable and does not capture the opportunistic and dense place-

ment of base stations in futuristic networks. Further the rate distribution

of users is a better performance metric than the outage probability for rat-

ing the quality of service in such networks. This work models the BSs

as randomly and uniformly distributed in space. In the absence of prior

information, this is regarded as the best statistical model. Further, alter-

native cell association schemes which optimize the rate distribution rather

than SINR are discussed. These association schemes, which focus on load

balancing , are effective in improving the quality of service, especially in

networks with heterogeneity.
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CHAPTER 1

Introduction

Due to the heavy proliferation of smart phones, laptops , tablets with cellu-

lar connections, there is an ever increasing demand for capacity. The only

scalable way to meet this demand is by increasing the number of base sta-

tions. As a result, grid models which place base stations in a lattice are

highly idealized and do not capture the dense and opportunistic place-

ment of base stations in futuristic networks. Further, the techniques used

for modeling, analyzing and simulating cellular networks also need re-

evaluation. In (2), seven important changes in the way cellular networks

need to be studied are discussed. (2) calls for the use of Poisson models,

in which the base stations are randomly distributed in space. Further, the

need for alternative cell association schemes, which focus on improving

the rate distribution rather than the SINR, is emphasized.

1.1 Downlink system model

Traditional approaches to model base stations in a cellular network in-

clude the Wyner model and the hexagonal grid based model. The Wyner

model assumes a unit gain from each base station to the tagged user and an

equal gain that is less than one to all users in the neighbouring cells. Such

a model does not differentiate between interior and edge users and hence

there is no notion of outage. This model is tractable but highly inaccurate



due to the simplifying assumptions. Another popular model is to place the

base stations in a hexagonal grid. In (3) and (4), a hexagonal grid model is

used for the base stations, and the SINR analysis is performed assuming

worst-case user location - the cell corner. However, tractable expressions

for SINR and coverage probability for a user at a random position in the

cell, can only be arrived at by complex time-consuming simulations. Fur-

ther the grid models are very idealized as cell radii may vary considerably

in future networks, due to differences in transmission power, tower height

and user density.

Based on the recommendation in (2), a Poisson BS model, in which the

BS’s are placed randomly, is used in this work. In this model of a cellu-

lar network, the base stations are distributed according to a homogeneous

Poisson point process (PPP) Φb of density λb in the Euclidean plane. Fur-

ther, the users are also assumed to be distributed according to another

homogeneous PPP of density λu. Such an approach for base station mod-

eling was considered in (8; 9), but the metrics of coverage and rate were

not determined. In (1), the expressions for coverage and rate for a typical

user in a single-tier cellular network have been obtained using tools from

stochastic geometry. Despite the controversial independence assumption,

this model is found to more tractable and as accurate as the previously

used hexagonal grid model. However, this Poisson model also suffers

from a few drawbacks. The main weakness of the Poisson model is that

because of the independence of the PPP, BSs will in some cases be located

very close together but with a significant coverage area. This weakness is

balanced by two strengths: the natural inclusion of different cell sizes and

shapes and the lack of edge effects, i.e. the network extends indefinitely in

all directions.
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In this work, two power loss propagation models have been used with

power loss exponent α = 4. These are

l1 (x) = ‖x‖−α
,

l2 (x) =
1

1 + ‖x‖α
.

The power loss model used has been explicitly mentioned before each

analysis or simulation. As far as random channel effects such as fading

and shadowing, we assume that the tagged base station and tagged user

experience only Rayleigh fading with mean 1.

1.2 Need for alternative cell association schemes

The two metrics commonly used to rate the performance of cellular net-

works are the coverage probability (CCDF of SINR) and the spectral effi-

ciency. With the increase in the number of base stations, the base station

placement and their distribution have become increasingly random. As a

result, there will be some base stations which are lightly loaded as com-

pared to others. In such a scenario, the application level data rate depends

not only on the SINR but also the load. A better performance metric for

such networks would be the rate distribution and not the coverage proba-

bility.

Thus, the traditional scheme of associating users with the nearest base

station (or maximum SINR) may no longer be optimal. When the users are

4



associated with base stations using the maximum-SINR scheme, there will

be unequal loads on different base stations due to disparities in cell sizes.

The users which are associated with a heavily congested base station will

be severely affected. Pushing users from heavily loaded base stations to

lightly loaded base stations can be beneficial. Hence, we seek alternative

cell association schemes where the load is more evenly balanced among

the base stations.

(7) classifies the previous work on cell association into two categories:

1. Strategies based on channel borrowing from lightly-loaded cells, such
as Hybrid Channel Assignment (HCA), and load balancing with se-
lective borrowing.

2. Strategies based on traffic transfer to lightly loaded cells such as Di-
rected Retry, hierarchical macro-cell overlay systems, cell breathing
techniques and biasing methods.

This work focuses mainly on traffic transfer strategies which shift users

from heavily loaded cells to lightly loaded cells. Some of the existing traf-

fic transfer strategies are dynamic schemes. For instance, the cell breath-

ing technique (12) dynamically changes the coverage area depending on

the load situation by controlling the transmit power. In (11), biasing tech-

niques for cell-range expansion in heterogeneous networks are discussed.

In this work, a simple association scheme where the users connect with

either the first nearest or the second nearest base station is studied. This

scheme is found to be considerably effective in balancing the load among

the base stations. Further, the SINR biasing scheme is studied for a single-

tier cellular network and a 3-tier cellular network and the difference in

performance is noted.
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1.3 Organization of the thesis

The thesis is organized as follows. In chapter 2, some results from point

process theory and stochastic geometry which are used for obtaining ex-

pressions for coverage probability and rate, are reviewed. In chapter 3,

an alternative association scheme where a user connects either with the

first nearest or the second nearest base stations with fixed probabilities

is introduced. Using the results from stochastic geometry, an expression

for coverage probability is derived for a cellular network which uses this

alternative association scheme. The mean rate and rate variance are ob-

tained through MATLAB simulations. In chapter 4, an allocation scheme

in which the user connects to a base station with least load is studied. Fur-

ther, the performance of the SINR bias scheme in a single tier and a 3-tier

network is compared.
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CHAPTER 2

Point Process Theory- A review

In this chapter, we review some of the basic definitions and results from

Point Process theory which play a major role in our analysis of cellular

networks.

Definition: The mathematical definition of a point process on R
2 is as

a random variable taking values in a measurable space N, where N is the

family of all sequences ϕ of points of R2 satisfying two regularity condi-

tions:

1. that the sequence ϕ is locally finite (each bounded subset of R2 must
contain only a finite number of points of ϕ),

2. that the sequence is simple (so xi 6= xj if i 6= j).

Point processes can be considered either as random sets of discrete

points or as random measures counting the number of points lying in spa-

tial regions. Corresponding to this are two different notations:

• A point process is denoted by Φ; An instance of the point process is
denoted by φ. xǫΦ asserts that x belongs to the random sequence φ.

• Φ(B) = n asserts that the set B contains n points of Φ.

Some characteristics of a point process include:

• A simple point process Φ is determined by its void probabilities over
all compact sets, i.e. , P(Φ(K) = 0) for K ⊂ R

2 and compact.

• Stationarity : A Poisson point process is said to be stationary if its
distribution is invariant to translations.



2.1 Stationary Poisson Point Process

In this work, we use a stationary Poisson point process to model the base

station distribution. A stationary Poisson point process Φ of density λ is

characterized by

1. The number of points in a bounded Borel set B ⊂ R
2 has a Poisson

distribution with mean λ |B|

P(Φ(B) = m) =
(λ |B|)m

m!
. exp (−λ |B|)

for m = 0, 1, 2 . . .

2. The number of points in k disjoint Borel sets form k independent
random variables.

We now present some of the interesting properties and results of the

stationary PPP. For proofs of the following results and a more detailed

understanding of the PPP, please refer (5), (6).

Lemma 2.1.1 Let A ⊂ R
2. Conditioned on the number of points in Φ(A), the

points are independently and uniformly distributed in the set A.

Thus, the simulation of a stationary PPP in a compact region W can be

divided into two stages. First, the number of points in W is determined by

simulating a Poisson random variable. From lemma 2.1.1, we know that

these points can be uniformly distributed in the region W .

2.1.1 Distance properties of a PPP

Lemma 2.1.2 First contact distribution - The CCDF of the distance of the nearest

point of the process from the origin o denoted by r is P(r ≥ r1) = exp (−λπr21)
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and the PDF of r is given by f1(r) = 2λπr exp (−λπr2) .

Proof : From the definition of a PPP, we obtain,

P [r > r1] = P (B(o, r1)is empty) = exp
(

−λπr21
)

.

The CDF is thus given by Fr1(R) = 1− exp (−λπR2) Therefore, the pdf

is given by :

f1(r1) =
d

dr1
(Fr1 (r1))

= 2λπr1 exp
(

−λπr21
)

.

Lemma 2.1.3 Joint distribution - The joint pdf of the distances of the two nearest

points to the origin o, denoted by r1 and r2, is given by f12(r1, r2) = 4λ2π2r1r2 exp (−λπr22) .

The joint distribution f12(r1, r2) can also be derived using similar tech-

niques. We note that :

P (r1 < R1, r2 < R2) = 1− P (Φb (B (o, R1)) = 0)−

P (Φb (B (o, R1)) = 1)P (Φb (B (o, R2)−B (o, R1)) = 0)

P (r1 < R1, r2 < R2) = 1− exp
(

−λπr21
)

− λπr21 exp
(

−λπr22
)

The joint CDF is thus given byF12(r1, r2) = 1−exp (−λπr21)−λπr21 exp (−λπr22).

Thus,
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f12 (r1, r2) =
d

dr1

(

d

dr2
(F12 (r1, r2))

)

= 4λ2π2r1r2 exp
(

−λπr22
)

.

2.1.2 Sums and Products over a stationary PPP

Lemma 2.1.4 (Campbell’s theorem) Let Φ be a PPP of density λ and f(x) : R2 →

R
+.

E
xǫΦ

[f (x)] = λ

ˆ

R2

f(x)dx.

Refer (5) for proof.

Lemma 2.1.5 (Probability generating functional) Let Φ be a PPP of density λ

and f(x) : R2 → [0, 1] be a real valued function. Then

E

[

∏

xǫΦ

f(x)

]

= exp



−λ

ˆ

R2

(1− f (x)) dx



 .

Refer (5) for proof.

2.1.3 Transformations of PPP (Independent thinning)

Let Φ be a stationary PPP of density λ.

1. A node xǫΦ is of type 1 with probability p and of type 2 with proba-
bility 1− p .

2. Let Φ1 denote the type 1 point process and Φ2 denote the type 2 point
process. Thus we have Φ = Φ1 + Φ2.
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Lemma 2.1.6 Φ1 and Φ2 are independent PPPs with densities λp and λ(1− p).

Proof : Look at the void probabilities of Φ1 and Φ2.

2.1.4 Conditioning and Palm Probability

Many problems in point process theory require the consideration of an

arbitrary “typical” point of a point process Φ. In intuitive terms, the palm

distribution probabilities are the conditional probabilities of point process

given that a point is observed at a specific location. If Y is some point

process property, then we set

P (Φ has property Y ‖x) = P (Φ has property Y | xǫΦ) .

The reduced palm distribution P !
x is defined

P !
o(Y ) = P (Φ\ {o} has property Y ‖o).

Intuitively, the reduced palm distribution can be interpreted as probability

conditioned on there being a point at the origin, but not counting it.

Theorem 2.1.1 Slivnyak Theorem - The reduced palm distribution of a PPP

equals the original distribution, i.e P !
o = P .

11



CHAPTER 3

Alternative Association Scheme for Cell Users

Usually, each user in a cellular network is linked with the nearest base

station to maximize the SINR of the user. However, the load distribution

might be highly non-uniform in this scenario. Here, another association

scheme is studied in terms of the probability of coverage, average SINR

and rate. In this scheme, the user is linked with the nearest base station

with probability 1− p and with the second nearest base station with prob-

ability p. The base stations and users of a cellular network are modeled

as two independent homogeneous Poisson point processes of intensities

λb and λu respectively. Some assumptions used in the analysis are listed

below.

3.1 Assumptions

1. Fading between any two nodes is Rayleigh , i.e the fading power is
exponentially distributed with unit mean.

P (hxy ≥ z) = exp(−z) (3.1)

2. The path loss function l(x)is given by,

l(x) = ‖x‖−α

,where ‖x‖ is the distance of the point from the source.

3. The interference power at the typical receiver Ir is the sum of the
received powers from all other base stations other than the home



base station and is treated as noise in the present work. The receiver
noise is neglected in comparison with interference.

4. All analysis is for a typical mobile node which is permissible in a
homogeneous PPP by Slivnyak’s theorem

3.2 Coverage

In this section, we derive the probability of coverage in a downlink cellu-

lar network, with the alternative allocation scheme that is being proposed.

The coverage probability can be thought of as the probability that a user

chosen at random can achieve a target SINR θ. Mathematically, the cover-

age probability is defined as

pc (θ, λb, α) = P (SINR > θ) .

Note that the probability of coverage is also exactly the CCDF of SINR

over the entire network, since the CDF gives P(SINR < θ). To perform the

analysis, we assume the typical mobile user at the origin o. The downlink

SIR at the origin is given by :

SIR =
hxol(x)
∑

yǫΦb\{x}

hyol(y)

, when x is the nearest base station.

13



Nearest base station distributions

For our analysis, we are concerned with the distances r1 and r2 sepa-

rating a typical user from the first and second nearest base stations re-

spectively. From Slivnyak’s theorem (Theorem 2.1.1) , we know that the

contact distributions equal the distribution of the nearest neighbour dis-

tances.Therefore, the pdf is given by :

f1(r1) = 2λπr1 exp
(

−λπr21
)

.

The joint distribution f12(r1, r2) is thus given by,

f12 (r1, r2) = 4λ2π2r1r2 exp
(

−λπr22
)

.

Analysis

We now use the nearest base station distributions to find the expected cov-

erage. A typical user at the origin can connect with the nearest base station

B1 with probability 1−p and the second nearest base station B2 with prob-

ability p. Let x denote the connecting base station.

P(SIR > θ) = P







hxol(x)
∑

yǫΦb\{x}

hyol(y)
> θ







= (1− p)× P







hxol(x)
∑

yǫΦb\{x}

hyol(y)
> θ

∣

∣

∣

∣

x ≡ B1







+ (p)× P







hxol(x)
∑

yǫΦb\{x}

hyol(y)
> θ

∣

∣

∣

∣

x ≡ B2







14



Let P1 = P

(

SINR > θ

∣

∣

∣

∣

x ≡ B1

)

and P2 = P

(

SINR > θ

∣

∣

∣

∣

x ≡ B2

)

Now, we go ahead and obtain expressions for P1 and P2 separately. In

(1), the expression for P1 is derived. The analysis is shown below.

P1 = P(SIR > θ

∣

∣

∣

∣

x ≡ B1)

= Er1

(

P

(

SIR > θ

∣

∣

∣

∣

x ≡ B1, ‖B1‖ = r1

))

Again,

pr1 = P

(

SIR > θ

∣

∣

∣

∣

x ≡ B1, ‖B1‖ = r1

)

= P







hxol(x)
∑

yǫΦb\{x}

hyol(y)
> θ

∣

∣

∣

∣

x ≡ B1, ‖B1‖ = r1







= P

(

hxor
−α
1

Ir
> θ

∣

∣

∣

∣

x ≡ B1, ‖B1‖ = r1

)

= EIr

(

P

(

hxo > θIrr
α
1

∣

∣

∣

∣

x ≡ B1, ‖B1‖ = r1, Ir

))

= EIr

(

exp (−θrαIr)

∣

∣

∣

∣

r1

)

= E



exp



−θrα
∑

yǫΦb\{x}

hyol(y)





∣

∣

∣

∣

r1



 .
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By substituting the path loss function l(y) = ‖y‖−α, we get

pr1 = E



exp



−θrα
∑

yǫΦb\{x}

hyo ‖ y ‖−α





∣

∣

∣

∣

r1





= E





∏

yǫΦb\{x}

exp
(

−θrαhyo ‖ y ‖−α
)

∣

∣

∣

∣

r1



 .

Since the fades are independent and exponentially distributed with

unit mean,

pr1=E





∏

yǫΦb\{x}

1

1 + θrα1 ‖ y ‖−α

∣

∣

∣

∣

r1



 . (3.2)

Using PGFL (Refer Lemma 2.1.5) on Φ ∩ B(o, r1)
c,

pr1 = exp

(

−λ

ˆ

B(o,r)c

1

1 + θ−1r−α
1 ‖ y ‖α

dy

)

.

Thus,

P1 = Er1 (pr1) =

ˆ ∞

r1=0

exp

(

−λ

ˆ

B(o,r)c

1

1 + θ−1r−α
1 ‖ y ‖α

dy

)

f1(r1)dr1,

where

f1(r1) = λ2πr1 exp
(

−λπr21
)

.

From (1), we know that

P1 =
1

1 + F (θ, α)
, (3.3)

where F (θ, α) = θ
2

α

´∞

θ
−2

α

1

1 + u
α

2

du.
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Using a similar procedure, we set about obtaining an expression for P2,

P2 = P







hxol(x)
∑

yǫΦb\{x}

hyol(y)
> θ

∣

∣

∣

∣

x ≡ B2







= Er1,r2






P







hxol(x)
∑

yǫΦb\{x}

hyol(y)
> θ

∣

∣

∣

∣

x ≡ B2, ‖ x ‖= r2, ‖B1‖ = r1












.

Again, let

pr1,r2 = P







hxol(x)
∑

yǫΦb\{x}

hyol(y)
> θ

∣

∣

∣

∣

x ≡ B2, ‖ x ‖= r2, ‖B1‖ = r1






.

The fades hxo for xǫΦb are independent and exponentially distributed with

unit mean. Repeating steps used for deriving equation 3.2, we find the

expectation over the fades hxo for xǫΦb and get

pr1,r2 = EΦ\B1,x





∏

yǫΦb\x

1

1 + θrα2 ‖ y ‖−α





= EΦ\x,B1





∏

yǫΦb\x,B1

1

1 + θrα2 ‖ y ‖−α



 ·

(

1

1 + θrα2 r
−α
1

)

.

Using PGFL on Φ ∩ B(o, r2)
c, we get

pr1,r2 =
exp (−λπr22F (θ, α))

1 + rα2 r
−α
1

where F (θ, α) = θ
2

α

´∞

θ
−2

α

1

1 + u
α

2

du.
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Thus

P2 =

ˆ ∞

0

ˆ r2

0

exp (−λπr22F (θ, α))

1 + rα2 r
−α
1

f
12
(r1, r2) dr1dr2

, where f12 (r1, r2) = 4λ2π2r1r2 exp (−λπr22) .

Making the substitution β = r2 and t =
r2

r1
, we get

P2 =

(

4λ2π2

ˆ ∞

β=0

β3 exp(−λπβ2(1 + F (θ, α))dβ

)

×

ˆ ∞

t=1

dt

t3(1 + tα)

=
2

(1 + F (θ, α))2
×

ˆ ∞

t=1

dt

t3(1 + θtα)
.

Therefore,

P(SINR > θ) = (1− p)×
1

1 + F (θ, α)
+ p×

2q

(1 + F (θ, α))2
, (3.4)

where q =
´∞

t=1

dt

t3(1 + tα)
.

The expression for coverage probability is substituted from equation

3.4 and the integral is computed numerically. Figure 3.1 is obtained from

the computations.
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Figure 3.1: The above plot shows the variation of coverage probability

with threshold θ for two cases. In case 1 (p = 0), the user con-

nects with the nearest base station while in case 2 (p = 1), the

user connects with the second nearest base station.

3.3 Rate

The normalized rate of a user after load allocation is given by

r =
W

N
log(1 + SINR),

where W is the bandwidth available to the connecting base station and

N is the number of coexisting users connected to the same base station.

Thus,

E[r] = W.E

[

1

N
log(1 + SINR)

]

.

The analysis behind obtaining an expression for N is not well under-
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stood. This makes the analysis of the expected rate and rate variance

rather difficult. Further, one can also introduce the concept of a minimum

rate threshold for every user in a cellular network. Whenever the SINR

does not meet this requirement, the user is said to go out of coverage and

a rate of 0 is assigned. Please note that this notion of coverage is different

from the one studied in the previous section. Here we have a minimum

rate threshold and not SINR threshold to ensure coverage.

Condition for coverage : W
N
log2(1+SINR) > Rth or SINR > 2

RthN

W −1.

Simulation studies of our model can help get better insights of the alter-

native association scheme in terms of the mean rate achievable, especially

in the presence of receiver noise and rate thresholds. Thus, the homoge-

neous PPP’s for the base stations and the users in a cellular network are

simulated in MATLAB. The users are assigned base stations according to

the alternative assignment scheme that was analyzed in the previous sec-

tion. Based on the simulation results ,the average rate, variance in rate

among users, average SINR and the coverage are plotted as a function of

the parameter p.

The figures 3.2, 3.3 and 3.4 show the results of the simulation for vary-

ing base station densities and different choices of the path loss function.

While the average rate decreases with p in general, it is found that the

variance in rate also decreases as p increases.
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Figure 3.2: Density of base stations λb = 0.03, Density of users λu = 0.9,

Loss function l(x) = 1
1+‖x‖α

, Path loss exponent α = 4 and

Noise variance σ2 = 1.
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Figure 3.3: Density of base stations λb = 0.03, Density of users λu = 0.9,

Loss function l(x) = ‖x‖−α, Path loss exponent α = 4 and Noise

variance σ2 = 1.
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Figure 3.4: The above plot shows the variance in the number of users in a

cell for λb = 0.03,λu = 0.9.

From figure 3.4, we note that variance in number of users per base

station is minimum for p between 0.5 and 0.6. This implies that the load

is more evenly balanced among the base stations. However from figures

3.2 and 3.3, we note that the rate also falls considerably due to the fall in

SINR. Thus, this scheme is not very promising.
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CHAPTER 4

Complex Association Schemes

In the previous section, we analyzed the simplistic association scheme

where the users either connect with the first nearest or second nearest

base station with fixed probabilities. This scheme reduces the rate vari-

ance among the users but the average rate of an user decreases signifi-

cantly. Hence, more complex schemes are simulated where we take more

base stations into consideration while finding an associating base station

for an user. A SINR biasing scheme is also simulated for a single tier and

a 3-tier cellular network.

4.1 Least load allocation

In this scheme, all the nearest neighbors of the base station closest to the

user are taken into consideration. The user is linked with a base station in

this subset of base stations, which serves the minimum number of users.

By associating an user in this manner, more bandwidth will be allocated

to the user as there will be less number of users using the same resource.

However, the SINR will, fall as the associating base station will be farther.

The plots 4.1, 4.2 and 4.3 are obtained from the simulation of this scheme.
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Figure 4.1: The above plot shows the variation of average rate with in-
creasing base station density. The density of users λu = 0.8.
It is seen that the rate increases with base station density and
converges to a value in both the association schemes.

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

30

BS density

A
ve

ra
ge

 S
IN

R

Average SINR of a typical user

 

 
Nearest BS
Least load

Figure 4.2: The above plot shows the variation of average SINR with in-

creasing base station density. The density of users λu = 0.8. It

is seen that the SINR of a typical user sharply decreases and

remains constant for high base station densities. Further, it is

seen that the nearest BS scheme gives a higher SINR.
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Figure 4.3: The above plot shows the variation of the average number of
users of an associating base station with increasing base station
density. The density of users λu = 0.8. It is seen that the aver-
age number of users of an associating base station is lesser for
the bandwidth maximizing scheme.

From figure 4.1, we note that this scheme also does not improve the

rate. The decrease in SINR is still not compensated by the increased band-

width that might be available to the user.

4.2 SINR biasing

In this section, a simple range expansion scheme based on SINR biasing is

simulated. In a max-SINR scheme, the user connects with the base station

that provides the maximum SINR as the name suggests. Such a scheme

will always give a higher SINR than the nearest BS association scheme as

the fading loss is also taken into account before choosing a base station. In

a SINR bias scheme, a subset of the base stations, say the relatively small

base stations, are given a multiplicative bias. If BS 1 had a 10 dB SINR bias
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vs. BS 2, a user would associate with it, until the SINR delivered by BS 2

is a full 10 dB higher than that of BS 1. Hence, by giving a higher bias to

smaller base stations, the load can be balanced more evenly.

4.2.1 Single-Tier Network

The SINR bias scheme is first implemented in a single-tier network. All

base stations which have less than 80% of the average number of users in

their coverage area are given a bias. Thus, the range of these small BSs will

expand. The results of this simulation is seen in figure 4.4.
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Figure 4.4: The SINR bias scheme is compared with the max-SINR and the

nearest BS scheme for a single-tier network. Upon introducing

a bias, the average rate of the SINR bias scheme is seen to be

lesser than the max-SINR scheme. The increased bandwidth

due to load balancing is not enough to improve the rate due to

association with BSs providing sub-optimal SINRs.
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Figure 4.5: The above plot compares the max-SINR scheme with the SINR
biasing scheme for a 3-tier cellular network, in terms of mean
rate. Bias weights of 1 and 3 are assigned to the first and second
tiers. The average rate is then seen to increase with the bias
weight of the third tier from the above plot.

4.2.2 Three-tier heterogeneous network

Heterogeneous networks are much more sensitive to cell association poli-

cies due to the disparities in cell sizes. Thus, load balancing using SINR

bias is performed on a 3-tier cellular network. The three tiers can be

viewed as macrocells, picocells and femtocells. The picocells and fem-

tocells which are normally lightly loaded are given a higher bias so that

more users connect to these base stations despite sub-optimal SINRs. In

the SINR bias scheme simulated, the nearest base station from a user in

each tier is found. The user connects to the base station that provides the

highest biased SINR out of the 3. In the simulations (Figures 4.6,4.5), the

densities of the three tiers are assumed to λ = {0.01, 0.05, 0.2} and their

respective transmit powers are {P1, P2, P3} = {40, 3, 0.1}W.
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Figure 4.6: For the 3-tier cellular network described in 4.2.2, bias weights

of 1, 3 and 20 are assigned to the 1st, 2nd and 3rd tiers respec-

tively. The rate CDF of the SINR biasing scheme is then ob-

tained as above. Note that the rates of edge users are particu-

larly boosted by the SINR bias scheme.

The SINR biasing scheme has been shown to give excellent results in

(7) for heterogeneous networks. However, for a single tier network, this

scheme does not perform as well (Refer figures 4.4 and 4.5).
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CHAPTER 5

Conclusions and future work

In today’s cellular networks, the rate distribution and not the SINR is the

desired performance metric. The traditional nearest BS association scheme

which serves to give a high SINR can be sub-optimal. Hence, another

cell association scheme in which the user connects either with the near-

est or second nearest base stations with fixed probabilities, is introduced.

For single tier networks, this association scheme decreases the mean rate

achievable by a typical user. However , the rate variance among users de-

creases which suggests a more fair treatment of users. Moreover, the load

is more evenly balanced among the base stations as a result of this scheme.

A SINR biasing scheme was also simulated and compared with the max-

SINR and nearest BS association scheme. This SINR biasing scheme does

not give a higher mean rate than the max-SINR scheme in a single-tier

network. However, this SINR bias scheme is found to give better quality

of service in a 3-tier heterogeneous network, in which the BSs in different

tiers differ in their density of deployment and power. In (7), the biasing

scheme is shown to be nearly as optimum as a centralized rate optimiza-

tion scheme for heterogeneous networks. A better understanding of the

use of biasing schemes in heterogeneous networks, can help optimize the

rate distribution of users even further. For single-tier networks, dynamic

cell association schemes in which the base stations can change their char-

acteristics depending upon load conditions, can potentially give better re-

sults.
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