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ABSTRACT

KEYWORDS: MIMO:; Spatial Multiplexing; GTD; GMD; Bit Loading; Precoder;

Codebook Selection;Grassman Codebook

Many current wireless technologies, including 3G and 4G standards, use MIMO Spatial
Multiplexing to achieve higher data rates. In this report MIMO Transceiver algorithms
involving Generalized triangular decomposition (GTD), Geometric Mean Decomposi-
tion (GMD) and Singular Value Decomposition (SVD) are studied under limited feed-
back scenarios using the LTE precoder codebooks and Grassman codebooks. Key re-
sults of the thesis include optimal bit allocation under limited feedback and analysis
of noise conditioning by precoding. A sub-optimal codebook size reduction algorithm
is also introduced to achieve flexible codebook sizes and reducing computational com-
plexity, it is shown that sub-optimal reduction often leads to only a marginal degradation
in BER. This codebook reduction maybe used in good channel conditions to save valu-
able feedback bits and computation. Also the possibility of channel estimation errors

being masked by the precoder quantization is studied.
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CHAPTER 1

Introduction

Wireless communication poses multiple impairments and challenges caused by additive
noise, fading and Doppler effects. In the quest to achieve better performance and near
Shannon capacity various methods such as error control codes have been used by wire-
less technologies(Goldsmith (2005)). Multiple transmit or receive antennas have been
used to achieve diversity gain. MIMO allows for the use of multiple transmit and receive
antennas in wireless communication systems. Use of multiple antennas allows for the
utilization of the array gain, spatial diversity, spatial multiplexing gain, co-operative di-
versity gain, beamforming etc(Mietzner et al. (2009)) provides a comprehensive survey
of MIMO applcations. MIMO systems are widely in use in most of the current wire-
less standards, including IEEE 802.11n, 3GPP LTE and WiMax ,either with the aim of
reducing the bit error rate using spatial diversity or to increase the rate of transmission
using spatial multiplexing or combination of both. While there are many MIMO modes
in practice (the MIMO modes utilised by LTE are mentioned in Appendix A), in this
thesis we are looking at possible improvements in the spatial multiplexing mode. This
report includes the analysis on spatial multiplexing and provides some interesting and

novel properties.

1.1 MIMO Spatial Multiplexing

Spatial multiplexing is the technique using MIMO wireless transmission to transmit
multiple signals in parallel. If there are N, receive antennas and /V; transmit antennas
then a maximum of N = min(N,, N;) signals can be transmitted without any additional
use of power. Each of these independent signals are refered to as data streams. The
proof for the N fold increase in capacity was provided by (Telatar (1999)).The NV fold
increase in spectral efficiency is usually limited by the spatial correlation between the

antennas and by incomplete Channel State Information(CSI).



1.1.1 Open-Loop Spatial Multiplexing

In case of open-loop spatial multiplexing, the transmitter operates with no information
about the channel state. In open loop systems, the channel information may or may not
be available at the receiver. If the channel information is not available then open loop
systems are in general affected by high channel correlation. However, if the channel
information is present at the receiver then the antenna correlation may be removed.
The most straight forward method would be a direct channel inversion, but for reasons
discussed later this does not yield desirable results and is usually avoided. Some open
loop systems such as the QR decomposition based methods can be robust (Wolniansky

et al. (1998)).

1.1.2 Closed-Loop Spatial Multiplexing

Closed-loop spatial multiplexing mode allows for feedback from the receiver to the
transmitter. Thus, the transmitter may have complete or partial knowledge of the chan-
nel state. The channel state information can be used to overcome the channel correlation
and help in achieving simpler receiver architectures. The prefered closed loop system is
a linear TRx based on the SVD of the channel matrix (Goldsmith (2005), also discussed
in Chapter 2). Though there has been a lot of recent research on maximizing the util-
ity of MIMO (Mietzner et al. (2009)), there is still scope for improvement in practical
MIMO systems.

1.2 Motivation

An interesting transceiver design based on a matrix decomposition known as Gener-
alised Triangular Decomposition, was introduced by Jiang et al. (2008). The GTD
family of transceivers were shown to be optimal by Weng et al. (2010). This project
was started in an attempt to extend the results on GTD TRxs to scenarios accounting
for some practical constraints. In this report, we shall be looking at closed loop spatial
multiplexing scenarios with limited feedback, performance when channel estimation

error is accounted for and try to obtain a bit allocation formula for the limited feedback.



In the course of the project, various interesting observations were made and these
have led to the analysis of precoder matrices and we have obtained some insights into
conditioning of noise by precoders. This thesis studies the optimal Grassman subspace
packing introduced by Love and Heath (2005) and we arrived at a low complexity code-

book size reduction algorithm which has provided some novel observations.

1.3 Organization of Thesis

This thesis is organized as follows - in Chapter 2, the common closed-loop spatial mul-
tiplexing systems are reviewed. These systems are studied by means of matlab simu-
lations and analysis of BER vs SNR plots, which are presented in Chapter 3. Limited
feedback systems are reviewed in Chapter 4. In Chapter 5, simulations and analysis
of limited feedback systems are provided. Also, a sub-optimal precoder codebook re-
duction algorithm is discussed and some interesting simulation results are analysed in
Chapter 5. Chapter 6 includes the study of masking the channel estimation errors by
the quantization noise. Finally, Chapter 7 holds the conclusion and possible problems

for future study.



CHAPTER 2

Closed Loop MIMO Systems

As discussed in 1.1.2, closed-loop systems allow for feedback from the receiver to the
transmitter. The type of feedback may vary depending the design of the transceiver.
Some commonly used MIMO transceiver designs make use of matrix decompositions
such as SVD, GMD or QR (SVD is the most prevalent), of these SVD and GMD type
transceivers require the transmitter to know the precoder matrix which has to be fed-
back from the receiver. In addition to the precoder information, the optimal rate of
transmission/ bit allocation is also fedback. In LTE, this is referred to as the Channel
Quality information (CQI). The following sections will review some common closed
loop MIMO transceiver designs. For illustration purpose let us adopt the following

system model.

2.1 System Model

Suppose the transmitted symbol vector is represented by s and the channel matrix is H,
where H is a V,, X N; complex matrix, s is /V; X 1 vector, then the recieved vector y is

given by

y=Hs+n

where n is the noise vector. We shall assume that the noise vector consists of 1.i.d

random variables and each being AWGN.

2.2 Singular Value Decomposition (SYD) in MIMO

The channel matrix H, can be decomposed using SVD as follows,



H = QRPH

where QQ and P are unitary matrices, while R is the singular value matrix, which is
diagonal with R;; = o0;, 1 = 1,2,..N. where o; represent the singular values of H and

N = min(N,, Ny).

Since the transmitter has perfect channel state information, the matrix P is used
as the precoder matrix on the symbol vector(s) before transmission and a gain matrix,
R'QY, is used on the receiver side. Then the received symbol vector(y) would be

given by

y = RT'QTHPs+R'Q"n
= R7'Rs+R'Q'n

= s+ R_lQHn

since, Q! is a unitary matrix, QHn is still a vector of zero mean normal random
variables with covariance QC,Q!, where the covariance of n is C, = 07211, o, being

a scalar. Thus, the covariance of the transformed noise (Qn) is given by,

QC,.Q" =2QIQ" = 721

Therefore, each stream may now be treated independently as N streams in parallel
each with SNR scaled by ﬁ Since the SVD transceiver design involves only linear

transformations, it is a linear transceiver.

Figure 2.1: Block Diagram of SVD based MIMO Transceiver

R1Q"HPs+R1Q"n




2.3 QR Decomposition

Another commonly known decomposition is the QR decomposition, according to which

a square matrix A maybe decomposed as

A=QR

where, Q is unitiary while R is upper triangular. However, if A is rectangular m xn,
with m > n , then it can be decomposed into a product of a m x m unitary matrix Q,

and m X n upper triangular matrix R.

A QR type MIMO transceiver uses an identity precoder matrix and multiplies the
received vector by a gain matrix (diag([Ryxn]) " QH, the vector(y) at the demodulator

is given by,

y = (diag([Rynxn]) "Q"Hs + (diag([Rnxn]) ' QMn

= (diag([RNxN])_le + (diag([RNxN])_lQHn

where (diag([Ryxn]) 'R is upper triangular with the diagonal elements equal to
unity. If a feedback matrix B is chosen such that (diag([Ryxn])'R-B = I, then

processed vector after the feedback step is given as

y=y— BS§

where § is decision output from the demodulator. Under high SNR values it is fair

to assume that S = s. Thus,

Vv=s+ (dz’ag([RNxN])’lQHn



Figure 2.2: Block Diagram of QR based MIMO Transceiver

Bs

2.4 Generalized Triangular Decomposition (GTD)

Multiplicative Majorization: Given vectors [a;, &y, ..a,] and by, be, ..b,] with a; and
b, being positive for 7 = 1,..n. Then a is said to be multiplicatively majorized by b,

a=<yb,if

[Tan <]]vu
=1 =1

where [i] denotes the element of the vector with the i-th biggest component.

If H is a rank K, m x n matrix, with singular values o1, 05.., 0 and let r be a vector

satisfying,
a<yh
where a =[|r1], |r2|, .., |[rk|] and h = [01, 09, .., 0k ]. Then there exist R, P and Q such
that
H = QrRPY

where Q, P are unitary while R is an upper triangular matrix (Weng et al. (2010)).
This decomposition is referred to as GTD since decompositions such as SVD, GMD,

QR etc. are specific cases of GTD.



Figure 2.3: Block Diagram of GTD based MIMO Transceiver
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2.5 GTD-based MIMO system

A transceiver design based on GTD was proposed in Jiang et al. (2008). The structure is
similar to the QR DFE type transceiver, however, the GTD transciever uses a precoder
matrix on the transmitter side. The advantage of a unitary precoder transformation was

explained in the section-2.2, this holds for GTD (hence in QR and GMD) as well.

Suppose the channel matrix can be decomposed as per the Generalised Triangular
Decomposition explained above. Then the antenna correlation can be eliminated by us-
ing a DFE type transceiver. The transceiver would use precoder matrix P , a gain matrix
G =(diag([Rnxn]) 1) QM on the receiver side and feedback matrix B(= GHP —I).
The vector y prior to the feedback step and y after the feedback step would be as fol-

lows,

y = (diag([Rxxn]) 'Q"HPs + (diag([Rnxn]) ' Q™
= (diag([RNxN])_le + (diag([RNxN])_lQHn

y=y—BS§
where § is decision, under high SNR values it is fair to assume that § = s. Thus,

¥ = s+ (diag([Rnxn]) ' Q%n

QR, GMD and SVD are specific cases of GTD.In H = QRPY ifPissetto I, then
we obtain QR decomposition, if R is constrained to be diagonal then it will result in

SVD, and if the diagonal elements of R are constrained to be equal then we have GMD.



The advantage with GMD is that there is no need for bit allocation or power allocation
as each channel is equivalent. Jiang et al. (2005a) introduced the GMD based MIMO
transceiver, it is similar to the GTD based transceiver. Though GMD is simpler than
GTD, Jiang et al. (2005b) showed that GMD based TRx can achieve near capacity

performance.

2.6 Bit Allocation

The other information that is usually fedback is the number of bits to be allocated to
each stream. It is intuitive that to improve performance, greater number of bits should
be transmitted across a channel with high SNR compared to a channel with low SNR.
The concept of bit allocation is based on the above principle. It has been shown that
the optimal bit loading formula for a linear transceiver that achieves minimum transmit
power while ensuring a certain performance criteria (Lin and Phoong (2001)) is given
by
b = D — log, ¢, + logy(07)

where, by, is the number of bits to be loaded onto the k" stream, o}, is the k" sin-
gular value of the channel matrix (H), ¢, = %(Q*l(J‘D‘zT(k)))2 and P,(k) is the max.
probability of error allowed on the k" stream. D is a scalar constant chosen such that
> w_1bx = b, where b is a constant representing the total number of bits that is to be
allocated between the n streams. A similar result for the GTD transceiver has been

derived in Weng et al. (2010) and is given by

by = D —log, ci, + 1Og2([RkkJ2)

The b, value is obtained without any integer constraint, however, since GTD is not
an unique decomposition, Ry in the GTD case can be chosen in such a way that by is
an integer. Hence, the performance of the GTD transceiver is expected to be marginally
better than the linear transceivers. Weng et al. (2010) also showed that the GTD family

of transceivers lead to optimal BER performance under power constraints.

Interestingly, the power (P, ..Py) allocated to each of the streams in the optimal



transceiver is equal and given by,

P, =2"

This is significant because equal power allocation is desired for the power amplifiers

at the transmitter.
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CHAPTER 3

Performance Evaluation - Ideal Feedback

For the purpose of analysis it is common to assume complete CSIT or ideal feedback.
In the following simulations, perfect feedback is assumed. The BER vs SNR curves are

presented along with the analysis and inferences drawn from them.

3.1 Simulation setting and assumptions

We assume a 4 x 4 channel (4 transmitting and 4 receiving antennas), with each el-
ement of the channel matrix following rayleigh statistics (complex gaussian). Also,
the simulations are performed under assumption of complete CSIT. The symbol vector
comprises of symbols from square QAMs if the number of bits is even or else rectangu-
lar QAMs are used. If the number of bits allocated to the k" stream (bAk) is 2n+1, then
the symbol is chosen from a 2" x 2("*1) QAM. For the sake of simplicity the noise is
taken to be complex gaussian with unit variance (N (0, 1)), we assume that the channel
does not cause any dispersion, thus, the pulse shaping step is skipped as it will not lead
to any change in the simulation result. The number of bits (b;) allocated to each stream
is obtained by rounding the value obtained from the bit allocation formula (b) , thus,
on average » ,;_, by = > r—; br, hence, this would be a fair comparison between GTD
and the other transceiver designs. The total number of bits b = > "', by, is constrained
and the total power used for transmission is also constrained. Each block has 10 sets
of symbol vectors to be transmitted and the BER is averaged over 1000 such blocks.
Since the noise is Gaussian, a shortest euclidean distance decoder is used to decode

each stream at the receiver.



Figure 3.1: BER vs SNR, Comparison between ideal SVD, QR, GTD and GMD. Each
stream consists of symbols from 16-QAM (no bit allocation)

BER vs SONR comparison between ideal SVD QR GTD GMD 16-QAM on all streams(no bit allocatio
10 T T T T T T T
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9 : ——GTD
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=1 —*— SVD ||

BER

10 11 12 13 14 15 16 17 18
SNR(dB)

Going back to the bit allocation formula in section 2.6, we see that for the same
maximum allowed probability of error (P.(k)) for each stream (meaning ¢, = const)
the bits (by) allocated to each stream is a function of the corresponding diagonal element
(Rxk). Given that GMD leads to equal diagonal elements in R, equal bit allocation
represents the optimal scheme for the GMD-TRx. Hence, with equal bits allocated
to each stream, we expect GMD to outperform the rest of the methods as verified in
figure(3.1). Interestingly, with equal bit allocation, QR is performing better than SVD.

Thus, bit-loading is somehow having a higher impact on SVD than on QR.

As seen in figure(3.2), the schemes perform close to the optimal GTD scheme when
the bit allocation formula is used, though QR and SVD based TRx are expected to be

slightly sub-optimal due to the rounding of the bits to be allocated.

We obtain similar results (Figure 3.3 and Figure 3.4) when fewer bits (8 bits) trans-
mitted. However, it is observed that the relative degradation with equal bit allocation is

much higher when fewer bits are used.

12



Figure 3.2: BER vs SNR, Comparison between ideal SVD, QR, GTD and GMD. Bits
were allocated to each stream using the optimal bit allocation formula

BERovs SNR comparison between ideal SVD QR GTD GMD with bit allocation total Bits = 16
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Figure 3.3: BER vs SNR, Comparison between ideal SVD, QR, GTD and GMD, with
equal number of bits allocated for each stream (QPSK on all streams,b = 8)
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Figure 3.4: BER vs SNR,Comparison between ideal SVD, QR, GTD and GMD, b = 8
Bits allocated using the optimal bit allocation formula

BEF%vs SNR comparison between ideal SVD QR GTD GMD with bit allocation total Bits = 8
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3.1.1 Effect of estimation error on BER

Perfect channel estimation was assumed in the previous simulations, however, it is im-
possible to achieve such a perfect channel estimate. Thus, inorder to measure the perfor-
mance of these MIMO Trx designs under more practical conditions, we need to account
for channel estimation errors (AH). Thus, if the channel estimate is given by H then

the actual channel would have been H + AH.

The conventional method to account for channel estimation errors is perturbation of
the channel coefficients by addition of noise. In the following simulation, estimation
error was introduced by addition of a random matrix (—AH = h) to H, with each

element of h from A(0,0.1).

It is obvious that the channel estimation errors will lead to poorer performance of

the MIMO and the following results verify the same.

14



Figure 3.5: BER vs SNR, Comparison between ideal SVD, QR, GTD and GMD in
the presence of channel estimation errors (h;; from N(0,0.1)) with equal
number of bits allocated on each stream (16-QAM on all streams, b = 16)

0 Total 16 bits(4 on each stream;no bit allocation), estimation error: 0.1
10 T T T T T T

—6— GMD
——GTD
—+—QR

g —*— SVD

10 11 12 13 14 15 16 17 18

Figure 3.6: BER vs SNR, Comparison between ideal SVD, QR, GTD and GMD in the
presence of channel estimation errors (h;; from N(0,0.1)) with b = 16 bits
allocated using the optimal bit allocation formula

Total Bits=16, Estimation Error: 0.1, With bit allocation
10 T T T T T

—6&— GMD

BER
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SNR(dB)

It is observed from Fig-3.5 and Fig-3.6 that even with a small perturbation (A(0,0.1)),
the advantage in bit allocation is lost to a large extent. In this particular case the QR
receiver achieves 1072 compared to 10~ at 18dB SNR. Thus, there is lesser incentive

to compute the bit allocation scheme if the channel estimation is not accurate.
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CHAPTER 4

Limited Feedback Systems

If perfect channel information is known at the transmitter, then the methods discussed in
Chapter 2 can be used for designing the transceiver. However, this would not be feasible
in practical applications as only a few bits can be fedback. In these scenarios, a pre-
determined codebook is used. A codebook is a finite collection of precoder matrices.
The receiver sends the precoder index and the transmitter chooses the corresponding
precoder matrix from the finite set. Now there are 2 questions, how is the codebook

designed and how does the receiver decide the precoder matrix.

4.1 Codebook Design Criteria and Precoder selection

4.1.1 Grassman Subspace Packing

If U(M;, M) represents the set of all M; x M matrices with orthonormal columns,
then each matrix in U (M;, M) represents an M-dimensional subspace of CM. The set of
subspaces spanned by all the matrices in U (M;, M) is refered to as the grassman man-
ifold G(M;, M). Finding N (> 1) matrices in U(M;, M) that maximize the minimum
subspace distance is called as Grassmanian subspace packing. The distance measures
commonly used for distance between subspaces are 1. Chordal Distance, 2. Fubini-

Study distance and 3.Projection 2-norm

M
1
denora(F1, Fa) = —5|[F1F] — FaFyl[ = | M = 3 XH{F{F2}
=1

drs(F1,F3) = arccos | det(FiF2)|

Qyro(F1. Fa) = [[F1F; — FoF3ly = /1 - A2, {F{Fa}

min



Love and Heath (2005) showed that depending on the selection criteria the grassman
packing with a certain distance measure leads to the optimal codebook design. Since,
we require the minimization of BER, we shall use the projection 2-norm as precribed

by Love and Heath (2005).

4.1.2 MIMO in LTE

In LTE, feedback for the MIMO transmitter include Channel Quality Information (CQI),
Precoder Matrix information (PMI) and Rank Index (RI). The feedback might be wide-
band CSI or frequency selective. Rl is a single value of 2 bits for a 4 antenna system
and 1 bit for a 2 antenna system. It represents the rank of the channel matrix, which is
also the number of streams that can be efficiently transmitted with spatial multiplexing.
PMI is computed by the receiver and is a number that maps to a precoder in the LTE
codebook. The calculation of PMI value (0 to 3 for 2 antenna systems and O to 15 for 4
antenna systems) is conditioned on the RI value. CQI takes 16 values which represent
a combination of modulation alphabets and code rates. Since CQI is indicative of the
maximum rate of transmission that will satisty BLER<10%, it represents the effective
SNR of the system, hence it is obtained by mapping a vector of SNR values (correspond-
ing to the multiple streams) to a single SNR value. The common mapping schemes are
EESM and MIESM (Schwarz et al. (2010)). The computation of these feedback bits

might follow algorithms similar to the one below (Frenger-EricsonResearch (2009)).

Algorithm 1 CSI COMPUTATION IN LTE

1. for each RI do
(a) for each PMI do

1. compute SINR per layer
ii. SINRs -> predicted throughput

2. Select RI,PMI combination that leads to maximum throughput

3. Given the selected RI and PMI
(a) Find the CQI (the modulation scheme and coding) that leads to a BLER <
10% with highest data rate.
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LTE Codebook

LTE supports transmission of 2 or 4 codewords at a time. However, depending on the

channel rank LTE supports 1 to 4 layers.

Table 4.1: 4 Tx LTE precoder codebook

Code- u; 1 2 3 4
-book

Index

0 L-1-1-1]" wit | witve | wit s | wiiE
! 1 -j -1 Wit Wi Ve | Wi VB wiE
: 1111 Wi | Wi e | Wi VE | W
3 i1 " Wit | WitV | W VB | w2
4 L(=1—7)/V2 =5 (L =j)/Va" | Wi | Wi va | wit ) vs | wit s
5 1(1=4)/V2 —j(=1=5)/v2" | Wit | w2 | w3 | wit o
6 1 +0)/V2 =5 (=1+43)/V27 | W | W Ve | Wit s | wit®d s
7 VE =G VT W W VR W | w2
i Lty W WV W | W
° 1 —j -1 -1 Wy | W Ve WtV | W
0 Lt —1" Wi | WiV | Wi VB Wi
1 [1j —17] wit | wh*va | wibt/z | w2
12 [1 -1 _11]T WE} WEQ}/\@ Wgzs}/\/g W{1234}/2
13 1 —-11-1)7 wil  wis s | wil g | wils g
14 11 -1 -1 wi | wiPve | wis s | wiit o
b 111t Wil | Wit )va | wiiE s | wiE

Where VVZ»{C“CQ"C"L} is the matrix defined by the columns ¢y, cs..c,, of matrix W , where

W; is the house holder transform on u; , Wi = I4, 4 —2ujuf! /uflu;.
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Table 4.2: 2 Tx Precoder Codebook

Codebook index 1 layer 2 layer
1
0 L -
V2l
| 4 1 1 1 1
R I I e I |
1 1 1
1 1
2 7 3|
J J —J
1
1
3 v A -
—J

4.2 Selection of Precoder

Given a codebook, we may choose the precoder based on the following selection cri-
teria: 1.precoder that minimizes the theoretical probability of error, 2.precoder that
maximizes the mutual information or 3. Simply quantize the ideal precoder matrix to

the closest one in the codebook, for which a matrix norm has to be adopted.

With ideal feedback (Love and Heath (2005)) shows that the SVD precoder is opti-

mal under selection criteria 1 and 2.
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CHAPTER 5

Performance Evaluation - Limited Feedback

Figure 5.1: BER vs SNR, Comparison between Limited feedback (Grassman codebook
with 256 precoders) SVD and ideal SVD based MIMO TRx, using a 5x4
MIMO system with only QPSK symbols on each stream

BER vs SNR, MIMO 5x4, using gain = QH

10 T T T T T T T T T
—%— SVD-limited feedback
—6—SVD

BER

6 7 8 9 10 11 12 13 14 15 16
SNR(dB)

The grassman codebook used for the following simulations were obtained from (Grass-
man Tables by D.Love). If we view the limited feedback SVD merely as quantization
of the optimal precoder and implement the receiver design as in case of the perfect
feedback, we observe very poor results. The quantization noise is very high as the BER

values floor at a low f/_g value.

If we take the quantized precoder to be P + AP then the received symbol vector is

y = RTIQUH(P + AP)s + Qn
= R'QUQRPH(P + AP)s + Q%n
= PHPs+PHAPs+ QPn

= s+ PHAPs+R'Qn



The quantization noise (P APs), which in this particular case is causing the BER

curve to floor at 12dB, increases as the signal strength increases.

5.1 Modified Linear Receiver - Channel Inversion

Instead of using the receiver gain of R™'Q as in the perfect feedback case, we now

try to perform a channel inversion, i.e. use (HP)™! .

G = (HP)!

= (QRPHP) -1

y = GHP's+Gn

= s+ (HP) 'n

Figure 5.2: BER vs SNR, Comparison between ideal SVD and modified limited feed-
back linear TRx (Grassman codebook with 256 precoders) using a 5x4
MIMO system with only QPSK symbols on each stream

BER vs SNR,MIMO 5x4, using Gain = (HP)™
10 T T T T T T T T T

—*— SVD-limited feedback
4 —6— SVD

BER

Il Il Il L Il Il Il Il Il
6 7 8 9 10 1 12 13 14 15 16
SNR(dB)

Here the channel inversion may lead to noise enhancement and noise charachteris-
tics are completely changed. However, the quantization noise that was degrading the

performance is no longer present. Most importantly this system is almost able to match
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the SVD TRx with ideal feedback. In Chapter 2, it was mentioned that the advantage
of SVD was in the unitary transformation, thus, unless there is an advantage that the

precoder provides, the modified method is similar to direct channel inversion.

Figure 5.3: BER vs SNR, Comparison between Direct Channel Inversion and Inversion
after the use of Precoder

BER vs SNR, MIMO 5x4

10 T T T T T T T T
—%— SVD-with limited feedback precoder
g —6— SVD-without precoder
107 F 1
i
[Nl ]
o0
107F 1
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6 7 8 9 10 11 12 13 14 15 16
SNR(dB)

From the plot it can be seen that the precoder is effective as it leads to a much better
performance, though the receiver is inverting the channel in both cases. When the
precoder is an identity matrix or when no precoder is used, the received vector would

be given by

y=s+Hn

as against

y=s+(P)"H 'n

with the use of a precoder.

The effective SNR value remains the same in both cases, however, the precoder is

causing some conditioning of noise.
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5.2 Why does inversion work?

The received symbol vector after channel inversion would be the following.

y=s+H'n (5.1)

y =s+PHH n (5.2)

(1) represents the case with no precoder and (2) is with the precoder.

Since the demodulation algorithm at the receiver is treating each stream indepen-
dently, the noise variance determines the BER of the corresponding stream. In the
following simulations, the noise vector(n) is treated as 4 distinct noise random vari-
ables. The following plot represents the frequency of occurrence of the noise samples,

which in turn is a scaled version of the marginal pdf itself.

Figure 5.4: Impact of (limited feedback) precoder on Noise. Plot of frequency of oc-
curence of noise samples(scaled pdf)

x 10* Precoder impact on Noise
75 T T T T T T T T T
7t ]
« 6.5 ]
el
o
[0}
£ 6f J
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=
8 55 ]
C
[0)
3
:‘,— 5r layer—1 w.o. Precoder 1
% layer-1 w Precoder
S 451 —*— layer-2 w.o. Precoder 4
> —*— layer-2 w Precoder
2 4l —H— layer-3 w.o. Precoder ]
—+— layer-3 w Precoder
—+— layer—4 w.o. Precoder
3.5r —+— layer-4 w Precoder )

3 i i i i i i i i i
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Noise

Since n is a vector with uncorrelated normal random variables, H"'n and PHH n
both represent gaussian distributions. The peak of the gaussian obtained with precoder
is greater than the peak obtained by direct inversion. Since the peak is inversely propor-
tional to the variance, it is clear that inversion without the precoder leads to noise with

higher variance.
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A similar simulation with SVD precoder (perfect feedback case) provides a veri-
fiable result. The sum of noise powers are verified to be equal with and without the
unitary precoder. In the SVD case, the noise variance is ordered (ascending) from
layer-1 to layer-4. This is because of the convention of ordering singular values along

the diagonal matrix (o1 > 09 > 03...).

Figure 5.5: Impact of Ideal SVD on Noise.Plot of frequency of occurence of noise sam-

ples(scaled pdf)
x10* Impact of precoder(SVD) on noise
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5.3 GMD in limited feedback systems

Figure 5.6: BER vs SNR, Comparison between GMD based and linear receiver under
limited feedback with equal bit allocation on each stream

BER vs SNR comparison between GTD-limited—feedback and SVD-limited—feedback

0 with 16—-QAM on all streams(no bit allocation)

T T T
—*— SVD-limited feedback
—6— GMD-limited feedback

10 11 12 13 14 15 16 17 18
SNR(dB)

Adapting the modified SVD TRx to the GMD system, we achieve very poor results, the

precoder matrix that is optimal for SVD is no longer optimal with GMD.

H = QRPT
GHF's + Gn

<
I

= (diag(R))"'R(HF) "'
y = (diag(R))"'Rs + Gn

Optimal DFE MIMO with limited feedback

We achieve better results following the model proposed in (Shenouda and Davidson,
2007). This model is the optimal limited feedback MIMO system. It can be seen from
the following plot that the optimal limited feedback system is able to match the perfor-
mance of the perfect feedback system. Since the diagonal elements of the triangular
matrix are equal, the optimal DFE TRx may be considered as a variant of the GMD

TRx.
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Figure 5.7: BER vs SNR, Comparison between optimal DFE type MIMO-5 x4 TRx and
Linear MIMO-5 x4 TRx under limited feedback using Grassman Codebook

MIMO 5x4, Limited feedback using Grassman Precoder
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Figure 5.8: BER vs SNR, Impact of bit allocation on limited feedback systems

Effect of Bit allocation(B.A) on Limited feedback systems
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Interestingly, the bit allocation rule is no longer effective under limited feedback.

Infact it degrades the performance of the limited feedback system.
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5.4 Impact of bit allocation on systems with channel es-

timation error

One possible explanation to the degradation of BER performance with bit allocation
is that under limited feedback is the uncertainty introduced by the quantization of pre-
coder. If this is the case, similar behaviour has to be observed when channel estima-
tion error is accounted for. It is seen from the following plots that the bit allocation
scheme derived from the channel estimate achieves better results than equal bit alloca-
tion. Hence, we conclude that the quantization of precoders is not the reason for the bit

allocation scheme being ineffective.

Figure 5.9: Impact of BA on systems with channel estimation error

Impact of B.A on systems with channel estimation error
10 T T T T T

0 5 10 15 20 25 30

Optimal Bit allocation with limited feedback.

From derviation in Weng et al. (2010) we have,

M
cx 2% [FHF]: [GGH] H 12" [FHF], [GGH] ) ™

k=1 k=1

NE

Ptrans =

Therefore, minimum P, is achieved when for a given F', G, each term of the
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sum is equal to the geometric mean, since the geometric mean is a constant. This bit
allocation scheme would be different from the scheme for an ideal feedback system in

which G and F are unitary.

Using this equation to calculate the bit allocation, the following result was obtained.

Figure 5.10: Optimal Bit allocation for limited feedback Linear Receiver

BER vs SNR
10 T T T T T T

SVD-limited feedback BA
—+H— SVD-limited feedback no BA

10 12 14 16 18 20 22 24
SNR(dB)

As can be seen from the result, the optimal scheme and no bit allocation schemes
produce similar results. On further analysis of the simulation, it was seen that the
optimal scheme was more or less close to equal bit allocation. Thus, under limited

feedback scenarios the computing bit allocation is unneccesary.

5.5 Reduction of computational complexity

The problem of deriving a grassman codebook is highly non-trivial. However, we hy-
pothesize that if a grassman codebook is available, then close to optimal codebooks of

smaller sizes can be easily derived from it.

As mentioned in section-4.1.1 in the report, grassman codebook represents the so-

lution to the max-min problem.
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max min d(Py, P;) = [Py Py — PiPi, i =1,2..256,5 = 1,2..256

Such that P, P, € U(5,4)

P;s are all maximally spaced matrices, let the codebook be represented by C. Now

If we were to solve for a codebook with 2 matrices (P, P3) as follows,

max min d(P}, Py)where P,, Py € C

This would be same as finding 2 matrices that are farthest apart. Let this codebook

be refered to as C,. We propose a method where in we construct a n+1 size code-

/ !

book, as C,,; = C, U {P,.,} where P, is given by the solution of d(P,,,,,C,) =
max d(P;},C,) VP; € C — C,, . The codebook C, ., = C, U {P,_,} is not optimal,
however, even this suboptimal codebook is seen to give close to optimal results with as
low as 4 precoders.

Figure 5.11: Impact of Grassman Codebook simplification, BERvsSNR comparison be-

tween Limited feedback Linear MIMO(5x4) TRx using grassman code-
book of size 256 and reduced codebook of size 4

Impact of Grassman Codebook Simplification
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Hence, if the channel permits the use of smaller size codebooks then it will reduce

the computational complexity on the reciever side and also valuable number of feedback
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bits could be saved.

If the channel is highly uncorrelated then we observe that channel inversion works
well. Since the reduced codebook does not have the identity matrix its performance is

poorer compared to channel inversion.

Figure 5.12: Impact of Grassman Codebook simplification, BER vs SNR comparison
between Limited feedback Linear MIMO(5 x4) TRx using grassman code-
book of size 256 and reduced codebook of size 4 when channel is uncor-
related channel

0Impact of GrassmanCodebook Simplification, almost uncorrelated channel matrix
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—+— Actual Codebook(256)
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Figure 5.13: Impact of Grassman Codebook simplification, BERvsSNR comparison be-
tween Limited feedback Linear MIMO(5x4) TRx using grassman code-
book of size 256 and reduced codebook of size 4, in the presence of chan-
nel estimation error(N (0, 0.1)

Impact of GrassmanCodebook, with channel estimation error(N(0,0.1))
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Figure 5.14: Impact of Grassman Codebook simplification Limited feedback DFE

Impact of GrassmanCodebook Simplification on GMD-DFE
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CHAPTER 6

Masking channel estimation errors by Quantization

Noise

In the previous section, we had proposed a codebook reduction algorithm which maybe
used when the channel is good i.e. it allows for the use of fewer precoder matrices while
still achieving the required performance. An alternate case in which the quantization
noise might not affect the performance would be the presence of high channel estima-
tion error. Though it has been assumed that complete CSIT is present, it is often not
possible to accurately estimate the channel matrix H, hence it is neccesary to account

for the same.

If the channel estimate given by H is erroneous such that the actual channel is given
by H + AH, where AH is the estimation error then, we model the estimation error

such that each element is a gaussian perturbation A/(0, 02,).

inf inf
200 [T 2 20 orr 202
re  zdr = e “dz = —~

:\/27'(' 0 V21 Jo s

E[[AH,;]]

E[|AHg| _
E[[Hj|] .

Hence, 0., indicates the percentage error in the estimate. Suppose we are trying
to transmit 4 bits of data, but it is also known that the last 2 bits are badly affected
by noise that they might as well be randomly generated at the receiver. In such a sce-
nario, reducing the quantization levels from 2* to 22 will not degrade the performance.
Similarly, if there is channel estimation error, then the optimal precoder matrix cannot
be accurately obtained, this deviation from the accurate precoder might be masked by
reducing the codebook size which will help in saving a few precious feedback bits and

reduce computation (comparisons) on the receiver side.



Figure 6.1: Quantization masking channel estimation error. BER vs SNR comparison
between linear MIMO TRx using codebooks of size 256 and size 4 under
various channel estimation error levels.
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We observe from the above plot that masking of channel estimation errors by quan-
tization noise would not be fruitful since the masking becomes effective only under very

high channel estimation errors.
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CHAPTER 7

Conclusion and Future work

Conclusion

Various MIMO limited feedback systems were studied. Firstly, the performance im-
provement provided by GTD tends to be negligible and in the case of limited feed-
back systems, GTD does not provide any additional value. Also the quantization noise
present in the limited feedback cases can be avoided by introducing a non-linear in-
version operation at the receiver. It has also been observed that choosing the optimal

precoder leads to a conditioning effect on noise which results in better BER values.

Grassman codebooks were studied and an efficient sub-optimal algorithm to reduce
a code book from larger size was introduced. Under the chosen channel conditions the
smaller codebooks performed close to the baseline case. Hence, it can be used to reduce

computational complexity and feedback.

The idea of masking channel estimation noise by quantization noise does not seem

feasible, as the estimation error has to be very high for it to be effective.

If we were to make suggestions to current LTE spatial mutliplexing standards based
on the studies performed, we would suggest the following- use of a GMD based optimal
DFE transceiver instead of the linear transceiver will help achieve performance close to
the ideal CSIT scenario. Also, use of a flexible codebook as hypothesized earlier could
help save valuable feedback bits and also reduce the computations required. Suppose
the channel is very good, the system should be able to achieve the required BER values
with a smaller codebook size. A smaller codebook size would mean fewer feedback
bits and fewer comparisons while choosing the optimal algorithm. And the proposed
induction based algorithm of codebook reduction would imply that the system could use
one master codebook stored in the memory and the reduced codebooks could simply be
the subsets of master codebook, and the codebook can be designed such that the reduced

codebook of size n would simply be the first n matrices of the master codebook.



Problems to explore

e Obtaining a bit allocation formula under improper channel estimation.

e Establishing the underlying structure of the matrices in the grassman subspace to
verify level of deviation of the optimal codebook from the reduced codebook that
has been proposed.

e Theoretical explanation as to why the inversion with the precoder works as well
as it does.

e Possibly employ vector decision as the noise is correlated across the streams.

e Analysis of the TRx schemes have been done on ZF type receivers, similar anal-
ysis maybe done on MMSE type receivers.
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APPENDIX A

LTE MIMO modes

Table A.1: LTE MIMO modes

Mode

Description

—| 3

Single Antenna Mode(Port 0)

1 data stream is transmitted us-
ing a single antenna, while there
may be one or more receive anten-
nas(receiver diversity)

Transmit Diversity

This involves the transmission of
the same stream over multiple
transmit antennas.

Open loop-Spatial Multiplexing

2 data streams are transmitted over
2 or more(upto 4) transmit anten-
nas. There is no feedback though
the TRI(transmit rank indicator) is
available at the base station to select
the number of levels.

Closed loop-Spatial Multiplexing

Similar to the open loop case, but
the PMlI(precoding matrix indica-
tor) is also fedback to the transmit-
ter.

Multi-user MIMO

Difference from Closed loop spa-
tial multplexing is that the data
streams are targetted towards differ-
ent users.

Closed Loop Rank 1 with precoding

One code word is transmitted over
one spatial layer, it is similar to
beamforming

Single Antenna(Port 5)

This is a beamforming mode, 1
stream over 1 spatial layer. 1-4 an-
tennas.
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