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ABSTRACT 

 

 

 In this thesis, the performances of the Continuous Density Hidden Markov Model  

(CDHMM), Subspace Gaussian Mixture Model (SGMM) and the recently introduced  

Transform-based Phone CAT model for speech recognition is investigated.  

 

The Transform-based Phone CAT technique is inspired from the Transform-based Cluster  

Adaptive Training (CAT) technique used for rapid speaker adaptation of Gaussian  

Mixture Models (GMMs). Analogous to the CAT, a compact canonical model is adapted  

through piecewise linear transformations to a set of cluster models representing the  

phones. The parameters of the distributions in the tied context-dependent phone states are  

modelled as weighted linear interpolation of the phone cluster models.  

 

Approaches to optimize the Transform-based Phone CAT technique with respect to time  

are discussed. Transform-based Phone CAT technique’s working is analysed to find the  

sections where improvements can be made to quicken the training process without  

affecting the performance of the system. 
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Chapter 1 

 

Introduction to ASR   

 

Automatic speech recognition (ASR) can be defined as the independent, computer‐driven  

transcription of spoken language into readable text in real time (Stuckless, 1994).  In a  

nutshell, ASR is technology that allows a computer to identify the words that a person  

speaks into a microphone or telephone and convert it to written text. Having a machine to  

understand fluently spoken speech has driven speech research for more than 50 years.   

 

The ultimate goal of ASR research is to allow a computer to recognize in real‐time, with  

100 % accuracy all words that are intelligibly spoken by any person, independent of  

vocabulary size, noise, speaker characterisitics or accent. Today, if the system is trained  

to learn an individual speaker’s voice then much larger vocabularies are possible and  

accuracy can be greater than 90%. 

 

Commercially available ASR systems usually require only a short period of speaker  

training and may successfully capture continuous speech with a large vocabulary at  

normal pace with highaccuracy.Most commercial companies claim that recognition  

software can achieve between 98 to 99% accuracy if operated under optimal conditions. ` 

Optimal conditions' usually assume that users:  have speech characteristics which match  

the training data, can achieve proper speaker adaptation, and work in a clean noise  

environment (e.g. quiet space). 

 

It is a difficult problem because of the different kinds of variability in speech due to  

changes in speaker and environment. Statistical parametric models like HMM are  

generally used to model the production of speech sounds. The performance of the speech  

recognition systems entirely depends on the how good the modeling is and how well the  

parameters of the model can be estimated using the available training data.  

 

In conventional CDHMM systems that are typically used in speech recognition  
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applications, the p.d.f. of each HMM state is a Gaussian Mixture Model (GMM). A lot of  

parameters (means, variances and weights) are required to define these GMMs, thus  

emanding a large amount of training data.  

 

A relatively new acoustic modeling technique, known as SGMM, was introduced in  

Povey (2009), which takes advantage of the high correlation between the state’s  

distributions to generate the GMM parameters indirectly using only a small number of  

state- specific parameters. The state GMM parameters are constrained to lie in a low  

dimensional subspace of the total parameter space. The parameters that are used to define  

this subspace are shared among all the states and thus can be estimated robustly using  

limited amount of data and even out-of-domain data. This has been verified through  

several multilingual experiments (Burget et al. (2010), Mohan et al. (2012)). 

 

The model is based on the same principle as the SGMM to use a compact subspace model  

that can generate the GMMs using few state-specific parameters. It models the phone  

models in a way analogous to the speaker models in CAT. It consists of a compact  

canonical model that is adapted through piece-wise MLLR transforms to the phone  

models. The tied context- dependent phone state models are expressed as a linear  

combination of these phone models.  

 

Chapter 4 describes the basic theory on which the transform-based Phone CAT model is  

based on. Sections 3.1 and 3.2 outline the basic HMM-based speech recognition  

procedure and the conventional HMM- GMM system. Sections 3.3 describes the SGMM.  

 

Sections 4.2 to 4.5 describe in depth the modeling technique and the estimation procedure  

of the transform-based Phone CAT models. Chapter 5 gives the conclusions.  
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Chapter 2 

 

Introduction to speech recognition 

 

In real world, the observations are generally in the form of signals. The signals can be  

discrete in nature or continuous in nature (like speech signals, music). Most of the real 

 world signals are generated continuously in time. But in all practical applications, we can  

extract only a finite number of samples of the signal and they need to be quantized to take  

only a finite number of values.  

 

The statistics of signals (such as speech) vary over time and hence are non-stationary. But 

 they can be assumed to be stationary over a short observation window (25ms) and fall  

into a category of pseudo-stationary signals. This allows us to model the signals with  

efficient parametric models.  

 

The models used to characterize signals can be broadly classified into deterministic and   

statistical models. Deterministic models require some properties of the observed signal to  

be exploited, like the signal’s frequency is within this set or the signal resembles a sine  

wave etc. Here, modeling is basically finding out parameters like frequency, amplitude of  

the signal etc. 

 

Signals like speech can be modeled as the outcome of a random process and the  

parameters of this process can be estimated accurately. For temporal pattern recognition  

applications like speech, stochastic models known as Hidden Markov Models (HMM) are  

widely used. The outputs of the states are observed but the states which produced these  

outputs are not observable. The output is conventionally modeled to be generated from a  

Gaussian Mixture Model (GMM). This is referred to as the HMM-GMM system. 

 

 Section 3.1 gives a brief introduction to the HMM- based speech recognition system. 

 Section 3.2 describes the conventional HMM-GMM system. Section 2.2 describes the  

Subspace Gaussian Mixture Model (SGMM) based system.  
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Chapter 3 

 

Statistical Models for Speech recognition 

 

3.1 HMM-based Speech Recognition 

 

3.1.1   Introduction:  

The pseudo-stationary property of speech signals allows the speech signal to be divided  

into 25ms observation windows. The statistical properties of the signal can be assumed to 

 be constant over this window. The data in this window is converted into discrete  

parameter vectors. This process of conversion of continuous speech signal into a  

sequence of discrete vectors is known as Feature Extraction. These vectors are also  

known as feature vectors or observation vectors.  

 

One of the most widely used features is the Mel Frequency Cepstral Coefficients 

 (MFCC).The objective of the speech recognition system is to convert this sequence of  

observations into a sequence of symbols (or words) that can be understood by a machine. 

 The observation sequence can be modeled as to be generated by a sequence of states as  

defined by a HMM.  

 

A typical acoustic modelling uses a 3-state left-to-right HMM topology (Fig. 2.1) to  

 model the features generated by a single phonetic unit.A first order Hidden Markov  

process is assumed meaning that the transition into a particular state depends only on the  

previous state and that the observation depends only on the current state. 

 

3.1.2 Characterization 

An HMM is characterized by the following: 

 N , the number of states in the model. The individual states in the model are given by  

       S = { S1 , S2 ..., SN }. The state at frame t is denoted as qt .  

For the model of a basic phonetic unit such as a phoneme, we typically use N = 3.  
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 A, the state transition probability distribution. A = {aij} where 

 

                                                         

 

 For speech systems, we use a left-to-right topology, which implies that 

     = 0 for j < i. 

 π, the initial state distribution. π= {πi} where  

 

                                                                      

 

The model of a basic phonetic unit such as phoneme has    = 0 for i ≠ 1. 

 The observation probability distribution in state j. In the case of a discrete HMM with 

output vectors v1 , v2 , ..., vk , the probability of observing vk in the state j is given by 

 

                                                                   

 

 The observation vector, x(t), can assumed to be generated from a continuous  

distribution. The probability density function (p.d.f.) can be modeled as a mixture  

of Gaussians or a GMM:  

                                                 

 

   

                 

 

where I is the number of Gaussians in the GMM;         are the means and the 

covariance matrix of the Gaussian component i  of state j;     is the Gaussian weight 

with the constraint :        
 
      

 

For convenience, the compact notation λ=(A,B,π) is used to denote the complete  

parameter set of the model. 
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Figure 3.1 Typical left-to-right HMM with 3 emitting states 

 

3.1.3 The three problems associated with HMMs and their solutions 

 

Problem 1 

Given the observation sequence x = x(1)x(2)x(3)....x(T) and model λ=(A,B,π) ,  how do  

we compute P(x|λ), the probability of the observation sequence given the model? 

This is calculated by considering every possible state sequence of length T. 

Consider one sequence Q=q1,q2,…..qT where q1 is the initial state. 

                               
 
             

       ..    
                     

           
     

     
        

                                                                                  

                      

          

                                                                                

This is computationally very inefficient. The forward-backward algorithm is an  

alternate and an efficient method for solving this problem. 

Consider  
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which is the probability of observing the partial observation sequence (x(1) till x(t)) and 

 state Si at time t, given the model. 

      and thus        can be computed by the solving following set of equations: 

 Initialization    :                                                                       

 Induction         :                      
 
                              

 Termination    :                 
 
                                                  

  

  

 

Figures 3.2 and 3.3 illustrate the steps for the computations of       and        

 

Problem 2 

Given the observation sequence x = x(1)x(2)x(3)...x(T) and model parameters λ, how do 

we find the state sequence Q = q1 q2...qT that best explains the observation sequence? 

 

This can be solved in two ways: 

1. Finding the optimal state in which the process is at time t individually. We do this for all 

“t” to get the sequence. 

 

Consider                    the probability of being in state    at time t, given the  

observation and the model. This can be expressed as 

      
  

   
 

   
   

  
   

                          

 

where       is the forward variable and   
  is the backward variable. 

So, the state sequence is         where  
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2. Viterbi method: 

We need to find                 

 This can be computed as 

                

        

               

      
 

                                                                                               

This equation (3.12) is the Viterbi search algorithm. This is the problem that is solved  

when attempting to recognize the word sequence that can best recognize the speech  

frames. 

 

Problem 3 

How do we adjust the model parameters (A, B,  ) so that P(x|λ) is maximized or in other  

words, to explain the observations? 

This is done using Baum-Welch algorithm, which is a specific case of the Expectation  

Maximization (EM) algorithm. 

 

The re-estimation formulae can be derived directly by maximizing the Baum’s auxiliary  

function over    : 

                               

 

                                      

The set of re-estimation formulae for A, B,  : 

 

                                                                                             

 

        
                                           

                                      
 

        
   
   

      
   
   

                      

 

             
                                           

                              
 

      
 
               

      
 
   

        

   

where              
 
         

          is the probability of being in state i at time  
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t and state j at time t+1, given the model and observation. 

 

These problems and their respective solutions are discussed in detail in “A tutorial on  

Hidden Markov Models and Selected Applications in Speech recognition”, Lawrence  

R.Rabiner.  

 

3.1.4 The common HMM types 

 Ergodic : Every state of the model can be reached from every other state. 

 Bakis: As time increases, states proceed from left to right. 

 

  

Figures 3.4 and 3.5 are the common HMMs used, the ergodic and the left-to-right model  

respectively. 

 

3.2 CDHMM system 

CDHMM system also known as, HMM-GMM system, is the conventionally used system  

for speech recognition. It models each context-dependent phone with a generative model  

based on a left-to-right three state HMM topology. The total number of context- 

dependent phonetic states after tree-based clustering is of the order of a few thousands. 

Each state is denoted by the index j with 1 ≤ j ≤ J. The observation vector is assumed to  

be generated within each HMM state j from a GMM: 

 

           

  

   

                                              

      where x is the observation vector,                are the prior, mean and covariance  

matrix of the i
th

 Gaussian component and    is the number of Gaussians in the j
th

 state. 
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3.3 Subspace Gaussian Mixture Model (SGMM)  

SGMM is similar to the GMM-based system, but the model parameters for each state are  

specified by a single state vector    . Thus     lies in a state-independent subspace defined 

 by the columns of   . The covariance is shared across all states, so that we have a state- 

independent   . 

 The basic model can be expressed as: 

           

 

   

                                               

                                                                              

     
       

    

         
    

 
    

                                             

where    is the state projection vector, x is the feature vector,    and    define the 

subspaces in which the means and the unnormalized log weights respectively lie and    is 

the shared covariance. j is the index of the context-dependent state (1 ≤ j ≤ J) with J in 

the order of a few thousands. i is the Gaussian index in the GMM of I mixtures (usually 

200 < I < 2000).    is the only state specific parameter.                are “shared”  

parameters. 

 

Using SGMM results in reduction in the number of state specific parameters and increase  

in the number of global parameters. Since the global parameters do not depend on a  

specific phone, there is a lot of data available to train the parameters. It is possible to train  

these parameters using out-of-domain data even from other languages as shown in Povey  

et al. (2011a). 

 

3.3.1 Training Procedure 

The training of the SGMM system begins with the traditional HMM-GMM system. First,  

a large GMM consisting of all the gaussians in the HMM-GMM system is built. This is  

typically in the order of tens of thousands. The gaussians are repeatedly merged to get a  

desired number of gaussians with diagonal covariances. These gaussians are trained with  

EM algorithm for full covariance re-estimation. The resulting model is called a Universal  

Background Model (UBM). The UBM can be viewed as a compact model representing all  

kinds of speech from all speakers. This UBM is used to initialize the SGMM model. This  
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is done in such a way that the initial p.d.f. of all states is equal to the UBM. The HMM- 

GMM system provides the Viterbi alignments for the initial SGMM parameter re- 

estimation iterations. Once the SGMM parameters are estimated by EM algorithm to a  

sufficient extent, the SGMM training can be continued with self-alignment (alignments  

from the SGMM itself). 

 

3.3.2 Phones 

The basic linguistic unit that we model is the phoneme or phones. There are around 40  

phones in English language. Using only these gives a very simplistic model. For large  

vocabulary recognition, we need to consider the phones uttered before and after the phone  

in consideration which are called the left and the right context of the phone. This model  

with the left and right contexts is called a triphone model. 

 

There are as many as 40
3
 triphones possible, but many of them are not used in the training  

data. The GMMs used to model the triphones have many parameters to be estimated. We  

require a large amount of data to get a good estimate of the parameters. So, we “tie”  

similar triphones using a decision-tree based top-down clustering approach. The decision  

tree based clustering has been described in detail in Young et al. (1994). At the end of  

such a clustering process, we get a few thousand triphone models. 
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Chapter 4 

 

Transform-based Phone CAT 

 

Phone CAT (Srinivas et al. (2013)) is an acoustic modeling technique inspired from the  

Cluster Adaptive Training (CAT) (Gales (2000)) for rapid speaker adaptation. While the  

CAT adapts a speaker independent model to different clusters of speakers, the Phone  

CAT adapts a Universal Background Model (UBM) to a set of clusters representing the  

phones (monophones). The context-dependent phone (triphones) states are modeled as  

linear weighted interpolations of the phone cluster models, just as in the case of CAT  

where the model means for a speaker are obtained as a linear weighted interpolation of 

 the cluster means corresponding to different speakers. The context information of the  

phone is captured in the form of a linear interpolation weight vector. This technique has 

 many similarities to the SGMM (Povey et al. (2011a)), described in Section 2.4. 

 

This technique exploits the correlations in the acoustic space between the distributions of  

the context dependent phone states and gives a very compact representation using a UBM  

and several MLLR transforms.Section 4.1 briefly describes the model-based Phone CAT  

technique. Section 4.2 introduces the Transform-based Phone CAT model. Sections 4.3  

and 4.4 describe in detail the initialization of the model and the training procedure.  

 

4.1 Model-based Phone CAT 

The model-based Phone CAT consists of a set of P clusters corresponding to the P 

 monophone models. Each cluster p has a cluster-specific mean   
   

 for each Gaussian  

component 1≤ i ≤I Each state j corresponding to a context-dependent HMM state is  

expressed as linear combination of the P cluster means with the interpolation weights    ,  

which is called as the state vector. Thus the mean of the     Gaussian of the      state is  

modeled as follows: 

                                                                             

       
       

          
     is the state vector, and        

      
            

    is the matrix  

obtained by stacking the      mean of all the P phone clusters, where   
 
 is the mean of the  
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    Gaussian of the     cluster. 

 

The Model-based Phone CAT has 2 distinct model sets. At the lower level, there is a set  

of P monophone models. The monophone models cannot model the context. So, at the  

higher level, there are J triphone model states. The Model-based Phone CAT assumes that  

each of these tied states has a strong relation to the P monophone models; that it lies in a  

subspace spanned by the monophone models. (4.1) represents this relation. The  

monophone means    
      

            
  form the basis vectors of this subspace. During the  

training process, both the basis vectors and the interpolation weights are re-estimated;  

with the model in effect learning a better subspace. 

 

4.2 Transform-based Phone CAT 

 

Figure 4.1 Transform-based Phone-CAT model 

 

In the transform-based Phone CAT, the means of the P clusters, corresponding to the P  

monophones (it is a typical mapping, but may not necessarily correspond to P  

monophones), are not specified directly, but as linear transformations of the means of a  

canonical model. In the basic model, there is an MLLR transform,    associated with  

each cluster p. The cluster-specific mean   
 
 for Gaussian component i is specified as: 
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where     is the extended canonical model mean with    being the canonical mean of the  

    Gaussian. The mean for the    Gaussian of the context-dependent state j is expressed  

as a weighted linear interpolation of the cluster-specific means given in (4.2) 

        
      

          
         

 
  

 

 

   

  

     
 
                              

 

   

 

       
       

          
     is the state vector  

The Transform-based Phone CAT model has 3 distinct model sets. At the lowest level,  

there is a compact canonical model representing the average variability of all the speech  

data. At the intermediate level, there is a set of P clusters representing the P phone  

models. These P models are linear transformations, represented by (4.2) , of the canonical  

model. At the highest level, there is a set of J tied states, whose models are obtained as  

linear interpolation of the P models in the clusters. 

 

The transform-based Phone CAT model has a GMM as the generative model in each 

context-dependent state. But the means are not specified directly, but with a mapping  

from the P dimensional state vector    . The covariance matrix    is diagonal and shared  

across all the context-dependent states. The weights are expressed through a subspace  

model similar to the SGMM (2.13). The model can be expressed as: 

           

 

   

                                            

     
       

    

         
    

 
    

                                            

where x is the feature vector, 1    J is the state index of the context-dependent state,  

   is the weight projection vector,    is obtained as in (4.3) and I is the number of  

Gaussian components in the GMM. The number of Gaussians I is typically 400 to 4000.  

In the SGMM, typically a 400 mixture full-covariance matrix is used. Here, since the  

number of global parameters is lower, the number of mixtures can be higher. If the  

weights are modelled directly as rather than using (4.5), the number of parameters in the  

model will be dominated by the weights, which is undesirable.             are global  
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parameters and    is the state specific parameter of the model.  

 

4.3 Training procedure 

The model training starts with a traditional HMM-GMM system. This provides the  

phonetic context information (the decision trees), a set of Gaussian mixtures to build a  

UBM as the canonical model and the Viterbi state alignments for the initial training  

iterations. The model is initialized using these and trained for a few iterations using the  

alignments obtained from the HMM-GMM system. In the next phase of training, the  

 alignments are obtained from the transform-based Phone CAT system itself. 

 

 The state vector parameters   = {  }; 1≤ j ≤ J, canonical model parameters  

M = {{       },{       }} and the subspace parameters S = {{     },{       }} 

 

The training scheme followed is: 

1. Re-estimate the state vector parameters   using {M,S} and the pre-update value of   

2. Re-estimate the subspace parameters S given {*,M} and the pre-update value of S. 

3. Re-estimate the canonical model parameters M given {S,*} and the pre-update value of  

M.. 

4. Go to 2 until convergence. 

5. Go to 1 until convergence. 

 

The pre-update values are used to calculate the Gaussian posteriors. These values are 

usually accumulated in the form of statistics. The structure of the model allows efficient  

pruning of the gaussians that are used for likelihood computation in each frame: only the  

top few gaussians in the UBM that give the highest likelihood for the frame are selected  

and used. The statistics accumulated and the update equations are described in Section  

4.5. 

 

4.4 Model initialization 

First the UBM is trained and it is then used to initialize the transform-based Phone CAT  

model. The UBM is initialized by a bottom-up-clustering algorithm as in the case of  

SGMM (Povey et al. (2011a)). The set of diagonal Gaussians in all the states of the  

HMM-GMM system is clustered to create a mixture of diagonal Gaussians. This mixture  
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of Gaussians is further trained by EM algorithm using all the speech data to get the final  

UBM.  

 

The transform-based Phone CAT model is initialized such that the GMM in each state is 

identical to the UBM. The MLLR transforms are all set to identity matrices with 0 bias so  

that all the cluster-specific means are initially identical to the UBM means. The state  

vectors    is assigned a vector giving a weight 1 to only one cluster depending on a  

mapping function C and 0  to  every other cluster. Therefore the initialization is: 

 

                                  

     
                                     

     
                                     

                                 

                                           

 

Where       is a D X D identity matrix,                             ,  

   is a P dimensional unit vector with the k
th 

 dimension being 1 and other dimensions 0 

 and C:{1,...,J}   {1,...,P} is a mapping from state j to cluster p. If the context-dependent 

 phone has 3 states, the context-dependent states corresponding to each of the 3 states can 

 be mapped to different clusters. If every context-dependent phone has 3 states, then with  

this mapping the model will end up having P = 3K clusters, where K is the number of  

phones.  

 

4.5 Training of the model 

This section describes the accumulation and the update stages of the training of the  

model. 

 

4.5.1 Expectation Maximization (EM) algorithm 

The auxiliary function to be optimized is: 
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where        = P (j, i|t) is the posterior probability of the j
th

 state, i
th

 Gaussian component 

                                     at time t, 

            x (t) is the feature vector at time t 

               and     are expressed according to (4.3) and (4.5). 

The update equations for each of the parameters                 are obtained by  

optimizing Q with respect to the parameter keeping the other parameters fixed. The 

 update equations along with the required accumulations are described in the subsequent  

sections 

 

4.5.2 Cluster transform     ) re-estimation: 

 

4.5.2.1 Diagonal covariance: 

Using Gales(2000) method of re-estimating an entire row of a cluster transform   , 

  
   

   
   

   
   

                                                                 

where 

  
   

  
 

    
   

      
        

   
  

   
  

 

   

   
  

 

   

                  

 

  
   

  
   

   

    
  

      
 

 

   

                                                            

where 

         
   

                             
 

   

                          

         
   

                          
                       

   

 

4.5.2.2  Full covariance: 

The update equations are quite complex and computationally very expensive, making it  

practically infeasible. The equation (4.12) is valid only for diagonal covariance. The re- 

estimation is done using a second order gradient descent approach.  

 

In each iteration, the gradient of the auxiliary function Q is computed w.r.t    
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In each iteration, the second order gradient of the auxiliary function Q is computed w.r.t  

  assuming   
  is diagonal for simplifying computations: 

 

   

   
    

        
  

    

    
   

     
 

 

   

                                            

 

The equation for the 2
nd

 order gradient descent estimation of Wp is: 

 

   
   

   
   

    
   

   
    

 

  
  

   
                                        

 

where   
   

is the k
th 

row of Wp,   is a learning rate. 

The change in the auxiliary function Q is computed: 

 

                
                 

        

     

               

If    is positive, we move on to the next iteration. Else, the learning rate is halved and  

  
   

 is reset to its original value and    
   

 is computed again. The auxiliary function is  

tested again for increase and the process is repeated until an increase is observed or until a  

limiting learning rate value is reached.   

 

In the next iteration, the gradients and second gradients are computed again using the new  

updated value of   
   

  After completing the estimation of one MLLR transform   
   

,  

the next transform     
   

 is estimated with (4.17) and (4.18) using the update value for  

  
   

. 

 

4.5.3 Estimation of State Vectors 

Making several approximations, as in Povey (2009), a closed-form expression for the  
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update of vj obtained is: 

     
                                                                     

where the accumulates   
          are given by 

 

                                       
    

 

   

             

                           
   

 

   

                   

Where      
   

                                                                                   

 

             
   

                                                                         

 

                                                                                                    

 

                                                                                                       

 

                                                                                            

 

4.5.4 Estimation of Canonical model parameters 

The update equations for the mean and covariance of the i
th

 Gaussian component are: 

 

          
   

 

   

  
     

 

   

 

  

    
   

     
         

   

 

   

   

 

   

                    

 

        
         

     
          

    
     

   
  

     
   

 
   

     
                   

 

where    and    are the first D columns and the (D + 1)th column of             

  
   

      

  
   

is the p
th 

row of statistics (4.16) ,  



29 
 

                    
                                

   

 

 

4.5.5 Estimation of weight projections 

It is an iterative process with the following being computed every iteration: 

 

  
   

   
     

   
       

   
                          

  
   

                
          

 

 

   

            

  
   

            
        

 

                         

where       represents the value at the n
th

 iteration. This is done similar to the way it is  

mentioned in SGMM (Dan Povey et al. (2011a)) 
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Chapter 5 

 

5.1 Approaches to optimize the Transform-based Phone-CAT algorithm 

                      

Time taken by the different sections of the training phase: 

Timit Database is used for the following experiments. 

 

Totally, there are 20 training passes and during each pass, cluster transforms are updated  

at the most 3 times (Full covariance matrices are used). 

 

During every training pass, training of the below-mentioned parameters approximately  

takes the following time : 

 

 

Table 5.1 showing the time consumed by the different parts of the training process of  

phone-CAT algorithm  

 

It is observed that the rate determining portion of the algorithm is the re-estimation of the  

cluster transforms. 

 

There are two main areas where this time is being spent: 

1. The Gradient-Ascent method, which is used in the estimation of Wp, runs 3 * 40 (3  

times for every cluster per re-estimation) * 20 (re-estimations) = 2400 times. 

2. Computation of  
   

   
     

  
  

   
  

 

Part of the training process  Time (in seconds) 

state vectors (v)           15 

Cluster transforms (W) 150  

Weight vector (w)                 20 

Canonical parameters (µ,Σ) 30 

Computing posteriors and    

statistics for the next training pass 

150 
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Approach 1: 

The 2nd order gradient descent being used has a lot of computations (calculating inverse  

of the second differential of the Q function) though it converges faster. Instead, the  

learning rate can be updated after every iteration. The basic idea is that once the direction  

is found out, if there is a small increase, move faster (increase the step size optimally) and  

if there is a decrease by even a small quantity, reset to the pre-update value and reduce the  

learning rate. 

 

When there is a decrease in Q, the algorithm is already resetting to the pre-update value  

and halving the learning rate. We need to ensure that we don’t cross the point of optimum 

 when we increase the learning rate. A suitable increase in the learning rate will get the  

cluster transform closer to the optimum value as we are already limiting the number of  

iterations of gradient descent algorithm to 3. This will either give an improved  

performance of the system (if # cluster transform iter = 3) or will make it approach the  

optimal point faster (if the # cluster transform iterations isn’t limited to a value). 

 

Approach 2: 

Re-estimation equation for    can be simplified in a way that we compute a particular  

D x D matrix and use it twice in every re-estimation process. This is different to the  

method in use where sufficient statistics are accumulated before every re-estimation.  

 

This is how     can be simplified: 

 

              
   

   
  

  

    

     
   

 

              
   

   
  

  

    

           
   

 

    

 

where      

          
   

   
  

  

    

 

 

 is used twice but    is computed differently in the present algorithm as seen before. But  

the disadvantage of this approach is that this simplification is specific to the parameter in  
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hand   . Other parameter’s re-estimation equations do not have terms from this equation  

repeating. 

 

5.2 Investigating the performances of the various statistical models for speech  

            Recognition 

Timit corpus of read speech contains broadband recordings of 630 speakers of eight major 

dialects of American english, each reading ten phonetically rich sentences. 

 

Experiment Word Error Rate % 

CDHMM   monophone    (15000 
Gaussians) 

34.65 [2500/7215, 133 ins, 945 del, 1422 sub] 

 CDHMM  Triphone          (15000 
Gaussians, 2500 Tied states) 

30.48 [2199/7215, 264 ins, 650 del, 1285 sub] 

CDHMM   LDA + MLLT     (15000 
Gaussians, 2500 Tied states) 

27.80 [2006/7215, 296 ins, 534 del, 1176 sub] 

CDHMM   LDA + MLLT + SAT    
(15000 Gaussians, 2500 Tied                                                                                       
states) 

25.43 [1835/7215, 271 ins, 502 del, 1062 sub] 

SGMM (Triphone, 700 Tied 
states, 400 mixture UBM) 

26.60 [1919/7215, 232 ins, 539 del, 1098 sub] 

SGMM (LDA + MLLT, 700 Tied 
states, 400 mixture UBM) 

26.03 [1878/7215, 190 ins, 587 del, 1101 sub] 

SGMM (LDA + MLLT + SAT, 700 
Tied states, 400 mixture UBM) 

23.56 [1700/7215, 211 ins, 525 del, 964 sub] 

Transform based Phone-CAT  
(Triphone, 2500 Tied-states, 400 
mixture UBM, 39 clusters, Full 
covariance) 

26.99 [1947/7215, 202 ins, 617 del, 1128 sub] 

Transform based Phone-CAT  
(LDA + MLLT, 2500 Tied-states, 400 
mixture UBM, 39 clusters, Full 
covariance) 

26.07 [1881/7215, 225 ins, 568 del, 1088 sub] 

Transform based Phone-CAT  
(LDA + MLLT + SAT, 2500 Tied-states, 
400 mixture UBM, 39 clusters, Full 
covariance) 

23.94 [1727/7215, 201 ins, 529 del, 997 sub] 

Table 5.2 showing the performances of the various statistical models in speech  

                recognition 
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Baseline CDHMM is the conventional speech recognition system. It is used to initialize 

the SGMM and Transform-based Phone-CAT systems.  

Observations: 

 CDHMM system monophone model as expected gives a poor WER but with 

triphone models built and with LDA, MLLT and SAT, WER improves 

considerably. 

 SGMM and Phone CAT systems also show improvement with the triphone 

models. 

 Though SGMM full covariance outperforms the Transform-based phoneCAT 

full covariance result, the number of global parameters used in phoneCAT is 

lesser compared to that in SGMM. 
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CONCLUSIONS AND FUTURE WORK 

 

 We conducted experiments to compare and investigate the performances of the 

various speech recognition systems, namely, the CDHMM, the SGMM and the 

Transform-based Phone-CAT systems. 

 

 We observed that the rate-determining step of the phone CAT algorithm is the re-

estimation process of the cluster transform( Wp ) (2
nd

 order gradient descent along 

with the  
   

   
     

  
  

   
 computation. 

 

 Can look at a computationally efficient, feasible and a less complex alternative for 

the cluster transform estimation. 
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