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ABSTRACT

KEYWORDS: Throughput Optimal; Max weight ; Downlink Scheduling; Time-

varying interference ; Delay

We address the problem of downlink resource allocation in the presence of time-varying

interference. We consider a scenario where users served by a base station face interfer-

ence from neighboring base stations that use the same channels. In particular, we model

the interference from the neighboring base stations as ON/OFF renewal processes, that

arise due to their idle and busy cycles. The users feedback their downlink SINR values

to their base station, but these values are outdated owing to processing and propagation

delays. In this setting, we characterize how Layer 2 can optimally exploit the reported

SINR values, which could be unreliable due to time-varying interference. In particu-

lar, we propose a resource allocation policy that can stably support the largest possible

set of traffic rates under the interference scenario considered. Our approach involves

estimating the current SINR statistics using tools from renewal theory, and combining

it with a Lyapunov stability framework to obtain a throughput optimal policy. We will

also briefly study the proportional fair scheduling scheme.
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CHAPTER 1

Introduction

Scheduling of users for downlink transmissions on a cellular network forms a critical

component of the functioning of a base station. Such transmissions are often affected

by a combination of fading, noise and interference and the objective of this dissertation

is to study one such environment that is further complicated by information delay in the

network.

We know that the users in a cell suffer from effects of noise (typically Additive

White Gaussian (AWGN) in nature), multi-path fading and path loss. In particular,

cell-edge users typically suffer from high path loss. This consequently decreases the

received signal power and thus the channel capacity.

It is well known that a user equipment (UE) served by a base station does not suf-

fer significant interference from transmissions to other UEs in the same cell. This is

because UEs in the same cell are typically served on orthogonal resources like time,

frequency and code. For example, in a TDMA1 system, different UEs are served during

different time-slots, whereas in a multi-carrier system such as OFDMA2, different UEs

in a cell are served on different frequency sub-bands. On the other hand, a given UE

does suffer interference from neighboring base stations that use the same resources to

transmit to UEs in the neighboring cells. In addition, this interference is usually time-

varying, due to the underlying idle and busy cycles of the interfering base stations on

that particular channel. Since this time-varying interference from neighboring base sta-

tions can have a detrimental effect on the throughput obtained by the UEs – particularly

cell-edge UEs (who in addition to high path loss also experience high interference from

said neighbour) – it is important to understand its implications on resource allocation.

While different scheduling schemes try to attain a varied set of objectives, most

scheduling policies adopted by base stations fall under the category of “opportunistic
1Time Division Multiple Access
2Orthogonal Frequency Division Multiple Access



scheduling”. The main idea behind opportunistic resource allocation (Viswanath et al.

(2002)) is to preferentially transmit on channels with favorable conditions. In order to

enable opportunistic resource allocation, the UEs have to feedback their instantaneous

“channel quality information” (CQI) to the base station from time to time. The CQI is

a parameter fixed by the protocol, indicative of the channel strength of a user. It could

be the Signal to Interference plus Noise ratio (SINR), the channel capacity or one of

several such other properties of a wireless channel.

However, the CQI available at the base station is usually outdated by a few time-

slots due to propagation and processing delays, or due to other practical reasons. In a

scenario with time-varying interference, delayed CQI implies that it is possible for the

channels to have changed drastically between the time that the CQI is measured and

resource allocation is performed. For example, consider a UE that reports a relatively

strong channel to the base station when an interfering base station is idle. When the

user is scheduled however, the interfering base station could turn active on that chan-

nel, thereby causing a transmission outage. The opposite of such a scenario also seems

likely. Say a cell-edge user reports a weak channel to the base station owing to strong

interference from a neighboring base station. This might result in this particular user

not being allocated resources at a later point in time when this CQI is received. How-

ever, it is quite possible for the interferer to have gone idle in this delay period thereby

improving the channel of the user; yet another instance of the delay having a detrimen-

tal effect in the opportunistic scheduling framework. This clearly indicates that it is not

desirable to directly use the outdated CQI to perform resource allocation.

In this dissertation, we specify how Layer 2 should interpret the delayed CQI in

the presence of time-varying interference, in order to perform resource allocation effi-

ciently. Specifically, we exploit the statistics of the time-varying interference to design

an optimal resource allocation policy for the scenario considered. We consider a base

station serving several UEs. Each UE suffers time-varying interference from one or

more neighboring base stations. Any base station can be abstractly viewed as a server

serving a set of queues and thereby can be associated with a G/G/1 queue. We know

that the Busy-Idle cycles of a G/G/1 queue constitutes a renewal process - in specific,

an ON/OFF renewal process. We thus model the interference from each neighboring

2



base station using an ON/OFF renewal process (Ross, 1996, Section 3.4.1).

In this setting, we use tools from renewal theory to compute the conditional dis-

tribution of the current channel quality, given the delayed CQI available at the base

station. This conditional distribution of the current channel quality allows us to com-

pute the conditional outage probability of each user, for any given rate of transmission.

Next, we combine our outage probability expression with a Lyapunov stability frame-

work to come up with a resource allocation policy that provably maximizes the set of all

supportable traffic rates for the scenario considered. We first consider a single-carrier

system, and later generalize our policy to a multi-carrier system. We will also discuss

the α−fair scheduling policy. We will discuss existing optimal strategies and also talk

about on-going work aimed at developing provably optimal α−fair scheduling policies

under this framework.

1.1 Related Work

The throughput optimal class of scheduling algorithms has been widely studied over the

past two decades. The Lyapunov stability framework for designing throughput optimal

scheduling policies was introduced in Tassiulas and Ephremides (1993). The paper pro-

poses the Max weight scheme for dynamic server allocation to a set of parallel queues

based on the connectivity of the queues to the server. The work goes on to obtain neces-

sary and sufficient conditions for stabilizing the system of queues and proposes server

allocation schemes which maximize the throughput and minimize delay.

Several papers under the domain of Max Weight scheduling have followed this

work. The paper, Neely et al. (2005), provides centralized and decentralized policies for

routing and dynamic power allocation in time-varying channels and proves throughput

optimality of the policies. In particular it sheds light on the importance of schedul-

ing based on maximizing the rate-backlog product - a term that has evolved to be the

governing principle for max weight scheduling.

Subsequently, Ying and Shakkottai (2011) addressed the issue of throughput op-

timal scheduling with delayed network state information and time-varying channels.

3



Similarly, Gopalan et al. (2007), Manikandan et al. (2009) and Ahmed et al. (2013)

address scenarios with partial, infrequent and sparse channel information, respectively.

An important take back from these papers is the way the rate-backlog product adapts

to account for the uncertainties in the CQI. Specifically, we can show that the use of

“goodput”-backlog product achieves throughput optimality. Here the term “goodput”

refers to the product of the rate and the probability of successful transmission at that

rate. Thus, at the very outset, we expect the policy that falls in the throughput optimal

regime for our fading-interference environment would hold a similar structure.

Even though the above mentioned papers do capture the effect of CQI uncertainties,

the channel in itself is often considered to be independent and identically distributed

(i.i.d) across slots. While the assumption assists in the analytical study of the system,

it fails to capture the underlying temporal correlations in the channel. In a realistic

wireless network however, the communication channels are likely to have temporal

correlations, owing to fading and/or interference. This notion of exploiting temporal

correlations in channels has been studied, quite recently, in Ouyang et al. (2014) where

the authors try to exploit these correlations to enhance scheduling under the domain of

imperfect CQI and Markovian channels using a Partially Observable Markov Decision

Process framework. This dissertation focuses on working with a more generic chan-

nel model where the temporal correlations in the channel are brought about through a

combination of block fading and renewal process based interference.

The domain of α−fair scheduling has also been rigorously studied over the past

few years. The most commonly used policy, the “gradient scheduling algorithm” was

proved to be asymptotically optimal in Kushner and Whiting (2004) by using the the-

ory of Stochastic Approximation (Borkar (2008)). The work goes on to show that the

backbone of the proportional fair scheduling regime is formed by decisions that are

based on maximizing the product of the gradient of the utility function and the rate of

transmission.

Subsequent works like Huang et al. (2009) propose proportional fair policies based

on this gradient-rate product structure for specific systems like the OFDM framework in

this work. A more elaborate resource allocation policy of deciding the packet transmis-

sion schedule, power allocation, modulation and coding scheme to ensure fairness in a

4



packet based system is studied in Agrawal et al. (2001). The work studies the efficiency

vs fairness tradeoff too.

We can see that the optimal policy has a similar structure to the rate-backlog prod-

uct characteristic of the max weight policies. An intuitive extension of results seems

to suggest that the product of “goodput” and gradient of utility should characterize the

scheduling policies working with uncertain CQI. This indeed has been proven to be

the case in Pantelidou and Ephremides (2009) where the scheduler works with an esti-

mated channel and probability of outage for such an estimate. Here again the theory of

stochastic approximation is invoked to prove convergence. The concavity of the utility

function is used to prove the utility maximization of the policy and a Lyapunov structure

is exploited to prove uniqueness of the optimal point. A stark difference to be noted in

the model used here and that being studied in this dissertation is the lack of temporal

correlations in the channel assumed in this paper. However, we expect the uncertainty

structure to still hold and thus we intuitively expect a similar scheme to result.

1.2 Thesis Layout

In this work, we will characterize the CQI distribution based on the available delayed

information for a slow, block fading model that follows a Rayleigh distribution. We

assume that the base stations donot use adaptive power control strategies. The resource

allocation under this constraint is restricted to the allocation of slots for transmission to

users in a single carrier system and additionally, of distributing sub carriers in a multi-

carrier setting. We first devise throughput optimal and α-fair scheduling policies under

the given scenario for the case of a single-carrier system and later extend the same

to multi-carrier systems. We will also prove the optimality of the throughput optimal

scheme and elaborate on the on-going work in the domain of α−fair scheduling.

This thesis is structured as follows. In Chapter 2 we will describe the system model

and elaborate on the fading and interference structure in the network. In Chapter 3

we will give the mathematically define the two scheduling problems. Chapter 4 is

allotted to the Throughput optimal scheme where we describe the optimal policy and

use a Lyapunov stability framework to prove optimality of the proposed algorithm. In

5



Chapter 5 we will propose the algorithm to compute the conditional outage probability

under the delayed information constraints assumed. We will highlight on-going work in

the domain of α−fair scheduling in Chapter 6 and in Chapter 7 we give the concluding

remarks with possible future extensions to the problem tackled here.

6



CHAPTER 2

System Model

Consider a time-slotted downlink system comprising of a base station B0 serving K

UEs. We shall assume here for ease of analysis that all base stations under consideration

have synchronized slot boundaries.

The base station maintains separate downlink buffers for each UE. Exogenous ar-

rivals for UE i are characterized by the arrival processAi(t). We assume that the arrivals

are independent and identically distributed (i.i.d) from slot to slot and are independent

of the channel realizations. Let E[Ai(t)] = λi and E[A2
i (t)] = Ãi <∞. We will denote

by Qi(t), the length of the downlink buffer corresponding to user i.

For ease of exposition, we first elaborate our schemes for single-carrier downlink

system and later generalize to the case of multi-carrier systems.

2.1 Interference

With advancements in interference mitigation techniques, vast portion of the interfer-

ence observed by a user is, more often than not, owing to one neighboring base station.

Thus, in this work, we shall assume that the UEs experience interference owing to a sin-

gle neighboring base station BInt, the single strong interferer. Let the transmit power

of the interfering base station at time t, be given by PInt(t) and that of base station B0

be P0(t). We shall further assume that the base stations transmit with constant power

P . This interference model is clearly depicted in Figure 2.1.

The idle and busy cycles of transmission of the interfering base station is assumed to

constitute an ON/OFF renewal process (Ross, 1996, Section 3.4.1). Since the transmit

power level is a constant, we can see that the interference offered by the base station also

constitutes an ON/OFF renewal process. Our renewal model is well motivated, since

the idle and busy cycles of fairly general buffering systems (such as a G/G/1 queue, for



Figure 2.1: Base Station Layout

example) constitute renewal processes. The OFF and ON periods of the interferer are

assumed to be distributed according to the random variables Z and Y respectively. We

will assume that their joint distribution, given by PZ,Y , is known to B0. Consequently,

the distribution of the renewal period, X = Y + Z, is also known to B0. Let the

probability mass function (pmf) of X be given by PX .

Further, we assume that the traffic at the interfering base station is light tailed. This

essentially translates to a light tailed distribution for the renewal period. Thus, we know

that ∃T0 > 0 such that PX(t + 1) ≤ PX(t),∀t ≥ T0. Further, we can conclude that

∃s > 0, s.t. E[esX ] < ∞. Thus the Chernoff Inequality is applicable on the renewal

period and hence, P(X ≥ t) ≤ E[esX ]e−st.

Figure 2.2: On/Off Process Distributions

An illustration of such a distribution is shown in Figure 2.2. The figure shows the
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distributions that constitute the On/Off process with independent, geometrically dis-

tributed, On and Off periods. We can notice that the tail of the distribution of the

renewal period following the fade boundary satisfies the Chernoff bound.

Also, the renewal cycles represent the busy and idle cycles of the base station and

thus are expected to be fairly large when compared to the slot durations. Thus we shall

assume that the probability that of short renewal periods is small and shall characterize

this as

P(X ≤ δ0) ≤ δ0

X̄
= χ << 1 (2.1)

where δ0 << X̄ , represents the number of slots over which cdf of the renewal period

is assumed to be upper bounded as shown above, and as will be assumed later, a bound

on the information delay in the system as well.

2.2 Fading

We shall consider a frequency-flat block fading channel that offers a constant fading

gain to the UEs over a block of size M . We will assume that the fading environment is

slow such that M = κX̄ . Here, κ is such that

∀t ≥M ≥ T0,PX(t+M) ≤ αPX(t),

for some α < 1. We are justified in assuming such an environment as we know that the

renewal period distribution is light tailed.

Although not essential, we assume for ease of computation that all the UEs expe-

rience a Rayleigh fading channel from B0 and BInt. The average fading power gain

for the channels is assumed to be known to B0 and given by Γ0,i and ΓInt,i for UE i

corresponding to B0 and BInt respectively.

The ON/OFF interference and the consequent fluctuations in Capacity of the chan-

nel as a function of time are depicted in Figure 2.3. The dotted lines represent the fade

boundaries. This scenario is observed for the ON/OFF interference process character-

ized by the geometric distributions represented in Figure 2.2. The Channel capacity is

9



Figure 2.3: Time-varying Interference and Capacity

computed according to the Shannon capacity expression given below. The figure clearly

depicts the extent of variation in the Channel capacity over time thereby highlighting

the effect the delay can potentially have on scheduling.

2.3 Channel Quality Information

The signal to interference plus noise ratio (SINR) for UE i at time t is given by

γi(t) =
g0,i(t)P0(t)

N0 + gInt,i(t)PInt(t)
, (2.2)

We assume that the values of E[gInt,i(t)] are known to the UE i. N0 is the average

additive white Gaussian noise (AWGN) power for the channel. We will assume that the

Shannon Capacity expression, given by

Ci(t) = log2(1 + γi(t)) (2.3)

defines the capacity of the channel to user i at time t.

We assume that the UEs follow an aperiodic CQI feedback scheme wherein the CQI

is reported to B0 whenever a change in the CQI value is observed in a slot. Owing to

delays like propagation and processing, the information is received at the base station

with a constant, known delay of δi corresponding to the user i. Thus B0 observes

10



γi(t− δi) at slot t. These delays, albeit significant, are relatively small when compared

to the average renewal period. Thus we shall assume that δi ≤ δ0,∀i ∈ {1, 2, ..., K}.

We will assume in this dissertation that the CQI reported by user i is the SINR, γi(t),

observed by the user over slot t. Equivalently, it may also be any one-to-one function

of the observed SINR like the Channel capacity (2.3). Since UEs report the CQI as and

when a change is observed, we know that the BS B0 is aware of the SINR values for all

slots, albeit with a delay.

We also assume that the delays apply to all information, including ACKs, that is fed

back by the UEs. Thus, the success or failure of a transmission attempted for UE i at

time t is learnt only at t+ δi. Consequently, B0 has access only to outdated information

like Queue lengths and average throughput.

Having elaborately outlined the system model, we will now move on to the problem

of using these assumed statistics to aid our scheduling problem.

11



CHAPTER 3

Problem Formulation

This work primarily aims at studying downlink scheduling algorithms under the speci-

fied domain of time-varying interference using delayed CQI. In particular, we will try to

study two of the most widely used scheduling policies : Throughput Optimal Schedul-

ing and α−fair Scheduling. In this chapter, we will give a brief introduction to the two

said policies and introduce some important notations used hereafter.

3.1 Throughput Optimal Scheduling

Alternately known as the Max Weight scheduling policy, the throughput optimal class

of scheduling policies aim at making scheduling decisions such that the queues in the

network are stabilized. We shall now define this notion more formally.

3.1.1 Definitions of Throughput Optimality

Consider the queuing system comprising of K queues. The stability of this system is

defined as follows.

Definition 1. A queuing system is said to be strongly stable, if ∀1 ≤ i ≤ K,

lim sup
T→∞

1

T

T∑
t=0

E[Qi(t)] <∞.

Let Π be the class of all possible scheduling algorithms operating under the fading

and information delay constraints mentioned above.

Definition 2. The stability region, Λ, of the system is defined as the set of all arrival

rate vectors, λ, such that there exists a policy π ∈ Π that stabilizes the queuing system.



The optimal algorithm under this regime is thus the algorithm that performs best in

the stability region.

Definition 3. A policy π∗ ∈ Π is said to be throughput optimal if it maintains strong

stability in the queuing system for all arrival rates in the interior of the stability region

Λ.

3.1.2 Queuing Dynamics

Let µi(t) be the number of packets of queue i successfully transmitted by B0 in slot t

and is given by:

µi(t) = airi(t)Ii(t), (3.1)

where, ri(t) is the transmit rate assigned for user i. Let ai denote the fraction of slot t

that is allocated to the user i. starting from the We can characterize the dynamics of the

queue corresponding to user i as:

Qi(t+ 1) = (Qi(t)− µi(t))+ + Ai(t), (3.2)

where, Ai(t) and µi(t) are the arrival and service processes for user i and (x)+ =

max{x, 0}. Further, Ii(t) is the indicator random variable that is 1 if the transmission

is successful and 0 in the case of outage. The transmission is said to face outage if

Ci(t) < ri(t), where Ci(t) is the capacity of the channel to user i at time t.

Thus during each slot, the base station has to determine the user to transmit to, frac-

tion of the slot to be allocated to that particular user and the optimal rate of transmission

using the available delayed CQI and the statistics of the time-varying interference.

In this work, we plan to work on a CQI structure that is influenced by an underly-

ing renewal process (interference). In Chapter IV we develop a provably throughput

optimal scheduling policy for single-carrier systems and later extend it to multi-carrier

systems.
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3.2 α−fair Scheduling

The second class of scheduling policy that we aim to study under the specified domain

is the α−fair scheduling algorithm. This algorithm aims at ensuring fair usage among

all users through the objective of maximizing a specific utility function. In this setting,

we shall assume that the system is “saturated”, i.e, each user has infinite amount of data

to be served.

The average downlink throughput served to user i by B0 at slot t is given by

θi(t) =
1

t

t∑
i=1

µi(t) (3.3)

Assume that we are given a non-decreasing, concave utility function,

U(θ̄(t)) =
K∑
i=1

Ui(θi(t)) (3.4)

One such class of possible utility functions is given by:

Ui(θi(t)) =


1
α

(θi(t))
α, α ≤ 1, α 6= 0

log(θi(t)), α = 0

(3.5)

The specific case of α = 0 is the criterion that defines the Proportional Fair Scheduler.

Given such a function, the objective of the α−fair scheduler is to make scheduling

decisions such that the overall utility of the system under steady state is maximized.

Having had a glimpse at the two scheduling schemes, we will study the optimal

policies for the defined channels in ensuing chapters.
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CHAPTER 4

Throughput Optimal Scheduling

In this chapter we propose a scheduling policy that is provably throughput optimal for

the time-varying interference model considered in Chapter 2.

Let pi(r) be the conditional outage probability for UE i given the delayed SINR

history, γ̄i(t) = {γi(τ) : τ ≤ t− δi}. That is,

pi(r) = FCi(t)|γ̄i(t)(r|γ̄) = P(Ci(t) ≤ r|γ̄i(t) = γ̄).

In Chapter 5, we will describe how this outage probability can be computed by B0.

It is to be noted that owing to the information delay, the queue length, a critical

component of the throughput optimal scheme, is also available only with a delay. That

is, B0 is aware only of Qi(t− δi) at time t for each user i.

Let us define the goodput for UE i as Gi(ri) = ri(1− pi(ri)), which is the average

successful rate of transmission to UE i.

We will now introduce the Throughput Optimal Scheduling Policy for a single car-

rier system and study a Lyapunov drift analysis for the queueing system. Subsequently,

we will prove that the policy we describe here is in fact throughput optimal under the

conditions specified in the model. We will then extend the scheme to adapt to a multi-

carrier downlink system.

4.1 Throughput Optimal Policy - Single Carrier System

During every slot t, B0 observes γ̄i(t) and Qi(t − δi) of each UE i. This data is used

to make throughput optimal scheduling decisions according to the below mentioned

algorithm :



Algorithm 1 Throughput Optimal Policy, π∗

for i = 1 to K do

Evaluate Pi,out(r)

Compute r∗i = arg maxr≥0{r(1− Pi,out(r))}

end for

Determine k = arg max1≤i≤K{Qi(t− δi)r∗i (1− Pi,out(r∗i ))}

Transmit to UE k with rate r∗k with power P

In each slot, this policy transmits to the UE that maximizes the goodput-backlog

product. We first compute the conditional outage probability for every UE using the

algorithms described in later sections. We then evaluate the rate that maximizes the

goodput for each UE. Finally, we determine the UE with the maximum queue-length

goodput product and transmit to that UE at a rate of r∗i with ties broken at random.

4.2 Lyapunov Drift Analysis

In this section, we prove the throughput optimality of the proposed policy using Lya-

punov drift techniques. We use the quadratic Lyapunov function:

L(Q̄(t)) =
K∑
i=1

(Qi(t))
2.

The Lyapunov drift is defined as :

∆(t) = E[L(Q̄(t+ 1))− L(Q̄(t))|ȳ(t− δ̄)]. (4.1)

where ȳ(t− δ̄) = (Q1(t− δ1), Q2(t− δ2), ..., QK(t− δK)). We know the expression for

the queue dynamics from (3.2). Also, by our assumption in Section II, the arrival pro-

cesses for each UE have bounded second moments. Further, we know that the transmit

rate for the base station is upper bounded by the capacity offered, i.e, airiIi(t) ≤ Ci(t).

We also know that

E[airiIi(t)|Qi(t− δ)] = airi(1− pi(ri)) = aiGi(ri).
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Using these relations we can bound (4.1) as

∆(t) ≤
K∑
i=1

{E[(Ci(t))
2] + Ãi + (δ)E[Ci(t)]

2 + (δ)λ2
i + 2Qi(t− δ)λi (4.2)

−2Qi(t− δi)E[µi(t)|ȳ(t− δ̄)]} (4.3)

In obtaining the above bound, we have also made use of the fact Ai(t) is independent

of the Qi(t). Under Rayleigh fading conditions, we can trivially assume that the second

moment of the capacity of the channels of the users are bounded, i.e, E[(Ci(t))
2] <

C̃i <∞. Thus, we can conclude that the squared mean of capacity is also bounded, i.e,

E[Ci(t)]
2 ≤ E[Ci(t)

2] < C̃i < ∞. We also know that λ2
i ≤ Ãi. Also, E[µi(t)|Qi(t −

δi)] = aiGi(ri). Thus, we get,

∆(t) ≤ (δ + 1)
K∑
i=1

(C̃i + Ãi) +
K∑
i=1

Qi(t− δi)(λi − aiGi(ri)) (4.4)

We will now argue that our policy π∗ ensures the most negative Lyapunov drift. To

see this, consider:

max
{ai},{ri}

K∑
i=1

Qi(t)Gi(ri)ai, (4.5)

subject to

K∑
i=1

ai ≤ 1, (C1)

ai ≥ 0, 1 ≤ i ≤ K, (C2)

ri ≥ 0, 1 ≤ i ≤ K. (C3)

We have assumed that modulation and coding schemes for any desired rate ri are avail-

able. We will now solve the above mentioned Convex Optimization problem by using

the Karush-Kuhn-Tucker (KKT) conditions.

4.3 Minimizing Lyapunov Drift

We shall now solve (4.5) thereby arriving at the scheduling policy described earlier.
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Introduce non-negative Lagrange multipliers η, {αi}, {βi} for constraints (C1) −

(C3) respectively. Thus applying the KKT conditions, we get the following set of con-

ditions that are to be satisfied by the optimal solution (The (.)∗ values represent the

optimal solutions to the optimization problem) :

Qi(t− δi)Gi(r
∗
i ) + α∗i − η∗ = 0, ∀i (4.6)

Qi(t− δi)a∗i
∂Gi(r

∗
i )

∂r∗i
+ β∗i = 0, ∀i (4.7)

η∗(
K∑
i=1

a∗i − 1) = 0 (4.8)

α∗i a
∗
i = 0, ∀i (4.9)

β∗i r
∗
i = 0, ∀i (4.10)

Proposition 1. The optimal resource allocation scheme for the problem in (4.5) is that

which assigns the channel exclusively to the UE with the largest queue-length goodput

product and transmits at the rate that maximizes its goodput.

Proof. From (4.10) and (4.7), we can see that if r∗i > 0, then β∗i = 0 and thus ∂Gi(r
∗
i )

∂r∗i
=

0. Thus the optimal rate allotted to UE i is that which maximizes his goodput.

Similarly, from (4.9) and (4.6), if a∗i > 0, then α∗i = 0 and thus η∗ = Qi(t −

δi)Gi(r
∗
i ). Also, if a∗i = 0, then α∗i ≥ 0. Thus, η∗ ≥ Qi(t − δi)Gi(r

∗
i ). This clearly

shows that η∗ = max1≤i≤K Qi(t−δi)Gi(r
∗
i ). We can thus see that the optimal allocation

is to transmit to the UE with the maximum queue length goodput product.

Proposition 1 shows that transmissions made at a rate that maximizes goodput to the

user with the maximum queue length goodput product, solves the optimization problem

described in (4.5). We can see that this is essentially the same as what has been de-

scribed in our policy π∗. Thus, π∗ minimizes the Lyapunov drift.
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4.4 Throughput Optimality

Since the proposed policy, π∗, minimizes the Lyapunov drift, we expect it to be through-

put optimal under the scenario considered in Section II. The following theorem asserts

this.

Theorem 1. The scheduling policy, π∗, is throughput optimal over the class of all poli-

cies constrained to the time-varying interference and CQI mechanism described in Sec-

tion II.

Proof. Consider an arrival rate vector λ ∈ Λ0. Then there exists a policy π ∈ Π

stabilizes the system for this arrival rate. Then, ∃ε = (ε1, ε2, . . . , εK) with εi > 0,∀i ∈

{1, 2, . . . , K} such that

λi ≤ bir̂i(1− Pi(r̂i))− εi,∀i ∈ {1, 2, . . . , K}, (4.11)

for some b = (b1, b2, . . . , bK) with bi ≥ 0, ∀i ∈ {1, 2, . . . , K} and
∑K

i=1 bi = 1. Here,

r̂i is the rate assigned by π to UE i.

Now consider the convex optimization problem given by the following :

max
b,r

K∑
i=1

Qi(t− δi)biGi(ri) (4.12)

subject to

ri ≥ 0, ∀i ∈ {1, 2, . . . , K},

bi ≥ 0, ∀i ∈ {1, 2, . . . , K},
K∑
i=1

bi = 1.

We know from Proposition 1 that the optimal assignment for (4.12) is given by b∗

such that, b∗k = 1, where k = arg max1≤i≤K(Qi(t− δi)Gi(ri)) and b∗i = 0,∀i 6= k. We
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can see that π∗ does exactly this selection in every slot. Hence, we can conclude that

K∑
i=1

Qi(t− δi)biGi(r̂i) ≤
K∑
i=1

Qi(t− δi)aiGi(r
∗
i ), ∀b (4.13)

where r∗i is the rate assignment chosen for UE i under policy π∗.

From (4.11) and (4.13), we can see that

K∑
i=1

Qi(t− δi)λi ≤
K∑
i=1

Qi(t− δi)(aiGi(r
∗
i )− εi). (4.14)

Substituting (4.14) in (4.3), we get :

∆(t) ≤ δ
K∑
i=1

(
Ãi + (Ci)

2
)
− 2

K∑
i=1

Qi(t− δi)εi.

Now, since εi > 0, the Lyapunov drift becomes negative when the queues are large.

This in turn establishes that π∗ stabilizes the system for an arrival rate of λ Thus we

have proved that π∗ stabilizes the system for any arrival rate, λ ∈ Λ.

Thus, we have proved that the proposed policy is throughput optimal among the

class of policies constrained to the same time-varying interference and CQI mechanism.

We will now extend the policy to the scenario of a multi-carrier downlink system.

4.5 Throughput Optimal Policy - Multi-carrier System

We will now extrapolate the policy outlined for the single carrier system to work in

a multi-carrier downlink setting. Assume that the base station has M sub carriers to

serve the users. We will assume that the fading and interference on each sub carrier is

independent of each other. We will also assume the same CQI feedback mechanism as

was adopted earlier.

The throughput optimal policy under the above mentioned regime is given by :
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Algorithm 2 Multi-carrier Throughput Optimal Policy, π∗multi
for j = 1 to M do

for i = 1 to K do

Compute pi,j(r)

Compute r∗i,j = arg maxr≥0{r(1− pi,j(r))}

end for

Compute kj = arg max1≤i≤K{Qi(t− δ)r∗i,j(1− pi,j(r∗i,j))}

Transmit to user kj on sub-carrier j with power P/M at rate r∗i,j .

end for

In the above algorithm, pi,j(r) is the outage probability for a transmission of rate r

to user i on sub carrier j.

The independence criterion assumed on the fading and interference processes trans-

lates to an independence in the channel capacities across sub carriers. Thus, the problem

of scheduling on a multi-carrier system essentially simplifies to solving M scheduling

problems on single carriers. Hence, the algorithm π∗multi iterates over the sub carriers

and assigns users with maximal goodput-backlog product. The proof for throughput

optimality of this policy proceeds very similar to what was done for the single carrier

case and thus is omitted for brevity.

Hence, in this chapter, we have described the algorithm that maximizes throughput

for both the single and multi carrier downlink systems. It may be noted that the compu-

tation of outage probability using the delayed information is critical to the execution of

the algorithms. In the next chapter, we will outline the procedure to compute the outage

probability for the channel.
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CHAPTER 5

Estimation of Outage Probability

In this section, we describe how B0 computes the conditional outage probability for UE

i, given the SINRs of the past, by using the statistics of the ON-OFF processes. We will

start with a scenario having just one user in the network. For ease of notation, we will

drop the suffixes and assume only one user in the system whose SINR at time t is given

by γ(t) with delay of δ and average fading gain of Γ1 from BInt.

We will first introduce some notations that characterize the renewal process. Let

N(t) be the number of renewals up to and including time t. Let Sn be the time of

the nth renewal. Owing to the nature of the renewal process, we know that PInt(t) is

dependent on (PInt(t − 1), PInt(t − 2), . . . , PInt(SN(t))). Since the process renews at

SN(t), PInt(t) is independent of PInt(t′),∀t′ < SN(t).

We will describe the method to compute the outage probability in steps. We will first

consider the case of a static network with constant channel gains. In such a network,

the interference is predominantly characterized by the renewal process. That being the

case, we will show how the outage probability can be computed using the distributions

of the ON/OFF process. We will then analyze the scenario of a fast fading channel with

Markovian interference. Then we will look at the more generic scenario described in

Chapter 2.

5.1 Static Network

In this section we will look at a network under steady state with static channel gains.

Since the system is in steady state, it is fair to state that B0 knows the channel gains g0

and gInt almost surely (w.p.1). Thus we know the state of the interferer directly from

the CQI data. Let P̄Int(t) = (PInt(t − δ), PInt(t − δ − 1), . . . , PInt(SN(t−δ))) and let

γ̄(t) = (γ(t− δ), γ(t− δ− 1), . . . , γ(SN(t−δ))). Thus, for a static network under steady

state, given γ̄(t), we can find P̄Int(t), w.p.1.



Since we have constant fades, we know that the SINR takes one of 2 values depend-

ing on the interferer state. Let these 2 values be

γ0 =
g0P

N0

, γ1 =
g0P

N0 + g1P

The outage probability is given by

Pout(r) = P(C(t) < r|γ̄(t)) = P(γ(t) < 2r − 1|γ̄(t)) (5.1)

where C(t) is the Shannon channel capacity at time t. Since only 2 SINRs are possible,

only 2 corresponding capacities and thus rates are to be considered in the static network.

Let these be {C0, C1} and {r0, r1} corresponding to the interferer being “OFF” and

“ON” respectively. Thus we have outage only whenB0 transmits at r0 whenC(t) = C1.

That is

Pout(r1) = 0, and (5.2)

Pout(r0) = P(C(t) = C1|γ̄(t))

= P(PInt(t) = P |P̄Int(t))

For convenience, let us assume that Pt = PInt(t) and T = t− SN(t−δ).

Since the base station can keep track of the interference process subject to the delay,

B0 is privy to the age and state information of the most recent, observed renewal period.

Figure 5.1: Static Network Interference Process

To get a better picture, we can look at Figure (5.1) which shows two scenarios. One
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where the interferer is OFF at t− δ and the other where it is ON. Given such a history,

it is possible to compute the probabilities of the state of the interferer at t. We shall

explain this through the help of the figures we have shown.

In Figure (5.1 a) we can see that the state of the interferer at t − δ is OFF. Let

z = t − δ − SN(t−δ), the OFF period which in this case is the age of the process. In

this scenario, we can compute the outage probability through the following sequence of

steps.

P(Pt = 0, P̄Int(t) = 0̄) = P(Z > T ) (5.3)

+
T∑
τ=z

PX(τ)P(Z > T − τ) + o(χ)

where we get the o(χ) term as we know that the probability of a renewal period being

shorter than the delay is bounded by χ << 1 as stated in Chapter 2. Further, we know

that P(P̄Int(t) = 0̄) = P(Z ≥ z). Using these, we can compute P(Pt = 0|P̄Int(t) = 0̄)

trivially using Bayes’ theorem. Thus, we can also compute P(Pt = P |P̄Int(t) = 0̄) =

1− P(Pt = 0|P̄Int(t) = 0̄).

Now, we will describe the case shown in Figure (5.1 b). Let z = t1 − SN(t−δ) and

y = t−δ−t1. Consequently, y+z represents the age of the renewal period. Proceeding

in a similar fashion with the interference history presented in Figure (5.1 b), we get

P(Pt = P, P̄Int(t) = p̄) = P(Z = z, Y ≥ t− z) (5.4)

+
T∑

τ=y+z

PX(τ)P(Z ≤ T − τ) + o(χ)

where, p̄ represents the interference history corresponding to the figure. Here again,

we know that P(P̄Int(t) = p̄) = P(Z = z, Y ≥ y). Using these, we can once again

compute the conditional probabilities.

Hence the outage probability can finally be computed as

Pout(r0) = P(PInt(t) = P |P̄Int(t)) (5.5)

appropriate to the observed history.
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Having exploited the properties of renewal processes to compute the outage prob-

ability in the static network scenario described in this section, we will now move to

another scenario of having memoryless channels and Markovian interference.

5.2 Memoryless Channel and Memoryless Interference

In this section, we will study a fast fading environment wherein the fading gains vary

i.i.d from slot to slot with a Rayleigh distribution. As assumed earlier, we will assume

that the fading for different users is independent and that the means of the fading gains

are known to B0.

Further, we will also assume that B0 doesn’t store CQI values. That is, B0 uses the

most recent SINR data to make scheduling decisions. Such an estimate works optimally

when the interference is characterized either by a Markov chain or by memoryless dis-

tributions. In particular, if the ON and OFF distributions are independent of each other

and hold geometric distributions, then owing to the memoryless property of the distri-

bution, the interference fluctuation simplifies to that of a Markov chain.

We will however describe the outage probability computation from a generic re-

newal process standpoint whose distributions are known apriori.

The conditional outage probability for a transmission of rate r, Pout(r) is given by :

Pout(r) = P(C(t) ≤ r|γ(t− δ) = γ0)

= Fγ(t)|γ(t−δ)(2
r − 1|γ0), (5.6)

where (5.6) follows from (2.3). It is thus sufficient to compute the conditional cdf of

γ(t) given γ(t− δ). We will introduce some simplified notation first.

Fγ(γ|γ0) = Fγ(t)|γ(t−δ)(γ|γ0),

FP (γ|P ) = Fγ(t)|PInt(t)(γ|P ),

P(P |P0) = P(PInt(t) = P |PInt(t− δ) = P0),

P(P |γ) = P(PInt(t) = P |γ(t) = γ).
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We will describe the method to compute the outage probability through a sequential

process of computation of conditional distributions and exploitation of independence

relations.

5.2.1 SINR-Power Dependence Relations

We will first begin by analyzing the underlying conditional independence relations be-

tween the SINR (γ(t)) process and the interferer transmit power (PInt(t)) process.

Lemma 1. Under the channel fading conditions described in this section, γ(t) and

γ(t − δ) are conditionally independent given PInt(t). Also, the conditional cdf of the

SINR given the state of the interferer at t− δ is given by:

FP (γ|P ) = 1−

(
α0

γαInt + α0

)
exp

(
−γ
α0

)
.

where α0 = Γ0P0(t)
N0

and αInt = ΓIntPInt(t)
N0

.

Proof. We use X ⊥ Y to mean that two random variables X and Y are independent.

Condition on PInt(t) = P , for some P ∈ {0, P}. Thus from (2.2), the SINR is a

deterministic function of the fading coefficients, i.e, γ(t) = ψ(g0(t), gInt(t)). Further,

from the assumption made on the fading coefficients, we know that

(g0(t), gInt(t)) ⊥ (g0(t− δ), gInt(t− δ)) and (5.7)

(g0(t), gInt(t)) ⊥ PInt(t− δ). (5.8)

Indeed, (5.8) follows from the independence of the fading coefficients and the interfer-

ence profile. Thus from (5.7) and (5.8),

(g0(t), gInt(t))) ⊥ γ(t− δ) =⇒ φ((g0(t), gInt(t))) ⊥ γ(t− δ), (5.9)

for any function φ(.) on g.
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Using (5.9), we can conclude that

given PInt(t) = P, γ(t) ⊥ γ(t− δ),∀P ∈ {0, P}.

Hence, we have proved that, γ(t) is conditionally independent of γ(t−δ), given PInt(t).

Using this conditional independence, we perform the following computation :

FγP (γ|γ0, P ) = FP (γ|P )

= P

(
g0P

N0 + gIntPInt
≤ γ

∣∣∣∣P
)

(5.10)

= 1−
(

α0

γαInt + α0

)
exp

(
−γ
α0

)
, (5.11)

where we have FγP (γ|γ0, P ) = Fγ(t)|PInt(t),γ(t−δ)(γ|γ0, P ). Here, (5.10) comes directly

from (2.2) and (5.11) follows from the exponential distribution of the fading power

gain.

Using Lemma (1), we obtain the pdf of the conditional distribution by taking the

derivative of the cdf:

f(γ|P ) =

(
α0

γαInt + α0

)
exp

(
−γ
α0

)(
αInt

γαInt + α0

+
1

α0

)
. (5.12)

Next, invoking the Key Renewal Theorem for the ON-OFF renewal process, (Ross,

1996, Theorem 3.4.4), we obtain P(PInt(t) = P ) = ρ under steady state. Here, ρ =

E[Y ]
E[X]

, is the duty cycle of the ON/OFF process. Now, using Bayes’ Theorem, we get :

P(P0|γ0) =
f(γ0|P0)P(P0)∑

P ′∈{0,P} f(γ0|P ′)P(P ′)
,

where f(γ|P ) is given by (5.12).

Lemma 2. The interference power, PInt(t) is conditionally independent of γ(t − δ)

given PInt(t− δ).

Proof. Assume that PInt(t−δ) = P for some P ∈ {0, P}. Thus from (2.2), the SINR is

only a function of the fading coefficients, i.e, γ(t− δ) = ψ(g(t− δ)). Further, we know

27



that the interferer transmissions are independent of the fading power gains. Hence, we

have

PInt(t) ⊥ g(t− δ) =⇒ PInt(t) ⊥ φ(g(t− δ)), (5.13)

for any function φ(.) on g.

Using (5.13), we can conclude that

∀P ∈ {0, P}, given PInt(t− δ) = P, PInt(t) ⊥ γ(t− δ). (5.14)

Hence we have proved that PInt(t) is conditionally independent of γ(t − δ), given

PInt(t− δ).

5.2.2 Conditional Distribution of Transmit Power

We will now compute P(P |P0) using the statistics of the ON-OFF process. We will

denote by Y and Z, the ON and OFF periods of the renewal process respectively. Let

FY and FZ be the cumulative distribution functions of Y and Z respectively. Assume

that Pi,j = P(PInt(t) = iP |PInt(t − δ) = jP ), ∀i, j ∈ {0, 1}. In the next lemma, we

will compute the conditional distribution P1,1.

Lemma 3. The conditional probability of the interferer being ON at t given that it is on

at t− δ is given by:

P1,1 = 1− F res
Y (δ) + P(E1) + o(χ2),

where, χ = δ
E[X]

. F res
Y (.) is the cdf of the residual period of the ON process at t − δ,

given P (t− δ) = P and has the pmf:

presY (i) =
1− FY (i)

E[Y ]
. (5.15)

Further, P(E1) =
∑δ

y=0

∑δ−y
z=0 F

c
Y (δ − z − y)pZ(z)presY (y), where F c

Y (.) is the comple-

mentary cdf of Y and pZ(.) is the pmf of Z.

Proof. Consider the event E of having P (t) = P , given P (t− δ) = P . Let us assume
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Figure 5.2: On/Off Process examples in a system with δ = 5

that E0, E1, E2 are events with P (t) = P , given P (t − δ) = P with no renewals, one

renewal and at least 2 renewals in (t − δ, t) respectively. Figure (5.2) shows sample

ON-OFF renewal processes with δ = 5. Figures (5.2 a) and (5.2 b) show the cases

under consideration with one renewal and two renewal respectively. From Figure (5.2

b), we can see that we necessarily need Y res < δ and X1 = Y1 + Z1 < δ when there is

at least one renewal. Thus we have

P(E2) ≤ P(Y res < δ,X1 < δ|P (t− δ) = P )

= P(Y res < δ)P(X1 < δ|P (t− δ) = P ) (5.16)

≤
( δ

E[Y ]

)( δ

E[X]

)
= o(χ2), (5.17)

where, (5.16) follows from the fact X1 and Y res are independent owing to the renewal

nature of the process. From the assumption made in Chapter 2 on the nature of the

distribution of the renewal period, P(X1 < δ) ≤ δ
E[X]

. Further, using the distribution

of the residual ON period we get P (Y res < δ) ≤ δ
E[Y ]

. Assuming that ρ 6= 0, and

that χ = δ
E[X]

, is typically small (as the propagation delays are much smaller than the

duration of the average transmit cycle) we can assume that o(χ2) terms are negligible.

This implies that the probability that we have more than one renewals, i.e, one full

renewal period, in the span of (t− δ, t) and that P (t) = P , given that P (t− δ) = P is

a very low probability event.
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Let us now consider the case where there is exactly one renewal in (t− δ, t). Then,

from Figure (5.2 a), we can verify that the probability is given by:

P(E1) =
δ∑

y=0

δ−y∑
z=0

F c
Y (δ − z − y)pZ(z)presY (y), (5.18)

where, F c
Y (.) is the complementary cdf of Y , pZ(.) is the pmf of Z and presY is the pmf

of the residual period as given in (5.15).

For the case of no renewals, we can compute the probability as:

P(E0) = P(Y res > δ)

= 1− F res
Y (δ).

The events, E0, E1 and E2 are not just disjoint, but also encompass all possible

renewal scenarios in the delay interval. Thus by the law of total probability, we have

P1,1 = P(E0 ∪ E1 ∪ E2) = 1 − F res
Y (δ) + P(E1) + o(χ2) where P(E1) is given by

(5.18).

Having obtained P1,1, we can easily obtain P0,1 = 1− P1,1. Further, we know that

P(PInt(t) = P ) = P1,0P(P (t− δ) = 0) + P1,1P(P (t− δ) = P )

=⇒ ρ = (1− ρ)P1,0 + ρP1,1,

where ρ, as mentioned earlier, is the duty cycle of the ON/OFF process. Using the

above relation, we get

P1,0 =

(
ρ

1− ρ

)
P0,1.

We can thereby compute P0,0 = 1− P1,0.

5.2.3 Conditional Outage Probability

We will now piece together, the different conditional distributions we computed to ob-

tain the conditional outage probability. Using the results from Lemma (1) and (2), and
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using the law of total probability, we can deduce the following:

Fγ(γ|γ0) =
∑
P∈P

FγP (γ|γ0, P )P(P |γ0)

=
∑
P∈P

∑
P 0∈P

FP (γ|P )P(P |P 0)P(P 0|γ0).

Finally we can use this in (5.6), to get the expression for the conditional outage proba-

bility.

5.3 M Block Fading

Having obtained algorithms to compute the conditional outage probability in simpler

fading constraints, we will now analyze the M-block fading model described in Chapter

2 and devise optimal and computationally efficient algorithms to compute the outage

probability. The M-block fading model comprises of two possible sources of variation

in the SINR - fading gain and interference power. In order to compute the outage

probability, it is critical to be able to keep track of the renewals in the interference

process. However, it is not always feasible to observe the renewals in interference when

fading changes are also present. Thus we will devise the algorithm to compute outage

by tracking the dynamic changes in reported the CQI values. To facilitate the same, we

will build set up a set of probable states that the interference process could currently be

in, based on the observed set of CQI values.

To be able to spot renewals, one will have to keep track of the “change points” in

the observed CQI data. Let us define a change point as follows:

Definition 4. A time slot t ∈ Z+ is a change point if γ(t) 6= γ(t − 1) or if ∃k ∈ Z+,

such that, t = kM .

Let T be the set of all change points. We will now make use of these change points

to devise our algorithm to compute outage. Let τ(t) be the most recent change point.

That is,

τ(t) = arg min
{t′<t:t′∈T }

(t− t′)
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Lets define S(t) = (ω(t), z(t), y(t), p(t), ψ(t)) as a probable state of the system, i.e,

one possible renewal cycle that could result in the observed set of CQI values. Here ω(t)

represents a probable state of the interferer, i.e, ω(t) = 1 represents the interferer being

in the “On” state at time t and 0 otherwise. z(t) and y(t) are the off and on counters of

the current renewal cycle of the interferer corresponding to this particular state. Let p(t)

be the probability associated with this particular state, i.e, p(t) = P(S(t)|γ(t)). ψ(t) is

the probability of the state at the last change point τ(t). Let S(t) = {S1(t), S2(t), . . . }

be the set of all possible states at time t and let LS(t) be the cardinality of S.

For the block fading model we have assumed, the fading gains within a block are

constant and change only at boundaries (kM). Thus within a single fading block, the

CQI values are constant unless and until the interference changes. This clearly shows

that the transition of the interferer from “ON” to “OFF”, which also constitutes a re-

newal, within the fading block translates to an increase in the CQI value. Similarly the

transition from “OFF” to “ON” has the opposite effect on the CQI value. However, at

fading boundaries, we are likely to observe a change in CQI value which could be due

to a change in the fading gain, a change in interference or a combination of both. Thus

the boundaries of the fading blocks present an uncertainty in the renewal structure under

consideration and thus has to be accounted for appropriately in the outage computation.

We will describe our algorithm in four parts. For ease of analysis, we will first start

with a system which has only one user. For this user, we will describe the algorithm

for CQI data observed within a fading block. We will then highlight the steps to be

taken for observed CQI values that lie on the fade boundaries. We will then describe

how to extend the proposed algorithm to apply to the multiple user scenario. Finally

we will mention how to utilize these probable states to compute the conditional outage

probability.

5.3.1 Within a Fading Block

Assume that at some time t we have the set S(t) = {S1(t), S2(t), . . . , SLS(t)(t)} as

the set of probable states of the system having observed CQI information up to t, i.e,

γ̄(t+δ). For ease of use, lets define γ(t) = γ̄(t+δ). We will first consider the evolution
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of this set of states upon observation of CQI value for time slot t+ 1 when it lies within

a fading block, i.e, kM+2 ≤ t+1 ≤ (k+1)M , for some k ∈ Z+. The state transitions

for observations at such time slots are governed by the following set of rules.

Algorithm 3 State Transitions within a Fading Block

if γ(t+ 1) > γ(t) then

S1(t+ 1)← (0, 1, 0, 1, t+ 1, 1)

S(t+ 1)← {S1(t+ 1)}

τ(t+ 1)← t+ 1

else if γ(t+ 1) = γ(t) then

for 1 ≤ i ≤ LS(t) do

ωi(t+ 1)← ωi(t)

zi(t+ 1)← zi(t) + I{ωi(t)=0}

yi(t+ 1)← yi(t) + I{ωi(t)=1}

pi(t+ 1)← qi∑LS(t+1)

k=1 qk

ψi(t+ 1)← ψi(t)

end for

S(t+ 1)← {S1(t+ 1), S2(t+ 1), . . . , SLS(t)(t+ 1)}

else

for 1 ≤ i ≤ LS(t), mod (i, 2) = 1 do

ωi(t+ 1)← 1

zi(t+ 1)← zi(t)

yi(t+ 1)← 1

pi(t+ 1)← pi(t)∑
{k:k is odd ,k≤LS(t)} pk(t)

ψi(t+ 1)← pi(t+ 1)

end for

S(t+ 1)← {Si(t+ 1) : i is odd}

τ(t+ 1)← t+ 1

end if

where qi = ψi(t+ 1)Πt
j=τ(t){P(ωi(j + 1)|zi(j), yi(j))}

In essence, for any time slot that is not at the boundary of a fading block, we can
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update the state space as mentioned above. As was described earlier, when we observe

a renewal or equivalently an increase in the SINR, we refresh the state space. When

we observe a new value of the SINR that equals the previous value, the possible states

are maintained and the probabilities of each state are updated as stated above. In the

event of a transition from Off to On, we remove the states that predict the opposite in

this block and update the probabilities of each branch appropriately. The reason for

maintaining the change point information and the correctness of the update expressions

are elucidated in the following lemma.

Lemma 4. For all time slots within a fading block, i.e, ∀kM ≤ t < (k + 1)M − 1, for

some k ∈ Z+, the state probabilities are governed by the following dynamics :

if γ(t+ 1) > γ(t),

p1(t+ 1) = 1 (5.19)

if γ(t+ 1) = γ(t), ∀1 ≤ i ≤ LS(t)

pi(t+ 1) =
qi∑LS(t+1)

k=1 qk
(5.20)

where,

qi = ψi(t)Π
t
j=τ(t)P(ωi(j + 1)|zi(j), yi(j)) (5.21)

if γ(t+ 1) < γ(t), ∀1 ≤ i ≤ LS(t)

pi(t+ 1) =
pi(t)∑

{k:k is odd ,k≤LS(t)} pk(t)
, if i is odd (5.22)

Proof. For the first case, we know that γ(t + 1) > γ(t) indicates a renewal at the

interferer and the state space is refreshed. Thus trivially, we know that p1(t + 1) = 1

and is the only possible state in the system.

For the second case, we have γ(t + 1) = γ(t). As defined earlier, pi(t + 1) =

P(Si(t+ 1)|γ(t+ 1)). We can observe that

P(Si(t+ 1)|γ(t+ 1)) = P(Si(t)|γ(t), γ(t+ 1) = γ(t)) (5.23)
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Thus by induction on t, we can say that

pi(t) = P(Si(τ(t))|γ(τ(t)), {γ(j) = γ(j − 1), j > τ(t)})

=
qi∑LS(t+1)

k=1 qk
(5.24)

where (5.24) follows by Bayes’ theorem, with

qi = ψi(t)Π
t
j=τ(t)P(ωi(j + 1) = ωi(τ(t))|zi(j), yi(j))

Here, P(ωi(j+1)|zi(j), yi(j)) is computed as was done in the static network case using

expressions (5.3) and (5.4).

The final case marks a transition from Off to On state at the interferer. Now, for all

even i, we know that ωi(t) = 1. Thus those states can be removed from the system. For

all odd i, we have

pi(t+ 1) = P(Si(t+ 1)|γ(t), γ(t+ 1) < γ(t))

= P(Si(t+ 1)|γ(τi(t)), {ωi(j) = 0, j ≥ τi(t)})

= P(Si(τi(t))|γ(τi(t)), {ωi(j) = 0, j ≥ τi(t)})

=
pi(t)∑

{k:k is odd ,k≤LS(t)} pk(t)
(5.25)

This concludes that the set of transition probabilities defined above are indeed the

valid state probabilities.

Thus in this section, we have seen how to keep track of the set of probable states

for observations belonging to time slots within the fading block. We will now move to

devising the governing dynamics for the fading block boundaries.

5.3.2 At the Fading Boundary

Yet again, assume that at some time t, we have the set of probable states S(t). However,

in this subsection, we will deal with fading block boundaries, i.e, ∀t = kM , for some

k ∈ Z+. At the block boundary, we know that the fading gain changes. Hence it is quite
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likely that the CQI also change. However, the CQI value, whether different or the same,

is still a function of not just the fading gains, but also the interference process. Thus

we have to account for a probable transition at the boundary. This implies that from

each probable state, we get 2 new probable states - one that maintains its transmission

state and one that undergoes a flip. This in turn doubles the number of states under

consideration and the following algorithm describes the set of rules that govern this

change point.

Algorithm 4 State Transitions at a Fading Boundary

for 1 ≤ i ≤ LS(t) do

ω2i−1(t+ 1)← 0

ω2i(t+ 1)← 1

z2i−1(t+ 1)← (zi(t))I{ωi(t)=0} + 1

z2i(t+ 1)← zi(t)

y2i−1(t+ 1)← 0

y2i(t+ 1)← (yi(t))I{ωi(t)=1} + 1

p2i−1(t+ 1)← f(γ|0)P(Si(t),0|γ(t))∑
P ′∈{0,P} f(γ|P ′)(

∑LS(t)

k=1 P(Sk(t),P ′|γ(t)))

p2i(t+ 1)← f(γ|P )P(Si(t),P |γ(t))∑
P ′∈{0,P} f(γ|P ′)(

∑LS(t)

k=1 P(Sk(t),P ′|γ(t)))

ψ2i−1(t+ 1)← p2i−1(t+ 1)

ψ2i(t+ 1)← p2i(t+ 1)

end for

S(t+ 1)← {S1(t+ 1), S2(t+ 1), . . . , S2LS(t)(t+ 1)}

τ(t+ 1)← t+ 1

where f(γ|j) is computed as was given in (5.12) and P(Si(t), P
′|γ(t)) = P(Si(t), P (t+

1) = P ′|γ(t)), P ′ ∈ {0, P}

In essence, at the boundary of every fading block, there arises an uncertainty with

respect to the possibility of a change occurring at the boundary. Thus, we account for

this in the form of a doubling of the number of states under consideration as described

above. Given this idea of evolution, the dynamics of ω, z, y and ψ are clear from the

above mentioned algorithm. The expressions for the state probabilities are derived in

the following lemma.

36



Lemma 5. The state probabilities at state boundaries, t = kM for some k ∈ Z+, are

governed by the following expressions :

p2i−1(t+ 1)←
f(γ|0)P(Si(t), 0|γ(t))∑

j∈{0,P} f(γ|j)(
∑LS(t)

k=1 P(Sk(t), j|γ(t)))

p2i(t+ 1)←
f(γ|P )P(Si(t), P |γ(t))∑

j∈{0,P} f(γ|j)(
∑LS(t)

k=1 P(Sk(t), j|γ(t)))

Proof. Starting from the definition, we can observe that

p2i−1(t+ 1) = P(S2i−1(t+ 1)|γ(t+ 1))

= P(Si(t), P (t+ 1) = 0|γ(t+ 1))

=
f(γ|0)P(Si(t), 0|γ(t))∑

j∈{0,P} f(γ|j)(
∑LS(t)

k=1 P(Sk(t), j|γ(t)))

where, last step follows from Bayes’ theorem and the fact that γ(t+ 1) is conditionally

independent of {γ(t), Si(t)} given P (t + 1), since we are at a fading boundary, i.e,

t+ 1 = kM . Further,

P(Si(t), j|γ(t)) = P(Si(t), P (t+ 1) = j|γ(t)), j ∈ {0, P}

= P(Si(t)|γ(t))P(P (t+ 1) = j|Si(t)) (5.26)

= pi(t)P(j|zi(t), yi(t)) (5.27)

and again P(j|zi(t), yi(t)) is calculated as in (5.3) and (5.4). Here, (5.26) follows from

the fact that P (t+ 1) is conditionally independent of γ(t) given Si(t).

Following a similar procedure, we can obtain the expression for p2i(t + 1) as well.

There are essentially 4 steps that the algorithm does with regard to the states. This

can be pictorially seen in Figures (5.3), (5.4), (5.5) and (5.6). The figures represent

the change in the states upon occurrence of a renewal, same valued CQI, OFF→ON

transition and fade boundary respectively.

We have thus built an algorithm, which upon observing CQI data up to time t pro-

vides a set of probable states of the system with the probabilities of each state. We will
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Figure 5.3: States collapsing on renewal

Figure 5.4: States shuffling upon no change in CQI

Figure 5.5: States correcting upon 0→ 1 transition

Figure 5.6: States expanding at fade boundaries

now make use of this information to compute the conditional outage probability.
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5.3.3 Multi-user scenario

In the last 2 sections we saw the method to keep track of the set of probable states when

there is only one user in the system. Now, we will show how to extend the proposed

algorithm to extend to the case with multiple users in the system. As assumed initially,

lets assume there are K users with appropriate delays. Say at time t + δmin, where

δmin = min1≤i≤K δi, we receive the set of SINRs {γ1(t1), γ2(t2), . . . , γK(tK)}, ti being

the times as appropriated by the delays of the users. Notice that the set of states currently

being updated is that corresponding to time t+ 1. Lets assume that we have S(t).

Without loss of generality, we will assume that the δi ≤ δj, ∀1 ≤ i ≤ j ≤ K. Also,

let δi = δmin, ∀i ≤ m1 for some m1 ≤ K. Then, ti = t + 1, ∀i ≤ m1. We will first

assume that we receive just these m1 values and show how the update expressions are

modified. Note that the observations of renewal, Off→On transition, fade boundaries

and no change in SINR will be consistent across all users almost surely. It is trivially

evident that if these users observe a renewal within a fading block, then the update

expressions remain the same as was described earlier. It can further be proved that,

within a fading block, multiple observations for slot t+1 do not change the probabilities

of the states. This is shown in the following lemma. The following lemma describes

the set of actions to be adopted based on the observations.

Lemma 6. For a system with set of probable states S(t), given a set of observations

{γ1(t+1), γ2(t+1), . . . , γm1(t+1)}, the state probabilities are updated as governed by

the following set of equations. If kM + 2 ≤ t ≤ (k+ 1)M , then the update expressions

given in (5.20) and (5.22) hold true for the case of multiple simultaneous observations

as well.

Proof. We now have pi(t+1) = P(Si(t+1)|{γ1(t+1), . . . γm1(t+1)}). Say γi(t+1) =

γi(t), ∀i ≤ m1. Then, we have

pi(t+ 1) = P(Si(t+ 1)|{γ1(t+ 1), . . . γm1(t+ 1)})

= P(Si(τ(t))|{γi(τ(t)), {γi(j) = γ, τ(t) ≤ j ≤ t},∀i ≤ m1})

=
qi∑LS(t)

k=1 qk
(5.28)
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where (5.28) follows from an application of Bayes’ theorem with

qi = ψi(t)Π
t
j=τ(t)P(ωi(j + 1)|zi(j), yi(j))

as was described in Lemma 4. Thus we can see that the update probabilities of states

are not affected by multiple simultaneous observations in this case.

Using a similar argument as was presented in Lemma 4, we can also show that

the update criterion for the case of multiple simultaneous observations of the Off→On

observation also remains unchanged.

Having studied the case of in block observations, we shall look at the fade bound-

aries now. Say we have such multiple simultaneous observations of a fade boundary.

We know that at a fade boundary we still have the set of states expanding by a factor of

2. Owing to the independence of fading gains across users, we can easily see that the

update expressions are now modified as follows.

p2i−1(t+ 1) =
f0P(Si(t), 0|γ(t))∑

j∈{0,P} fj(
∑LS(t)

k=1 P(Sk(t), j|γ(t)))

p2i(t+ 1) =
fPP(Si(t), 0|γ(t))∑

j∈{0,P} fj(
∑LS(t)

k=1 P(Sk(t), j|γ(t)))

where, fj = Πm1
i=1f(γi(t + 1)|P (t + 1) = j), ∀j ∈ {0, P}. The terms in the product

can yet again be computed using (5.12)

Thus, in essence we know how to update the state space for multiple simultaneous

observations. We will now expand the domain to the more generic case of arrivals with

differing delays. Lets split the set of users, ordered according to delays as assumed

earlier, into classes such that all users of a specified class have the same information

delay. Let these classes be D1, D2, . . . , Dm, where δi < δj, ∀i ∈ Dk1 , j ∈ Dk2 , k1 <

k2. Let the size of class Di be mi. Thus the class D1 corresponds to the users with

minimal delay. We will use the update expressions highlighted above to first compute

the state probabilities.

Let us assume that we have exactly one other class of arrivals for convenience. First

of all, we will show that only observations of the 2nd class that correspond to fade
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boundaries alter the state probabilities. Let the observation slot of class Di be ti. Thus

at each step, we update the state for time t1.

Lemma 7. The state probabilities are conditionally independent of all observations of

class D2 that do not correspond to fade boundaries given the observations of class D1.

Proof. Let kM + 2 ≤ t ≤ (k + 1)M for some k. Starting from the definition of the

state probabilities, we have,

pi(t1) = P(Si(t1)|γ1(t1), γ2(t2))

=
P(Si(t1), γ2(t2)|γ1(t1), γ2(t2 − 1))

P(γ2(t2)|γ1(t1), γ1(t2 − 1))
(5.29)

= P(Si(t1)|γ1(t1), γ2(t2 − 1))P(γ2(t2)|γ1(t1), γ2(t2 − 1), Si(t1)) (5.30)

= P(Si(t1)|γ1(t1), γ2(t2 − 1))

where (5.29) follows from the fact that given γ1(t1), we know γ1(t2). Within a fading

block, given γ1(t2), we can deterministically compute γ2(t2) and thus the conditional

probability is 1. The same reason further results in (5.30). Thus we have shown that

the observations of class D2 of time slots within a fading block do not affect the state

probabilities.

This result can of course be extended to the case of multiple delay classes too. Thus

the classes other than the minimum delay class affect the state probabilities only at the

fade boundaries. Further, lets assume that t1 belongs to the (k + 1)th fading block

for some k ∈ Z+. Now, if τ(t + 1) > kM + 1, then we know that the process has

observed either a renewal or an Off→On transition. Either way, it is evident that the

state of the interferer for the interval [kM + 1, τ(t1)] is known. Thus an observation

made in this interval by another class, say D2 does not contribute to the probabilities of

the states. Hence, it is clear that the observations of other classes are significant only

at fade boundaries that are the most recent change points. We will now show how the

state probabilities are affected by class D2 observations that lie on a fade boundary that

are current change points.

Lemma 8. Let kM + 1 < t1 ≤ (k+ 1)M and t2 = τ(t1) = kM + 1. If the initial stage

of the algorithm gives the states probabilities pi(t1), then the update corresponding to
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the class D2 observations can be made as

pi(t1) ← f0(1 + η)pi(t1)

f0 + ηfP
, if i is odd (5.31)

pi(t1) ← fP (1 + η)pi(t1)

f0 + ηfP
, if i is even (5.32)

where, as was used earlier, f(γi(t2)|P ′) = f(γi(t2)|PInt(t2) = P ′), ∀P ′ ∈ {0, P}.

Similarly, f0 = Πk∈D2f(γk(t2)|0) and fP = Πk∈D2f(γk(t2)|P ) The factor, η, is given

by

η =

∑
{i:i is even, i≤LS(t1)} pi(t1)∑
{i:i is odd, i≤LS(t1)} pi(t1)

(5.33)

Further, the change point probabilities are updated as

ψi ←
f0ψi∑

k odd f0ψk +
∑

k even fPψk
, if i is odd

ψi ←
fPψi∑

k odd f0ψk +
∑

k even fPψk
, if i is even

Proof. We will first start with the state probabilities. We know that the expressions for

the state probabilities are governed by (5.28). From the definition of state probability,

we get the following. Letγ1 and γ2 be SINRs representative of the entire class of ar-

rivals. We know that in the case of multiple simultaneous observations, the joint pdfs

just scale as the product of the individual observations. Thus the translation is fairly

trivial.

pi(t1) = P(Si(t1)|γ1(t1), γ2(t2))

= P(Si(t2)|γ1(t2), γ2(t2), {γ1(j) = γ1(t2),∀t2 ≤ j ≤ t1})

=
ψi(t1)(Πt

j=τ(t)P(ωi(j + 1)|zi(j), yi(j)))f(γ2(t2)|Si(t2))∑LS(t)
k=1 ψk(t1)(Πt

k=τ(t)P(ωk(j + 1)|zk(j), yk(j)))f(γ2(t2)|Sk(t2))

The above shown derivations follow simply from Bayes’ theorem and the independence

of fading across users. Further, we make use of the fact that given γ1, γ2 can be deter-

ministically obtained. For the case of multiple class 2 observations, we just take a

product of the conditional pdfs in the expression. Using simple algebra, we can derive

the update expressions mentioned in the lemma.
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For the update of the change point probability, the proof proceeds on similar lines

and utilizes conditional independence and Bayes’ rule to result in the expression stated

in the lemma. Due to the similarity of the proof, it is omitted here.

Having obtained these rules for the case with 2 classes of observations, it is easy

to extend to the case of multiple classes. We just have to sequentially update the state

probabilities using the rules mentioned above. The sequential flow of the algorithm is

represented in Figure 5.7 for a system with 3 delay classes. As is shown, the algorithm

is first performed on the class of minimum delay users and the probabilities are updated

at fade boundaries based on the observations of the other classes. Having described the

Figure 5.7: Flow of outage computation algorithm for a system with 3 delay classes

way to take into account the observations of all users, we will now elaborate the method

to compute the outage probability for each user.

5.3.4 Computing Conditional Outage Probability

We shall now describe the method to obtain the outage probability. The outage prob-

ability is computed on a user by user basis and thus for convenience, we will drop the

sub scripts and work with a single user system. Consider the kth fading block, i.e,

(k−1)M < t ≤ kM , wherein the channel fades are some constants g0(k) and g1(k). If

the user observes 2 different values of SINR in the block, then we can trivially compute

the channel gains corresponding to the block. However, if we have observed just one

value of SINR, γ, then we could be in one of two possible scenarios. If the interferer is

in the Off state, then we know that g0(k) = γN0

P
. On the other hand, if the interferer is in

the On state, then, we only know that g0(k)P = γ(N0 + g1P ). Since we have a system

with a delay, we could also be in a state wherein we have observed no value of the SINR
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corresponding to the current block. Note that the states used are the ones corresponding

to the minimum delay as they are the most recent and thus the most accurate estimates.

The following is quite evident owing to law of total probability

Pout(r) =

LS(t−δmin)∑
i=1

P(C(t) < r|Si(t− δmin), γ̄(t))pi(t− δmin) (5.34)

Here we abuse notation slightly for convenience when we condition on the state Si(t−

δ). We will assume that such a conditioning implies that the path of the interference pro-

cess followed that represented by the state Si. Any subsequent use of such conditioning

also implies the same. In the event of knowing both fading gains of the channel, the

problem simplifies to the case of the static network outage and P(C(t) < r|Si(t − δ))

can be computed exactly as is given in (5.5). Further, we know that

FC(r|Si, γ̄(t)) =
∑

P ′∈{0,P}

FCP (r|P ′, Si, γ̄(t))P(PInt(t) = P ′|Si) (5.35)

where FC(r|Si, γ̄(t)) = P(C(t) < r|Si(t − δ), γ̄(t)), FCP (r|P ′, Si, γ̄(t)) = P(C(t) <

r|PInt(t) = P ′, Si(t− δ), γ̄(t)) and P(PInt(t) = P ′|Si) = P(PInt(t) = P ′|Si(t− δ)).

If we observe only one value, γ, of SINR corresponding to the block, i.e, kM <

t − δ < t ≤ (k + 1)M , then the following lemma provides the corresponding outage

probability.

Lemma 9. If (k − 1)M < t− δ < t ≤ kM and the base station has exactly one SINR

value γ corresponding to this kth fading block, then the conditional outage probabilities

are given by

FCP (r|0, Si, γ̄(t)) =

1− e−
1
α1

(
g(r)
γ
−1
)

, if ωi(t− δ) = 1, g(r) > γ

0 , o/w
(5.36)

and

FCP (r|P, Si, γ̄(t)) =

e
− 1
α1

(
γ
g(r)
−1
)

, if ωi(t− δ) = 0

0 , o/w
(5.37)

where, g(r) = 2r − 1.
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Proof. If ωi(t − δ) = 0, then we know that g0 = γN0

P
. Then, if PInt(t) = 0, γ(t) =

γ, w.p.1. Thus there is no outage if PInt(t) = 0 and ωi(t− δ) = 0. For the other case,

we have

FCP (r|P, Si, γ̄(t)) = P(C(t) < r|P (t) = P, Si(t− δ), γ̄(t))

= P
(
g1 >

( γ

g(r)
− 1
)N0

P

)
= e

− 1
α1

(
γ
g(r)
−1
)

(5.38)

Now, if ωi(t− δ) = 1, then we know that g0P = γ(N0 + g1P ). Thus if PInt(t) = 1,

γ(t) = γ, w.p.1. Thus the conditional outage probability in this case is 0. On the other

hand, we have

FCP (r|0, Si, γ̄(t)) = P(C(t) < r|PInt(t) = 0, γ̄(t))

= P
(
γ
(
1 +

g1P

N0

)
< g(r)

)

=

1− e−
1
α1

(
g(r)
γ
−1
)

, if g(r) > γ

0 , o/w

This gives us the conditional outage probabilities.

When the base station does not have any information regarding the SINR values of

the current fading block, i.e, t−δ ≤ (k−1)M < t ≤ kM , the scenario simplifies to the

case discussed with the memoryless channel environment earlier. Thus the conditional

outage probability can be computed using (5.12).

Having obtained the conditional outage probabilities, we can substitute back in the

law of total probability expression to compute the outage probability for the system.

5.3.5 Memory Overhead for Computation

An issue with the algorithm described above is probably the number of states that one

needs to keep track of. This number increases exponentially with the number of blocks

for which the change points of the renewal process occur only at the fade boundaries.
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This adds to the storage overhead, apart from storing the information about the SINR.

Thus we will show that under slow fading, the probability that the system will need to

use a large amount of memory decays exponentially, thereby validating computational

efficiency of the proposed scheme.

Theorem 2. Under the assumptions of slow fading and interferer load assumed in

Chapter 2, the probability that renewals of the ON/OFF process occur only at the fading

boundaries for at least N blocks decays exponentially.

Proof. Let us assume, without loss of generality that we have a renewal at some time t

and

∆t = min
{k:kM≥t}

(kM − t)

Let P(∆t, N) = P(for at leastN fading blocks starting ∆t away, renewals, if any, occur

only at fade boundaries). Thus we can see that

P(∆t, N) = PX(∆t)P(0, N) + PX(∆t+M)P(0, N − 1) + . . .

+PX(∆t+ (N − 1)M)P(0, 1) + P(X ≥ ∆t+NM) (5.39)

Writing out a similar recurrence relation, we get

P(0, N) = PX(M)P(0, N − 1) + PX(2M)P(0, N − 2) + . . .

+PX((N − 1)M)P(0, 1) + P(X ≥ NM) (5.40)

Owing to the assumptions made on slow fading and light tailed renewal periods, we

know that ∃p, α ≤ 1, such that PX(iM) ≤ αi−1p. Further, from the Chernoff bound

of X , we know that ∃s > 0, such that P(X ≥ x) ≤ E[esX ]e−sx = βe−sx. Thus using

these in (5.40), we get

P(0, N) ≤ pP(0, N − 1) + αpP(0, N − 2) +

· · ·+ αN−2P(0, 1) + βθN (5.41)
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where θ = e−sM < 1. Thus, recursively solving the above inequality, we get

P(0, N) ≤ a1φ
N + a2θ

N (5.42)

where φ = α + p, a1 = pβθ
(φ−θ)φ and a2 = β

(
1 − p

(φ−θ)

)
. Under slow fading conditions,

we can assume that M is such that φ < 1.

Further, we know that, for any t, ∃q ≤ 1 such that, PX(t + iM) ≤ αiq. Using this

and (5.42) in (5.39), we get

P(∆t, N) ≤ aαα
N + aφφ

N + aθθ
N (5.43)

where aα = â1 + â2, aφ = −â1 and aθ = β̂ − â2. Here, â1 = qa1φ
(α−φ)

, â2 = qa2θ
(α−θ) and

β̂ = βe−s∆t.

Thus, the above inequality shows that the probability of having renewals only at

fading boundaries for at least N blocks decays exponentially.

Now, the number of states in the system doubles at every fading boundary and de-

creases only upon observation of either a renewal or an Off to On transition. Thus the

event that I will have at least 2N states in the system, is equivalent to having at least N

fading blocks which have transitions only at the boundaries. Further we know that the

probability of such an event is upper bounded by the event of having renewals only at

fading boundaries for at least N blocks. We need Nb = O(N) bits to store 2N states.

We have essentially proven here that P(Nb ≥ βN) ≤ P(∆t, N), where β < ∞ is the

number of bits needed to store the information for one state. Thus, an O(N) bit state

memory overflows with exponentially low probability. Hence we can conclude that

the proposed algorithm will work with an arbitrarily low error probability while using

O(N) bits of memory.

In the scenario of a memory overflow in the storage of the states, the most ideal

action to take is to get rid of states that have the least probability. For instance if I have

2N−1 states in the system with limited storage, then, while computing the next set of

2N states, the half the number of states are discarded, the least probable states being

discarded first.
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5.3.6 Discussions

The above theorem also signifies the importance of slow fading to the efficient function-

ing of the proposed algorithm. As fading becomes faster, the space and consequently

the time complexity of the algorithm also worsens.

In fact, the state expansion at the fade boundaries can be decreased from doubling in

size. At every fade boundary, as of now, we have assumed that each state splits into two

possible cases. However, all state transitions of 1 → 0 correspond to that of a renewal.

Hence, all states that were in state 1 can in fact coalesce into one common 0 state and

combine the appropriate probabilities. That is, we can represent {S2i−1(t+ 1) : ωi(t) =

1} when t = kM , for some k ∈ Z+, by one common state S0(t+ 1) whose probability

is the sum of probabilities of all coalesced states. Using this, we can prove that the set

of states evolves as O(k2) over k fading blocks. This in turn reduces the number of bits

for storage. However, for analytical ease, we shall avoid its usage.

The task of outage probability computation, as we have seen above, hinges strongly

on the occurrences of renewals and tracking the same. Though the task of detecting

change points in the Interference process by observing a sequence of SINR measure-

ments does seem to point to the use of “Sequential Change Point Detection” (Wald et al.

(1945), Lorden et al. (1971)), we cannot use the theory to good effect in this scenario.

The primary downside of this idea is that the error probability of a change point detec-

tion is only bounded and no exact expression is known. Also, we may not have enough

samples to detect a change thereby raising the possibility of wrong hypothesis estimates

that can percolate through the process to increase the error.

The scenario of having more than one interferer causes an exponential increase in

the set of probable states thereby increasing the space and computational complexity of

the algorithms. However, the proposed algorithm can be used for the multiple interferer

case if the assumption of “Single strong interferer” is allowed, i.e, each user faces sig-

nificant interference from one interferer while the rest of the interference is regarded as

noise. In this case, we will group users, not just based on the delay profile but also based

on the interferer. For a class of users having the same strong interferer, the algorithm

can be applied.
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This section thus provides the method to compute the conditional outage probability

that is critical to the scheduling algorithm. We will now describe some insights into the

proportional fair scheme and some possible areas of future work.
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CHAPTER 6

α−fair Scheduling

In this chapter, we will discuss some on going work in the realm of α−fair scheduling

in the presence of time-varying interference and information delay. As was discussed

earlier, the objective in this scheduling routine is to maximize a specific non-decreasing,

concave utility function. Thus the objective is to show that the scheduling decisions

that are made, converge at an asymptotically stable equilibrium point that maximizes

the utility function. For convenience, in this section we will assume that the discrete

time slots are represented by n.

The scheduling is hinged primarily on the average throughput, θ(n), offered to users

and the utility function U(.). The average throughput is given by

θi(n) =
1

n

n∑
τ=1

ri(τ)Iri(τ)≤Ci(τ) (6.1)

Using simple algebra, we can derive :

θi(n+ 1) = θi(n) + a(n)(ri(n+ 1)Iri(n+1)≤Ci(n+1)−θi(n)) (6.2)

where a(n) = 1
n+1

. The optimality of proportional fair schemes are usually proved

using the theory of Stochastic Approximation (Borkar (2008)). Thus, we can rewrite

the above equation as

θi(n+ 1) = θi(n) + a(n)(hi(θi(n)) + ε(n) +Mi(n)) (6.3)

where

hi(θi(n)) = E[ri(n+ 1)Iri(n+1)≤Ci(n+1)]− θi(n)

ε(n) = En[ri(n+ 1)Iri(n+1)≤Ci(n+1)]− E[ri(n+ 1)Iri(n+1)≤Ci(n+1)]

Mi(n) = En[ri(n+ 1)Iri(n+1)≤Ci(n+1)]− ri(n+ 1)Iri(n+1)≤Ci(n+1)



Here, En[x] = E[x|Fn], where Fn = σ(θ(m),M(m),m ≤ n). We can observe

that M(n) forms a Martingale Difference sequence, since we have

En[M(n+ 1)] = 0, n ≥ 0 (6.4)

We can further prove that this sequence is also square-integrable.

The sequence of steps given by a(n) also satisfies
∑∞

n=1 a(n) =∞ and
∑∞

n=1 a
2(n) <

∞. Let us assume for this section that we have a maximum rate of transmission, Rmax.

Then it is evident that the average throughput of any user is bounded by this. Thus, the

iterates, θ(n) are also bounded over time. Further, −Rmax ≤ ε(n) ≤ Rmax. Thus we

know for sure that the random sequence is deterministically O(1). If we assume that

the mapping h is Lipschitz continuous, then from (Borkar, 2008, Section 2.2), we know

that the limiting ODE that tracks the process described here is given by

dθ(t)

dt
= h(θ(t)) (6.5)

This result states that the discrete process asymptotically approaches the limit points

of the above mentioned ODE. However, the result holds only under the assumptions

made above and thus have to be studied more closely. Further, we need to prove that the

stable equilibrium point that the process converges to, i.e, the limit point of the ODE, is

unique (path independent) and maximizes the utility function. We are currently working

to this end using results from convex analysis and differential equations.

Intuitive extension of the gradient algorithm that is optimal in the case of accurate

channel information seems to suggest that the parameter to decide scheduling would

in this case be maximizing the gradient goodput product. While this claim is yet to

be theoretically proven, we can expect the algorithm to be optimal in the proportional

fair domain. Current work aims at designing this optimal algorithm and theoretically

proving its optimality.
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CHAPTER 7

Conclusion

In this dissertation, we introduced and studied the problem of downlink resource alloca-

tion using delayed information in a scenario where the UEs face time-varying interfer-

ence from neighboring cells. We exploit the statistics of the time-varying interference

to compute a conditional outage probability expression, given the unreliable CQI avail-

able at the base-station. We then combined the outage probability expression with a

Lyapunov stability framework to obtain a throughput optimal resource allocation pol-

icy for the scenario considered. We also stated the on-going work in the area of α−fair

scheduling and the results that we aim to achieve in the domain.

As an extension to this study, one could consider the case of having more than one

interferer. In such a case the outage computation becomes more complex and might

require stronger assumptions on the interference processes to enable the computation.

One could also take the scenario of having randomized delays. While we have conve-

niently assumed here that the delays are constant and known, these constraints could

be relaxed. This is expected of a practical system where the delays are not always a

constant.

With the target of making the system more practical, one could also try to work with

a limited feedback system. In our model, we have assumed that all users report their

CQI data at every change point. Relaxing this assumption would again make the system

more practical. We have also made a strong assumption of not having power modulation

in the system. We can relax this to a case of having a finite number of power levels.

In that case, the ON/OFF interference process is replaced by a regenerative stochastic

process. Such small changes show that the field does hold potential for substantial work

in the future.

In essence, this work shows how the max-weight Tassiulas and Ephremides (1993)

family of resource allocation policies can be adapted to mitigate time-varying interfer-

ence. Although we have only studied throughput optimal resource allocation in detail,



we remark that our characterization of the outage probability also enables us to suit-

ably modify other widely studied resource allocation policies, to combat time-varying

interference.
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